SlideShare a Scribd company logo
Multiplication and Division of Rational Expressions
Frank Ma © 2011
Multiplication Rule for Rational Expressions
A
B
C
D
* =
AC
BD
Multiplication and Division of Rational Expressions
Multiplication Rule for Rational Expressions
A
B
C
D
* =
AC
BD
Multiplication and Division of Rational Expressions
In most problems, we reduce the product by factoring the
top and the bottom, then cancel.
Multiplication Rule for Rational Expressions
A
B
C
D
* =
AC
BD
Multiplication and Division of Rational Expressions
In most problems, we reduce the product by factoring the
top and the bottom, then cancel.
Example A. Simplify
10x
y3z
a. *
y2
5x3
Multiplication Rule for Rational Expressions
A
B
C
D
* =
AC
BD
Multiplication and Division of Rational Expressions
In most problems, we reduce the product by factoring the
top and the bottom, then cancel.
Example A. Simplify
10x
y3z
a. *
y2
5x3 = 10xy2
5x3y3z
Multiplication Rule for Rational Expressions
A
B
C
D
* =
AC
BD
Multiplication and Division of Rational Expressions
In most problems, we reduce the product by factoring the
top and the bottom, then cancel.
Example A. Simplify
10x
y3z
a. *
y2
5x3 = 10xy2
5x3y3z = 2
x2yz
Multiplication Rule for Rational Expressions
A
B
C
D
* =
AC
BD
Multiplication and Division of Rational Expressions
In most problems, we reduce the product by factoring the
top and the bottom, then cancel.
Example A. Simplify
10x
y3z
a. *
y2
5x3 = 10xy2
5x3y3z = 2
x2yz
b.
(x2 + 2x – 3 )
(x – 2) (x2 – x )
(x2 – 4 )
*
Multiplication Rule for Rational Expressions
A
B
C
D
* =
AC
BD
Multiplication and Division of Rational Expressions
In most problems, we reduce the product by factoring the
top and the bottom, then cancel.
Example A. Simplify
10x
y3z
a. *
y2
5x3 = 10xy2
5x3y3z = 2
x2yz
b.
(x2 + 2x – 3 )
(x – 2) (x2 – x )
(x2 – 4 )
*
=
(x + 3)(x – 1 )
Multiplication Rule for Rational Expressions
A
B
C
D
* =
AC
BD
Multiplication and Division of Rational Expressions
In most problems, we reduce the product by factoring the
top and the bottom, then cancel.
Example A. Simplify
10x
y3z
a. *
y2
5x3 = 10xy2
5x3y3z = 2
x2yz
b.
(x2 + 2x – 3 )
(x – 2) (x2 – x )
(x2 – 4 )
*
=
(x + 3)(x – 1 ) (x + 2 )(x – 2)
Multiplication Rule for Rational Expressions
A
B
C
D
* =
AC
BD
Multiplication and Division of Rational Expressions
In most problems, we reduce the product by factoring the
top and the bottom, then cancel.
Example A. Simplify
10x
y3z
a. *
y2
5x3 = 10xy2
5x3y3z = 2
x2yz
b.
(x2 + 2x – 3 )
(x – 2) (x2 – x )
(x2 – 4 )
*
=
(x + 3)(x – 1 )
(x – 2)
(x + 2 )(x – 2)
Multiplication Rule for Rational Expressions
A
B
C
D
* =
AC
BD
Multiplication and Division of Rational Expressions
In most problems, we reduce the product by factoring the
top and the bottom, then cancel.
Example A. Simplify
10x
y3z
a. *
y2
5x3 = 10xy2
5x3y3z = 2
x2yz
b.
(x2 + 2x – 3 )
(x – 2) (x2 – x )
(x2 – 4 )
*
=
(x + 3)(x – 1 )
(x – 2) x(x – 1 )
(x + 2 )(x – 2)
Multiplication Rule for Rational Expressions
A
B
C
D
* =
AC
BD
Multiplication and Division of Rational Expressions
In most problems, we reduce the product by factoring the
top and the bottom, then cancel.
Example A. Simplify
10x
y3z
a. *
y2
5x3 = 10xy2
5x3y3z = 2
x2yz
b.
(x2 + 2x – 3 )
(x – 2) (x2 – x )
(x2 – 4 )
*
=
(x + 3)(x – 1 )
(x – 2) x(x – 1 )
(x + 2 )(x – 2)
Multiplication Rule for Rational Expressions
A
B
C
D
* =
AC
BD
Multiplication and Division of Rational Expressions
In most problems, we reduce the product by factoring the
top and the bottom, then cancel.
Example A. Simplify
10x
y3z
a. *
y2
5x3 = 10xy2
5x3y3z = 2
x2yz
b.
(x2 + 2x – 3 )
(x – 2) (x2 – x )
(x2 – 4 )
*
=
(x + 3)(x – 1 )
(x – 2) x(x – 1 )
(x + 2 )(x – 2)
Multiplication Rule for Rational Expressions
A
B
C
D
* =
AC
BD
Multiplication and Division of Rational Expressions
In most problems, we reduce the product by factoring the
top and the bottom, then cancel.
Example A. Simplify
10x
y3z
a. *
y2
5x3 = 10xy2
5x3y3z = 2
x2yz
b.
(x2 + 2x – 3 )
(x – 2) (x2 – x )
(x2 – 4 )
=
(x + 3)(x + 2)
x
*
=
(x + 3)(x – 1 )
(x – 2) x(x – 1 )
(x + 2 )(x – 2)
In the next section, we meet the following type of problems.
Multiplication and Division of Rational Expressions
Example B. Simplify and expand the answers.
a. x + 3
x – 1
(x2 – 1)
Multiplication and Division of Rational Expressions
a. x + 3
x – 1
(x2 – 1)
= x + 3
(x – 1) (x – 1)(x + 1)
Example B. Simplify and expand the answers.
Multiplication and Division of Rational Expressions
Example B. Simplify and expand the answers.
a. x + 3
x – 1
(x2 – 1)
= x + 3
(x – 1) (x – 1)(x + 1)
= (x + 3)(x + 1)
Multiplication and Division of Rational Expressions
a. x + 3
x – 1
(x2 – 1)
= x + 3
(x – 1) (x – 1)(x + 1)
= (x + 3)(x + 1) = x2 + 4x + 3
Example B. Simplify and expand the answers.
Multiplication and Division of Rational Expressions
a. x + 3
x – 1
(x2 – 1)
= x + 3
(x – 1) (x – 1)(x + 1)
= (x + 3)(x + 1) = x2 + 4x + 3
b. x – 2
x2 – 9
( –
x + 1
x2 – 2x – 3
) ( x – 3)(x + 3)(x + 1)
Example B. Simplify and expand the answers.
Multiplication and Division of Rational Expressions
a. x + 3
x – 1
(x2 – 1)
= x + 3
(x – 1) (x – 1)(x + 1)
= (x + 3)(x + 1) = x2 + 4x + 3
b. x – 2
x2 – 9
( –
x + 1
x2 – 2x – 3
) ( x – 3)(x + 3)(x + 1)
=
x – 2
(x – 3)(x + 3)
Example B. Simplify and expand the answers.
Multiplication and Division of Rational Expressions
a. x + 3
x – 1
(x2 – 1)
= x + 3
(x – 1) (x – 1)(x + 1)
= (x + 3)(x + 1) = x2 + 4x + 3
b. x – 2
x2 – 9
( –
x + 1
x2 – 2x – 3
) ( x – 3)(x + 3)(x + 1)
=
x – 2
(x – 3)(x + 3)
–
x + 1
(x – 3)(x + 1)
Example B. Simplify and expand the answers.
Multiplication and Division of Rational Expressions
a. x + 3
x – 1
(x2 – 1)
= x + 3
(x – 1) (x – 1)(x + 1)
= (x + 3)(x + 1) = x2 + 4x + 3
b. x – 2
x2 – 9
( –
x + 1
x2 – 2x – 3
) ( x – 3)(x + 3)(x + 1)
=
x – 2
(x – 3)(x + 3)
[ –
x + 1
(x – 3)(x + 1)
] ( x – 3)(x + 3)(x + 1)
Example B. Simplify and expand the answers.
Multiplication and Division of Rational Expressions
a. x + 3
x – 1
(x2 – 1)
= x + 3
(x – 1) (x – 1)(x + 1)
= (x + 3)(x + 1) = x2 + 4x + 3
b. x – 2
x2 – 9
( –
x + 1
x2 – 2x – 3
) ( x – 3)(x + 3)(x + 1)
=
x – 2
(x – 3)(x + 3)
[ –
x + 1
(x – 3)(x + 1)
] ( x – 3)(x + 3)(x + 1)
(x + 1)
Example B. Simplify and expand the answers.
Multiplication and Division of Rational Expressions
a. x + 3
x – 1
(x2 – 1)
= x + 3
(x – 1) (x – 1)(x + 1)
= (x + 3)(x + 1) = x2 + 4x + 3
b. x – 2
x2 – 9
( –
x + 1
x2 – 2x – 3
) ( x – 3)(x + 3)(x + 1)
=
x – 2
(x – 3)(x + 3)
[ –
x + 1
(x – 3)(x + 1)
] ( x – 3)(x + 3)(x + 1)
(x + 1) (x + 3)
Example B. Simplify and expand the answers.
Multiplication and Division of Rational Expressions
a. x + 3
x – 1
(x2 – 1)
= x + 3
(x – 1) (x – 1)(x + 1)
= (x + 3)(x + 1) = x2 + 4x + 3
b. x – 2
x2 – 9
( –
x + 1
x2 – 2x – 3
) ( x – 3)(x + 3)(x + 1)
=
x – 2
(x – 3)(x + 3)
[ –
x + 1
(x – 3)(x + 1)
] ( x – 3)(x + 3)(x + 1)
(x + 1) (x + 3)
= (x – 2)(x + 1) – (x + 1)(x + 3)
Example B. Simplify and expand the answers.
Multiplication and Division of Rational Expressions
a. x + 3
x – 1
(x2 – 1)
= x + 3
(x – 1) (x – 1)(x + 1)
= (x + 3)(x + 1) = x2 + 4x + 3
b. x – 2
x2 – 9
( –
x + 1
x2 – 2x – 3
) ( x – 3)(x + 3)(x + 1)
=
x – 2
(x – 3)(x + 3)
[ –
x + 1
(x – 3)(x + 1)
] ( x – 3)(x + 3)(x + 1)
(x + 1) (x + 3)
= (x – 2)(x + 1) – (x + 1)(x + 3)
= (x – 2)(x + 1) + (–x –1)(x + 3)
Example B. Simplify and expand the answers.
Multiplication and Division of Rational Expressions
a. x + 3
x – 1
(x2 – 1)
= x + 3
(x – 1) (x – 1)(x + 1)
= (x + 3)(x + 1) = x2 + 4x + 3
b. x – 2
x2 – 9
( –
x + 1
x2 – 2x – 3
) ( x – 3)(x + 3)(x + 1)
=
x – 2
(x – 3)(x + 3)
[ –
x + 1
(x – 3)(x + 1)
] ( x – 3)(x + 3)(x + 1)
(x + 1) (x + 3)
= (x – 2)(x + 1) – (x + 1)(x + 3)
= (x – 2)(x + 1) + (–x –1)(x + 3)
= x2 – x – 2 – x2 – 4x – 3
Example B. Simplify and expand the answers.
Multiplication and Division of Rational Expressions
Example B. Simplify and expand the answers.
a. x + 3
x – 1
(x2 – 1)
= x + 3
(x – 1) (x – 1)(x + 1)
= (x + 3)(x + 1) = x2 + 4x + 3
b. x – 2
x2 – 9
( –
x + 1
x2 – 2x – 3
) ( x – 3)(x + 3)(x + 1)
=
x – 2
(x – 3)(x + 3)
[ –
x + 1
(x – 3)(x + 1)
] ( x – 3)(x + 3)(x + 1)
(x + 1) (x + 3)
= (x – 2)(x + 1) – (x + 1)(x + 3)
= (x – 2)(x + 1) + (–x –1)(x + 3)
= x2 – x – 2 – x2 – 4x – 3
= –5x – 5
Division Rule for Rational Expressions
Multiplication and Division of Rational Expressions
A
B
C
D
÷
Division Rule for Rational Expressions
Multiplication and Division of Rational Expressions
A
B
C
D
÷ =
AD
BC
Reciprocate
Division Rule for Rational Expressions
Multiplication and Division of Rational Expressions
A
B
C
D
÷ =
AD
BC
Reciprocate
We convert division by an expression of multiplying by its
reciprocal.
Division Rule for Rational Expressions
Multiplication and Division of Rational Expressions
A
B
C
D
÷ =
AD
BC
Reciprocate
We convert division by an expression of multiplying by its
reciprocal. Then we factor and reduce the product.
Division Rule for Rational Expressions
Multiplication and Division of Rational Expressions
A
B
C
D
÷ =
AD
BC
Reciprocate
(2x – 6)
(x + 3)
÷
(x2 + 2x – 3)
(9 – x2)
Example C. Simplify
We convert division by an expression of multiplying by its
reciprocal. Then we factor and reduce the product.
Division Rule for Rational Expressions
Multiplication and Division of Rational Expressions
A
B
C
D
÷ =
AD
BC
Reciprocate
(2x – 6)
(x + 3)
÷
(x2 + 2x – 3)
(9 – x2)
=
(2x – 6)
(x + 3)
(x2 + 2x – 3)
(9 – x2)
*
Example C. Simplify
We convert division by an expression of multiplying by its
reciprocal. Then we factor and reduce the product.
Division Rule for Rational Expressions
Multiplication and Division of Rational Expressions
A
B
C
D
÷ =
AD
BC
Reciprocate
(2x – 6)
(x + 3)
÷
(x2 + 2x – 3)
(9 – x2)
=
(2x – 6)
(x + 3)
(x2 + 2x – 3)
(9 – x2)
*
=
2(x – 3)
(x + 3)
Example C. Simplify
We convert division by an expression of multiplying by its
reciprocal. Then we factor and reduce the product.
Division Rule for Rational Expressions
Multiplication and Division of Rational Expressions
A
B
C
D
÷ =
AD
BC
Reciprocate
(2x – 6)
(x + 3)
÷
(x2 + 2x – 3)
(9 – x2)
=
(2x – 6)
(x + 3)
(x2 + 2x – 3)
(9 – x2)
*
=
2(x – 3)
(x + 3)
(x + 3)(x – 1)
(3 – x)(3 + x)
Example C. Simplify
We convert division by an expression of multiplying by its
reciprocal. Then we factor and reduce the product.
Division Rule for Rational Expressions
Multiplication and Division of Rational Expressions
A
B
C
D
÷ =
AD
BC
Reciprocate
Example C. Simplify
(2x – 6)
(x + 3)
÷
(x2 + 2x – 3)
(9 – x2)
=
(2x – 6)
(x + 3)
(x2 + 2x – 3)
(9 – x2)
*
=
2(x – 3)
(x + 3)
(x + 3)(x – 1)
(3 – x)(3 + x)
*
(9 – x2)
We convert division by an expression of multiplying by its
reciprocal. Then we factor and reduce the product.
Division Rule for Rational Expressions
Multiplication and Division of Rational Expressions
A
B
C
D
÷ =
AD
BC
Reciprocate
(2x – 6)
(x + 3)
÷
(x2 + 2x – 3)
(9 – x2)
=
(2x – 6)
(x + 3)
(x2 + 2x – 3)
(9 – x2)
*
=
2(x – 3)
(x + 3)
(x + 3)(x – 1)
(3 – x)(3 + x)
*
(–1)
Example C. Simplify
We convert division by an expression of multiplying by its
reciprocal. Then we factor and reduce the product.
Division Rule for Rational Expressions
Multiplication and Division of Rational Expressions
A
B
C
D
÷ =
AD
BC
Reciprocate
(2x – 6)
(x + 3)
÷
(x2 + 2x – 3)
(9 – x2)
=
(2x – 6)
(x + 3)
(x2 + 2x – 3)
(9 – x2)
*
=
2(x – 3)
(x + 3)
(x + 3)(x – 1)
(3 – x)(3 + x)
*
(–1)
=
–2(x – 1)
(3 + x)
Example C. Simplify
We convert division by an expression of multiplying by its
reciprocal. Then we factor and reduce the product.
Multiplication and Division of Rational Expressions
Besides the expanded form and factored forms, rational
expressions may also be split into sums or differences.
Multiplication and Division of Rational Expressions
Besides the expanded form and factored forms, rational
expressions may also be split into sums or differences.
There are two common ways to do this.
Multiplication and Division of Rational Expressions
Besides the expanded form and factored forms, rational
expressions may also be split into sums or differences.
There are two common ways to do this.
I. Split off the numerator term by term.
Multiplication and Division of Rational Expressions
Example D. Break up the numerators as the sums or
differences and simplify each term.
(2x – 6)
(x + 3)
a. =
Besides the expanded form and factored forms, rational
expressions may also be split into sums or differences.
There are two common ways to do this.
I. Split off the numerator term by term.
(2x – 6)
3x2
b. =
Multiplication and Division of Rational Expressions
Example D. Break up the numerators as the sums or
differences and simplify each term.
(2x – 6)
(x + 3)
a. =
Besides the expanded form and factored forms, rational
expressions may also be split into sums or differences.
There are two common ways to do this.
I. Split off the numerator term by term.
(x + 3) – (x + 3)
2x 6
(2x – 6)
3x2
b. =
Multiplication and Division of Rational Expressions
Example D. Break up the numerators as the sums or
differences and simplify each term.
(2x – 6)
(x + 3)
a. =
Besides the expanded form and factored forms, rational
expressions may also be split into sums or differences.
There are two common ways to do this.
I. Split off the numerator term by term.
(x + 3) – (x + 3)
2x 6
(2x – 6)
3x2
b. = –
2x 6
3x2 3x2
Multiplication and Division of Rational Expressions
Example D. Break up the numerators as the sums or
differences and simplify each term.
(2x – 6)
(x + 3)
a. =
Besides the expanded form and factored forms, rational
expressions may also be split into sums or differences.
There are two common ways to do this.
I. Split off the numerator term by term.
(x + 3) – (x + 3)
2x 6
(2x – 6)
3x2
b. = –
2x 6
3x2 3x2 = –
2
x2
2
3x
Multiplication and Division of Rational Expressions
Example D. Break up the numerators as the sums or
differences and simplify each term.
(2x – 6)
(x + 3)
a. =
Besides the expanded form and factored forms, rational
expressions may also be split into sums or differences.
There are two common ways to do this.
I. Split off the numerator term by term.
(x + 3) – (x + 3)
2x 6
(2x – 6)
3x2
b. = –
2x 6
3x2 3x2 = –
2
x2
2
3x
II. Long Division
Long division is the extension of the long division of numbers
from grade school and it is for the division of polynomials in
one variable.
Multiplication and Division of Rational Expressions
Example D. Break up the numerators as the sums or
differences and simplify each term.
(2x – 6)
(x + 3)
a. =
Besides the expanded form and factored forms, rational
expressions may also be split into sums or differences.
There are two common ways to do this.
I. Split off the numerator term by term.
(x + 3) – (x + 3)
2x 6
(2x – 6)
3x2
b. = –
2x 6
3x2 3x2 = –
2
x2
2
3x
II. Long Division
Long division is the extension of the long division of numbers
from grade school and it is for the division of polynomials in
one variable. Specifically, long division gives relevant results
only when the degree of the numerator is the same or more
than the degree of the denominator.
Multiplication and Division of Rational Expressions
Let’s look at the example 125/8 or 125 ÷ 8 by long division.
Multiplication and Division of Rational Expressions
Let’s look at the example 125/8 or 125 ÷ 8 by long division.
i. Put the problem in the long division
format with the “bottom-out” and
move from left to right until there is
enough to enter a quotient.
Multiplication and Division of Rational Expressions
Let’s look at the example 125/8 or 125 ÷ 8 by long division.
i. Put the problem in the long division
format with the “bottom-out” and
move from left to right until there is
enough to enter a quotient. )8 125
Multiplication and Division of Rational Expressions
Let’s look at the example 125/8 or 125 ÷ 8 by long division.
i. Put the problem in the long division
format with the “bottom-out” and
move from left to right until there is
enough to enter a quotient. )8 125
1
Multiplication and Division of Rational Expressions
Let’s look at the example 125/8 or 125 ÷ 8 by long division.
i. Put the problem in the long division
format with the “bottom-out” and
move from left to right until there is
enough to enter a quotient. )8 125
1
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
8
45
Multiplication and Division of Rational Expressions
Let’s look at the example 125/8 or 125 ÷ 8 by long division.
i. Put the problem in the long division
format with the “bottom-out” and
move from left to right until there is
enough to enter a quotient. )8 125
1
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
8
45
iii. Repeat steps i and ii until no more
quotient may be entered.
Multiplication and Division of Rational Expressions
i. Put the problem in the long division
format with the “bottom-out” and
move from left to right until there is
enough to enter a quotient. )8 125
15
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
8
45
iii. Repeat steps i and ii until no more
quotient may be entered.
40
5
Let’s look at the example 125/8 or 125 ÷ 8 by long division.
Multiplication and Division of Rational Expressions
i. Put the problem in the long division
format with the “bottom-out” and
move from left to right until there is
enough to enter a quotient. )8 125
15
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
8
45
iii. Repeat steps i and ii until no more
quotient may be entered. Then we may
put the fraction N/D in the following
mixed form:
N
D
= Q + R
D
and that R (the remainder) is smaller then D (no more quotient).
40
5
where Q is the quotient
Let’s look at the example 125/8 or 125 ÷ 8 by long division.
Multiplication and Division of Rational Expressions
i. Put the problem in the long division
format with the “bottom-out” and
move from left to right until there is
enough to enter a quotient. )8 125
15
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
8
45
iii. Repeat steps i and ii until no more
quotient may be entered. Then we may
put the fraction N/D in the following
mixed form:
N
D
= Q + R
D
and that R (the remainder) is smaller then D (no more quotient).
40
5
125
8
= 15 + 5
8
where Q is the quotient
Let’s look at the example 125/8 or 125 ÷ 8 by long division.
Multiplication and Division of Rational Expressions
Example E. Divide using long division(2x – 6)
(x + 3)
Multiplication and Division of Rational Expressions
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
Example E. Divide using long division(2x – 6)
(x + 3)
Multiplication and Division of Rational Expressions
)x + 3 2x – 6
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
Make sure the terms
are in order.
Example E. Divide using long division(2x – 6)
(x + 3)
Multiplication and Division of Rational Expressions
)x + 3 2x – 6
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
Make sure the terms
are in order.
Example E. Divide using long division(2x – 6)
(x + 3)
Multiplication and Division of Rational Expressions
)x + 3 2x – 6
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
enter the quotients of the
leading terms 2x/x = 2
Example E. Divide using long division(2x – 6)
(x + 3)
Multiplication and Division of Rational Expressions
)x + 3 2x – 6
2
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
enter the quotients of the
leading terms 2x/x = 2
Example E. Divide using long division(2x – 6)
(x + 3)
Multiplication and Division of Rational Expressions
)x + 3 2x – 6
2
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
Example E. Divide using long division(2x – 6)
(x + 3)
Multiplication and Division of Rational Expressions
)x + 3 2x – 6
2
2x + 6
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
Example E. Divide using long division(2x – 6)
(x + 3)
Multiplication and Division of Rational Expressions
)x + 3 2x – 6
2
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
2x + 6
–12
–)
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
Example E. Divide using long division(2x – 6)
(x + 3)
Multiplication and Division of Rational Expressions
)x + 3 2x – 6
2
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
2x + 6
–12
iii. Repeat steps i and ii until no more
quotient may be entered.
–)
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
Example E. Divide using long division(2x – 6)
(x + 3)
Multiplication and Division of Rational Expressions
)x + 3 2x – 6
2
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
2x + 6
–12
–)
Stop. No more
quotient since
x can’t going into 12.
iii. Repeat steps i and ii until no more
quotient may be entered.
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
Example E. Divide using long division(2x – 6)
(x + 3)
Multiplication and Division of Rational Expressions
)x + 3 2x – 6
2
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
2x + 6
–12
iii. Repeat steps i and ii until no more
quotient may be entered. Then we may
put the fraction N/D in the following
mixed form:
–)
N
D
= Q + R
D
has smaller degree then denominator D (no more quotient).
where Q is the quotient and the remainder R
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
Example E. Divide using long division(2x – 6)
(x + 3)
Multiplication and Division of Rational Expressions
)x + 3 2x – 6
2
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
2x + 6
–12
iii. Repeat steps i and ii until no more
quotient may be entered. Then we may
put the fraction N/D in the following
mixed form:
–)
Hence we may write
(2x – 6)
(x + 3)
N
D
= Q + R
D
has smaller degree then denominator D (no more quotient).
where Q is the quotient and the remainder R
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
Example E. Divide using long division(2x – 6)
(x + 3)
Multiplication and Division of Rational Expressions
)x + 3 2x – 6
2
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
2x + 6
–12
iii. Repeat steps i and ii until no more
quotient may be entered. Then we may
put the fraction N/D in the following
mixed form:
–)
Hence we may write
(2x – 6)
(x + 3)
N
D
= Q + R
D
has smaller degree then denominator D (no more quotient).
where Q is the quotient and the remainder R
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
Q
R
Example E. Divide using long division(2x – 6)
(x + 3)
Multiplication and Division of Rational Expressions
)x + 3 2x – 6
2
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
2x + 6
–12
iii. Repeat steps i and ii until no more
quotient may be entered. Then we may
put the fraction N/D in the following
mixed form:
= 2 – 12
x + 3
–)
Hence we may write
(2x – 6)
(x + 3)
N
D
= Q + R
D
has smaller degree then denominator D (no more quotient).
where Q is the quotient and the remainder R
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
Q
R
Q R
Example E. Divide using long division(2x – 6)
(x + 3)
Multiplication and Division of Rational Expressions
Example F. Divide using long division
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
iii. Repeat steps i and ii until no more
quotient may be entered. Then we may
put the fraction N/D in the following
mixed form:
x2 – 6x + 3
x – 2
N
D
= Q + R
D
has smaller degree then denominator D (no more quotient).
where Q is the quotient and the remainder R
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
Multiplication and Division of Rational Expressions
)x + 3
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
iii. Repeat steps i and ii until no more
quotient may be entered. Then we may
put the fraction N/D in the following
mixed form:
x2 – 6x + 3
Make sure the terms
are in order.
N
D
= Q + R
D
has smaller degree then denominator D (no more quotient).
where Q is the quotient and the remainder R
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
Example F. Divide using long divisionx2 – 6x + 3
x – 2
Multiplication and Division of Rational Expressions
)x + 3
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
iii. Repeat steps i and ii until no more
quotient may be entered. Then we may
put the fraction N/D in the following
mixed form:
x2 – 6x + 3
N
D
= Q + R
D
has smaller degree then denominator D (no more quotient).
where Q is the quotient and the remainder R
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
Example F. Divide using long divisionx2 – 6x + 3
x – 2
Multiplication and Division of Rational Expressions
)x + 3
x
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
iii. Repeat steps i and ii until no more
quotient may be entered. Then we may
put the fraction N/D in the following
mixed form:
x2 – 6x + 3
N
D
= Q + R
D
has smaller degree then denominator D (no more quotient).
where Q is the quotient and the remainder R
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
Example F. Divide using long divisionx2 – 6x + 3
x – 2
Multiplication and Division of Rational Expressions
)x + 3
x
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
x2 + 3x
iii. Repeat steps i and ii until no more
quotient may be entered. Then we may
put the fraction N/D in the following
mixed form:
x2 – 6x + 3
N
D
= Q + R
D
has smaller degree then denominator D (no more quotient).
where Q is the quotient and the remainder R
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
Example F. Divide using long divisionx2 – 6x + 3
x – 2
Multiplication and Division of Rational Expressions
)x + 3
x
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
x2 + 3x
–9x + 3
iii. Repeat steps i and ii until no more
quotient may be entered. Then we may
put the fraction N/D in the following
mixed form:
–)
x2 – 6x + 3
N
D
= Q + R
D
has smaller degree then denominator D (no more quotient).
where Q is the quotient and the remainder R
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
Example F. Divide using long divisionx2 – 6x + 3
x – 2
Multiplication and Division of Rational Expressions
)x + 3
x – 9
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
x2 + 3x
–9x + 3
iii. Repeat steps i and ii until no more
quotient may be entered. Then we may
put the fraction N/D in the following
mixed form:
–)
x2 – 6x + 3
N
D
= Q + R
D
has smaller degree then denominator D (no more quotient).
where Q is the quotient and the remainder R
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
Example F. Divide using long divisionx2 – 6x + 3
x – 2
Multiplication and Division of Rational Expressions
)x + 3
x – 9
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
x2 + 3x
–9x + 3
iii. Repeat steps i and ii until no more
quotient may be entered. Then we may
put the fraction N/D in the following
mixed form:
–)
x2 – 6x + 3
–9x – 27
N
D
= Q + R
D
has smaller degree then denominator D (no more quotient).
where Q is the quotient and the remainder R
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
Example F. Divide using long divisionx2 – 6x + 3
x – 2
Multiplication and Division of Rational Expressions
)x + 3
x – 9
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
x2 + 3x
–9x + 3
iii. Repeat steps i and ii until no more
quotient may be entered. Then we may
put the fraction N/D in the following
mixed form:
–)
x2 – 6x + 3
–9x – 27–)
30
N
D
= Q + R
D
has smaller degree then denominator D (no more quotient).
where Q is the quotient and the remainder R
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
Example F. Divide using long divisionx2 – 6x + 3
x – 2
Multiplication and Division of Rational Expressions
)x + 3
x – 9
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
x2 + 3x
–9x + 3
iii. Repeat steps i and ii until no more
quotient may be entered. Then we may
put the fraction N/D in the following
mixed form:
N
D
= Q + R
D
has smaller degree then denominator D (no more quotient).
where Q is the quotient
–)
x2 – 6x + 3
–9x – 27–)
30
Stop. No more quotient
since x can’t going into
30. Hence 30 is the
remainder.
and the remainder R
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
Example F. Divide using long divisionx2 – 6x + 3
x – 2
Multiplication and Division of Rational Expressions
)x + 3
x – 9
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
x2 + 3x
–9x + 3
iii. Repeat steps i and ii until no more
quotient may be entered. Then we may
put the fraction N/D in the following
mixed form:
–)
x2 – 6x + 3
–9x – 27–)
30
Hence
x2 – 6x + 3
x – 2
=
N
D
= Q + R
D
has smaller degree then denominator D (no more quotient).
where Q is the quotient and the remainder R
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
Example F. Divide using long divisionx2 – 6x + 3
x – 2
Multiplication and Division of Rational Expressions
)x + 3
x – 9
ii. Multiply the quotient back into the
problem and subtract the results from
the numerator. Bring down the
remaining terms from the numerator.
x2 + 3x
–9x + 3
iii. Repeat steps i and ii until no more
quotient may be entered. Then we may
put the fraction N/D in the following
mixed form:
–)
x2 – 6x + 3
–9x – 27–)
30
Hence
x2 – 6x + 3
x – 2
= x – 9 + 30
x + 3
i. Put the problem in the long division
format with the “bottom-out” and
enter the quotients of the leading
terms.
N
D
= Q + R
D
has smaller degree then denominator D (no more quotient).
where Q is the quotient and the remainder R
Example F. Divide using long divisionx2 – 6x + 3
x – 2
Ex A. Simplify. Do not expand the results.
Multiplication and Division of Rational Expressions
1. 10x *
2
5x3
15x
4
*
16
25x4
10x
*
35x32.
5. 10
9x4
*
18
5x3
6.
3.12x6*
5
6x14
56x6
27
*
63
8x5
10x
*
35x34.
7. 75x
49
*
42
25x3
8.
9.
2x – 4
2x + 4
5x + 10
3x – 6
10.
6 – 4x
3x – 2
x – 2
2x + 4
11.
9x – 12
2x – 4
2 – x
8 – 6x
12.
x + 4
–x – 4
4 – x
x – 4
13.
3x – 9
15x – 5
3 – x
5 – 15x
14.
42 – 6x
–2x + 14
4 – 2x
–7x + 14
*
*
*
*
*
*
15.
(x2 + x – 2 )
(x – 2) (x2 – x)
(x2 – 4 )
*
16.
(x2 + 2x – 3 )
(x2 – 9) (x2 – x – 2 )
(x2 – 2x – 3)
*
17.
(x2 – x – 2 )
(x2 – 1) (x2 + 2x + 1)
(x2 + x )
*
18.
(x2 + 5x – 6 )
(x2 + 5x + 6) (x2 – 5x – 6 )
(x2 – 5x + 6)
*
19.
(x2 – 3x – 4 )
(x2 – 1) (x2 – 2x – 8)
(x2 – 3x + 2)
*
20.
(– x2 + 6 – x )
(x2 + 5x + 6) (x2 – x – 12 )
(6 – x2 – x)
*
Ex. A. Simplify. Do not expand the results.
Multiplication and Division of Rational Expressions
21.
(2x2 + x – 1 )
(1 – 2x)
(4x2 – 1)
(2x2 – x )
22.
(3x2 – 2x – 1)
(1 – 9x2)
(x2 + x – 2 )
(x2 + 4x + 4)
23.(3x2 – x – 2)
(x2 – x + 2) (3x2 + 4x + 1)
(–x – 3x2)
24.
(x + 1 – 6x2)
(–x2 – 4)
(2x2 + x – 1 )
(x2 – 5x – 6)
25. (x3 – 4x)
(–x2 + 4x – 4)
(x2 + 2)
(–x + 2)
26.
(–x3 + 9x ) (x2 + 6x + 9)
(x2 + 3x) (–3x2 – 9x)
Ex. B. Multiply, expand and simplify the results.
÷
÷
÷
÷
÷
÷
27. x + 3
x + 1
(x2 – 1) 28. x – 3
x – 2
(x2 – 4) 29. 2x + 3
1 – x
(x2 – 1)
30. 3 – 2x
x + 2 (x + 2)(x +1) 31. 3 – 2x
2x – 1 (3x + 2)(1 – 2x)
32. x – 2
x – 3
( +
x + 1
x + 3
)( x – 3)(x + 3)
33. 2x – 1
x + 2
( –
x + 2
2x – 3
) ( 2x – 3)(x + 2)
Multiplication and Division of Rational Expressions
38. x – 2
x2 – 9
( –
x + 1
x2 – 2x – 3
) ( x – 3)(x + 3)(x + 1)
39. x + 3
x2 – 4
( –
2x + 1
x2 + x – 2
) ( x – 2)(x + 2)(x – 1)
40. x – 1
x2 – x – 6
( –
x + 1
x2 – 2x – 3
) ( x – 3)(x + 2)(x + 1)
41. x + 2
x2 – 4x +3
( –
2x + 1
x2 + 2x – 3
)( x – 3)(x + 3)(x – 1)
34. 4 – x
x – 3
( –
x – 1
2x + 3
)( x – 3)(2x + 3)
35. 3 – x
x + 2
( – 2x + 3
x – 3
)(x – 3)(x + 2)
Ex B. Multiply, expand and simplify the results.
36. 3 – 4x
x + 1
( –
1 – 2x
x + 3
)( x + 3)(x + 1)
37. 5x – 7
x + 5
( –
4 – 5x
x – 3
)(x – 3)(x + 5)
Ex. C. Break up the following expressions as sums and
differences of fractions.
42.
43. 44.
45. 46. 47.
x2 + 4x – 6
2x2x2 – 4
x2
12x3 – 9x2 + 6x
3x
x2 – 4
2x
x
x8 – x6 – x4
x2
x8 – x6 – x4
Ex D. Use long division and write each rational expression in
the form of Q + .
R
D
(x2 + x – 2 )
(x – 1)
(3x2 – 3x – 2 )
(x + 2)
2x + 6
x + 2
48.
3x – 5
x – 2
49.
4x + 3
x – 1
50.
5x – 4
x – 3
51.
3x + 8
2 – x
52.
–4x – 5
1 – x
53.
54. (2x2 + x – 3 )
(x – 2)
55. 56.
(–x2 + 4x – 3 )
(x – 3)
(5x2 – 1 )
(x – 4)
57. (4x2 + 2 )
(x + 3)
58. 59.
Multiplication and Division of Rational Expressions

More Related Content

PPTX
5 6 substitution and factoring formulas
PPTX
2 2 addition and subtraction ii
PPTX
4 6multiplication formulas
PPTX
43literal equations
PPTX
2 4 solving rational equations
PPTX
3 multiplication and division of rational expressions x
PPTX
2.1 reviews of exponents and the power functions
PPTX
44 exponents
5 6 substitution and factoring formulas
2 2 addition and subtraction ii
4 6multiplication formulas
43literal equations
2 4 solving rational equations
3 multiplication and division of rational expressions x
2.1 reviews of exponents and the power functions
44 exponents

What's hot (20)

PPTX
4 5 fractional exponents
PPTX
2 1 addition and subtraction i
PPTX
4 3 algebra of radicals
PPTX
1 4 cancellation
PPT
2.5 calculation with log and exp
PPTX
Difference quotient algebra
PPTX
4.2 exponential functions and compound interests
PPTX
4 4 more on algebra of radicals
PPTX
5 4 equations that may be reduced to quadratics
PPTX
2 6 complex fractions
PPTX
1.3 solving equations
PPTX
1exponents
PPTX
1.3 rational expressions
PPTX
4 2 rules of radicals
PPTX
4 1exponents
PPT
3.2 more on log and exponential equations
PPTX
1 2 2nd-degree equation and word problems-x
PPTX
12 rational expressions
PPTX
46polynomial expressions
PPTX
4.5 calculation with log and exp
4 5 fractional exponents
2 1 addition and subtraction i
4 3 algebra of radicals
1 4 cancellation
2.5 calculation with log and exp
Difference quotient algebra
4.2 exponential functions and compound interests
4 4 more on algebra of radicals
5 4 equations that may be reduced to quadratics
2 6 complex fractions
1.3 solving equations
1exponents
1.3 rational expressions
4 2 rules of radicals
4 1exponents
3.2 more on log and exponential equations
1 2 2nd-degree equation and word problems-x
12 rational expressions
46polynomial expressions
4.5 calculation with log and exp
Ad

Viewers also liked (9)

PPTX
English v
DOC
Respuestas diapositiva 13 factorizacion de polinomios
PPTX
54 the least common multiple
PDF
AAM CSTX 10 Hunter Ligger, CA
PPTX
PPTX
New Metrics for Marketing
PPTX
Gafas 3D
PPTX
Ppt on karyotyping, chromosome banding and chromosome painting.
PPTX
Aprendizaje autónomo-y-significativo
English v
Respuestas diapositiva 13 factorizacion de polinomios
54 the least common multiple
AAM CSTX 10 Hunter Ligger, CA
New Metrics for Marketing
Gafas 3D
Ppt on karyotyping, chromosome banding and chromosome painting.
Aprendizaje autónomo-y-significativo
Ad

Similar to 53 multiplication and division of rational expressions (20)

PPTX
13 multiplication and division of rational expressions
PDF
Chapter-5-Quadratic-expressions-and-equations.pdf
PDF
Expresiones algebraicas pdf
PPT
Factoring polynomials
PPTX
Algebra Expressions and Exponents Math Presentation in Pink Purple Graphic St...
PPTX
Factoring2
PPT
P6 factoring
PPT
P6 factoring
PPT
Polynomials
PDF
Em01 ba
PPTX
Factorization of algebraic expressions math
PPTX
1.2 algebraic expressions t
PPT
Algebra Revision.ppt
PPTX
1.2 algebraic expressions t
PPTX
11.4
PPTX
11.2
PPTX
6 addition and subtraction ii x
PPTX
16 partial fraction decompositions x
PPTX
1.3 solving equations t
PPT
2/27/12 Special Factoring - Sum & Difference of Two Cubes
13 multiplication and division of rational expressions
Chapter-5-Quadratic-expressions-and-equations.pdf
Expresiones algebraicas pdf
Factoring polynomials
Algebra Expressions and Exponents Math Presentation in Pink Purple Graphic St...
Factoring2
P6 factoring
P6 factoring
Polynomials
Em01 ba
Factorization of algebraic expressions math
1.2 algebraic expressions t
Algebra Revision.ppt
1.2 algebraic expressions t
11.4
11.2
6 addition and subtraction ii x
16 partial fraction decompositions x
1.3 solving equations t
2/27/12 Special Factoring - Sum & Difference of Two Cubes

More from alg1testreview (20)

PPTX
56 system of linear equations
PPTX
55 addition and subtraction of rational expressions
PPTX
52 rational expressions
PPTX
51 basic shapes and formulas
PPTX
41 expressions
PPTX
59 constructing linea equations of lines
PPTX
57 graphing lines from linear equations
PPTX
58 slopes of lines
PPTX
55 inequalities and comparative statements
PPTX
56 the rectangular coordinate system
PPTX
54 the number line
PPTX
53 pythagorean theorem and square roots
PPTX
52 about triangles
PPTX
50 solving equations by factoring
PPTX
51 ratio-proportion
PPTX
49 factoring trinomials the ac method and making lists
PPTX
48 factoring out the gcf and the grouping method
PPTX
47 operations of 2nd degree expressions and formulas
PPTX
45scientific notation
PPTX
42 linear equations
56 system of linear equations
55 addition and subtraction of rational expressions
52 rational expressions
51 basic shapes and formulas
41 expressions
59 constructing linea equations of lines
57 graphing lines from linear equations
58 slopes of lines
55 inequalities and comparative statements
56 the rectangular coordinate system
54 the number line
53 pythagorean theorem and square roots
52 about triangles
50 solving equations by factoring
51 ratio-proportion
49 factoring trinomials the ac method and making lists
48 factoring out the gcf and the grouping method
47 operations of 2nd degree expressions and formulas
45scientific notation
42 linear equations

Recently uploaded (20)

PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PDF
Hazard Identification & Risk Assessment .pdf
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
AI-driven educational solutions for real-life interventions in the Philippine...
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
My India Quiz Book_20210205121199924.pdf
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PDF
Computing-Curriculum for Schools in Ghana
PDF
Indian roads congress 037 - 2012 Flexible pavement
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
IGGE1 Understanding the Self1234567891011
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
Trump Administration's workforce development strategy
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
202450812 BayCHI UCSC-SV 20250812 v17.pptx
LDMMIA Reiki Yoga Finals Review Spring Summer
Hazard Identification & Risk Assessment .pdf
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
AI-driven educational solutions for real-life interventions in the Philippine...
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
My India Quiz Book_20210205121199924.pdf
A powerpoint presentation on the Revised K-10 Science Shaping Paper
Computing-Curriculum for Schools in Ghana
Indian roads congress 037 - 2012 Flexible pavement
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
IGGE1 Understanding the Self1234567891011
Chinmaya Tiranga quiz Grand Finale.pdf
Trump Administration's workforce development strategy
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
FORM 1 BIOLOGY MIND MAPS and their schemes
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
Unit 4 Computer Architecture Multicore Processor.pptx

53 multiplication and division of rational expressions

  • 1. Multiplication and Division of Rational Expressions Frank Ma © 2011
  • 2. Multiplication Rule for Rational Expressions A B C D * = AC BD Multiplication and Division of Rational Expressions
  • 3. Multiplication Rule for Rational Expressions A B C D * = AC BD Multiplication and Division of Rational Expressions In most problems, we reduce the product by factoring the top and the bottom, then cancel.
  • 4. Multiplication Rule for Rational Expressions A B C D * = AC BD Multiplication and Division of Rational Expressions In most problems, we reduce the product by factoring the top and the bottom, then cancel. Example A. Simplify 10x y3z a. * y2 5x3
  • 5. Multiplication Rule for Rational Expressions A B C D * = AC BD Multiplication and Division of Rational Expressions In most problems, we reduce the product by factoring the top and the bottom, then cancel. Example A. Simplify 10x y3z a. * y2 5x3 = 10xy2 5x3y3z
  • 6. Multiplication Rule for Rational Expressions A B C D * = AC BD Multiplication and Division of Rational Expressions In most problems, we reduce the product by factoring the top and the bottom, then cancel. Example A. Simplify 10x y3z a. * y2 5x3 = 10xy2 5x3y3z = 2 x2yz
  • 7. Multiplication Rule for Rational Expressions A B C D * = AC BD Multiplication and Division of Rational Expressions In most problems, we reduce the product by factoring the top and the bottom, then cancel. Example A. Simplify 10x y3z a. * y2 5x3 = 10xy2 5x3y3z = 2 x2yz b. (x2 + 2x – 3 ) (x – 2) (x2 – x ) (x2 – 4 ) *
  • 8. Multiplication Rule for Rational Expressions A B C D * = AC BD Multiplication and Division of Rational Expressions In most problems, we reduce the product by factoring the top and the bottom, then cancel. Example A. Simplify 10x y3z a. * y2 5x3 = 10xy2 5x3y3z = 2 x2yz b. (x2 + 2x – 3 ) (x – 2) (x2 – x ) (x2 – 4 ) * = (x + 3)(x – 1 )
  • 9. Multiplication Rule for Rational Expressions A B C D * = AC BD Multiplication and Division of Rational Expressions In most problems, we reduce the product by factoring the top and the bottom, then cancel. Example A. Simplify 10x y3z a. * y2 5x3 = 10xy2 5x3y3z = 2 x2yz b. (x2 + 2x – 3 ) (x – 2) (x2 – x ) (x2 – 4 ) * = (x + 3)(x – 1 ) (x + 2 )(x – 2)
  • 10. Multiplication Rule for Rational Expressions A B C D * = AC BD Multiplication and Division of Rational Expressions In most problems, we reduce the product by factoring the top and the bottom, then cancel. Example A. Simplify 10x y3z a. * y2 5x3 = 10xy2 5x3y3z = 2 x2yz b. (x2 + 2x – 3 ) (x – 2) (x2 – x ) (x2 – 4 ) * = (x + 3)(x – 1 ) (x – 2) (x + 2 )(x – 2)
  • 11. Multiplication Rule for Rational Expressions A B C D * = AC BD Multiplication and Division of Rational Expressions In most problems, we reduce the product by factoring the top and the bottom, then cancel. Example A. Simplify 10x y3z a. * y2 5x3 = 10xy2 5x3y3z = 2 x2yz b. (x2 + 2x – 3 ) (x – 2) (x2 – x ) (x2 – 4 ) * = (x + 3)(x – 1 ) (x – 2) x(x – 1 ) (x + 2 )(x – 2)
  • 12. Multiplication Rule for Rational Expressions A B C D * = AC BD Multiplication and Division of Rational Expressions In most problems, we reduce the product by factoring the top and the bottom, then cancel. Example A. Simplify 10x y3z a. * y2 5x3 = 10xy2 5x3y3z = 2 x2yz b. (x2 + 2x – 3 ) (x – 2) (x2 – x ) (x2 – 4 ) * = (x + 3)(x – 1 ) (x – 2) x(x – 1 ) (x + 2 )(x – 2)
  • 13. Multiplication Rule for Rational Expressions A B C D * = AC BD Multiplication and Division of Rational Expressions In most problems, we reduce the product by factoring the top and the bottom, then cancel. Example A. Simplify 10x y3z a. * y2 5x3 = 10xy2 5x3y3z = 2 x2yz b. (x2 + 2x – 3 ) (x – 2) (x2 – x ) (x2 – 4 ) * = (x + 3)(x – 1 ) (x – 2) x(x – 1 ) (x + 2 )(x – 2)
  • 14. Multiplication Rule for Rational Expressions A B C D * = AC BD Multiplication and Division of Rational Expressions In most problems, we reduce the product by factoring the top and the bottom, then cancel. Example A. Simplify 10x y3z a. * y2 5x3 = 10xy2 5x3y3z = 2 x2yz b. (x2 + 2x – 3 ) (x – 2) (x2 – x ) (x2 – 4 ) = (x + 3)(x + 2) x * = (x + 3)(x – 1 ) (x – 2) x(x – 1 ) (x + 2 )(x – 2) In the next section, we meet the following type of problems.
  • 15. Multiplication and Division of Rational Expressions Example B. Simplify and expand the answers. a. x + 3 x – 1 (x2 – 1)
  • 16. Multiplication and Division of Rational Expressions a. x + 3 x – 1 (x2 – 1) = x + 3 (x – 1) (x – 1)(x + 1) Example B. Simplify and expand the answers.
  • 17. Multiplication and Division of Rational Expressions Example B. Simplify and expand the answers. a. x + 3 x – 1 (x2 – 1) = x + 3 (x – 1) (x – 1)(x + 1) = (x + 3)(x + 1)
  • 18. Multiplication and Division of Rational Expressions a. x + 3 x – 1 (x2 – 1) = x + 3 (x – 1) (x – 1)(x + 1) = (x + 3)(x + 1) = x2 + 4x + 3 Example B. Simplify and expand the answers.
  • 19. Multiplication and Division of Rational Expressions a. x + 3 x – 1 (x2 – 1) = x + 3 (x – 1) (x – 1)(x + 1) = (x + 3)(x + 1) = x2 + 4x + 3 b. x – 2 x2 – 9 ( – x + 1 x2 – 2x – 3 ) ( x – 3)(x + 3)(x + 1) Example B. Simplify and expand the answers.
  • 20. Multiplication and Division of Rational Expressions a. x + 3 x – 1 (x2 – 1) = x + 3 (x – 1) (x – 1)(x + 1) = (x + 3)(x + 1) = x2 + 4x + 3 b. x – 2 x2 – 9 ( – x + 1 x2 – 2x – 3 ) ( x – 3)(x + 3)(x + 1) = x – 2 (x – 3)(x + 3) Example B. Simplify and expand the answers.
  • 21. Multiplication and Division of Rational Expressions a. x + 3 x – 1 (x2 – 1) = x + 3 (x – 1) (x – 1)(x + 1) = (x + 3)(x + 1) = x2 + 4x + 3 b. x – 2 x2 – 9 ( – x + 1 x2 – 2x – 3 ) ( x – 3)(x + 3)(x + 1) = x – 2 (x – 3)(x + 3) – x + 1 (x – 3)(x + 1) Example B. Simplify and expand the answers.
  • 22. Multiplication and Division of Rational Expressions a. x + 3 x – 1 (x2 – 1) = x + 3 (x – 1) (x – 1)(x + 1) = (x + 3)(x + 1) = x2 + 4x + 3 b. x – 2 x2 – 9 ( – x + 1 x2 – 2x – 3 ) ( x – 3)(x + 3)(x + 1) = x – 2 (x – 3)(x + 3) [ – x + 1 (x – 3)(x + 1) ] ( x – 3)(x + 3)(x + 1) Example B. Simplify and expand the answers.
  • 23. Multiplication and Division of Rational Expressions a. x + 3 x – 1 (x2 – 1) = x + 3 (x – 1) (x – 1)(x + 1) = (x + 3)(x + 1) = x2 + 4x + 3 b. x – 2 x2 – 9 ( – x + 1 x2 – 2x – 3 ) ( x – 3)(x + 3)(x + 1) = x – 2 (x – 3)(x + 3) [ – x + 1 (x – 3)(x + 1) ] ( x – 3)(x + 3)(x + 1) (x + 1) Example B. Simplify and expand the answers.
  • 24. Multiplication and Division of Rational Expressions a. x + 3 x – 1 (x2 – 1) = x + 3 (x – 1) (x – 1)(x + 1) = (x + 3)(x + 1) = x2 + 4x + 3 b. x – 2 x2 – 9 ( – x + 1 x2 – 2x – 3 ) ( x – 3)(x + 3)(x + 1) = x – 2 (x – 3)(x + 3) [ – x + 1 (x – 3)(x + 1) ] ( x – 3)(x + 3)(x + 1) (x + 1) (x + 3) Example B. Simplify and expand the answers.
  • 25. Multiplication and Division of Rational Expressions a. x + 3 x – 1 (x2 – 1) = x + 3 (x – 1) (x – 1)(x + 1) = (x + 3)(x + 1) = x2 + 4x + 3 b. x – 2 x2 – 9 ( – x + 1 x2 – 2x – 3 ) ( x – 3)(x + 3)(x + 1) = x – 2 (x – 3)(x + 3) [ – x + 1 (x – 3)(x + 1) ] ( x – 3)(x + 3)(x + 1) (x + 1) (x + 3) = (x – 2)(x + 1) – (x + 1)(x + 3) Example B. Simplify and expand the answers.
  • 26. Multiplication and Division of Rational Expressions a. x + 3 x – 1 (x2 – 1) = x + 3 (x – 1) (x – 1)(x + 1) = (x + 3)(x + 1) = x2 + 4x + 3 b. x – 2 x2 – 9 ( – x + 1 x2 – 2x – 3 ) ( x – 3)(x + 3)(x + 1) = x – 2 (x – 3)(x + 3) [ – x + 1 (x – 3)(x + 1) ] ( x – 3)(x + 3)(x + 1) (x + 1) (x + 3) = (x – 2)(x + 1) – (x + 1)(x + 3) = (x – 2)(x + 1) + (–x –1)(x + 3) Example B. Simplify and expand the answers.
  • 27. Multiplication and Division of Rational Expressions a. x + 3 x – 1 (x2 – 1) = x + 3 (x – 1) (x – 1)(x + 1) = (x + 3)(x + 1) = x2 + 4x + 3 b. x – 2 x2 – 9 ( – x + 1 x2 – 2x – 3 ) ( x – 3)(x + 3)(x + 1) = x – 2 (x – 3)(x + 3) [ – x + 1 (x – 3)(x + 1) ] ( x – 3)(x + 3)(x + 1) (x + 1) (x + 3) = (x – 2)(x + 1) – (x + 1)(x + 3) = (x – 2)(x + 1) + (–x –1)(x + 3) = x2 – x – 2 – x2 – 4x – 3 Example B. Simplify and expand the answers.
  • 28. Multiplication and Division of Rational Expressions Example B. Simplify and expand the answers. a. x + 3 x – 1 (x2 – 1) = x + 3 (x – 1) (x – 1)(x + 1) = (x + 3)(x + 1) = x2 + 4x + 3 b. x – 2 x2 – 9 ( – x + 1 x2 – 2x – 3 ) ( x – 3)(x + 3)(x + 1) = x – 2 (x – 3)(x + 3) [ – x + 1 (x – 3)(x + 1) ] ( x – 3)(x + 3)(x + 1) (x + 1) (x + 3) = (x – 2)(x + 1) – (x + 1)(x + 3) = (x – 2)(x + 1) + (–x –1)(x + 3) = x2 – x – 2 – x2 – 4x – 3 = –5x – 5
  • 29. Division Rule for Rational Expressions Multiplication and Division of Rational Expressions A B C D ÷
  • 30. Division Rule for Rational Expressions Multiplication and Division of Rational Expressions A B C D ÷ = AD BC Reciprocate
  • 31. Division Rule for Rational Expressions Multiplication and Division of Rational Expressions A B C D ÷ = AD BC Reciprocate We convert division by an expression of multiplying by its reciprocal.
  • 32. Division Rule for Rational Expressions Multiplication and Division of Rational Expressions A B C D ÷ = AD BC Reciprocate We convert division by an expression of multiplying by its reciprocal. Then we factor and reduce the product.
  • 33. Division Rule for Rational Expressions Multiplication and Division of Rational Expressions A B C D ÷ = AD BC Reciprocate (2x – 6) (x + 3) ÷ (x2 + 2x – 3) (9 – x2) Example C. Simplify We convert division by an expression of multiplying by its reciprocal. Then we factor and reduce the product.
  • 34. Division Rule for Rational Expressions Multiplication and Division of Rational Expressions A B C D ÷ = AD BC Reciprocate (2x – 6) (x + 3) ÷ (x2 + 2x – 3) (9 – x2) = (2x – 6) (x + 3) (x2 + 2x – 3) (9 – x2) * Example C. Simplify We convert division by an expression of multiplying by its reciprocal. Then we factor and reduce the product.
  • 35. Division Rule for Rational Expressions Multiplication and Division of Rational Expressions A B C D ÷ = AD BC Reciprocate (2x – 6) (x + 3) ÷ (x2 + 2x – 3) (9 – x2) = (2x – 6) (x + 3) (x2 + 2x – 3) (9 – x2) * = 2(x – 3) (x + 3) Example C. Simplify We convert division by an expression of multiplying by its reciprocal. Then we factor and reduce the product.
  • 36. Division Rule for Rational Expressions Multiplication and Division of Rational Expressions A B C D ÷ = AD BC Reciprocate (2x – 6) (x + 3) ÷ (x2 + 2x – 3) (9 – x2) = (2x – 6) (x + 3) (x2 + 2x – 3) (9 – x2) * = 2(x – 3) (x + 3) (x + 3)(x – 1) (3 – x)(3 + x) Example C. Simplify We convert division by an expression of multiplying by its reciprocal. Then we factor and reduce the product.
  • 37. Division Rule for Rational Expressions Multiplication and Division of Rational Expressions A B C D ÷ = AD BC Reciprocate Example C. Simplify (2x – 6) (x + 3) ÷ (x2 + 2x – 3) (9 – x2) = (2x – 6) (x + 3) (x2 + 2x – 3) (9 – x2) * = 2(x – 3) (x + 3) (x + 3)(x – 1) (3 – x)(3 + x) * (9 – x2) We convert division by an expression of multiplying by its reciprocal. Then we factor and reduce the product.
  • 38. Division Rule for Rational Expressions Multiplication and Division of Rational Expressions A B C D ÷ = AD BC Reciprocate (2x – 6) (x + 3) ÷ (x2 + 2x – 3) (9 – x2) = (2x – 6) (x + 3) (x2 + 2x – 3) (9 – x2) * = 2(x – 3) (x + 3) (x + 3)(x – 1) (3 – x)(3 + x) * (–1) Example C. Simplify We convert division by an expression of multiplying by its reciprocal. Then we factor and reduce the product.
  • 39. Division Rule for Rational Expressions Multiplication and Division of Rational Expressions A B C D ÷ = AD BC Reciprocate (2x – 6) (x + 3) ÷ (x2 + 2x – 3) (9 – x2) = (2x – 6) (x + 3) (x2 + 2x – 3) (9 – x2) * = 2(x – 3) (x + 3) (x + 3)(x – 1) (3 – x)(3 + x) * (–1) = –2(x – 1) (3 + x) Example C. Simplify We convert division by an expression of multiplying by its reciprocal. Then we factor and reduce the product.
  • 40. Multiplication and Division of Rational Expressions Besides the expanded form and factored forms, rational expressions may also be split into sums or differences.
  • 41. Multiplication and Division of Rational Expressions Besides the expanded form and factored forms, rational expressions may also be split into sums or differences. There are two common ways to do this.
  • 42. Multiplication and Division of Rational Expressions Besides the expanded form and factored forms, rational expressions may also be split into sums or differences. There are two common ways to do this. I. Split off the numerator term by term.
  • 43. Multiplication and Division of Rational Expressions Example D. Break up the numerators as the sums or differences and simplify each term. (2x – 6) (x + 3) a. = Besides the expanded form and factored forms, rational expressions may also be split into sums or differences. There are two common ways to do this. I. Split off the numerator term by term. (2x – 6) 3x2 b. =
  • 44. Multiplication and Division of Rational Expressions Example D. Break up the numerators as the sums or differences and simplify each term. (2x – 6) (x + 3) a. = Besides the expanded form and factored forms, rational expressions may also be split into sums or differences. There are two common ways to do this. I. Split off the numerator term by term. (x + 3) – (x + 3) 2x 6 (2x – 6) 3x2 b. =
  • 45. Multiplication and Division of Rational Expressions Example D. Break up the numerators as the sums or differences and simplify each term. (2x – 6) (x + 3) a. = Besides the expanded form and factored forms, rational expressions may also be split into sums or differences. There are two common ways to do this. I. Split off the numerator term by term. (x + 3) – (x + 3) 2x 6 (2x – 6) 3x2 b. = – 2x 6 3x2 3x2
  • 46. Multiplication and Division of Rational Expressions Example D. Break up the numerators as the sums or differences and simplify each term. (2x – 6) (x + 3) a. = Besides the expanded form and factored forms, rational expressions may also be split into sums or differences. There are two common ways to do this. I. Split off the numerator term by term. (x + 3) – (x + 3) 2x 6 (2x – 6) 3x2 b. = – 2x 6 3x2 3x2 = – 2 x2 2 3x
  • 47. Multiplication and Division of Rational Expressions Example D. Break up the numerators as the sums or differences and simplify each term. (2x – 6) (x + 3) a. = Besides the expanded form and factored forms, rational expressions may also be split into sums or differences. There are two common ways to do this. I. Split off the numerator term by term. (x + 3) – (x + 3) 2x 6 (2x – 6) 3x2 b. = – 2x 6 3x2 3x2 = – 2 x2 2 3x II. Long Division Long division is the extension of the long division of numbers from grade school and it is for the division of polynomials in one variable.
  • 48. Multiplication and Division of Rational Expressions Example D. Break up the numerators as the sums or differences and simplify each term. (2x – 6) (x + 3) a. = Besides the expanded form and factored forms, rational expressions may also be split into sums or differences. There are two common ways to do this. I. Split off the numerator term by term. (x + 3) – (x + 3) 2x 6 (2x – 6) 3x2 b. = – 2x 6 3x2 3x2 = – 2 x2 2 3x II. Long Division Long division is the extension of the long division of numbers from grade school and it is for the division of polynomials in one variable. Specifically, long division gives relevant results only when the degree of the numerator is the same or more than the degree of the denominator.
  • 49. Multiplication and Division of Rational Expressions Let’s look at the example 125/8 or 125 ÷ 8 by long division.
  • 50. Multiplication and Division of Rational Expressions Let’s look at the example 125/8 or 125 ÷ 8 by long division. i. Put the problem in the long division format with the “bottom-out” and move from left to right until there is enough to enter a quotient.
  • 51. Multiplication and Division of Rational Expressions Let’s look at the example 125/8 or 125 ÷ 8 by long division. i. Put the problem in the long division format with the “bottom-out” and move from left to right until there is enough to enter a quotient. )8 125
  • 52. Multiplication and Division of Rational Expressions Let’s look at the example 125/8 or 125 ÷ 8 by long division. i. Put the problem in the long division format with the “bottom-out” and move from left to right until there is enough to enter a quotient. )8 125 1
  • 53. Multiplication and Division of Rational Expressions Let’s look at the example 125/8 or 125 ÷ 8 by long division. i. Put the problem in the long division format with the “bottom-out” and move from left to right until there is enough to enter a quotient. )8 125 1 ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. 8 45
  • 54. Multiplication and Division of Rational Expressions Let’s look at the example 125/8 or 125 ÷ 8 by long division. i. Put the problem in the long division format with the “bottom-out” and move from left to right until there is enough to enter a quotient. )8 125 1 ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. 8 45 iii. Repeat steps i and ii until no more quotient may be entered.
  • 55. Multiplication and Division of Rational Expressions i. Put the problem in the long division format with the “bottom-out” and move from left to right until there is enough to enter a quotient. )8 125 15 ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. 8 45 iii. Repeat steps i and ii until no more quotient may be entered. 40 5 Let’s look at the example 125/8 or 125 ÷ 8 by long division.
  • 56. Multiplication and Division of Rational Expressions i. Put the problem in the long division format with the “bottom-out” and move from left to right until there is enough to enter a quotient. )8 125 15 ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. 8 45 iii. Repeat steps i and ii until no more quotient may be entered. Then we may put the fraction N/D in the following mixed form: N D = Q + R D and that R (the remainder) is smaller then D (no more quotient). 40 5 where Q is the quotient Let’s look at the example 125/8 or 125 ÷ 8 by long division.
  • 57. Multiplication and Division of Rational Expressions i. Put the problem in the long division format with the “bottom-out” and move from left to right until there is enough to enter a quotient. )8 125 15 ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. 8 45 iii. Repeat steps i and ii until no more quotient may be entered. Then we may put the fraction N/D in the following mixed form: N D = Q + R D and that R (the remainder) is smaller then D (no more quotient). 40 5 125 8 = 15 + 5 8 where Q is the quotient Let’s look at the example 125/8 or 125 ÷ 8 by long division.
  • 58. Multiplication and Division of Rational Expressions Example E. Divide using long division(2x – 6) (x + 3)
  • 59. Multiplication and Division of Rational Expressions i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms. Example E. Divide using long division(2x – 6) (x + 3)
  • 60. Multiplication and Division of Rational Expressions )x + 3 2x – 6 i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms. Make sure the terms are in order. Example E. Divide using long division(2x – 6) (x + 3)
  • 61. Multiplication and Division of Rational Expressions )x + 3 2x – 6 i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms. Make sure the terms are in order. Example E. Divide using long division(2x – 6) (x + 3)
  • 62. Multiplication and Division of Rational Expressions )x + 3 2x – 6 i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms. enter the quotients of the leading terms 2x/x = 2 Example E. Divide using long division(2x – 6) (x + 3)
  • 63. Multiplication and Division of Rational Expressions )x + 3 2x – 6 2 i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms. enter the quotients of the leading terms 2x/x = 2 Example E. Divide using long division(2x – 6) (x + 3)
  • 64. Multiplication and Division of Rational Expressions )x + 3 2x – 6 2 ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms. Example E. Divide using long division(2x – 6) (x + 3)
  • 65. Multiplication and Division of Rational Expressions )x + 3 2x – 6 2 2x + 6 ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms. Example E. Divide using long division(2x – 6) (x + 3)
  • 66. Multiplication and Division of Rational Expressions )x + 3 2x – 6 2 ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. 2x + 6 –12 –) i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms. Example E. Divide using long division(2x – 6) (x + 3)
  • 67. Multiplication and Division of Rational Expressions )x + 3 2x – 6 2 ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. 2x + 6 –12 iii. Repeat steps i and ii until no more quotient may be entered. –) i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms. Example E. Divide using long division(2x – 6) (x + 3)
  • 68. Multiplication and Division of Rational Expressions )x + 3 2x – 6 2 ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. 2x + 6 –12 –) Stop. No more quotient since x can’t going into 12. iii. Repeat steps i and ii until no more quotient may be entered. i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms. Example E. Divide using long division(2x – 6) (x + 3)
  • 69. Multiplication and Division of Rational Expressions )x + 3 2x – 6 2 ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. 2x + 6 –12 iii. Repeat steps i and ii until no more quotient may be entered. Then we may put the fraction N/D in the following mixed form: –) N D = Q + R D has smaller degree then denominator D (no more quotient). where Q is the quotient and the remainder R i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms. Example E. Divide using long division(2x – 6) (x + 3)
  • 70. Multiplication and Division of Rational Expressions )x + 3 2x – 6 2 ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. 2x + 6 –12 iii. Repeat steps i and ii until no more quotient may be entered. Then we may put the fraction N/D in the following mixed form: –) Hence we may write (2x – 6) (x + 3) N D = Q + R D has smaller degree then denominator D (no more quotient). where Q is the quotient and the remainder R i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms. Example E. Divide using long division(2x – 6) (x + 3)
  • 71. Multiplication and Division of Rational Expressions )x + 3 2x – 6 2 ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. 2x + 6 –12 iii. Repeat steps i and ii until no more quotient may be entered. Then we may put the fraction N/D in the following mixed form: –) Hence we may write (2x – 6) (x + 3) N D = Q + R D has smaller degree then denominator D (no more quotient). where Q is the quotient and the remainder R i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms. Q R Example E. Divide using long division(2x – 6) (x + 3)
  • 72. Multiplication and Division of Rational Expressions )x + 3 2x – 6 2 ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. 2x + 6 –12 iii. Repeat steps i and ii until no more quotient may be entered. Then we may put the fraction N/D in the following mixed form: = 2 – 12 x + 3 –) Hence we may write (2x – 6) (x + 3) N D = Q + R D has smaller degree then denominator D (no more quotient). where Q is the quotient and the remainder R i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms. Q R Q R Example E. Divide using long division(2x – 6) (x + 3)
  • 73. Multiplication and Division of Rational Expressions Example F. Divide using long division ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. iii. Repeat steps i and ii until no more quotient may be entered. Then we may put the fraction N/D in the following mixed form: x2 – 6x + 3 x – 2 N D = Q + R D has smaller degree then denominator D (no more quotient). where Q is the quotient and the remainder R i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms.
  • 74. Multiplication and Division of Rational Expressions )x + 3 ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. iii. Repeat steps i and ii until no more quotient may be entered. Then we may put the fraction N/D in the following mixed form: x2 – 6x + 3 Make sure the terms are in order. N D = Q + R D has smaller degree then denominator D (no more quotient). where Q is the quotient and the remainder R i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms. Example F. Divide using long divisionx2 – 6x + 3 x – 2
  • 75. Multiplication and Division of Rational Expressions )x + 3 ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. iii. Repeat steps i and ii until no more quotient may be entered. Then we may put the fraction N/D in the following mixed form: x2 – 6x + 3 N D = Q + R D has smaller degree then denominator D (no more quotient). where Q is the quotient and the remainder R i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms. Example F. Divide using long divisionx2 – 6x + 3 x – 2
  • 76. Multiplication and Division of Rational Expressions )x + 3 x ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. iii. Repeat steps i and ii until no more quotient may be entered. Then we may put the fraction N/D in the following mixed form: x2 – 6x + 3 N D = Q + R D has smaller degree then denominator D (no more quotient). where Q is the quotient and the remainder R i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms. Example F. Divide using long divisionx2 – 6x + 3 x – 2
  • 77. Multiplication and Division of Rational Expressions )x + 3 x ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. x2 + 3x iii. Repeat steps i and ii until no more quotient may be entered. Then we may put the fraction N/D in the following mixed form: x2 – 6x + 3 N D = Q + R D has smaller degree then denominator D (no more quotient). where Q is the quotient and the remainder R i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms. Example F. Divide using long divisionx2 – 6x + 3 x – 2
  • 78. Multiplication and Division of Rational Expressions )x + 3 x ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. x2 + 3x –9x + 3 iii. Repeat steps i and ii until no more quotient may be entered. Then we may put the fraction N/D in the following mixed form: –) x2 – 6x + 3 N D = Q + R D has smaller degree then denominator D (no more quotient). where Q is the quotient and the remainder R i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms. Example F. Divide using long divisionx2 – 6x + 3 x – 2
  • 79. Multiplication and Division of Rational Expressions )x + 3 x – 9 ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. x2 + 3x –9x + 3 iii. Repeat steps i and ii until no more quotient may be entered. Then we may put the fraction N/D in the following mixed form: –) x2 – 6x + 3 N D = Q + R D has smaller degree then denominator D (no more quotient). where Q is the quotient and the remainder R i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms. Example F. Divide using long divisionx2 – 6x + 3 x – 2
  • 80. Multiplication and Division of Rational Expressions )x + 3 x – 9 ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. x2 + 3x –9x + 3 iii. Repeat steps i and ii until no more quotient may be entered. Then we may put the fraction N/D in the following mixed form: –) x2 – 6x + 3 –9x – 27 N D = Q + R D has smaller degree then denominator D (no more quotient). where Q is the quotient and the remainder R i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms. Example F. Divide using long divisionx2 – 6x + 3 x – 2
  • 81. Multiplication and Division of Rational Expressions )x + 3 x – 9 ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. x2 + 3x –9x + 3 iii. Repeat steps i and ii until no more quotient may be entered. Then we may put the fraction N/D in the following mixed form: –) x2 – 6x + 3 –9x – 27–) 30 N D = Q + R D has smaller degree then denominator D (no more quotient). where Q is the quotient and the remainder R i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms. Example F. Divide using long divisionx2 – 6x + 3 x – 2
  • 82. Multiplication and Division of Rational Expressions )x + 3 x – 9 ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. x2 + 3x –9x + 3 iii. Repeat steps i and ii until no more quotient may be entered. Then we may put the fraction N/D in the following mixed form: N D = Q + R D has smaller degree then denominator D (no more quotient). where Q is the quotient –) x2 – 6x + 3 –9x – 27–) 30 Stop. No more quotient since x can’t going into 30. Hence 30 is the remainder. and the remainder R i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms. Example F. Divide using long divisionx2 – 6x + 3 x – 2
  • 83. Multiplication and Division of Rational Expressions )x + 3 x – 9 ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. x2 + 3x –9x + 3 iii. Repeat steps i and ii until no more quotient may be entered. Then we may put the fraction N/D in the following mixed form: –) x2 – 6x + 3 –9x – 27–) 30 Hence x2 – 6x + 3 x – 2 = N D = Q + R D has smaller degree then denominator D (no more quotient). where Q is the quotient and the remainder R i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms. Example F. Divide using long divisionx2 – 6x + 3 x – 2
  • 84. Multiplication and Division of Rational Expressions )x + 3 x – 9 ii. Multiply the quotient back into the problem and subtract the results from the numerator. Bring down the remaining terms from the numerator. x2 + 3x –9x + 3 iii. Repeat steps i and ii until no more quotient may be entered. Then we may put the fraction N/D in the following mixed form: –) x2 – 6x + 3 –9x – 27–) 30 Hence x2 – 6x + 3 x – 2 = x – 9 + 30 x + 3 i. Put the problem in the long division format with the “bottom-out” and enter the quotients of the leading terms. N D = Q + R D has smaller degree then denominator D (no more quotient). where Q is the quotient and the remainder R Example F. Divide using long divisionx2 – 6x + 3 x – 2
  • 85. Ex A. Simplify. Do not expand the results. Multiplication and Division of Rational Expressions 1. 10x * 2 5x3 15x 4 * 16 25x4 10x * 35x32. 5. 10 9x4 * 18 5x3 6. 3.12x6* 5 6x14 56x6 27 * 63 8x5 10x * 35x34. 7. 75x 49 * 42 25x3 8. 9. 2x – 4 2x + 4 5x + 10 3x – 6 10. 6 – 4x 3x – 2 x – 2 2x + 4 11. 9x – 12 2x – 4 2 – x 8 – 6x 12. x + 4 –x – 4 4 – x x – 4 13. 3x – 9 15x – 5 3 – x 5 – 15x 14. 42 – 6x –2x + 14 4 – 2x –7x + 14 * * * * * * 15. (x2 + x – 2 ) (x – 2) (x2 – x) (x2 – 4 ) * 16. (x2 + 2x – 3 ) (x2 – 9) (x2 – x – 2 ) (x2 – 2x – 3) * 17. (x2 – x – 2 ) (x2 – 1) (x2 + 2x + 1) (x2 + x ) * 18. (x2 + 5x – 6 ) (x2 + 5x + 6) (x2 – 5x – 6 ) (x2 – 5x + 6) * 19. (x2 – 3x – 4 ) (x2 – 1) (x2 – 2x – 8) (x2 – 3x + 2) * 20. (– x2 + 6 – x ) (x2 + 5x + 6) (x2 – x – 12 ) (6 – x2 – x) *
  • 86. Ex. A. Simplify. Do not expand the results. Multiplication and Division of Rational Expressions 21. (2x2 + x – 1 ) (1 – 2x) (4x2 – 1) (2x2 – x ) 22. (3x2 – 2x – 1) (1 – 9x2) (x2 + x – 2 ) (x2 + 4x + 4) 23.(3x2 – x – 2) (x2 – x + 2) (3x2 + 4x + 1) (–x – 3x2) 24. (x + 1 – 6x2) (–x2 – 4) (2x2 + x – 1 ) (x2 – 5x – 6) 25. (x3 – 4x) (–x2 + 4x – 4) (x2 + 2) (–x + 2) 26. (–x3 + 9x ) (x2 + 6x + 9) (x2 + 3x) (–3x2 – 9x) Ex. B. Multiply, expand and simplify the results. ÷ ÷ ÷ ÷ ÷ ÷ 27. x + 3 x + 1 (x2 – 1) 28. x – 3 x – 2 (x2 – 4) 29. 2x + 3 1 – x (x2 – 1) 30. 3 – 2x x + 2 (x + 2)(x +1) 31. 3 – 2x 2x – 1 (3x + 2)(1 – 2x) 32. x – 2 x – 3 ( + x + 1 x + 3 )( x – 3)(x + 3) 33. 2x – 1 x + 2 ( – x + 2 2x – 3 ) ( 2x – 3)(x + 2)
  • 87. Multiplication and Division of Rational Expressions 38. x – 2 x2 – 9 ( – x + 1 x2 – 2x – 3 ) ( x – 3)(x + 3)(x + 1) 39. x + 3 x2 – 4 ( – 2x + 1 x2 + x – 2 ) ( x – 2)(x + 2)(x – 1) 40. x – 1 x2 – x – 6 ( – x + 1 x2 – 2x – 3 ) ( x – 3)(x + 2)(x + 1) 41. x + 2 x2 – 4x +3 ( – 2x + 1 x2 + 2x – 3 )( x – 3)(x + 3)(x – 1) 34. 4 – x x – 3 ( – x – 1 2x + 3 )( x – 3)(2x + 3) 35. 3 – x x + 2 ( – 2x + 3 x – 3 )(x – 3)(x + 2) Ex B. Multiply, expand and simplify the results. 36. 3 – 4x x + 1 ( – 1 – 2x x + 3 )( x + 3)(x + 1) 37. 5x – 7 x + 5 ( – 4 – 5x x – 3 )(x – 3)(x + 5)
  • 88. Ex. C. Break up the following expressions as sums and differences of fractions. 42. 43. 44. 45. 46. 47. x2 + 4x – 6 2x2x2 – 4 x2 12x3 – 9x2 + 6x 3x x2 – 4 2x x x8 – x6 – x4 x2 x8 – x6 – x4 Ex D. Use long division and write each rational expression in the form of Q + . R D (x2 + x – 2 ) (x – 1) (3x2 – 3x – 2 ) (x + 2) 2x + 6 x + 2 48. 3x – 5 x – 2 49. 4x + 3 x – 1 50. 5x – 4 x – 3 51. 3x + 8 2 – x 52. –4x – 5 1 – x 53. 54. (2x2 + x – 3 ) (x – 2) 55. 56. (–x2 + 4x – 3 ) (x – 3) (5x2 – 1 ) (x – 4) 57. (4x2 + 2 ) (x + 3) 58. 59. Multiplication and Division of Rational Expressions