7
Most read
8
Most read
10
Most read
JIM SMITH JCHS
Checks for understanding
3108.3.3
THE EQUATION OF A CIRCLE ON
A GRAPH CAN BE DEFINED AS
( x - h )² + ( y – k )² = r²
( h , k ) = center r = radius
IF YOU HAVE THE CENTER AND RADIUS
OF A CIRCLE, PLUG IN
TO FIND THE EQUATION.
Center = ( 3 , 6 ) radius = 4
h , k r
( x - h )² + ( y – k )² = r²
( x - 3 )² + ( y – 6 )² = 4²
( x - 3 )² + ( y – 6 )² = 16
IF YOU HAVE THE CENTER AND RADIUS
OF A CIRCLE, PLUG IN
TO FIND THE EQUATION.
Center = ( -5 , 0 ) radius = 8
h , k r
( x - h )² + ( y – k )² = r²
( x - -5 )² + ( y – 0 )² = 8²
( x + 5 )² + y ² = 64
FIND THE EQUATION
OF THE CIRCLE
Center At ( 3 , 9 ) Radius = 5
( x - 3 )² + ( y - 9 )² = 25
(X + 5) ² + ( y - 3 )² = 4
x ² + y ² = 289
Center At ( -5 , 3 ) Radius = 2
Center At ( 0 , 0 ) Radius = 17
IF YOU HAVE THE EQUATION OF A
CIRCLE, UNPLUG TO FIND THE
CENTER AND RADIUS.
( x - h )² + ( y – k )² = r²
( h , k ) = center r = radius
( x - 7 )² + ( y – 1 )² = 36
Center = 7 , 1
Radius = 36 = 6
IF YOU HAVE THE EQUATION OF A
CIRCLE, UNPLUG TO FIND THE
CENTER AND RADIUS.
( x - h )² + ( y – k )² = r²
( h , k ) = center r = radius
( x + 2 )² + ( y + 9 )² = 17
( x – (- 2 ) )² + ( y - ( -9 ) )² = 17
Center = -2 , -9
Radius = 17
FIND THE CENTER AND RADIUS
OF EACH CIRCLE
( x – 11 )² + ( y – 8 )² = 25
( x – 3 )² + ( y + 1 )² = 81
( x + 6 )² + y ² = 21
Center = ( 11,8 ) Radius = 5
Center = ( 3,-1 ) Radius = 9
Center = ( -6,0 ) Radius = 21
YOU NEED TO KNOW THE CENTER AND RADIUS
TO FIND THE EQUATION OF A CIRCLE.
If A Circle Has A Center At ( 2 , 4)
And Passes Through (4 , 8 ),
What Is The Equation Of The Circle?
Center At ( 2 , 4) Passes Through (4 , 8 )
( x - 2 )² + ( y - 4 )² = r²
The Radius Is The Distance From The
Center To A Point On The Circle.
r = (x-x)² + (y-y)²
r = ( 4 – 2 )² + ( 8 – 4 )²
r = 2² + 4² = 20
( x - 2 )² + ( y - 4 )² = 20 ²
( x - 2 )² + ( y - 4 )² = 20
FIND THE EQUATION
OF THE CIRCLE
Center At ( 3 , 6 ) Passes Through ( 1 , 5 )
Center At ( 0 , 5 ) Passes Through ( 6 , 2 )
Center At ( -3 , 1 ) Passes Through (-4 , -4 )
( x - 3 )² + ( y - 6 )² = 5
x ² + ( y - 5 )² = 45
( x + 3 )² + ( y – 1 )² = 26

More Related Content

PPT
14 6 equations of-circles
PPTX
Equation of a Circle in standard and general form
PPTX
Illustrating center and radius of a circle Math 10.pptx
PPTX
Equation of a circle
PPTX
Alg2 lesson 8-3
PPTX
PPT
Circles any centre
PPTX
Alg2 lesson 8-3
14 6 equations of-circles
Equation of a Circle in standard and general form
Illustrating center and radius of a circle Math 10.pptx
Equation of a circle
Alg2 lesson 8-3
Circles any centre
Alg2 lesson 8-3

Similar to 10-8 Equations of circles.ppt (20)

PPTX
Alg2 lesson 8-3
PPT
10 Coordinate Geometry Math Concepts .ppt
PPTX
Circles
PPTX
Presentation on calculus
PPT
Equation of the circle.ppt
PPT
Grade 10 Math Quarter 2 Equation of the Circle
PPT
Equationt of the circle /persamaan lingkaran
PPT
10.6 Equation of the circle in grade 10 math (1).ppt
PPT
G10 Math Q2- Week 9- Graph of equation of a Circle.ppt
PPT
G10-Math-Q2-Week-9-Graph-of-equation-of-a-Circle (1).ppt
PPTX
Math example
PPTX
Math example
PPTX
Addition and Subtraction of Functions
PPTX
Math example
PDF
10CSL67 CG LAB PROGRAM 6
PPT
Conic_Sections_Circles FCIT compat.ppt
PPTX
CIRCLES.pptx
PPTX
L1 Circle.pptx
PDF
(4) Parabola theory Module.pdf
PPTX
Alg2 lesson 8-3
10 Coordinate Geometry Math Concepts .ppt
Circles
Presentation on calculus
Equation of the circle.ppt
Grade 10 Math Quarter 2 Equation of the Circle
Equationt of the circle /persamaan lingkaran
10.6 Equation of the circle in grade 10 math (1).ppt
G10 Math Q2- Week 9- Graph of equation of a Circle.ppt
G10-Math-Q2-Week-9-Graph-of-equation-of-a-Circle (1).ppt
Math example
Math example
Addition and Subtraction of Functions
Math example
10CSL67 CG LAB PROGRAM 6
Conic_Sections_Circles FCIT compat.ppt
CIRCLES.pptx
L1 Circle.pptx
(4) Parabola theory Module.pdf
Ad

More from smithj91 (20)

PPT
1-5 Angle relationships.ppt
PPT
1-3 Distance and Midpoint.ppt
PPTX
5-4 Triangle Inequalites.pptx
PPT
Radicals.ppt
PPT
Solving Equations.ppt
PPT
13-3 Probability.ppt
PPT
12-1 Solids.ppt
PPTX
google earth circles.pptx
PPT
11-3 Arc Length, Sectors & Sections.ppt
PPT
11-1, 11-2 Perimeter & Area of Polygons.ppt
PPT
10-7 Circles - Segments.ppt
PPT
10-4, 10-6 Circles and Angles.ppt
PPT
10-3_Arcs_and_Chords.ppt
PPT
10-2_Angles_and_Arcs.ppt
PPT
10-1 Circles.ppt
PPT
8-7 Law of Cosines.ppt
PPT
8-6 Law of Sines.ppt
PPT
8-5 Trig Angles of Elev and Depress.ppt
PPT
8-4 Sine, Cosine.ppt
PPT
8-4 Tangent.ppt
1-5 Angle relationships.ppt
1-3 Distance and Midpoint.ppt
5-4 Triangle Inequalites.pptx
Radicals.ppt
Solving Equations.ppt
13-3 Probability.ppt
12-1 Solids.ppt
google earth circles.pptx
11-3 Arc Length, Sectors & Sections.ppt
11-1, 11-2 Perimeter & Area of Polygons.ppt
10-7 Circles - Segments.ppt
10-4, 10-6 Circles and Angles.ppt
10-3_Arcs_and_Chords.ppt
10-2_Angles_and_Arcs.ppt
10-1 Circles.ppt
8-7 Law of Cosines.ppt
8-6 Law of Sines.ppt
8-5 Trig Angles of Elev and Depress.ppt
8-4 Sine, Cosine.ppt
8-4 Tangent.ppt
Ad

Recently uploaded (20)

PPTX
Computer Architecture Input Output Memory.pptx
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
International_Financial_Reporting_Standa.pdf
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PDF
Uderstanding digital marketing and marketing stratergie for engaging the digi...
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PDF
My India Quiz Book_20210205121199924.pdf
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PPTX
Virtual and Augmented Reality in Current Scenario
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
advance database management system book.pdf
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PDF
What if we spent less time fighting change, and more time building what’s rig...
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PDF
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
Computer Architecture Input Output Memory.pptx
A powerpoint presentation on the Revised K-10 Science Shaping Paper
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
International_Financial_Reporting_Standa.pdf
Cambridge-Practice-Tests-for-IELTS-12.docx
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
Uderstanding digital marketing and marketing stratergie for engaging the digi...
B.Sc. DS Unit 2 Software Engineering.pptx
My India Quiz Book_20210205121199924.pdf
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
Practical Manual AGRO-233 Principles and Practices of Natural Farming
Virtual and Augmented Reality in Current Scenario
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
202450812 BayCHI UCSC-SV 20250812 v17.pptx
advance database management system book.pdf
LDMMIA Reiki Yoga Finals Review Spring Summer
What if we spent less time fighting change, and more time building what’s rig...
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
MBA _Common_ 2nd year Syllabus _2021-22_.pdf

10-8 Equations of circles.ppt

  • 1. JIM SMITH JCHS Checks for understanding 3108.3.3
  • 2. THE EQUATION OF A CIRCLE ON A GRAPH CAN BE DEFINED AS ( x - h )² + ( y – k )² = r² ( h , k ) = center r = radius
  • 3. IF YOU HAVE THE CENTER AND RADIUS OF A CIRCLE, PLUG IN TO FIND THE EQUATION. Center = ( 3 , 6 ) radius = 4 h , k r ( x - h )² + ( y – k )² = r² ( x - 3 )² + ( y – 6 )² = 4² ( x - 3 )² + ( y – 6 )² = 16
  • 4. IF YOU HAVE THE CENTER AND RADIUS OF A CIRCLE, PLUG IN TO FIND THE EQUATION. Center = ( -5 , 0 ) radius = 8 h , k r ( x - h )² + ( y – k )² = r² ( x - -5 )² + ( y – 0 )² = 8² ( x + 5 )² + y ² = 64
  • 5. FIND THE EQUATION OF THE CIRCLE Center At ( 3 , 9 ) Radius = 5 ( x - 3 )² + ( y - 9 )² = 25 (X + 5) ² + ( y - 3 )² = 4 x ² + y ² = 289 Center At ( -5 , 3 ) Radius = 2 Center At ( 0 , 0 ) Radius = 17
  • 6. IF YOU HAVE THE EQUATION OF A CIRCLE, UNPLUG TO FIND THE CENTER AND RADIUS. ( x - h )² + ( y – k )² = r² ( h , k ) = center r = radius ( x - 7 )² + ( y – 1 )² = 36 Center = 7 , 1 Radius = 36 = 6
  • 7. IF YOU HAVE THE EQUATION OF A CIRCLE, UNPLUG TO FIND THE CENTER AND RADIUS. ( x - h )² + ( y – k )² = r² ( h , k ) = center r = radius ( x + 2 )² + ( y + 9 )² = 17 ( x – (- 2 ) )² + ( y - ( -9 ) )² = 17 Center = -2 , -9 Radius = 17
  • 8. FIND THE CENTER AND RADIUS OF EACH CIRCLE ( x – 11 )² + ( y – 8 )² = 25 ( x – 3 )² + ( y + 1 )² = 81 ( x + 6 )² + y ² = 21 Center = ( 11,8 ) Radius = 5 Center = ( 3,-1 ) Radius = 9 Center = ( -6,0 ) Radius = 21
  • 9. YOU NEED TO KNOW THE CENTER AND RADIUS TO FIND THE EQUATION OF A CIRCLE. If A Circle Has A Center At ( 2 , 4) And Passes Through (4 , 8 ), What Is The Equation Of The Circle?
  • 10. Center At ( 2 , 4) Passes Through (4 , 8 ) ( x - 2 )² + ( y - 4 )² = r² The Radius Is The Distance From The Center To A Point On The Circle. r = (x-x)² + (y-y)² r = ( 4 – 2 )² + ( 8 – 4 )² r = 2² + 4² = 20 ( x - 2 )² + ( y - 4 )² = 20 ² ( x - 2 )² + ( y - 4 )² = 20
  • 11. FIND THE EQUATION OF THE CIRCLE Center At ( 3 , 6 ) Passes Through ( 1 , 5 ) Center At ( 0 , 5 ) Passes Through ( 6 , 2 ) Center At ( -3 , 1 ) Passes Through (-4 , -4 ) ( x - 3 )² + ( y - 6 )² = 5 x ² + ( y - 5 )² = 45 ( x + 3 )² + ( y – 1 )² = 26