SlideShare a Scribd company logo
T.Chhay



                                               ssr
                                             Columns

1> esckþIepþIm Introduction
        eRKOgbgÁúMénrcnasm<n§½ nigeRKOgm:asIunEdlrgnUvkMlaMgsgát;tamGkS½RtUv)aneKeGayeQμaHfassr
RbsinebIkMBs;rbs;vaFMeRcInCagTMhMmuxkat;TTwg. ssrTaMgLayNaEdlrgbnÞúkRtYtsIuKñaCamYyGkS½beNþay
rbs;ssr RtUv)aneKeGayeQμaHfassrcMp©it axial loaded column EtkrNIenHkMrmanNas; dUcenHssr
cMp©it CassrEdlrgnUv bnÞúktamGkS½EdlmanGMeBIelItMbn;sñÚlrbs;ssrEdlmanragCactuekaNesμI. ssr
TaMgLayNaEdlrgbnÞúktamGkS½EdlmanGMeBIeRkAtMbn;sñÚlssrrbs;ssr RtUv)aneKeGayeQμaHfassr
cakp©it eccentricity loaded column. kñúgkarsikSaBIssr eKEckssrCaBIrRbePTKW³ ssrxøI nigssrEvg.
2> ssrxøIrgbnÞúkcMpM©it Axially loaded short compression member
          kalNassrxøIrgbnÞúkcMp©it enaHssrnwgEbk.
          kugRtaMgrbs;ssrxøI s = PA
          Edl P - bnÞúkcMcMnuc
                  A - muxkat;rgsMBaF

                  s - kugRtaMgrgkMlaMgsgát;

3> ssrxøIrgbnÞúkcakpM©itmYyTis Eccentricity load on centroidal axis
        RbsinebI P CabnÞúkEdlmanGMeBIenAelIGkS½mYyénTIRbCMuTMgn; enaHcMNakp©it e CacMgayBITItaMgbnÞúk
P mkTItaMgTIRbCMuTMgn;enaH.
                                                                P                 centroidal axis                 P       P
                                                                    e                                                 e
                                                                                           eccentric loads                        additional loads
                                                                        O

kugRtaMgrgkarsgát; )anBIbnÞúkcMcMnuc P
                                                    X                         centroid
                                                        Y
                                                                                                                          P
                 P
          sc = −                                                                                              M
                                                                                                                  c           c
                                                                                                                                    N
                 A                              M                       N b
                                                                                                                          d

kugRtaMgrgkarsgát; )anBIkMlaMgbgVil Pe
                                                            d

                                                                                                                                        s=-P
                                                                                                                                         c A

                 Pec
          sb = −
                  I                                                                                                                     s=+Pec
                                                                                                                                         b  I


kugRtaMgrgkarTaj )anBIkMlaMgbgVil Pe                                                                s=- Pec
                                                                                                     b I


                                                                                                                                        s=-P +Pec
                                                                                                                                           A I
                   Pec
          sb = +                                                                                s=-P -Pec
                                                                                                   A I
                    I
dUcenHkugRtaMgsrubEdlekItBIkMlaMgcakp©it KWCaplbUkBiCKNiténkugRtaMg
EdlekItBIkMlaMgcMp©it nigkugRtaMgEdlekItBIkMlaMgbgVil
                P Pec
          s=−     ±
                A   I



ssr                                                                                                                                              93
T.Chhay



          cMNakp©itGtibrma edIm,IeGaykugRtaMgsrubrgkarTajesμIsUnü
              P Pec
          0=−    +
              A     I
          eday c=
                    d
                    2
                            /
                       I = IY =
                                bd 3
                                12
                                           ¬bnÞúkxageRkA eFVIGMeBIcakp©iteFobGkS½ Y ¦
            ed12     1
          ⇒       =
            2bd 3 bd

          ⇒e=
               d
               6
                 sMrab;krNI bnÞúkxageRkAeFVIGMeBIcakp©iteFobGkS½ Y
sMrab;krNI bnÞúkxageRkAeFVIGMeBIcakp©iteFobGkS½ X cMNakp©itGtibrmaEdleFVIeGaykugRtaMgrgkarTajesμI
sUnü KW e = b
            6

        kñúgkrNI e > d b¤ e > b enaHsésEpñkxageRkAmçagrbs;muxkat;rgkarTaj nigmçageTotrgkarsgát;.
                     2        2
]TahrN_³ ssrxøIeFVIGMBIeQIdUcbgðajkñúgrUbxagelI rgnUvkMlaMgsgát;cakp©it P = 40kN EdlGnuvtþenAcMgay
2cm BIGkS½ Y . ssrenHmanmuxkat; b = 10cm nig d = 20cm . kMNt;kugRtaMgsrubEdlmanGMeBIenAsésEpñk

xageRkAbMputrbs;muxkat;.
dMeNaHRsay³
        kugRtaMgrgkMlaMgsgát; )anBIbnÞúk P
                   P
          sc = −
                   A
          Edl          P = 40kN

          nig          A = b.d = 10 × 20 = 200cm 2
                        40kN
          ⇒ sc = −             = −2MPa
                       200cm 2

          kMlaMgbgVil
          M = Pe

          Edl          e = 2cm = 0.02m

          ⇒ M = 40 × 0.02 = 0.8kN .m

          kugRtaMgEdlekItBIkMlaMgbgVil M
                 Mc
          sb =
                  I
          eday         d 20
                       c=
                       2
                         =
                              2
                                 = 10cm = 0.1m

          nig     I = IY =
                             bd 3 10 × 203
                              12
                                  =
                                       12
                                            = 6666.67cm 4 = 6.67 ×10 −5 m 4

                  0.8 × 0.1
          ⇒ sb =               = ±1.12 MPa
                 6.67 × 10 −5

          kugRtaMgsrubsMrab;sésEpñkxageRkA muxkat; M
ssr                                                                                            94
T.Chhay



          stc = −2 − 1.12 = −3.12MPa

          kugRtaMgsrubsMrab;sésEpñkxageRkA muxkat; N
          stt = −2 + 1.12 = −0.8MPa

4> ssrxøIrgbnÞúkcakpM©itBIrTis Eccentricity load not on centroidal axis
          ssrxøIrgbnÞúkp©itBIrTis mancMNakp©itBIrKW e cMNakp©iteFobGkS½ Y nig e cMNakp©iteFobGkS½ X .
                                                            1                   2



          dUcenHkugRtaMgsrubEdlekItBIkMlaMgcakp©itBIrTis KWCaplbUkBiCKNitén³
          - kugRtaMgEdlekItBIkMlaMg P EdleFVIGMeBIcMTIRbCMuTMgn;énmuxkat;                         P
                                                                                                           e1                 centroidal axis


          - kugRtaMgEdlekItBIkMlaMgbgVil Pe EdleFVIGMeBIBt;eFobGkS½ Y
                                                        1
                                                                                X
                                                                                    e2


                                                                                         Y
                                                                                                       O
                                                                                                                         centroid



          - kugRtaMgEdlekItBIkMlaMgbgVil Pe EdleFVIGMeBIBt;eFobGkS½ X
                                                        2
                                                                                A
                                                                                              C

                                                                                                       B            c2
                                                                                                                         D

                                                                                                        c2
                 P Pe1c1 Pe2c2                                                           c1       c1            b
          s=−      ±    ±                                                                     d
                 A   IY   IX

        edIm,IeGay muxkat;rgkugRtaMgTajesμIsUnüluHRtaEt e = d eFobGkS½ Y nig e = b eFobGkS½ X .
                                                            6
                                                                1
                                                                                 6
                                                                                         2




EtedaysarvargbnÞúkcakp©itBIrTisenaH kugRtaMgTajesμIsUnüenAeBlNaEdl kern                                                   d
                                                                                                                          6

bnÞúkcakp©itmanGMeBIenAelIcMnuc EdlP¢ab;BIcMnuc d → b .
                                                6   6
                                                                            b
                                                                            6                  X

RkLaépÞEdlpÁúM)anmanragFrNImaRtCactuekaNesμI eKeGayeQμaHfa sñÚl             Y

(kern). dUcenH enAeBlNaEdlbnÞúkmanGMeBIeRkAépÞenH enaHmuxkat;enaH

minmanrgkugRtaMgTajeT rgEtkugRtaMgsgát;suT§ RKan;EtmantMélxusKña.              d
                                                                                            b

]TahrN_³
ssrxøIrgbnÞúksgát; P = 50kN cakp©itBIrTisdUcbgðajkñúgrUbxagelI Edlman e = 6cm nig e = 2cm .
                                                                        1                         2



ssrmanmuxkat; 15× 25cm . kMNt;kugRtaMgsrubenARCugTaMgbYnrbs;va.
dMeNaHRsay³
kugRtaMgsrub sMrab;ssrxøIrgGMeBIbnÞúkcakp©itBIrTiskMNt;tam
                 P Pe1c1 Pe2 c2
          s=−      ±    ±
                 A   IY   IX

          m:Um:g;niclPaBeFobGkS½ X
                 db3 0.25 × 0.153
          IX =      =             = 7.03 ×10−5 m 4
                 12      12
          m:Um:g;niclPaBeFobGkS½ Y
                 bd 3 0.15 × 0.253
          IY =       =             = 19.5 × 10 −5 m 4
                 12       12
          kugRtaMrgkMlaMgsgát;
          P     50
            =           = 1.33MPa
          A 0.25 × 0.15

ssr                                                                                                                                 95
T.Chhay



          kugRtaMrgkMlaMgbgVileFobGkS½ Y
          Pe1c1 50 × 0.06 × 0.125
               =                  = 1.92 MPa
           IY      19.5 ×10 −5

          kugRtaMrgkMlaMgbgVileFobGkS½ X
          Pe2 c2 50 × 0.02 × 0.075
                =                  = 1.07 MPa
           IX       7.03 × 10 −5

          kugRtaMgsrubRtg;cMnuc A
          s = −1.33 − 1.92 + 1.07 = −2.18MPa    rgkarsgát;
          kugRtaMgsrubRtg;cMnuc B
          s = −1.33 − 1.92 − 1.07 = −4.32 MPa   rgkarsgát;
          kugRtaMgsrubRtg;cMnuc C
          s = −1.33 + 1.92 − 1.07 = −0.48MPa    rgkarsgát;
          kugRtaMgsrubRtg;cMnuc D
          s = −1.33 + 1.92 + 1.07 = +1.66MPa    rgkarTaj
5> ssrEvgrgbnÞúkcMpM©it Axially loaded slender compression member
      enAeBlEdlssrEvgrgbnÞúkcMp©itkan;EtekIneLIg² enaHssrEvgenaHminEbkeT Etva)ak;eTAvijeday
sarEtRbEvgrbs;vaEvg )ann½yfabnÞúkEdlssrEvgGacRT)anGaRs½yeTAnwgRbEvg muxkat; nigTMr. GñkR)aCJ
lIGUNat GWeL (Leonhard Euler 1707-1783) )anrkeXIjnUvbnÞúkRKITicsMrab;ssrEvgEdlmanTMrsamBaØ
sgxagEdlcab;epþImekag (buckling).
                 π 2 EI
          Pe =
                  L2
          Edl       - bnÞúkRKITic b¤bnÞúkcMp©itEdleFVIeGaymanPaBekag (kN )
                       Pe

                  E - m:UDuleGLasÞicrbs;sMPar³ ( MPa)

                  I - m:Um:g;niclPaBénmuxkat;EdlmantMéltUcCageK (m )   4




                  L - RbEvgrbs;ssr (m)

          kugRtaMgRKItic EdleFVIeGayssrekItmanPaBekag
                 Pe   π 2E
          se =      =
                 A (L / r)2

          Edl          r=
                            I
                            A
                             kaMniclPaB (m)
                       L
                       r
                         - pleFobPaBrlas;rbs;ssr (slenderness ratio)
]TahrN_³

ssr                                                                                      96
T.Chhay



        ssrEvgEdlmanTMrsamBaØsgxagrgbnÞúksgát;cMp©it. ssrenHeFVIBIsMPar³Edlmanm:UDuleGLasÞic
E = 200000MPa nigmanersIusþg;   s = 235MPa .     muxkat;rbs;ssrenHmanragCargVg;EdlmanGgát;p©it
                                                           y



d = 15cm . kMNt;bnÞúkGtibrmaEdlssrenHGacRT)anedayKñaPaB ekagkñúgkrNI³

        - ssrmanRbEvg 2m
        - ssrmanRbEvg 4m
dMeNaHRsay³
        edayssrmanmuxkat;ragrgVg;EdlmanGgát;p©it d = 15cm
                     πd 2
            ⇒ A=              = 0.0177m 2
                          4
                     d
            ⇒r=        = 0.0375m
                     4
            - sMrab;ssrmanRbEvg 2m
                          π 2E           3.14 2 × 200000
            ⇒ se =               2
                                     =                    = 693.25MPa > 235MPa
                      (L / r)             ( 2 / 0.0375) 2

            bnÞúkGtibrmaEdlssrGacRT)anKW
            P = s y . A = 235 × 0.0177 = 4.16MN = 4160kN

            - sMrab;ssrmanRbEvg 4m
                          π 2E           3.14 2 × 200000
            ⇒ se =                   =                   = 173.31MPa < 235MPa
                      (L / r)2            (4 / 0.0375) 2

            bnÞúkGtibrmaEdlssrGacRT)anKW
            P = se . A = 173.31× 0.0177 = 3.07 MN = 3070kN

6> RbEvgRbsiT§PaB Effective length
                                     P                            P
                                                                                           P                            P P




                                                                      Effective length
             L=actual                          Effective length          (KL)=0.7                    Effective length               Effective length
          column length                            (KL)=1                                               (KL)=0.5                        (KL)=2




                                                                                           P                             P
                                     P                            P
                          (a) Pinned                  (b) Pinned/fixed                   (c) Fixed                 (c) Fixed/free




ssr                                                                                                                                                    97
T.Chhay



         xagelICarUbbgðajBIRbEvgRbsiT§PaBrbs;ssr. RbEvgRbsiT§PaB CaRbEvgenAcenøaHcMnucbegáag
(contraflexure) ¬cMnucEdlmanm:Um:g;Bt;esμIsUnü¦ énrUbragdabrbs;ssr. lkçxNÐénTMrcugssrCHT§iBl

y:agxøaMgeTAelI RbEvgeFVIkarrbs;ssr. RbEvgRbsiT§PaBrbs;ssrERbRbYleTAtamRbePTénTMr.
         K - CaemKuNRbEvgRbsiT§PaBrbs;ssr

         dUcenHbnÞúkRKITicEdlssrGacRT)an tamrUbmnþ Euler sMrab;RKb;lkçxNÐTMrKW
                 π 2 EI
          Pe =
                  KL2
          dUcKña kugRtaMgrbs;ssrEvgKW
                 Pe   π 2E
          se =      =
                 A ( KL / r ) 2




ssr                                                                                       98

More Related Content

PDF
Concrete price and proportion
PDF
11 dimension and properties table of u
PDF
Strength of materialprint
PDF
1.types of structures and loads
PDF
Cement knowledge revised 160110
PDF
мосяков д. в. история камбоджи. Xx век (история стран востока. xx век) - 2010
PDF
Composition of mix design
Concrete price and proportion
11 dimension and properties table of u
Strength of materialprint
1.types of structures and loads
Cement knowledge revised 160110
мосяков д. в. история камбоджи. Xx век (история стран востока. xx век) - 2010
Composition of mix design

Viewers also liked (20)

PDF
Roof preparation
PDF
ព្រះនាមព្រះមហាក្សត្រ និងមេដឹកនំាខ្មែរ
PDF
Modern physics
PPTX
Tech for Advocacy & Outreach for TI Cambodia YLP Batch 2 - PPT Deck
PDF
រដ្ឋធម្មនុញ្ញ នៃកម្ពុជា
PDF
Contents
PDF
ទ្វាររមូរដែក
PPTX
Sgp Justinleng Khmer Rouge
PDF
Cover of strength of material
DOCX
Mathematic for engineering iii for prints calculate by seng phearun in m8
PDF
Khmer moral
PDF
Concrete mix design
PPT
Effective research for civil & environmental engineering
 
DOCX
Mechanic assignment (2)
DOCX
Process analysis assignment
PDF
Representative flower of asian countries
PDF
វិធីសាស្រ្តក្នុងការគណនារកចំនួនអំពូលក្នុងបន្ទប់
PDF
អត្ថបទស្រាវជ្រាវទាក់ទងនឹងការសិក្សាលើគ្រឹះជម្រៅ
PDF
Mix design
Roof preparation
ព្រះនាមព្រះមហាក្សត្រ និងមេដឹកនំាខ្មែរ
Modern physics
Tech for Advocacy & Outreach for TI Cambodia YLP Batch 2 - PPT Deck
រដ្ឋធម្មនុញ្ញ នៃកម្ពុជា
Contents
ទ្វាររមូរដែក
Sgp Justinleng Khmer Rouge
Cover of strength of material
Mathematic for engineering iii for prints calculate by seng phearun in m8
Khmer moral
Concrete mix design
Effective research for civil & environmental engineering
 
Mechanic assignment (2)
Process analysis assignment
Representative flower of asian countries
វិធីសាស្រ្តក្នុងការគណនារកចំនួនអំពូលក្នុងបន្ទប់
អត្ថបទស្រាវជ្រាវទាក់ទងនឹងការសិក្សាលើគ្រឹះជម្រៅ
Mix design
Ad

Similar to 10.column6 (20)

PDF
The shortest distance between skew lines
PDF
Unsymmetrical bending
PDF
Future CMB Experiments
PDF
F2004 formulas final_v4
PDF
D-Branes and The Disformal Dark Sector - Danielle Wills and Tomi Koivisto
PDF
Normal
PDF
Mark 20121024
PDF
Coherent feedback formulation of a continuous quantum error correction protocol
PDF
PDF
Cylindrical and spherical coordinates
PDF
Cylindrical and spherical coordinates
PDF
Xi maths ch3_trigo_func_formulae
PDF
F2004 formulas final
PDF
电源完整性设计详解
DOCX
Polar coordinates
PDF
Sujet1 si-2-mines-psi-2009
DOC
mathematics formulas
PDF
I. basic concepts
KEY
Calculus II - 31
PPTX
Cepstral coefficients
The shortest distance between skew lines
Unsymmetrical bending
Future CMB Experiments
F2004 formulas final_v4
D-Branes and The Disformal Dark Sector - Danielle Wills and Tomi Koivisto
Normal
Mark 20121024
Coherent feedback formulation of a continuous quantum error correction protocol
Cylindrical and spherical coordinates
Cylindrical and spherical coordinates
Xi maths ch3_trigo_func_formulae
F2004 formulas final
电源完整性设计详解
Polar coordinates
Sujet1 si-2-mines-psi-2009
mathematics formulas
I. basic concepts
Calculus II - 31
Cepstral coefficients
Ad

More from Chhay Teng (20)

PDF
Advance section properties_for_students
PDF
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
PDF
Type of road
PDF
Technical standard specification auto content
PDF
Available steel-section-list-in-cam
PDF
Concrete basics
PDF
Rebar arrangement and construction carryout
PDF
1 dimension and properties table of w shapes
PDF
2 dimension and properties table of s shape
PDF
3 dimension and properties table of hp shape
PDF
4 dimension and properties table c shape
PDF
5 dimension and properties table l shape
PDF
6 dimension and properties table of ipe shape
PDF
7 dimension and properties table ipn
PDF
8 dimension and properties table of equal leg angle
PDF
9 dimension and properties table of upe
PDF
10 dimension and properties table upn
PDF
Construction permit (kh)
PDF
standard materials price list 2011 (PP)
PDF
Japan hj
Advance section properties_for_students
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
Type of road
Technical standard specification auto content
Available steel-section-list-in-cam
Concrete basics
Rebar arrangement and construction carryout
1 dimension and properties table of w shapes
2 dimension and properties table of s shape
3 dimension and properties table of hp shape
4 dimension and properties table c shape
5 dimension and properties table l shape
6 dimension and properties table of ipe shape
7 dimension and properties table ipn
8 dimension and properties table of equal leg angle
9 dimension and properties table of upe
10 dimension and properties table upn
Construction permit (kh)
standard materials price list 2011 (PP)
Japan hj

Recently uploaded (20)

PPTX
20th Century Theater, Methods, History.pptx
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PPTX
History, Philosophy and sociology of education (1).pptx
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PDF
HVAC Specification 2024 according to central public works department
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PDF
Environmental Education MCQ BD2EE - Share Source.pdf
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PPTX
Virtual and Augmented Reality in Current Scenario
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PPTX
TNA_Presentation-1-Final(SAVE)) (1).pptx
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PPTX
Computer Architecture Input Output Memory.pptx
PDF
Hazard Identification & Risk Assessment .pdf
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
20th Century Theater, Methods, History.pptx
B.Sc. DS Unit 2 Software Engineering.pptx
History, Philosophy and sociology of education (1).pptx
Unit 4 Computer Architecture Multicore Processor.pptx
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
HVAC Specification 2024 according to central public works department
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
Environmental Education MCQ BD2EE - Share Source.pdf
LDMMIA Reiki Yoga Finals Review Spring Summer
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
Virtual and Augmented Reality in Current Scenario
What if we spent less time fighting change, and more time building what’s rig...
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
TNA_Presentation-1-Final(SAVE)) (1).pptx
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
Computer Architecture Input Output Memory.pptx
Hazard Identification & Risk Assessment .pdf
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf

10.column6

  • 1. T.Chhay ssr Columns 1> esckþIepþIm Introduction eRKOgbgÁúMénrcnasm<n§½ nigeRKOgm:asIunEdlrgnUvkMlaMgsgát;tamGkS½RtUv)aneKeGayeQμaHfassr RbsinebIkMBs;rbs;vaFMeRcInCagTMhMmuxkat;TTwg. ssrTaMgLayNaEdlrgbnÞúkRtYtsIuKñaCamYyGkS½beNþay rbs;ssr RtUv)aneKeGayeQμaHfassrcMp©it axial loaded column EtkrNIenHkMrmanNas; dUcenHssr cMp©it CassrEdlrgnUv bnÞúktamGkS½EdlmanGMeBIelItMbn;sñÚlrbs;ssrEdlmanragCactuekaNesμI. ssr TaMgLayNaEdlrgbnÞúktamGkS½EdlmanGMeBIeRkAtMbn;sñÚlssrrbs;ssr RtUv)aneKeGayeQμaHfassr cakp©it eccentricity loaded column. kñúgkarsikSaBIssr eKEckssrCaBIrRbePTKW³ ssrxøI nigssrEvg. 2> ssrxøIrgbnÞúkcMpM©it Axially loaded short compression member kalNassrxøIrgbnÞúkcMp©it enaHssrnwgEbk. kugRtaMgrbs;ssrxøI s = PA Edl P - bnÞúkcMcMnuc A - muxkat;rgsMBaF s - kugRtaMgrgkMlaMgsgát; 3> ssrxøIrgbnÞúkcakpM©itmYyTis Eccentricity load on centroidal axis RbsinebI P CabnÞúkEdlmanGMeBIenAelIGkS½mYyénTIRbCMuTMgn; enaHcMNakp©it e CacMgayBITItaMgbnÞúk P mkTItaMgTIRbCMuTMgn;enaH. P centroidal axis P P e e eccentric loads additional loads O kugRtaMgrgkarsgát; )anBIbnÞúkcMcMnuc P X centroid Y P P sc = − M c c N A M N b d kugRtaMgrgkarsgát; )anBIkMlaMgbgVil Pe d s=-P c A Pec sb = − I s=+Pec b I kugRtaMgrgkarTaj )anBIkMlaMgbgVil Pe s=- Pec b I s=-P +Pec A I Pec sb = + s=-P -Pec A I I dUcenHkugRtaMgsrubEdlekItBIkMlaMgcakp©it KWCaplbUkBiCKNiténkugRtaMg EdlekItBIkMlaMgcMp©it nigkugRtaMgEdlekItBIkMlaMgbgVil P Pec s=− ± A I ssr 93
  • 2. T.Chhay cMNakp©itGtibrma edIm,IeGaykugRtaMgsrubrgkarTajesμIsUnü P Pec 0=− + A I eday c= d 2 / I = IY = bd 3 12 ¬bnÞúkxageRkA eFVIGMeBIcakp©iteFobGkS½ Y ¦ ed12 1 ⇒ = 2bd 3 bd ⇒e= d 6 sMrab;krNI bnÞúkxageRkAeFVIGMeBIcakp©iteFobGkS½ Y sMrab;krNI bnÞúkxageRkAeFVIGMeBIcakp©iteFobGkS½ X cMNakp©itGtibrmaEdleFVIeGaykugRtaMgrgkarTajesμI sUnü KW e = b 6 kñúgkrNI e > d b¤ e > b enaHsésEpñkxageRkAmçagrbs;muxkat;rgkarTaj nigmçageTotrgkarsgát;. 2 2 ]TahrN_³ ssrxøIeFVIGMBIeQIdUcbgðajkñúgrUbxagelI rgnUvkMlaMgsgát;cakp©it P = 40kN EdlGnuvtþenAcMgay 2cm BIGkS½ Y . ssrenHmanmuxkat; b = 10cm nig d = 20cm . kMNt;kugRtaMgsrubEdlmanGMeBIenAsésEpñk xageRkAbMputrbs;muxkat;. dMeNaHRsay³ kugRtaMgrgkMlaMgsgát; )anBIbnÞúk P P sc = − A Edl P = 40kN nig A = b.d = 10 × 20 = 200cm 2 40kN ⇒ sc = − = −2MPa 200cm 2 kMlaMgbgVil M = Pe Edl e = 2cm = 0.02m ⇒ M = 40 × 0.02 = 0.8kN .m kugRtaMgEdlekItBIkMlaMgbgVil M Mc sb = I eday d 20 c= 2 = 2 = 10cm = 0.1m nig I = IY = bd 3 10 × 203 12 = 12 = 6666.67cm 4 = 6.67 ×10 −5 m 4 0.8 × 0.1 ⇒ sb = = ±1.12 MPa 6.67 × 10 −5 kugRtaMgsrubsMrab;sésEpñkxageRkA muxkat; M ssr 94
  • 3. T.Chhay stc = −2 − 1.12 = −3.12MPa kugRtaMgsrubsMrab;sésEpñkxageRkA muxkat; N stt = −2 + 1.12 = −0.8MPa 4> ssrxøIrgbnÞúkcakpM©itBIrTis Eccentricity load not on centroidal axis ssrxøIrgbnÞúkp©itBIrTis mancMNakp©itBIrKW e cMNakp©iteFobGkS½ Y nig e cMNakp©iteFobGkS½ X . 1 2 dUcenHkugRtaMgsrubEdlekItBIkMlaMgcakp©itBIrTis KWCaplbUkBiCKNitén³ - kugRtaMgEdlekItBIkMlaMg P EdleFVIGMeBIcMTIRbCMuTMgn;énmuxkat; P e1 centroidal axis - kugRtaMgEdlekItBIkMlaMgbgVil Pe EdleFVIGMeBIBt;eFobGkS½ Y 1 X e2 Y O centroid - kugRtaMgEdlekItBIkMlaMgbgVil Pe EdleFVIGMeBIBt;eFobGkS½ X 2 A C B c2 D c2 P Pe1c1 Pe2c2 c1 c1 b s=− ± ± d A IY IX edIm,IeGay muxkat;rgkugRtaMgTajesμIsUnüluHRtaEt e = d eFobGkS½ Y nig e = b eFobGkS½ X . 6 1 6 2 EtedaysarvargbnÞúkcakp©itBIrTisenaH kugRtaMgTajesμIsUnüenAeBlNaEdl kern d 6 bnÞúkcakp©itmanGMeBIenAelIcMnuc EdlP¢ab;BIcMnuc d → b . 6 6 b 6 X RkLaépÞEdlpÁúM)anmanragFrNImaRtCactuekaNesμI eKeGayeQμaHfa sñÚl Y (kern). dUcenH enAeBlNaEdlbnÞúkmanGMeBIeRkAépÞenH enaHmuxkat;enaH minmanrgkugRtaMgTajeT rgEtkugRtaMgsgát;suT§ RKan;EtmantMélxusKña. d b ]TahrN_³ ssrxøIrgbnÞúksgát; P = 50kN cakp©itBIrTisdUcbgðajkñúgrUbxagelI Edlman e = 6cm nig e = 2cm . 1 2 ssrmanmuxkat; 15× 25cm . kMNt;kugRtaMgsrubenARCugTaMgbYnrbs;va. dMeNaHRsay³ kugRtaMgsrub sMrab;ssrxøIrgGMeBIbnÞúkcakp©itBIrTiskMNt;tam P Pe1c1 Pe2 c2 s=− ± ± A IY IX m:Um:g;niclPaBeFobGkS½ X db3 0.25 × 0.153 IX = = = 7.03 ×10−5 m 4 12 12 m:Um:g;niclPaBeFobGkS½ Y bd 3 0.15 × 0.253 IY = = = 19.5 × 10 −5 m 4 12 12 kugRtaMrgkMlaMgsgát; P 50 = = 1.33MPa A 0.25 × 0.15 ssr 95
  • 4. T.Chhay kugRtaMrgkMlaMgbgVileFobGkS½ Y Pe1c1 50 × 0.06 × 0.125 = = 1.92 MPa IY 19.5 ×10 −5 kugRtaMrgkMlaMgbgVileFobGkS½ X Pe2 c2 50 × 0.02 × 0.075 = = 1.07 MPa IX 7.03 × 10 −5 kugRtaMgsrubRtg;cMnuc A s = −1.33 − 1.92 + 1.07 = −2.18MPa rgkarsgát; kugRtaMgsrubRtg;cMnuc B s = −1.33 − 1.92 − 1.07 = −4.32 MPa rgkarsgát; kugRtaMgsrubRtg;cMnuc C s = −1.33 + 1.92 − 1.07 = −0.48MPa rgkarsgát; kugRtaMgsrubRtg;cMnuc D s = −1.33 + 1.92 + 1.07 = +1.66MPa rgkarTaj 5> ssrEvgrgbnÞúkcMpM©it Axially loaded slender compression member enAeBlEdlssrEvgrgbnÞúkcMp©itkan;EtekIneLIg² enaHssrEvgenaHminEbkeT Etva)ak;eTAvijeday sarEtRbEvgrbs;vaEvg )ann½yfabnÞúkEdlssrEvgGacRT)anGaRs½yeTAnwgRbEvg muxkat; nigTMr. GñkR)aCJ lIGUNat GWeL (Leonhard Euler 1707-1783) )anrkeXIjnUvbnÞúkRKITicsMrab;ssrEvgEdlmanTMrsamBaØ sgxagEdlcab;epþImekag (buckling). π 2 EI Pe = L2 Edl - bnÞúkRKITic b¤bnÞúkcMp©itEdleFVIeGaymanPaBekag (kN ) Pe E - m:UDuleGLasÞicrbs;sMPar³ ( MPa) I - m:Um:g;niclPaBénmuxkat;EdlmantMéltUcCageK (m ) 4 L - RbEvgrbs;ssr (m) kugRtaMgRKItic EdleFVIeGayssrekItmanPaBekag Pe π 2E se = = A (L / r)2 Edl r= I A kaMniclPaB (m) L r - pleFobPaBrlas;rbs;ssr (slenderness ratio) ]TahrN_³ ssr 96
  • 5. T.Chhay ssrEvgEdlmanTMrsamBaØsgxagrgbnÞúksgát;cMp©it. ssrenHeFVIBIsMPar³Edlmanm:UDuleGLasÞic E = 200000MPa nigmanersIusþg; s = 235MPa . muxkat;rbs;ssrenHmanragCargVg;EdlmanGgát;p©it y d = 15cm . kMNt;bnÞúkGtibrmaEdlssrenHGacRT)anedayKñaPaB ekagkñúgkrNI³ - ssrmanRbEvg 2m - ssrmanRbEvg 4m dMeNaHRsay³ edayssrmanmuxkat;ragrgVg;EdlmanGgát;p©it d = 15cm πd 2 ⇒ A= = 0.0177m 2 4 d ⇒r= = 0.0375m 4 - sMrab;ssrmanRbEvg 2m π 2E 3.14 2 × 200000 ⇒ se = 2 = = 693.25MPa > 235MPa (L / r) ( 2 / 0.0375) 2 bnÞúkGtibrmaEdlssrGacRT)anKW P = s y . A = 235 × 0.0177 = 4.16MN = 4160kN - sMrab;ssrmanRbEvg 4m π 2E 3.14 2 × 200000 ⇒ se = = = 173.31MPa < 235MPa (L / r)2 (4 / 0.0375) 2 bnÞúkGtibrmaEdlssrGacRT)anKW P = se . A = 173.31× 0.0177 = 3.07 MN = 3070kN 6> RbEvgRbsiT§PaB Effective length P P P P P Effective length L=actual Effective length (KL)=0.7 Effective length Effective length column length (KL)=1 (KL)=0.5 (KL)=2 P P P P (a) Pinned (b) Pinned/fixed (c) Fixed (c) Fixed/free ssr 97
  • 6. T.Chhay xagelICarUbbgðajBIRbEvgRbsiT§PaBrbs;ssr. RbEvgRbsiT§PaB CaRbEvgenAcenøaHcMnucbegáag (contraflexure) ¬cMnucEdlmanm:Um:g;Bt;esμIsUnü¦ énrUbragdabrbs;ssr. lkçxNÐénTMrcugssrCHT§iBl y:agxøaMgeTAelI RbEvgeFVIkarrbs;ssr. RbEvgRbsiT§PaBrbs;ssrERbRbYleTAtamRbePTénTMr. K - CaemKuNRbEvgRbsiT§PaBrbs;ssr dUcenHbnÞúkRKITicEdlssrGacRT)an tamrUbmnþ Euler sMrab;RKb;lkçxNÐTMrKW π 2 EI Pe = KL2 dUcKña kugRtaMgrbs;ssrEvgKW Pe π 2E se = = A ( KL / r ) 2 ssr 98