SlideShare a Scribd company logo
Az                Ax − iAy      0                 −i      1 0      0 1
 AbrahamP rado1213521                        Sj =         σj        σi σj = δij + i                 ijk σk             σ = [σx , σy , σz ]             σ·A=                                      σy =                      σz =      σ =
                                                      2                                                                                                            Ax + iAy               −Az         i                 0       0 −1 x   1 0
                                                                                            k


                                                                                                1                                 0          1 1           1    1            a+b        a−b
  (σ · A)(σ · B) = (A · B)I + iσ · (A × B) χ = aχ+ + bχ−                                 χ+ =     χ =                                 u= √           v=√              χ=      √   u+     √   v [σx , σy ] = 2i ijk σk
                                                                                                0 −                               1           2   1         2 −1                2          2
                                                                                                                                    
                                                                                          cos ϕ − sin ϕ                            0
            {σx , σy } = 2δij σ0             σi σi = 1 Sn =
                                                        ˆ              ±            Rz =  sin ϕ cos ϕ                             0 [Si , Sj ] = i ijk Sk S 2 |s, m = 2 |s, m Sz |s, m = m|s, m     S± = Sx ± iSy
                                                                           2
                                                                                             0     0                               1

                                                                                                                                                 √      a                                    0     −i ±iθ
                                S± |s, m =                s(s + 1) − m(m ± 1)|s, m ± 1                           Sx χ± =              χ                         eiα        Sy =                       e   = cos θ ± i sin θ               S = [Sx , Sy , Sz ]
                                                                                                                                  2                  1 − a2 eiϕ                        2     i     0
                                                                                                                                                                            cos θ        e−iϕ sin θ          cos θ                                  e−iϕ sin θ
                                                                               Sn = Sx sin θ cos ϕ + Sy sin θ sin ϕ + Sz cos θ
                                                                                ˆ                                                                                χn =
                                                                                                                                                                  ˆ             2    n
                                                                                                                                                                                     ˆ
                                                                                                                                                                                  θ χ− =
                                                                                                                                                                                                   2 S =
                                                                                                                                                                                                      n
                                                                                                                                                                                                      ˆ
                                                                                                                                                                  +          iϕ
                                                                                                                                                                           e sin 2        − cos θ2       2 eiϕ sin θ                                 − cos θ
                                                                          2                        
                                                           1−                   0  −
                                     i                                     2                                           1
   f (r − δr) = f (r)[1 −                δr · p] Ry ( ) =  0                   1  0                         Sy =        (S+ − S− )              S± χ = χ±              S± χ± = 0 Sx χ± =                        χz   Sy χ± =            χ       S z χ = ± χ±
                                                                                                2                      2i                                                                                     2                      2i                    2
                                                            −                   0 1−            2
                                                                                                                                                                                                            
                                                                                                                                         0                          bs        0         ···          0
                                                                                                                                       0                           0        bs−1       ···
                                                                                                                                                                                                    0
                                                                                        2
           3                                                                                                                                                                             
       2              2          †                              †           2
                                                                                                               (s + j)(s + 1 − j) S+ =  .                           .         .        ..           .
                                                                                                                                                                                           Sx = Re(ab∗ ) Sy = − Im(ab∗ )
                                                                                                                                       .                            .         .                     .
    S χ± =                χ±    χ χ=1             Sx = χ Sx χ              Sj      =            bj =
                                                                                                                                                                                          
           4                                                                           4                                               .                            .         .          .         .
                                                                                                                                       0                           0     0   · · · b−s+1 
                                                                                                                                         0                          0     0   ···      0
                                                                                                                                                                                                    n+1
                                                                                                                                                                                       
                                                                               ∞                                                                                       ∞                2 Γ n+1 /a 2
                                                                                                                                                                                         1
                                                                                                                                                                                               2        (n > −1, a > 0)
                                 3           1   0              1 1                               2             1 · 3 · 5 · (n + 1)π 1/2                                  n −ax2
                                                                                                                                                                                       
S2 =   2
           s(s + 1)       S2 =           2
                                                      ↑=                            xn e−αx dx =                                         ,             n = 2k            x e             (2k−1)!!
                                                                                                                                                                                   dx = 2k+1 ak   π
                                                                                                                                                                                                  a     (n = 2k, a > 0)
                                 4           0   1              2 2            −∞                                    2n/2 α(n+1)/2                                   0                  k!
                                                                                                                                                                                                        (n = 2k + 1 , a > 0)
                                                                                                                                                                                       
                                                                                                                                                                                         2ak+1
                                i                                                   cos β − inz sin β                    −(inx + ny ) sin β                           i                                       cos θe−iϕ/2                      eiα/2         0
                   ˆ               ˆ ˆ
                  Rn (β) = exp − β n · L                            Rn (β) =
                                                                     ˆ
                                                                                        2           2                                     2                 Ta = exp − a · p                        a=
                                                                                                                                                                                                    ˆ                            Rz =
                                                                                    −(inx − ny ) sin β
                                                                                                     2                   cos β + inz sin β
                                                                                                                             2           2
                                                                                                                                                                                                               sin θ eiϕ/2
                                                                                                                                                                                                                   2                             0         e−iα/2
                                                                                                                                                                                                                  
                                                                                                                                                               0                  0        ···           0       0                                              
                                                                                                                                                                                                                                   s       0           ···     0
                                                                                                                                                             bs                  0        ···           0       0
                                                                                                                α           α                                                                                                  0       s−1          ···     0
                                                                                           Rr = cos               I + i sin   n·σ                       S− =  0
                                                                                                                                                                             bs−1         ···           0       0 Sz =         
                                                                                                                                                                                                                                 .        .
                                                                                                                                                                                                                                                                 
                                                                                                                                                                                                                                                               . 
                                                                                                                2           2                                .                 .                        .       .
                                                                                                                                                                                                                   
                                                                                                                                                                                                                                 .        .            ..     . 
                                                                                                                                                             .                 .          ..            .       .                .       .               .   .
                                                                                                                                                               .                .             .          .       .
                                                                                                                                                                                                                                  0           0        · · · −s
                                                                                                                                                                       0          0        ···      b−s+1         0

                                                                                                                                           s1 s2 s                                                 s1 s2 s                                             s m|Sk |s l
                                                                                                    |s1 m1 |s2 m2 =                       Cm1 m2 m |s m          |s m =                           Cm1 m2 m |s1 m1 |s2 m2          (σk )m l =
                                                                                                                                      s                                      m1 +m2 =m
                                                                                                                                                                                                                                                          s
                                                                                                      †                  1 1                            1  1                                                                1
                                                                                            (k)                  (y)                            (y)
                                                                               c+ = χ +                   χ    χ+      =√                      χ−     =√                   Lx = 0                 Ly = 0 φ(p) =                               e−i(p·r)/ ψ(r)dr3
                                                                                                                          2 i                            2 −i                                                            (2π )3/2
                                                                                        1 dn                                                                ml
                 P = |U U |eiω1 t + |V                    V |eiω2 t    Pn (x) =                  (x2 − 1)n                         θ = cos−1                                 ω = γB0              S=         [sin α cos γB0 t − sin α sin γB0 t cos α]
                                                                                       2n n! dxn                                                         l(l + 1)                                        2
                                                                                                                                                                    iγB0 t
                  −iE+ t                     −iE− t                                                             γB0           1     0          cos α e 2                                                                                                      q
 χ(t) = Aχ+ e                  + Bχ− e                    H = −γ S · B          µ = γS            H=−                                 |χ(t) =      2
                                                                                                                                                      −iγB0 t                         X = X|σx |X                 τ =µ×B         U = −µ · B             γ=
                                                                                                                 2            0    −1         sin α e 2                                                                                                      2me
                                                                                                                                                  2
                                                                                                                                                                                                                                                         
                                                          2                                                                                                                                          2                    0     r cos α sin β
                                ˆ                                                                             1 ∂             ∂f                  1     ∂            ∂f                   1     ∂ f
                                HY m (θ, ϕ) =                  ( + 1)Y m (θ, ϕ)                 ∆f =                     r2               +                  sin ϕ            +                               R(α, β, γ) 0 =  r sin α sin β  ,
                                                      2I                                                      r2 ∂r           ∂r              r2 sin ϕ ∂ϕ            ∂ϕ               r2 sin2 ϕ ∂θ2                       r         r cos β
                                                                                                                                                                                                                                                                 ...
( − m)! m
                                                                                                                                                       AbrahamP rado1213521                 P −m = (−1)m             P
                                                                                                                                                                                                             ( + m)!
                                                                                                 1    1                      1     3                                       1   3                           −1    3
                                                                                  Y00 (θ, ϕ) =            Y1−1 (θ, ϕ) =              sin θ e−iϕ         Y10 (θ, ϕ) =             cos θ      Y11 (θ, ϕ) =            sin θ eiϕ
                                                                                                 2    π                      2    2π                                       2   π                            2   2π
                                                     1       15                                  1 15                                           1           5                             −1               15
                                     Y2−2 (θ, ϕ) =              sin2 θ e−2iϕ       Y2−1 (θ, ϕ) =          sin θ       cos θ e−iϕ Y20 (θ, ϕ) =                 (3 cos2 θ − 1) Y21 (θ, ϕ) =                     sin θ cos θ eiϕ
                                                     4       2π                                  2 2π                                           4          π                              2                2π
                                                                                                                                      √
                                                                                                                       ···
                                                                                                                                                                  
                                                                                            √0    0    0 0                         0     1 √0             0 ···
                                                                      ∞
                                                                                           1 0
                                                                                                 √     0 0             · · ·     0 0        2          √0 · · ·
                                1       15                                 1 k                                                  
                                                                                                                       · · · a = 0 0                      3 · · · H = ω a† a + 1
                                                                                                                                                                     
               Y22 (θ, ϕ) =                sin2 θ e2iϕ       eX =             X    a† =  0         2 √ 0
                                                                                                       0                                    0                                              x=                           a† + a
                                                                                          
                                4       2π                                 k!                                                                                                         2                       2mω
                                                                                                                                                                   
                                                                    k=0
                                                                                           0
                                                                                                 0      3 0           · · ·
                                                                                                                                  0 0
                                                                                                                                           0            0 · · ·    
                                                                                             .
                                                                                             .    .
                                                                                                  .    .
                                                                                                       .      .
                                                                                                              .        ..           .
                                                                                                                                    .  .
                                                                                                                                       .    .
                                                                                                                                            .             .
                                                                                                                                                          .     ..
                                                                                             .    .    .      .            .        .  .    .             .        .
                                                                                                                                                   n
                                                                                   √                           √                       a†                      2 d
                                                                                                                                                                  n     2             1
                                         p=i                 a† − a        a|n =       n|n − 1       a† |n =       n + 1|n + 1 |n = √ |0 Hn (ξ) = (−1)n eξ         n
                                                                                                                                                                     e−ξ H|n = (n + ) ω|n
                                                 2mω                                                                                     n!                     dξ                    2
                                                                                                                         (−1)m               d +m 2                          ( − m)! m
                                                                                                               P m (x) =       (1 − x2 )m/2       (x − 1) . P −m (x) = (−1)m         P (x).
                                                                                                                          2 !               dx +m                            ( + m)!
                                                                                                                                                          0              0                               1
                                                                                                                                                         P0 (cos θ) = 1 P1 (cos θ) = cos θ              P1 (cos θ) = − sin θ
                                                                                                                            0                       2              1
                                                                                                                           P2 (cos θ)   =   1
                                                                                                                                            2 (3 cos    θ − 1)    P2 (cos θ)    = −3 cos θ sin θ       P2 (cos θ) = 3 sin2 θ
                                                                                                                                                                                                        2


                                                                           |v3 − |e1 e1 |v3 − |e2 e2 |v3                      1                                                            a−d       (a − d)2 + 4bc /2c
                                P (r) = [Rn (r)]2 r2           |e3 =                                                  µ± =      a+d±            (a − d)2 + 4bc             |v± =
                                                                          ||v3 − |e1 e1 |v3 − |e2 e2 |v3 |                    2                                                                         1
                                                                                                                                                     
∞                                                  cos θ cos ψ               cos φ sin ψ + sin φ sin θ cos ψ          sin φ sin ψ − cos φ sin θ cos ψ                                      (α+γ)                (α−γ)
           2
         −x +bx+c
                           √        2
                                    b /4+c                                                                                                                                            e−i 2 cos β          −e−i 2 sin β
     e              dx =       πe            A = − cos θ sin ψ              cos φ cos ψ − sin φ sin θ sin ψ          sin φ cos ψ + cos φ sin θ sin ψ  D(α, β, γ) =                     (α−γ)
                                                                                                                                                                                                 2
                                                                                                                                                                                                              (α+γ)
                                                                                                                                                                                                                       2
−∞                                                    sin θ                           − sin φ cos θ                             cos φ cos θ                                            ei 2 sin β
                                                                                                                                                                                                2           ei 2 cos β
                                                                                                                                                                                                                     2
                                                                                                                                                            ∞
                                                                                                                           1 l+1 −ρ                                                  r                2(j + l + 1 − n)
                                                                                                                   Rnl =     ρ e ν(ρ),           ν(ρ) =          cj ρj ,       ρ=      ,    cj+1 =                       cj ,
                                                                                                                           r                               j=0
                                                                                                                                                                                    na               (j + 1)(j + 2l + 2)
                                                                                                               sin(α ± β) = sin α cos β ± cos α sin β cos(α ± β) = cos α cos β sin α cos β
                                                                                                          tan α ± tan β
                                                                                            tan(α ± β) =                   cosh ix = 1 (eix + e−ix ) = cos x sinh ix = 2 (eix − e−ix ) = i sin x
                                                                                                                                      2
                                                                                                                                                                       1
                                                                                                         1 tan α tan β
                                                                                                               tanh ax dx = a−1 ln(cosh ax)                 coth ax dx = a−1 ln(sinh ax) ex = cosh x + sinh x

                                                                                                                                                                 cos((a1 − a2 )x) cos((a1 + a2 )x)      dx
                                                                                            e−x = cosh x − sinh x.               sin a1 x cos a2 x dx = −                        −                 p =m
                                                                                                                                                                   2(a1 − a2 )      2(a1 + a2 )          dt
                                                                                   ∞
                                                                                                                                                kg · m2
                                                                      p =              dxψ ∗ (x)∂x ψ(x)            = 1,054 × 10−34 J · s                         = 6,582 × 10−15 eV · s me = 9,10938 · 10−31 kg
                                                                              i   −∞                                                               s
                                                                                                                                   dk (α)           (α+k)
                                                                                                                                     L (x) = (−1)k Ln−k (x)                         H2n (x) = (−1)n 22n n! L(−1/2) (x2 )
                                                                                                                                  dxk n                                                                     n

                                                                          ex dn                                        2    dn −x2                                            x−α ex dn
                                                             Ln (x) =            e−x xn          Hn (x) = (−1)n ex             e      Hn+1 (x) = 2xHn (x) − Hn (x) L(α) (x) =
                                                                                                                                                                      n                                           e−x xn+α
                                                                          n! dxn                                           dxn                                                 n! dxn                                     
                                                                                                                                                                  (ek − f h) (ch − bk)                           (bf − ce)
                                                                                                                                           1      d −b
                                                                                                                              A−1    ==                   A−1 = (f g − dk) (ak − cg)                            (cd − af )
                                                                                                                                        ad − bc −c a
                                                                                                                                                                   (dh − eg) (gb − ah)                           (ae − bd)
                                                                                                 A + A†              A − A†                                                                                      2
                                                                                                                                                                                                                     n(n + 1)
                                                                           U †U = 1 A =                        +                  H† = H          HT = H∗          AT = ±A D = T AT −1                  En =                  ..
                                                                                                   2                   2                                                                                              ma2

More Related Content

PDF
F2004 formulas final
DOC
01 plain
PDF
كتيب ملخصات دروس للرياضيات السنة الثانية ثانوي 2
PDF
C Sanchez Reduction Saetas
PDF
Special second order non symmetric fitted method for singular
PDF
Geometry Section 3-4 1112
PDF
002 equation of_a_line
PDF
iTute Notes MM
F2004 formulas final
01 plain
كتيب ملخصات دروس للرياضيات السنة الثانية ثانوي 2
C Sanchez Reduction Saetas
Special second order non symmetric fitted method for singular
Geometry Section 3-4 1112
002 equation of_a_line
iTute Notes MM

What's hot (20)

PDF
Scatter diagrams and correlation and simple linear regresssion
PPT
Chapter 1 straight line
PDF
Lecture 4 3 d stress tensor and equilibrium equations
PDF
Quantum fields on the de sitter spacetime - Ion Cotaescu
PPT
Half adder and full adder
PDF
Peta karnaugh
PDF
Exponentials integrals
DOC
Mth 4108-1 b (ans)
PDF
009 solid geometry
PDF
PDF
Statistics lecture 13 (chapter 13)
PDF
Statistics lecture 11 (chapter 11)
KEY
Int Math 2 Section 6-3 1011
KEY
Integrated 2 Section 6-3
PDF
Proceedings Different Quantum Spectra For The Same Classical System
PDF
Lesson 24: The Definite Integral (Section 10 version)
PPT
Cs559 11
PDF
Lesson 24: The Definite Integral (Section 4 version)
Scatter diagrams and correlation and simple linear regresssion
Chapter 1 straight line
Lecture 4 3 d stress tensor and equilibrium equations
Quantum fields on the de sitter spacetime - Ion Cotaescu
Half adder and full adder
Peta karnaugh
Exponentials integrals
Mth 4108-1 b (ans)
009 solid geometry
Statistics lecture 13 (chapter 13)
Statistics lecture 11 (chapter 11)
Int Math 2 Section 6-3 1011
Integrated 2 Section 6-3
Proceedings Different Quantum Spectra For The Same Classical System
Lesson 24: The Definite Integral (Section 10 version)
Cs559 11
Lesson 24: The Definite Integral (Section 4 version)
Ad

Viewers also liked (20)

PDF
AW-HE120
PDF
Marcelo Pusay
PPS
Concurs de flauta Pratdip
PPTX
Curso virtual sesión 2
PPTX
Time Out Doha
PDF
Romulo lliquin
PPT
Grade 4 unit 5 (part 1)
DOCX
Portada_ Tesina
PDF
Alexandra gheorghe cartas a gandhi
PDF
DOCUMENTOS(CXOLEGIO)
PDF
DEUDORES MOROSOS 09
PDF
Complemento
DOCX
Caça palavras sobre as profissões
PDF
PPTX
Slideshare
PDF
Higienepostural
DOC
3rtridossier 2na naturals 2012
PDF
Piezas perspec isometrica
AW-HE120
Marcelo Pusay
Concurs de flauta Pratdip
Curso virtual sesión 2
Time Out Doha
Romulo lliquin
Grade 4 unit 5 (part 1)
Portada_ Tesina
Alexandra gheorghe cartas a gandhi
DOCUMENTOS(CXOLEGIO)
DEUDORES MOROSOS 09
Complemento
Caça palavras sobre as profissões
Slideshare
Higienepostural
3rtridossier 2na naturals 2012
Piezas perspec isometrica
Ad

Similar to F2004 formulas final_v4 (10)

PDF
Copy of appendices
PDF
Cheat Sheet
PDF
Formulario de matematicas
PDF
Physics Workout #1
PDF
Capitulo 2
PDF
solucionario de purcell 2
PDF
Formulas
PDF
Example triple integral
PDF
Sheet1 simplified
PDF
Performance of Optimal Registration Estimator
Copy of appendices
Cheat Sheet
Formulario de matematicas
Physics Workout #1
Capitulo 2
solucionario de purcell 2
Formulas
Example triple integral
Sheet1 simplified
Performance of Optimal Registration Estimator

More from Abraham Prado (12)

PDF
F3008 cm sei
PPTX
F3013 empr13 etica-2
PDF
F3006 poster final2
PDF
F3006 formulas final
PDF
Formulario cuantica 2
PDF
F3008 ppt fotoquim_nano
PDF
Cuasicristal5
PDF
F3006 poster white
PDF
A01213521 diagramas
PDF
A01213521 cine maximos
PDF
Curriculum 1
PDF
Nomenclatura química
F3008 cm sei
F3013 empr13 etica-2
F3006 poster final2
F3006 formulas final
Formulario cuantica 2
F3008 ppt fotoquim_nano
Cuasicristal5
F3006 poster white
A01213521 diagramas
A01213521 cine maximos
Curriculum 1
Nomenclatura química

Recently uploaded (20)

PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Classroom Observation Tools for Teachers
PPTX
Institutional Correction lecture only . . .
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
Pharma ospi slides which help in ospi learning
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
Complications of Minimal Access Surgery at WLH
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
O7-L3 Supply Chain Operations - ICLT Program
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
2.FourierTransform-ShortQuestionswithAnswers.pdf
Anesthesia in Laparoscopic Surgery in India
Microbial disease of the cardiovascular and lymphatic systems
202450812 BayCHI UCSC-SV 20250812 v17.pptx
O5-L3 Freight Transport Ops (International) V1.pdf
human mycosis Human fungal infections are called human mycosis..pptx
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Classroom Observation Tools for Teachers
Institutional Correction lecture only . . .
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Supply Chain Operations Speaking Notes -ICLT Program
Pharma ospi slides which help in ospi learning
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Complications of Minimal Access Surgery at WLH
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Module 4: Burden of Disease Tutorial Slides S2 2025
O7-L3 Supply Chain Operations - ICLT Program

F2004 formulas final_v4

  • 1. Az Ax − iAy 0 −i 1 0 0 1 AbrahamP rado1213521 Sj = σj σi σj = δij + i ijk σk σ = [σx , σy , σz ] σ·A= σy = σz = σ = 2 Ax + iAy −Az i 0 0 −1 x 1 0 k 1 0 1 1 1 1 a+b a−b (σ · A)(σ · B) = (A · B)I + iσ · (A × B) χ = aχ+ + bχ− χ+ = χ = u= √ v=√ χ= √ u+ √ v [σx , σy ] = 2i ijk σk 0 − 1 2 1 2 −1 2 2   cos ϕ − sin ϕ 0 {σx , σy } = 2δij σ0 σi σi = 1 Sn = ˆ ± Rz =  sin ϕ cos ϕ 0 [Si , Sj ] = i ijk Sk S 2 |s, m = 2 |s, m Sz |s, m = m|s, m S± = Sx ± iSy 2 0 0 1 √ a 0 −i ±iθ S± |s, m = s(s + 1) − m(m ± 1)|s, m ± 1 Sx χ± = χ eiα Sy = e = cos θ ± i sin θ S = [Sx , Sy , Sz ] 2 1 − a2 eiϕ 2 i 0 cos θ e−iϕ sin θ cos θ e−iϕ sin θ Sn = Sx sin θ cos ϕ + Sy sin θ sin ϕ + Sz cos θ ˆ χn = ˆ 2 n ˆ θ χ− = 2 S = n ˆ + iϕ e sin 2 − cos θ2 2 eiϕ sin θ − cos θ  2  1− 0 − i 2 1 f (r − δr) = f (r)[1 − δr · p] Ry ( ) =  0 1 0  Sy = (S+ − S− ) S± χ = χ± S± χ± = 0 Sx χ± = χz Sy χ± = χ S z χ = ± χ± 2 2i 2 2i 2 − 0 1− 2   0 bs 0 ··· 0 0 0 bs−1 ···  0 2 3   2 2 † † 2 (s + j)(s + 1 − j) S+ =  . . . .. .  Sx = Re(ab∗ ) Sy = − Im(ab∗ ) . . . . S χ± = χ± χ χ=1 Sx = χ Sx χ Sj = bj =  4 4 . . . . . 0 0 0 · · · b−s+1  0 0 0 ··· 0 n+1  ∞ ∞  2 Γ n+1 /a 2 1 2 (n > −1, a > 0) 3 1 0 1 1 2 1 · 3 · 5 · (n + 1)π 1/2 n −ax2  S2 = 2 s(s + 1) S2 = 2 ↑= xn e−αx dx = , n = 2k x e (2k−1)!! dx = 2k+1 ak π a (n = 2k, a > 0) 4 0 1 2 2 −∞ 2n/2 α(n+1)/2 0  k! (n = 2k + 1 , a > 0)  2ak+1 i cos β − inz sin β −(inx + ny ) sin β i cos θe−iϕ/2 eiα/2 0 ˆ ˆ ˆ Rn (β) = exp − β n · L Rn (β) = ˆ 2 2 2 Ta = exp − a · p a= ˆ Rz = −(inx − ny ) sin β 2 cos β + inz sin β 2 2 sin θ eiϕ/2 2 0 e−iα/2   0 0 ··· 0 0   s 0 ··· 0 bs 0 ··· 0 0 α α   0 s−1 ··· 0 Rr = cos I + i sin n·σ S− =  0  bs−1 ··· 0 0 Sz =  . .  .  2 2 . . . .  . . .. .  . . .. . . . . . . . . . . . 0 0 · · · −s 0 0 ··· b−s+1 0 s1 s2 s s1 s2 s s m|Sk |s l |s1 m1 |s2 m2 = Cm1 m2 m |s m |s m = Cm1 m2 m |s1 m1 |s2 m2 (σk )m l = s m1 +m2 =m s † 1 1 1 1 1 (k) (y) (y) c+ = χ + χ χ+ =√ χ− =√ Lx = 0 Ly = 0 φ(p) = e−i(p·r)/ ψ(r)dr3 2 i 2 −i (2π )3/2 1 dn ml P = |U U |eiω1 t + |V V |eiω2 t Pn (x) = (x2 − 1)n θ = cos−1 ω = γB0 S= [sin α cos γB0 t − sin α sin γB0 t cos α] 2n n! dxn l(l + 1) 2 iγB0 t −iE+ t −iE− t γB0 1 0 cos α e 2 q χ(t) = Aχ+ e + Bχ− e H = −γ S · B µ = γS H=− |χ(t) = 2 −iγB0 t X = X|σx |X τ =µ×B U = −µ · B γ= 2 0 −1 sin α e 2 2me 2     2 2 0 r cos α sin β ˆ 1 ∂ ∂f 1 ∂ ∂f 1 ∂ f HY m (θ, ϕ) = ( + 1)Y m (θ, ϕ) ∆f = r2 + sin ϕ + R(α, β, γ) 0 =  r sin α sin β  , 2I r2 ∂r ∂r r2 sin ϕ ∂ϕ ∂ϕ r2 sin2 ϕ ∂θ2 r r cos β ...
  • 2. ( − m)! m AbrahamP rado1213521 P −m = (−1)m P ( + m)! 1 1 1 3 1 3 −1 3 Y00 (θ, ϕ) = Y1−1 (θ, ϕ) = sin θ e−iϕ Y10 (θ, ϕ) = cos θ Y11 (θ, ϕ) = sin θ eiϕ 2 π 2 2π 2 π 2 2π 1 15 1 15 1 5 −1 15 Y2−2 (θ, ϕ) = sin2 θ e−2iϕ Y2−1 (θ, ϕ) = sin θ cos θ e−iϕ Y20 (θ, ϕ) = (3 cos2 θ − 1) Y21 (θ, ϕ) = sin θ cos θ eiϕ 4 2π 2 2π 4 π 2 2π √ ···     √0 0 0 0 0 1 √0 0 ··· ∞  1 0 √ 0 0 · · · 0 0 2 √0 · · · 1 15 1 k    · · · a = 0 0 3 · · · H = ω a† a + 1  Y22 (θ, ϕ) = sin2 θ e2iϕ eX = X a† =  0 2 √ 0 0 0 x= a† + a  4 2π k! 2 2mω    k=0  0  0 3 0 · · · 0 0  0 0 · · ·  . . . . . . . . .. . . . . . . . . .. . . . . . . . . . . n √ √ a† 2 d n 2 1 p=i a† − a a|n = n|n − 1 a† |n = n + 1|n + 1 |n = √ |0 Hn (ξ) = (−1)n eξ n e−ξ H|n = (n + ) ω|n 2mω n! dξ 2 (−1)m d +m 2 ( − m)! m P m (x) = (1 − x2 )m/2 (x − 1) . P −m (x) = (−1)m P (x). 2 ! dx +m ( + m)! 0 0 1 P0 (cos θ) = 1 P1 (cos θ) = cos θ P1 (cos θ) = − sin θ 0 2 1 P2 (cos θ) = 1 2 (3 cos θ − 1) P2 (cos θ) = −3 cos θ sin θ P2 (cos θ) = 3 sin2 θ 2 |v3 − |e1 e1 |v3 − |e2 e2 |v3 1 a−d (a − d)2 + 4bc /2c P (r) = [Rn (r)]2 r2 |e3 = µ± = a+d± (a − d)2 + 4bc |v± = ||v3 − |e1 e1 |v3 − |e2 e2 |v3 | 2 1   ∞ cos θ cos ψ cos φ sin ψ + sin φ sin θ cos ψ sin φ sin ψ − cos φ sin θ cos ψ (α+γ) (α−γ) 2 −x +bx+c √ 2 b /4+c e−i 2 cos β −e−i 2 sin β e dx = πe A = − cos θ sin ψ cos φ cos ψ − sin φ sin θ sin ψ sin φ cos ψ + cos φ sin θ sin ψ  D(α, β, γ) = (α−γ) 2 (α+γ) 2 −∞ sin θ − sin φ cos θ cos φ cos θ ei 2 sin β 2 ei 2 cos β 2 ∞ 1 l+1 −ρ r 2(j + l + 1 − n) Rnl = ρ e ν(ρ), ν(ρ) = cj ρj , ρ= , cj+1 = cj , r j=0 na (j + 1)(j + 2l + 2) sin(α ± β) = sin α cos β ± cos α sin β cos(α ± β) = cos α cos β sin α cos β tan α ± tan β tan(α ± β) = cosh ix = 1 (eix + e−ix ) = cos x sinh ix = 2 (eix − e−ix ) = i sin x 2 1 1 tan α tan β tanh ax dx = a−1 ln(cosh ax) coth ax dx = a−1 ln(sinh ax) ex = cosh x + sinh x cos((a1 − a2 )x) cos((a1 + a2 )x) dx e−x = cosh x − sinh x. sin a1 x cos a2 x dx = − − p =m 2(a1 − a2 ) 2(a1 + a2 ) dt ∞ kg · m2 p = dxψ ∗ (x)∂x ψ(x) = 1,054 × 10−34 J · s = 6,582 × 10−15 eV · s me = 9,10938 · 10−31 kg i −∞ s dk (α) (α+k) L (x) = (−1)k Ln−k (x) H2n (x) = (−1)n 22n n! L(−1/2) (x2 ) dxk n n ex dn 2 dn −x2 x−α ex dn Ln (x) = e−x xn Hn (x) = (−1)n ex e Hn+1 (x) = 2xHn (x) − Hn (x) L(α) (x) = n e−x xn+α n! dxn dxn  n! dxn  (ek − f h) (ch − bk) (bf − ce) 1 d −b A−1 == A−1 = (f g − dk) (ak − cg) (cd − af ) ad − bc −c a (dh − eg) (gb − ah) (ae − bd) A + A† A − A† 2 n(n + 1) U †U = 1 A = + H† = H HT = H∗ AT = ±A D = T AT −1 En = .. 2 2 ma2