SlideShare a Scribd company logo
TRIPLE INTEGRALS



  Example 1.Calculate the value of multiple integral           E
                                                                 y 2 z 2 dV where
                                           2    2
E is bounded by the paraboloid x = 1 − y − z and plane x = 0.
  Solution. In the rectangular coordinate system we can describe our region
E as
              E = {(x, y, z)|(y, z) ∈ D, 0 ≤ x ≤ 1 − y 2 − z 2 }
where
                                 D = {(x, y)|y 2 + z 2 ≤ 1}.
Therefore
                                                       2
                                                           −z 2
                 y 2 z 2 dV =         y 2 z 2 x|1−y
                                                0                 dA =       y 2 z 2 (1 − y 2 − z 2 )dA.
             E                   D                                       D

In order to evaluate the double integral over D it is better to use the polar
coordinate system. We set

                                     z = rcosθ,              y = rsinθ.

In the polar coordinate system we can describe the region D as

                         D = {(r, θ)|0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}.

So we have
                                2π         1                                                        2π       1
             2 2                               2   2        2      2         2                                               sin2 (2θ)
             y z dV =                          r cos θr sin θ(1−r )rdrdθ =                                       (r5 −r7 )             drdθ =
         E                  0          0                                                        0        0                      4
                                     2π                                                    2π
                                        r6 r8 sin2 (2θ) 1       1
                                       ( − )           |0 dθ =                                  sin2 (2θ)dθ.
                                 0      6  8     4             86                      0

Note that
                                                           1    1
                                     sin2 (2θ) =             θ − sin(4θ).
                                                           2    8
                                                                                     Typeset by AMS-TEX
                                                       1
1 1   1              π
                                                   y 2 z 2 dV =       ( θ − sin(4θ))|2π =
                                                                                     0       .
                                              E                     86 2   8              86

    Example 2.Calculate the value of multiple integral     H
                                                             z 3 x2 + y 2 + z 2 dV
where H is the solid hemisphere with the center at the origin, radius 1, that
lies above xy-plane.
    Solution.
    Using the spherical coordinates we can describe the hemisphere H as

                                                                                                                       π
                         H = {(x, y, z)|0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤                                                   }.
                                                                                                                       2

Then we have

                                                                         π
                                                                         2        2π             1
                         3
                     z        x2 + y 2 + z 2 dV =                                                    ρ3 cos3 φρ3 sinφdρdθdφ
             H                                                       0        0              0
                 π                                                                               π
                             2π           1                                                                2π
                 2
                                               6      3
                                                                                                 2              ρ7
     =                                        ρ cos φsinφdρdθdφ =                                                  cos3 φsinφ|1 dθdφ
                                                                                                                              0
             0           0            0                                                      0         0        7
                     π                                                                   π
                                 2π
         1           2                                                   2π              2                                    2π        π
    =                                 cos3 φsinφdθdφ =                                       cos3 φsinφdφ = −                    cos4 φ|02

         7       0           0                                            7          0                                        28
                                                                                                                                       2π
                                                                                                                                    =      .
                                                                                                                                        28

   Example 3. Find the volume of the given solid. Under the paraboloid
z = x2 + 4y 2 and above the rectangle R = [0, 2] × [1, 4].
   Solution.

                                                                         2       4                                        2
                                                                                                                                    4
  volume =                            (x2 +4y 2 )dA =                                (x2 +4y 2 )dydx =                        (x2 y+ y 3 )|4 dx =
                                                                                                                                           1
                                  R                                  0       1                                        0             3
                                                           2
                                                               (3x2 + 84)dx = (x3 + 84x)|2 = 8 + 168 = 176.
                                                                                         0
                                                       0



   Example 4. Calculate the multiple integral       T
                                                      ydV , where T is the
tetrahedron bounded by the planes x = 0, y = 0, z = 0 and 2x + y + z = 2.
   Solution.
                                   2
1       2−2x    2−2x−y                                  1       2−2x
                                                                                                           2−2x−y
                 ydV =                                              ydzdydx =                           zy|0      dydx =
             T               0       0           0                                   0       0
                                     1        2−2x
                                                     (2y − 2xy − y 2 )dydx =
                                     0    0
    1                    3                               1
                        y 2−2x                                                                          (2 − 2x)3
        (y 2 − xy 2 −    )|    dx =                          ((2 − 2x)2 − x(2 − 2x)2 −                            dx =
0                       3 0                          0                                                      3
                                                                        1
                                                               4                           1             1
                                                                            (1 − x)3 dx = − (1 − x)4 |1 = .
                                                                                                      0
                                                               3    0                      3             3




                                                                3

More Related Content

PDF
Complex analysis and differential equation
PPT
Complex varible
PDF
Complex function
PPTX
Transformations (complex variable & numerical method)
PPTX
Complex variables
PDF
Emat 213 study guide
PDF
U unit4 vm
Complex analysis and differential equation
Complex varible
Complex function
Transformations (complex variable & numerical method)
Complex variables
Emat 213 study guide
U unit4 vm

What's hot (20)

DOCX
Maths 301 key_sem_1_2009_2010
PDF
Engr 213 midterm 2b sol 2010
PDF
Solved exercises simple integration
PPTX
Complex analysis
PDF
Engr 213 final 2009
PDF
Engr 213 midterm 2a sol 2010
PPT
complex variable PPT ( SEM 2 / CH -2 / GTU)
PDF
Engr 213 midterm 1a sol 2010
DOC
Chapter 5 (maths 3)
PPTX
PDF
Engr 213 midterm 2b 2009
PDF
Engr 213 midterm 1b sol 2010
PDF
Engr 213 midterm 2a sol 2009
PPTX
Gradient , Directional Derivative , Divergence , Curl
DOC
Lap lace
PDF
IIT Jam math 2016 solutions BY Trajectoryeducation
PPT
Another possibility
PDF
Power series
PDF
Iit jam 2016 physics solutions BY Trajectoryeducation
PPTX
Complex form fourier series
Maths 301 key_sem_1_2009_2010
Engr 213 midterm 2b sol 2010
Solved exercises simple integration
Complex analysis
Engr 213 final 2009
Engr 213 midterm 2a sol 2010
complex variable PPT ( SEM 2 / CH -2 / GTU)
Engr 213 midterm 1a sol 2010
Chapter 5 (maths 3)
Engr 213 midterm 2b 2009
Engr 213 midterm 1b sol 2010
Engr 213 midterm 2a sol 2009
Gradient , Directional Derivative , Divergence , Curl
Lap lace
IIT Jam math 2016 solutions BY Trajectoryeducation
Another possibility
Power series
Iit jam 2016 physics solutions BY Trajectoryeducation
Complex form fourier series
Ad

Similar to Example triple integral (20)

DOC
2 senarai rumus add maths k1 trial spm sbp 2010
DOC
2 senarai rumus add maths k2 trial spm sbp 2010
PDF
2 senarai rumus add maths k1 trial spm sbp 2010
PDF
2 senarai rumus add maths k2 trial spm sbp 2010
PDF
Legendre
PPT
Fourier series
PPT
Fourier series
PDF
Formulario cuantica 2
PDF
Cosmin Crucean: Perturbative QED on de Sitter Universe.
PDF
R. Jimenez - Fundamental Physics from Astronomical Observations
PDF
Peer instructions questions for basic quantum mechanics
PDF
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
PPT
Ysu conference presentation alaverdyan
PDF
Lista exercintegrais
PDF
Change of variables in double integrals
PDF
Change of variables in double integrals
DOCX
Answer to selected_miscellaneous_exercises
PDF
Cash Settled Interest Rate Swap Futures
PDF
Funções trigonométricas
PDF
Den5200 ps1
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
Legendre
Fourier series
Fourier series
Formulario cuantica 2
Cosmin Crucean: Perturbative QED on de Sitter Universe.
R. Jimenez - Fundamental Physics from Astronomical Observations
Peer instructions questions for basic quantum mechanics
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Ysu conference presentation alaverdyan
Lista exercintegrais
Change of variables in double integrals
Change of variables in double integrals
Answer to selected_miscellaneous_exercises
Cash Settled Interest Rate Swap Futures
Funções trigonométricas
Den5200 ps1
Ad

Example triple integral

  • 1. TRIPLE INTEGRALS Example 1.Calculate the value of multiple integral E y 2 z 2 dV where 2 2 E is bounded by the paraboloid x = 1 − y − z and plane x = 0. Solution. In the rectangular coordinate system we can describe our region E as E = {(x, y, z)|(y, z) ∈ D, 0 ≤ x ≤ 1 − y 2 − z 2 } where D = {(x, y)|y 2 + z 2 ≤ 1}. Therefore 2 −z 2 y 2 z 2 dV = y 2 z 2 x|1−y 0 dA = y 2 z 2 (1 − y 2 − z 2 )dA. E D D In order to evaluate the double integral over D it is better to use the polar coordinate system. We set z = rcosθ, y = rsinθ. In the polar coordinate system we can describe the region D as D = {(r, θ)|0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}. So we have 2π 1 2π 1 2 2 2 2 2 2 2 sin2 (2θ) y z dV = r cos θr sin θ(1−r )rdrdθ = (r5 −r7 ) drdθ = E 0 0 0 0 4 2π 2π r6 r8 sin2 (2θ) 1 1 ( − ) |0 dθ = sin2 (2θ)dθ. 0 6 8 4 86 0 Note that 1 1 sin2 (2θ) = θ − sin(4θ). 2 8 Typeset by AMS-TEX 1
  • 2. 1 1 1 π y 2 z 2 dV = ( θ − sin(4θ))|2π = 0 . E 86 2 8 86 Example 2.Calculate the value of multiple integral H z 3 x2 + y 2 + z 2 dV where H is the solid hemisphere with the center at the origin, radius 1, that lies above xy-plane. Solution. Using the spherical coordinates we can describe the hemisphere H as π H = {(x, y, z)|0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ }. 2 Then we have π 2 2π 1 3 z x2 + y 2 + z 2 dV = ρ3 cos3 φρ3 sinφdρdθdφ H 0 0 0 π π 2π 1 2π 2 6 3 2 ρ7 = ρ cos φsinφdρdθdφ = cos3 φsinφ|1 dθdφ 0 0 0 0 0 0 7 π π 2π 1 2 2π 2 2π π = cos3 φsinφdθdφ = cos3 φsinφdφ = − cos4 φ|02 7 0 0 7 0 28 2π = . 28 Example 3. Find the volume of the given solid. Under the paraboloid z = x2 + 4y 2 and above the rectangle R = [0, 2] × [1, 4]. Solution. 2 4 2 4 volume = (x2 +4y 2 )dA = (x2 +4y 2 )dydx = (x2 y+ y 3 )|4 dx = 1 R 0 1 0 3 2 (3x2 + 84)dx = (x3 + 84x)|2 = 8 + 168 = 176. 0 0 Example 4. Calculate the multiple integral T ydV , where T is the tetrahedron bounded by the planes x = 0, y = 0, z = 0 and 2x + y + z = 2. Solution. 2
  • 3. 1 2−2x 2−2x−y 1 2−2x 2−2x−y ydV = ydzdydx = zy|0 dydx = T 0 0 0 0 0 1 2−2x (2y − 2xy − y 2 )dydx = 0 0 1 3 1 y 2−2x (2 − 2x)3 (y 2 − xy 2 − )| dx = ((2 − 2x)2 − x(2 − 2x)2 − dx = 0 3 0 0 3 1 4 1 1 (1 − x)3 dx = − (1 − x)4 |1 = . 0 3 0 3 3 3