SlideShare a Scribd company logo
Chapter 5

                                          Z-Transforms
Introduction:
           In Communication Engineering, two basic types of signals are encountered.
They are
(1) Continuous time signals.
(2) Discrete time signals.
Continuous time signals are defined for continuous values of the independent variable,
namely time and are denoted by a function { f ( t )} .
Discrete time signals are defined only at discrete set of values of the independent
variable and are denoted by a sequence { f ( n )} .
Z-transform plays an important role in analysis of linear discrete time signals.

Definition of z-transform:
                                                                                  ∞
             If { f ( n )}   is a sequence defined for n = 0,±1,±2,... .,then   ∑ f ( n)z
                                                                                n = −∞
                                                                                            −n
                                                                                                 is called

the two-sided or bilateral Z-transform of { f ( n )} and denoted by Z { f ( n )} or f ( z )
,where z is a complex variable in general.
          If { f ( n )} is a casual sequence, i.e if , f ( n ) = 0 for n<0,then the Z-transform is
called one-sided or unilateral Z-transform of { f ( n )} and is defined as
                                                            ∞
                                Z { f ( n )} = f ( z ) = ∑ f ( n ) z −n
                                                           n =0
We shall mostly deal with one sided Z-transform which will be hereafter referred to as
Z-transform.

Properties of Z-transforms:
(1) Linearity:

     The Z-transform is linear
          Z { af ( n ) + bg ( n )} = aZ { f ( n )} + bZ { g ( n )} .
Proof:
                                          ∞
              Z { af ( n ) + bg ( n )} = ∑ { af ( n ) + bg ( n )} z −n
                                         n =0
                                           ∞                      ∞
                                     = a∑ f ( n) z    −n
                                                           + b∑ g ( n ) z −n
                                          n =0                    n=o

           Z { af ( n ) + bg ( n )} = aZ { f ( n )} + bZ { g ( n )}
similarly, Z { af ( t ) + bg ( t )} = aZ { f ( t )} + bZ { g ( t )} .

(2)Time Shifting:



                                                                                                             1
(i) Z { f ( n − n0 )} = z 0 .Z { f ( n )} or z 0 f ( z )
                          −n                   −n


 (ii) Z { f ( t + T )} = z{ f ( z ) − f ( 0 )}
 Proof:
                                  ∞
 (i ) Z { f ( n − n 0 ) } = ∑ f ( n − n 0 ) z − n
                                 n =0
                                  ∞
                          =      ∑ f ( m) z
                               m = − n0
                                               − ( m + n0 )



                                          ∞
                          = z − n0 ∑ f ( m ) z −m              { f ( n ) is causal}
                                        m =0
                                  ∞
                                                                              ∞
                                                                                                
  (ii ) Z { f ( t + T )} = ∑ f ( nT + T ) z − n                Z  f ( t ) = ∑ f ( nT ) z − n  
                                                                                                 
                                 n=0                                         n=0              
                                 ∞
                           = ∑ f { ( n + 1)T } z − n
                                n =0
                                 ∞
                           = ∑ f ( mT ) z −( m −1)
                                m =1

                           ∞                             
                       = z ∑ f ( mT ) z − m − f ( 0) 
                           m = 0                         
                       = z{ f ( z ) − f ( 0)}
 Extending this result, we get
                                                  f ( T ) f ( 2T )         f { ( k − 1)T } 
     Z { f ( t + kT )} = z k  f ( z ) − f ( 0 ) −        −         − ... −                 
                                                    z       z  2
                                                                                  z k −1    

(3)Frequency Shifting:
 (i) Z {a f ( n )} = f  
          n             z
                        a

 (ii) Z {a f ( t )} = f  
           n            z
                        a
 Proof:
 (i ) Z { a n f ( n ) } = ∑ a n f ( n ) z − n
                           ∞


                           n=0

                            ∞                  −n
                            z
                  = ∑ f ( n) 
                    n =0    a
                       z
                  = f 
                       a
 Similarly (ii) can be proved.

 Corollary:
 If Z { f ( t )} = f ( z ) , then Z {e − at f ( t )} = f ( ze aT )


                                                                                                      2
The result follows, if we replace a n by e − anT or ( e − aT ) in (ii).
                                                                          n




(4)Time Reversal for Bilateral Z-Transform:
                                                    1
If Z { f ( n )} = f ( z ) , then Z { f ( − n )} = f  
                                                    z
Proof:
                                ∞
     Z { f ( − n )} =          ∑ f ( − n)z        −n

                              n = −∞
                               −∞
                          =   ∑ f ( m) z
                              m =∞
                                              m



                                ∞                      −m
                                              1
                          =   ∑         f ( m) 
                              m = −∞          z
                             1
                          = f 
                             z

(5) Differentiation in the Z-Domain:
                         d
(i) Z { nf ( n )} = − z     f ( z)
                         dz
                         d
(ii) Z { nf ( t )} = − z    f ( z)
                         dz
Proof:
(i)

                                                             ∞
                (i )      f ( z ) = Z { f ( n )} = ∑ f ( n ) z − n
                                                            n =0
                                          ∞
                  d
                     f ( z ) = ∑ − nf ( n ) z −n −1
                  dz           n =0

                            1 ∞
                              ∑ nf ( n ) z −n
                            z n =0
                                    =−

                              d
          Z { nf ( n )} = − z      f ( z)
                              dz
Similarly, (ii) can be proved.

(6) Initial Value Theorem:
(i) If Z { f ( n )} = f ( z ) , then f ( 0 ) = lim f ( z )         z →∞

(ii) If Z { f ( t )} = f ( z ) , then f ( 0 ) = lim f ( z )
                                                z →∞

Proof:
                                    ∞
         (i )          f ( z ) = ∑ f ( n )z −n
                                    n=0




                                                                              3
f (1) f ( 2 )
                           = f ( 0) +             + 2 + ...∞
                                               z    z
         lim{ f ( z )} = f ( 0)
         z →∞

Similarly, (ii) can be proved.

(7) Final value Theorem:
(i) If Z { f ( n )} = f ( z ) , then lim{ f ( n )} = lim{( z − 1) f ( z )}
                                               n →∞             z →∞

(ii) If Z { f ( t )} = f ( z ) , then lim{ f ( t )} = lim{( z − 1) f ( z )}
                                      t →∞            z →∞

Proof:
                              ∞
(i ) Z { f ( n + 1)} = ∑ f ( n + 1) z − n
                             n =0


                         = ∑ f ( m ) z − m+1 = z{ f ( z ) − f ( 0 )}
                              ∞


                             m =1

zf ( z ) − zf ( 0 ) − f ( z ) = Z { f ( n + 1)} − Z { f ( n )}
                                      ∞
 ( z − 1) f ( z ) − zf ( 0) = ∑ { f ( n + 1) − f ( n )} z −n
                                    n =0
Taking limits as z tends to 1,
 lim{( z − 1) f ( z )} − f ( 0 ) = ∑ { f ( n + 1) − f ( n )}
                                              ∞

  z →1
                                             n =0

                                          = lim{ f (1) − f ( 0)} + { f ( 2 ) − f (1)} +  + { f ( n + 1) − f ( n )}
                                            n →∞

                                          = lim{ f ( n + 1) − f ( 0 )}
                                            n →∞

                                          = lim{ f ( n ) − f ( 0 )}
                                            n →∞

                  lim{ f ( n )} = lim{( z − 1) f ( z )}
                  n →∞                      z →1

Similarly, (ii) can be proved, starting with property 2(ii).

(8) Convolution Theorem:
Definitions:
       The convolution of the two sequences { f ( n )} and { g ( n )} is defined as
                               ∞
(i) { f ( n ) * g ( n )} =    ∑ f ( r ).g ( n − r ) , if the sequence are non causal and
                             r = −∞
                                 n
(ii) { f ( n ) * g ( n )} = ∑ f ( r ).g ( n − r ) , if the sequences are causal.
                              r =0

 The convolution of two functions f ( t ) and g ( t ) is defined as
                     n
  f ( t ) * g ( t ) = ∑ f ( rT ).g ( n − r )T , where T is the sampling period.
                    r =0




                                                                                                                      4
Statement of the theorem:
 (i) If Z { f ( n )} = f ( z ) , and Z { g ( n )} = g ( z ) , then Z { f ( n ) * g ( n )} = f ( z ).g ( z ).
 (ii) If Z { f ( t )} = f ( z ) , and Z { g ( t )} = g ( z ) , then Z { f ( t ) * g ( t )} = f ( z ).g ( z ).
 Proof:
 (For the bilateral z=transform)
                                      ∞                    
 (i) Z { f ( n ) * g ( n )} = Z  ∑ f ( r ).g ( n − r ) 
                                     r = −∞                
                                    ∞
                                           ∞
                                                               
                            = ∑  ∑ f ( r ) g ( n − r ) z − n
                                 n = −∞ r = −∞                
                                     ∞             ∞
                              =    ∑        f ( r ) ∑ g ( n − r ) z −n
                                   r = −∞        n = −∞
By changing the order of summation,
                         ∞
                                 ∞                     
                    = ∑ f ( r )  ∑ g ( m ) z −( m+ r )  , by putting n-r=m
                      r = −∞    m= −∞                  
                         ∞
                                      ∞
                                                        
                    = ∑ f ( r )z −r  ∑ g ( m) z −m 
                      r = −∞        m = −∞             
                                      ∞
                               =    ∑ f ( r )z
                                    r = −∞
                                                    −r
                                                          .g ( z )

                               = f ( z ).g ( z )
                                   −r           −s 
                        ∞                ∞
(ii) f ( z ).g ( z ) = ∑ f ( rT ) z ∑ g ( sT ) z 
                       r =0            s =0        

                    = ∑ h( nT ) z − n                                       ……………(1)

                            Say, where

           h( nT ) = f ( 0.T ) g ( nT ) + f (1.T ).g { ( n − 1)T } + ... + f ( nT ).g ( 0.T )

                        n
                    = ∑ f ( rT ).g { ( n − r )T }                           ……………(2)
                       r =0
Using (2) in (1), we get

                         ∞
                             n                        
      f ( z ).g ( z ) = ∑ ∑ f ( rT ) g { ( n − r )T }  z −n
                        n =0  r = 0                   
                        ∞
                    = ∑ { f ( t ) * g ( t )} z − n
                       n =0

                    = Z { f ( t ) * g ( t )}




                                                                                                                5
Z-Transforms of some basic functions:
(1) Z {δ ( n )} , where δ ( n ) is the unit impulse sequence defined by
                         1, for n = 0
                δ ( n) = 
                         0, for n ≠ 0
                                ∞
                 Z {δ ( n ) } = ∑ δ ( n ) z − n = 1
                               n=0



(2) Z ( k ) and Z {U ( n )} , Where k is a constant and U ( n ) is the unit step sequence
defined by

                      1, for n ≥ 0
             U ( n) = 
                      0, for n < 0
               ∞
                            1 1      
(i) Z ( k ) = ∑ kz = k 1 + + 2 +  ∞ 
                     −n

              n =0             z z   
                           kz
                        =
                          z −1
                                                             1
Where the region of convergence (ROC) is                       < 1 or z > 1 .
                                                             z
(ii) In particular,
                                       z
           Z (U ( n ) ) = Z (1) =         , if z > 1 and
                                     z −1
                               z
            Z {U ( t )} =
                             z −1

                    {    }
(3) Z {a n }, Z ( − 1) n , Z {e at }, Z {e − at } and Z {a n −1 }

 (i) Z {a } =
                     z                                a
           n
                          , where the ROC is             < 1 or z > a .
                   z−a                                z
       {
 (ii) Z ( − 1) =}n      z
                      z +1
                             , where the ROC is z > 1 .

 (iii) Z {e } =
            at         z
                              .
                    z − e aT
 (iv) Z {e } =
            − at         z
                                 .
                     z − e −aT
  (v) Z {a } =
             n −1       1
                             , if n ≥ 1.
                      z−a

(4) Z { n} , Z {na n }, Z {n 2 }, Z { n( n − 1)} and Z { t } .
                   z
(i) Z { n} =              .
               ( z − 1) 2


                                                                                            6
(ii) Z {na } =
          n            az
                               , Where the ROC is z > a .
                   ( z − a) 2
                  z ( z + 1)
(iii) Z ( n ) =
            2

                  ( z − 1) 3
                             2z
(iv) Z { n( n − 1)} =
                         ( z − 1) 3
                  Tz
(v) Z { t } =
              ( z − 1) 2

(5) Z {n k } and Z ( t k ) .

                 z ( z + 1)
(i) Z {n } =
        k

                ( z − 1) 3
(ii) Z {t } =
         k          Tz
                 ( z − 1) 2

      1          1 
(6) Z   and Z          .
      n          n + 1
      1         z 
(i) Z   = log         .
      n         z −1
        1             z 
(ii) Z        = z log     .
        n + 1         z −1

      an      1
(7) Z   and Z   .
       n!      n! 
      an   a

(i) Z  = ez .
       n! 
                                           1
                           1
(ii) Putting a=1, we get Z   = e z .
                            n! 

(8) Z {r n cos nθ }, Z {r n sin nθ }, Z { cos nθ } , Z { sin nθ } .
                           z ( z − r cos θ )
(i) Z {r cos nθ } = 2                          , if z > r .
         n

                       z − 2 zr cos θ + r 2
                                zr sin θ
(ii) Z {r sin nθ } = 2                          , if z > r .
          n

                        z − 2 zr cos θ + r 2
                            z ( z − cos θ )
(iii) Z { cos nθ } = 2                        , if z > 1 .
                        z − 2 zr cos θ + 1

      In particular,


                                                                      7
    nπ       z2
                   Z cos     = 2        .
                          2  z +1
                        z sin θ
(iv) Z { sin nθ } = 2                , if z > 1 .
                   z − 2 z cos θ + 1

      In particular,

                         nπ       z
                      Z sin   = 2   .
                            2  z +1

(9) Z { cos wt } , Z { sin wt } , Z {e − at cos bt }, Z {e − at sin bt } .
                              z ( z − cos wT )
(i)       Z { cos wt } = 2                            , if z > 1 .
                           z − 2 z cos wT + 1
                                  z sin wT
(ii)      Z { sin wt } = 2                            , if z > 1 .
                           z − 2 z cos wT + 1
                                ze aT ( ze aT − cos bT )
(iii) Z {e cos bt } = 2 2 aT
          − at
                                                                 .
                            z e − 2 ze aT cos bT + 1
(iv) Z {e − at sin bt } = 2 2 aT
                                     ze aT sin bT
                                                                .
                           z e − 2 ze aT cos bT + 1

Problems:

   (1) Find the bilateral Z-transforms of
   (i) a n δ ( n − k ) ,
   (ii) − α nU ( − n − 1) ,
   (iii) − nα nU ( − n − 1) ,
Solution:

                                1, for n = k
     (i)            δ (n − k) = 
                                0, for n = k

                                     ∞
              Z {δ ( n − k ) } =   ∑δ ( n − k ) z   −n
                                                          = z −k
                                   n = −∞
           By property 3,
                                            −k

           Z {a δ ( n − k ) } =  
                n               z
                                a
                                1, if − n − 1 ≥ 0, i.e. if n ≤ 1
               U ( − n − 1) = 
                                0, if − n − 1 < 0, i.e. if n > −1
                                     ∞
            Z {U ( − n − 1)} =     ∑U ( − n − 1) z       −n

                                   n = −∞




                                                                             8
∞                  ∞
                        =    ∑z
                            n = −∞
                                     −n
                                          or   ∑z
                                                n =1
                                                       n



                         = z (1 + z + z +  ∞ )2


                              z
                         =
                           1− z
          Z {a n f ( n )} = f  ,
                               z
(ii)
                               a
         By property 3, which is true for bilateral Z-transform also.
                                       z
           Z {α nU ( − n − 1)} = α or
                                                z
                                                  s
                                     1−
                                         z  α−z
                                         α
         Z {− α nU ( − n − 1)} =
                                       z
                                     z −α

                        d
(iii) Z { nf ( n )} = − z
                       dz
                           { f ( z )}, by property5.
                                                        αz
       Z {− nα nU ( − n − 1)} = − z 
                                       d  z 
                                                  =
                                       dz  z − α  ( z − α ) 2

(2) Find the Z-transforms of
(i) a n cosh an and
(ii) 2 n sinh 3n
Solution:
                       n  e an + e − an                  
(i) Z {a cosh an} = z a                                  
          n
                                2                         
                                                         
                       =
                        1
                        2
                              [{    n
                                               } {
                          Z ( ae a ) + Z ( ae − a )
                                                    n
                                                                }]
                                                      ( z ( b ) ) = z − b 
                        1 z                z                         z 
                       =             +       −a 
                                                               n

                        2  z − ae a
                                        z − ae                            

                            z  2 z − a( e a + e − a ) 
                       =
                            2  z 2 − a( e a + e −a ) z + a 2 
                                                             


                               z ( z − a cosh a )
                        =
                            z − 2a( cosh a ) z + a 2
                              2




                        n  e 3n − e −3n                  
(ii) Z {2 sinh 3n} = Z 2                                 
         n
                                 2                        
                                                         



                                                                                9
=
                      1
                      2
                             [{    n
                                     }
                        Z ( 2e 3 ) − Z {( 2e −3 ) n}   ]
                      1 z                 z    
                     =              −       −3 
                      2  z − 2e  3
                                       z − 2e 
                      z        2( e 3 − e −3 ) 
                     =
                      2  z − 2( e + e ) z + 4 
                         2          3     −3   

                           2 z sinh 3
                     = 2
                      z − 4 z cosh 3 + 4

(3) Find Z-transforms of
                    1
(i) f ( n ) =             , and
                n( n − 1)
                      2n + 3
(ii) f ( n ) =
                 ( n + 1)( n + 2)
Solution:
                           1      1    1
(i)         f ( n) =            =    −
                      n( n − 1) n − 1 n

     1  ∞  1  −n
   Z       = ∑          z
     n − 1 n = 2  n − 1 
                         2          3
                     1 1        1 1
                  = .  + .  + 
                     1z         2 z
                     1          1 
                  = − log1 − 
                     z          z 
                     1  z 
                  = log           
                     z       z −1
            1           z 
         Z   = log             [Refer to basic transform (6)]
            n           z −1
                        1          1 
     Z { f ( n )} = Z         − Z 
                        n − 1      n
                 1   z 
              =  − 1 log           
                  z   z −1
                  z −1  z −1
              =          log       
                  z   z 
                    2n + 3           1       1
(ii) f ( n ) =                   =       +
               ( n + 1)( n + 2) n + 1 n + 2 , by partial fractions.
                       1               z 
                    Z         = z log        [Refer to basic transform (6)]
                       n + 1           z −1



                                                                                  10
 1  ∞ 1
               Z       =∑          .z − n
                 n + 2  n =0 n + 2
                                                  2
                            1 1 1 1 1
                           = + . + .  + 
                            2 3 z 4 z
                                      1  1  2 1  1 3 
                              = z 2  .  + .  + 
                                     2  z 
                                                  3 z  
                                                          
                                             1  1
                              = z 2 − log1 −  − 
                                             z  z
                                          z 
                              = z 2 log          − z
                                          z −1
                                     1           1 
                 Z { f ( n )} = Z           + Z      
                                     n +1       n+2
                                                z 
                              = z ( z + 1) log       −z
                                                z −1

(4) Find the Z-transforms of
        2  nπ 
(i) sin          
           4 
        3  nπ 
(ii) sin          , and
           6 
           nπ π 
(iii) cos        + 
           2         4
Solution:
                           2  nπ    1         nπ 
(i) Let f ( n ) = sin             = 1 − cos      
                              4  2             2 
                         1 1             nπ 
        Z { f ( n )} = Z   − Z  cos         
                         2 2              2 
                                                π
                                       z z − cos 
                           z       1             2
                     =           −
                       2( z − 1) 2 2             π
                                     z − 2 z cos + 1
                                                  2
[Refer to basic transform (8)]
                       1 z          z2 
                     =          − 2      
                       2  z − 1 z + 1
                      3  nπ 
(ii) Let f ( n ) = sin      
                         6 
                    3     nπ 1      nπ
                 = sin        − sin
                    4      6 4       2


                                                              11
3        nπ  1           nπ 
       Z { f ( n )} = Z  sin      − Z  sin        
                    4          6  4           2 
                   3         z sin π           1         z sin π
               = . 2                 6      − . 2                2
                   4 z − 2 z cos π + 1 4 z − 2 z cos π + 1
                                       6                           2
By basic transform (8)
                   3          z          1    z
               = . 2                   − . 2
                   8 z − z 3 +1 4 z +1
                             nπ π 
(iii)  Let f ( n ) = cos         + 
                             2      4
                            nπ       π       nπ        π
                    = cos        cos − sin        sin
                             2       4        2        4
                        1          nπ             nπ 
       Z { f ( n )} =       Z  cos      − Z  sin     
                         2           2             2 
                           1  z2           z 
                         =     2       − 2   
                            2  z + 1 z + 1
                           1 z ( z − 1)
                         =
                            2 z +1
                                 2




(5) (i) Use initial value theorem to find f ( 0 ) , when

                                            ze aT ( ze aT − cos bT )
                                f ( z ) = 2 2 aT
                                         z e − 2 ze aT cos bT + 1

    (ii) Use final value theorem to find f ( ∞ ) , when
                                      Tze aT
                         f ( z) =
                                  ( ze aT − 1) 2
Solution:
(i)      By initial value theorem,
                 f ( 0) = lim{ f ( z )}
                                 z →∞

                              aT  aT 1                        
                              e  e − z cos bT 
                                                                
                                                                 
                      = lim                     
                                                                 
                              e 2 aT − e cos bT + 1
                                         2 aT
                        z →∞
                                                                 
                             
                                        z         z2            
                                                                 
                      = 1.
(ii)      By final value theorem,

                        f ( ∞ ) = lim{( z − 1) f ( z )}
                                  z →1




                                                                       12
 ( z − 1)Tze aT 
                        = lim                   
                                 ( ze − 1) 
                           z →1         aT


                        = 0.

(6) Use convolution theorem to find the sum of the first n natural numbers.
Solution:
                          n
1+ 2 + 3 ++ n = ∑k
                         k =0
                           n
                       = ∑ rU ( r )U ( n − r ) [ U ( r ) = 1, as r ≥ 0 and U ( n − r ) = 1, as r ≤ n]
                         r =0

                   = { nU ( n )} * U ( n )
∴ By convolution theorem,
          n 
        Z ∑ k  = Z { nU ( n )} Z {U ( n )}
           k =o 
                          z         z           z2
                   =            .        =
                     ( z − 1) 2 z − 1 ( z − 1) 3
Taking inverse Z-transforms,
                     −1     z2 
             n

           ∑ k = Z  ( z − 1) 3 
           k =0                    
                         1  z ( z + 1) + z ( z − 1) 
                        
                 = Z −1                              
                        2         ( z − 1) 3        
                                                      
                                                        
                   1   z ( z + 1) 
                                                   z            
                 = Z −1                 + Z −1                
                   2   ( z − 1)     3           ( z − 1) 2   
                                                               
                                                                   
                 = ( n 2 + n)
                   1
                   2
                   1
                 = n( n + 1)
                   2

(7) Use convolution theorem to find the inverse Z-transform of
                 8z 2
   (i)                          and
         ( 2 z − 1)( 4 z + 1)
               z2
   (ii)
           ( z + a) 2
Solution:
                             8z 2                  z      z 
                                                              
               Z −1                        = Z −1       .
                                                        1 z+ 1 
        (i)
                     ( 2 z − 1)( 4 z + 1)         z − 2
                                                             4
                                                               




                                                                                                   13
 z               z 
                                                                       
                                        = Z −1          * Z −1         
                                                z − 12 
                                                                z + 14 
                                                                         

                                                          ( )
                                                  n
                                          1                          n
                                        =   * −1
                                          2      4

                                                                 (− 1 4 )
                                                          n−r
                                            n
                                               1                              r
                                        = ∑ 
                                          r =0  2 



                                                      ∑ ( 1 2 ) (− 1 4 )
                                                  n n                  −r
                                         1                                         r
                                        = 
                                         2          r =0
                                                  n n                      r
                                         1           −1
                                        = 
                                         2
                                                 ∑ 2 
                                                 r =0      

                                        = ( )
                                          1 
                                                 
                                               n 1 −
                                                         1
                                                           2 
                                                                 ( )
                                                               n +1
                                                                    
                                            2
                                                  1 − − 12 
                                                 
                                                                  ( )
                                                                    
                                                                    
                                          2  1                      n
                                                                           ( )
                                                      n
                                                          1            
                                        =   + . − 1 
                                          3  2          2         4 
                                                                       
                                          2
                                        = 1
                                          3     2
                                                 ( )n    1
                                                       + −1
                                                         3        4
                                                                     n
                                                                       ( )
                            z2                z            z 
      (ii)            Z −1         2 
                                        = Z −1          .          
                           ( z + a)          z + a z + a
                                                z               −1   z 
                                        = Z −1          *Z             
                                                z+a                 z+a
                                         = ( − a) * ( − a)
                                                      n                n

                                             n
                                         = ∑ ( − a ) .( − a )
                                                             r                 n−r

                                           r =0
                                             n
                                         = ∑ ( − a)
                                                             n

                                           r =0

                                         = ( n + 1)( − a )
                                                                   n




Inverse Z-transforms:

        The inverse of Z-transform of f ( z ) has been already defined as
Z { f ( z )} = f ( n ) , when Z { f ( n )} = f ( z ) .
 −1




Z −1 { f ( z )} can be found out by any one of the following methods.

Method 1 (Expansion method)


                                                                                         14
If f ( z ) can be expanded in a series of ascending powers of z −1 , i.e in the
            ∞
form       ∑ f ( n)z
           n =0
                           −n
                                , by binomial, exponential and logarithmic theorems, the coefficient of

z − n in the expansion gives Z { f ( z )} .
                              −1




Method 2 (Long division method)
                                                                                                 g ( z −1 )
                       When the usual methods of expansion of f ( z ) fail and if f ( z ) =
                                                                                                 h( z −1 )
                                                                                                            ,

then g ( z −1 ) is divided by h( z −1 ) in the classical manner and hence the expansion
 ∞

∑ f ( n)z
n =0
                  −n
                       is obtained in the quotient.


Method 3 (partial fraction Method)
               When f ( z ) is a rational function in which the denominator can be factorised,
 f ( z ) is resolved in to partial fraction and then Z −1 { f ( z )} is derived as the sum of the
inverse Z-transforms of the partial fractions.

Method 4 (By Cauchy’s Residue Theorem)
                 By using the relation between the Z-transform and Fourier transform of a
sequence, it can be proved that
                     1
           f ( n) =     ∫ f ( z ) z dz
                                   n −1

                    2πi C
Where C is a circle whose centre is the origin and radius is sufficiently large to include
all the isolated singularities of f ( z ) .
By Cauchy’s residue theorem,
∫ f ( z ) z dz = 2πi x sum of the residues of f ( z ) z n−1 at the isolated singularities.
            n −1



       ∴        f ( n ) = Sum of the residues of f ( z ) z n −1 at the isolated singularities.

Use of Z-transforms to solve Finite Difference equations:
              Z-transforms can be used to solve finite difference equation of the form
ay ( n + 2) + by ( n + 1) + cy ( n ) = φ ( n ) with given values of y(0) and y(1).
Taking Z-transforms on both sides of the given difference equation and using the values
of y(0) and y(1), we will get y ( z ) . Then

                                Z −1 { y ( z )} will give y ( n ) .
       To express Z { y ( n + 1)} and Z { y ( n + 2 )} in terms of y ( z ) .

       (i) z{ y ( n + 1)} = zy ( z ) − zy ( 0) .
       (ii) Z { y ( n + 2 )} = z 2 y ( z ) − z 2 y ( 0) − zy (1) .



                                                                                                                15
Problems:
                                                        1 + 2 z −1
(1) Find the inverse Z-transform of                                , by the long division method.
                                                         1 − z −1
   Solution:
               (1 − z )1 + 2 z (1 + 3z
                     −1             −1           −1
                                                      + 3 z −2
                          1 − z −1
                           3 z −1
                           3 z −1 − 3 z −2
                                     3z −2
                                     3 z − 2 − 3z −3
                                               3 z −3
          1 + 2 z −1
   Thus              = ∑ f ( n ) z − n = 1 + 3 z −1 + 3z − 2 +  + 3 z − n + 
           1 − z −1
                      1, for n = 0
   ∴         f ( n) = 
                      3, for n ≥ 1 ,
   or     f ( n ) = 1 + 2U ( n − 1)

                                                            1
(2) Find the inverse Z-transform of                                , by the long division method.
                                                        1 + 4 z −2
   Solution:
          (1 − 4 z −2 )1      (1 − 4 z   −2
                                              + 16 z −4 − 64 z −6
                     1 + 4 z −2
                      − 4 z −2
                      − 4 z − 2 − 16 z −4
                               16 z − 4
                               16 z − 4 + 64 z −6
                                             − 64 z −6
                                             − 64 z −6 − 256 z −8
                                                          256 z −8
            1
                −2
                    = 1 − 4 z −2 + 16 z −4 − 64 z −6 + 
        1 + 4z
                       ∞
                                  nπ −n
   Thus            = ∑ 2 n cos        z                  ,
                      n =0         2
                             nπ
           f ( n ) = 2 n cos
                               2




                                                                                                    16
−1          4z 3         
(3) Find Z                           by the method of partial fractions.
               ( 2 z − 1) ( z − 1) 
                           2


    Solution:
            f ( z)              4z 2              A           B         C
      Let           =                       =          +             +
                        ( 2 z − 1) ( z − 1)  ( 2 z − 1) ( 2 z − 1)     z −1
                                   2                                 2
              z
              f ( z)         6          2           4
                      =−          −             +
                z         2 z − 1 ( 2 z − 1) 2
                                                  z −1
                             3z     1         z        4z
               f ( z) = −          − .              +
                          z− 1
                                 2
                                    2 z− 1  (   2
                                                  2
                                                     )z −1

                                              1          
                              z                  z 
    Z −1 { f ( z )} = −3Z −1 
                                        −1     2                  z 
                                      −Z              2 
                                                            + 4 Z −1       
                              z − 12        z − 1               z − 1
                                     
                                             
                                             
                                                      
                                                    2   

                      ( )                                                                                   
                                        n

                                                 Z ( a ) =                         Z ( na n ) =
                              n    1                            z                                   az
                    = −3 1
                                                          n
                                − n  + 4                               and                                 
                           2       2                         z−a                                 ( z − a) 
                                                                                                           2

                                     n
                              1
               = 4 − ( n + 3)  
                              2

                       z2         
(4) Find Z −1                      , by using Residue theorem.
               ( z − a )( z − b ) 
    Solution:
                             z2            1        z n −1 z 2
               Z −1                      =    ∫
                     ( z − a )( z − b )  2πi C ( z − a )( z − b )
                                                                    dz , Where C is the circle whose

    centre is the origin and which includes the singularities z = a and z = b .
                                                                     z n +1
                     = { ( Re s.) z = a   + ( Re s.) z =b } of                    ,by Cauchy’s residue
                                                               ( z − a )( z − b )
    theorem.
     z = a and z = b are simple poles.
                     n +1         n +1            n +1
    ( Re s.) z =a =  z  = a and ( Re s.) z =b = b
                     z −b
                           z =a a − b           b−a
                                  
    ∴    Z   −1       z2
                                   =
                                        1
                                            ( a n+1 − b n+1 ) or
               ( z − a )( z − b )  b − a
                                        a             b
                                     =     .a n −          .b n
                                       a−b          a −b
          −1  2 z + 4 z 
                   2

(5) Find Z              3  , by using Residue theorem
              ( z − 2) 


                                                                                                                 17
Solution:
    By residue theorem,
                 2z 2 + 4z                          2 z n +1 + 4 z n 
           Z −1               = the residue of                         at the only triple pole (z=3).
                 ( z − 2)                           ( z − 2) 
                           3                                        3


                                   1 d 2  2 z n +1 + 4 z n              
                         R z =3 =       2 
                                                              ( z − 2) 3 
                                  2! dz  ( z − 2 )    3
                                                                         
                                = {2( n + 1) nz n −1 + 4n( n − 1) z n −1 } z =2
                                  1
                                  2
                                = {2( n + 1) n.2 n −1 + 4n( n − 1) 2 n −2 }
                                  1
                                  2                                           a
                                =n 22 n


                2z + 4z 
                     2
          Z −1           3 
                                = n2 2n
                ( z − 2) 

(6) Solve the difference equation y ( n + 3) − 3 y ( n + 1) + 2 y ( n ) = 0, given that
     y ( 0 ) = 4, y (1) = 0 and y ( 2 ) = 8 .
    Solution:
    Taking Z-transforms on both sides of the given equation, we have

                 Z { y ( n + 3)} − 3Z { y ( n + 1)} + 2 Z { y ( n )} = 0 .

    { z y ( z ) − z y( 0) − z y(1) − zy( 2)} − 3{ zy ( z ) − zy( 0)} + 2 y ( z ) = 0 .
       3              3           2




       (z   3
                − 3 z + 2) y ( z ) = 4 z 3 − 4 z .
                        y( z )         4z 2 − 4        A       B       C
                                =                   =     +          +
                          z        ( z − 1) ( z + 2) z − 1 ( z − 1) z + 2
                                           2                       2


                                  8         4
                               =     3 + 3
                                 z −1 z + 2
                                 8 z         4 z
                        y( z ) =          +
                                 3 z −1 3 z + 2
                                        8 4
    Inverting, we get y ( n ) = + ( − 2 ) .
                                                      n

                                        3 3
(7) Solve the equation x n + 2 − 5 x n +1 + 6 x n = 36, given that x0 = x1 = 0.
    Solution:
          Taking Z-transforms of the given equation,
    { z 2 x ( z ) − z 2 x( 0) − zx(1)} − 5{ zx ( z ) − zx( 0)} + 6 x ( z ) = 36 z z 1 .
                                                                                  −
              ( z 2 − 5 z + 6) x ( z ) = 36 z z 1
                                              −



                                                                                                            18
x( z)              36
                           =
                      z      ( z − 1)( z − 2)( z − 3)
                              18         36       18
                           =        −         +
                             z −1 z − 2 z − 3

                                     z        z         z
          ∴         x ( z ) = 18        − 36     + 18
                                   z −1      z−2      z −3
Inverting, we get
                       x n = 18 − 36.( 2 ) + 18.( 3) .
                                          n         n




                                                             19
UNIT 5
                                                         PART A
(1)Form the difference equation from y n = a + b3
                                                  n

                                          n +1
  Ans: y n = a + b3 , y n +1 = a + b3
                        n


           y n + 2 − 4 y n +1 + 4 y n = 0
                                      y n + 2 = a + b3 n + 2

(2)Express Z { f ( n + 1)} in terms of f ( z )
Ans: Z { f ( n )} = zF ( z ) − zF ( 0 )

(3)Find the value of Z { f ( n )} when f ( n ) = na n
Ans:
          Z {na n } = Z {a n n}
                    = { Z ( n )} z → z
                                           a

                            z 
                          =         2 
                            ( z − 1)  z → z
                                               a

                                  az
                          =
                              ( z − a) 2
(4)Define bilateral Z-transform.
                                                                               ∞
Ans :     If { f ( n )}   is a sequence defined for n = 0,±1,±2,... .,then   ∑ f ( n)z
                                                                             n = −∞
                                                                                         −n
                                                                                              is called the

two-sided or bilateral Z-transform of { f ( n )} and denoted by Z { f ( n )} or f ( z ) ,where z is
a complex variable in general.

(5)Find the z-transform of ( n + 1)( n + 2 )
Ans:
       Z { ( n + 1)( n + 2 )} = Z {n 2 + 3n + 2}
                                  = Z ( n 2 ) + 3Z ( n ) + 2 z (1)
                                    z ( z + 1)            z           z
                                  =             +3               +2
                                    ( z − 1)  3
                                                     ( z − 1) 2
                                                                    z −1

(6)Find Z {e −iat } using z-transform.
Ans:
              Z {e −iat } = Z {e −iat .1}
                         = { Z (1)} z → zeiaT




                                                                                                        20
 z 
                                  =          
                                    ( z − 1)  z → zeiaT
                                         ze iaT
                                  =
                                      ( ze iat − 1)
(7)Define unilateral Z-transform.
Ans:
   If { f ( n )} is a casual sequence, i.e if , f ( n ) = 0 for n<0,then the Z-transform is called
one-sided or unilateral Z-transform of { f ( n )} and is defined as
                                                                    ∞
                                        Z { f ( n )} = f ( z ) = ∑ f ( n ) z −n
                                                                   n =0



            an 
(8)Find  Z   using z-transform.
             n! 
Ans:
       a n  ∞ a n −n
    Z  = ∑         z =∑
                          ∞
                              ( az −1 ) n
       n!  n =0 n!     n =0     n!
                        az −1 ( az −1 )
                                                 2

                   = 1+      +          +
                         1!       2!
                         a
                  = ez

  (9) State and prove initial value theorem in z-transform.
  Ans:
     (i) If Z { f ( n )} = f ( z ) , then f ( 0 ) = lim f ( z )
                                                            z →∞

        (ii) If Z { f ( t )} = f ( z ) , then f ( 0 ) = lim f ( z )
                                                        z →∞



(i)
                                       ∞
                             f ( z ) = ∑ f ( n ) z −n
                                      n =0

                                                  f (1) f ( 2 )
                                    = f ( 0) +         + 2 + ...∞
                                                    z    z
                  lim{ f ( z )} = f ( 0)
                  z →∞
           Similarly, (ii) can be proved.

      (10)Find the z-transform of n.
      Ans:
                      ∞          ∞
                                     n
            Z { n} = ∑ nz − n = ∑ n
                     n =0       n =0 z




                                                                                                 21
1 2
              =      +   +
                    z z2
                            2
              1 1
             = 1 − 
              z z
                            2
                        
              1 1 
             =          
              z     1
                1− 
                     z
              1     z2           z
             = .           =
              z ( z − 1) 2
                             ( z − 1) 2
(11) Find the Z-transforms of a n cosh an
                         n  e an + e − an 
 Ans: Z {a cosh an} = z a                 
           n
                                   2       
                                          
                      1
                      2
                                [{n
                                              } {
                    = Z ( ae a ) + Z ( ae − a )
                                                  n
                                                               }]
                                                    ( z ( b ) ) = z − b 
                      1 z                 z                        z 
                    =              +         −a 
                                                             n

                      2  z − ae a
                                      z − ae                            

                           z  2 z − a( e a + e − a ) 
                       =
                           2  z 2 − a( e a + e −a ) z + a 2 
                                                            


                              z ( z − a cosh a )
                       =
                           z − 2a( cosh a ) z + a 2
                                2




  (12)Use convolution theorem to find the inverse Z-transform of
         z2
       ( z + a) 2
  Ans:
                    z2                z      z 
              Z −1         2 
                                = Z −1      .      
                   ( z + a)          z + a z + a
                                        z       −1   z 
                                = Z −1      *Z         
                                        z+a         z+a
                                     = ( − a) * ( − a)
                                              n          n

                                        n
                                     = ∑ ( − a ) .( − a )
                                                  r          n−r

                                       r =0
                                        n
                                     = ∑ ( − a)
                                                  n

                                       r =0




                                                                              22
= ( n + 1)( − a )
                                                         n




   (13) Define Inverse Z-transforms:
    Ans:
         The inverse of Z-transform of f ( z ) is defined as      Z −1 { f ( z )} = f ( n ) ,
       When Z { f ( n )} = f ( z ) .

   (14) Use final value theorem to find f ( ∞ ) , when
                             Tze aT
                 f ( z) =
                          ( ze aT − 1) 2
    Ans:
     By final value theorem,

                f ( ∞ ) = lim{( z − 1) f ( z )}
                          z →1

                                ( z − 1)Tze aT 
                       = lim                     
                                ( ze − 1) 
                          z →1         aT


                       = 0.
                                               2  nπ 
  (15) Find the Z-transforms of sin                  
                                                  4 
                                  2  nπ      1         nπ 
    Ans: Let f ( n ) = sin                = 1 − cos       
                                     4  2               2 
                           1 1                nπ 
         Z { f ( n )} = Z   − Z  cos             
                           2 2                 2 
                                                       π
                                            z z − cos 
                             z         1               2
                      =             −
                        2( z − 1) 2 2                   π
                                          z − 2 z cos + 1
                                                        2
      [Refer to basic transform (8)]
                        1 z              z2 
                      =             − 2       
                        2  z − 1 z + 1



                                                         Part B

                    1       z 
(1) (a)Prove that Z   = log      , n ≠ 0 .
                    n       z −1
                   nπ               nπ 
       Find Z  sin     and Z  cos      
                    2                2 



                                                                                                23
−1          8z 2         
    (b)Find Z   ( 2 z − 1)( 4 z + 1)  using Convolution theorem.
                                       
                                      


(2) (a) Prove that Z ( a ) = 
                         n        z 
                                         
                                 z−a
   (b) Solve: y n + 2 + 6 y n +1 + 9 y n = 2     given y 0 = y1 = 0, using
                                             n


       z- transform.

                                          2n + 3 
(3)(a) Find the z-transform of f ( n ) = 
                                          ( n + 1)( n + 2 ) 
                                                             
                                              −1      z 2
                                                              
   (b)Using Convolution theorem find Z                       
                                                  ( z + 2) 2 
                                                             

(4)(a) Solve the difference equation

       y ( n + 3) − 3 y ( n + 1) + 2 y ( n ) = 0 given y ( 0 ) = 4, y (1) = 0 and y ( 2 ) = 8.
                         z2         
            Z −1                    , by the method of partial fractions.
                  ( z + 2) ( z + 4) 
   (b) Find                    2




                 −1          z3         
(5)(a) Find Z                           , by the method of partial fractions.
                     ( z − 1) ( z − 2 ) 
                              2


   (b) Solve the difference equation
         y ( k + 2) − 4 y ( k + 1) + 4 y ( k ) = 0 given y ( 0 ) = 1, y (1) = 0

                     1             z 
(6)(a) Prove that Z        = z log     ,
                     n + 1         z −1
   (b) State and prove the second shifting theorem in z-transform.

                                                                          z2        
                                                                  
(7)(a) Using Convolution theorems evaluate inverse z-transform of                   .
                                                                                     
                                                                   ( z − 1)( z − 3) 
   (b) Solve the difference equation

       y ( n ) + 3 y ( n − 1) − 4 y ( n − 2 ) = 0, n ≥ 2, given y ( 0) = 3, y (1) = −2
                                       1 + 2 z −1
(8)(a) Find the inverse Z-transform of            , by the long division method.
                                        1 − z −1
   (b) Find Z-transforms of
                      1
    (i) f ( n ) =           , and
                  n( n − 1)




                                                                                                 24
2n + 3
    (ii) f ( n ) =
                     ( n + 1)( n + 2)

(9) (a) Solve: y n + 2 − 7 y n +1 + 12 y n = 2                  given y 0 = y1 = 0, using
                                               n


      z- transform.
               −1           z         
   (b) Find Z                       2 
                   ( z − 1)( z − 2 ) 

(10)(a) Find the bilateral Z-transforms of
    (i) a n δ ( n − k ) ,
    (ii) − α nU ( − n − 1) ,
    (iii) − nα nU ( − n − 1) ,
    (b) Solve the equation x n + 2 − 5 x n +1 + 6 x n = 36, given that x0 = x1 = 0.

(11)(a) Use convolution theorem to find the sum of the first n natural numbers.
                                            1
    (b) Find the inverse Z-transform of            , by the long division method.
                                        1 + 4 z −2

(12) (i) Use initial value theorem to find f ( 0 ) , when

                                                  ze aT ( ze aT − cos bT )
                                  f ( z) =
                                             z 2 e 2 aT − 2 ze aT cos bT + 1

     (ii) Use final value theorem to find f ( ∞ ) , when

                                               Tze aT
                                  f ( z) =
                                             ( ze   aT
                                                         − 1)
                                                                2



                  −1  2 z + 4 z 
                          2

(13) (a) Find Z               3  , by using Residue theorem.
                      ( z − 2) 
    (b) Find the Z-transforms of
            3  nπ                    nπ π 
    (ii) sin       , and (iii) cos      + 
               6                     2    4




                                                                                            25

More Related Content

DOC
Chapter 4 (maths 3)
PPT
Fourier series
DOCX
B.tech ii unit-5 material vector integration
PPT
Lu decomposition
PPTX
Lecture 23 24-time_response
PPTX
Applications of partial differentiation
PDF
Legendre Function
Chapter 4 (maths 3)
Fourier series
B.tech ii unit-5 material vector integration
Lu decomposition
Lecture 23 24-time_response
Applications of partial differentiation
Legendre Function

What's hot (20)

PDF
Bender schmidt method
DOC
Chapter 1 (maths 3)
PDF
EE gate-2016-set-1
PPSX
Methods of solving ODE
DOC
Lab - 03
PPTX
Complement in DLD
PPT
Engineering Mathematics - Total derivatives, chain rule and derivative of imp...
PDF
Nyquist Stability Criterion
DOC
It 05104 digsig_1
PPTX
Radix-2 DIT FFT
PPT
L07 dc and ac load line
PPTX
Octal to binary encoder
PPT
8051 ch9-950217
PPT
Z transform ROC eng.Math
PDF
PPTX
GAUSS ELIMINATION METHOD
PPTX
Huffman coding
PPTX
Triangularization method
PPTX
Ode powerpoint presentation1
PPTX
Binary Coded Decimal.pptx
Bender schmidt method
Chapter 1 (maths 3)
EE gate-2016-set-1
Methods of solving ODE
Lab - 03
Complement in DLD
Engineering Mathematics - Total derivatives, chain rule and derivative of imp...
Nyquist Stability Criterion
It 05104 digsig_1
Radix-2 DIT FFT
L07 dc and ac load line
Octal to binary encoder
8051 ch9-950217
Z transform ROC eng.Math
GAUSS ELIMINATION METHOD
Huffman coding
Triangularization method
Ode powerpoint presentation1
Binary Coded Decimal.pptx
Ad

Viewers also liked (8)

DOC
Chapter 2 (maths 3)
DOC
Chapter 3 (maths 3)
DOC
mathematics formulas
PPTX
Investment Casting ppt
PDF
N.P. BALI ENGINEERING MATH REAL
PDF
Numerical Solution of Nth - Order Fuzzy Initial Value Problems by Fourth Orde...
PDF
Free Ebooks Download ! Edhole
PPT
Free Download Powerpoint Slides
Chapter 2 (maths 3)
Chapter 3 (maths 3)
mathematics formulas
Investment Casting ppt
N.P. BALI ENGINEERING MATH REAL
Numerical Solution of Nth - Order Fuzzy Initial Value Problems by Fourth Orde...
Free Ebooks Download ! Edhole
Free Download Powerpoint Slides
Ad

Similar to Chapter 5 (maths 3) (20)

PPT
Fourier series
PDF
Laplace table
PDF
Laplace table
PDF
กลศาสตร์เพิ่มเติม Ppt
PDF
Cheat Sheet
PDF
Formulario de matematicas
PDF
Introduction to inverse problems
PPT
Sampling
PDF
Signal Processing Course : Fourier
PDF
Reflect tsukuba524
PDF
Tele3113 wk1tue
DOC
Chapter 9(laplace transform)
PPT
Isi and nyquist criterion
PPT
07 periodic functions and fourier series
PDF
Tele4653 l4
PDF
Imc2017 day2-solutions
PPT
PDF
21 5 ztransform
PDF
Monopole zurich
Fourier series
Laplace table
Laplace table
กลศาสตร์เพิ่มเติม Ppt
Cheat Sheet
Formulario de matematicas
Introduction to inverse problems
Sampling
Signal Processing Course : Fourier
Reflect tsukuba524
Tele3113 wk1tue
Chapter 9(laplace transform)
Isi and nyquist criterion
07 periodic functions and fourier series
Tele4653 l4
Imc2017 day2-solutions
21 5 ztransform
Monopole zurich

Recently uploaded (20)

PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
A systematic review of self-coping strategies used by university students to ...
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
Cell Types and Its function , kingdom of life
PPTX
Lesson notes of climatology university.
PDF
Complications of Minimal Access Surgery at WLH
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PPTX
Pharma ospi slides which help in ospi learning
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
Supply Chain Operations Speaking Notes -ICLT Program
Microbial disease of the cardiovascular and lymphatic systems
A systematic review of self-coping strategies used by university students to ...
Module 4: Burden of Disease Tutorial Slides S2 2025
Cell Types and Its function , kingdom of life
Lesson notes of climatology university.
Complications of Minimal Access Surgery at WLH
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Final Presentation General Medicine 03-08-2024.pptx
VCE English Exam - Section C Student Revision Booklet
FourierSeries-QuestionsWithAnswers(Part-A).pdf
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Pharma ospi slides which help in ospi learning
2.FourierTransform-ShortQuestionswithAnswers.pdf
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
O7-L3 Supply Chain Operations - ICLT Program
Supply Chain Operations Speaking Notes -ICLT Program

Chapter 5 (maths 3)

  • 1. Chapter 5 Z-Transforms Introduction: In Communication Engineering, two basic types of signals are encountered. They are (1) Continuous time signals. (2) Discrete time signals. Continuous time signals are defined for continuous values of the independent variable, namely time and are denoted by a function { f ( t )} . Discrete time signals are defined only at discrete set of values of the independent variable and are denoted by a sequence { f ( n )} . Z-transform plays an important role in analysis of linear discrete time signals. Definition of z-transform: ∞ If { f ( n )} is a sequence defined for n = 0,±1,±2,... .,then ∑ f ( n)z n = −∞ −n is called the two-sided or bilateral Z-transform of { f ( n )} and denoted by Z { f ( n )} or f ( z ) ,where z is a complex variable in general. If { f ( n )} is a casual sequence, i.e if , f ( n ) = 0 for n<0,then the Z-transform is called one-sided or unilateral Z-transform of { f ( n )} and is defined as ∞ Z { f ( n )} = f ( z ) = ∑ f ( n ) z −n n =0 We shall mostly deal with one sided Z-transform which will be hereafter referred to as Z-transform. Properties of Z-transforms: (1) Linearity: The Z-transform is linear Z { af ( n ) + bg ( n )} = aZ { f ( n )} + bZ { g ( n )} . Proof: ∞ Z { af ( n ) + bg ( n )} = ∑ { af ( n ) + bg ( n )} z −n n =0 ∞ ∞ = a∑ f ( n) z −n + b∑ g ( n ) z −n n =0 n=o Z { af ( n ) + bg ( n )} = aZ { f ( n )} + bZ { g ( n )} similarly, Z { af ( t ) + bg ( t )} = aZ { f ( t )} + bZ { g ( t )} . (2)Time Shifting: 1
  • 2. (i) Z { f ( n − n0 )} = z 0 .Z { f ( n )} or z 0 f ( z ) −n −n (ii) Z { f ( t + T )} = z{ f ( z ) − f ( 0 )} Proof: ∞ (i ) Z { f ( n − n 0 ) } = ∑ f ( n − n 0 ) z − n n =0 ∞ = ∑ f ( m) z m = − n0 − ( m + n0 ) ∞ = z − n0 ∑ f ( m ) z −m { f ( n ) is causal} m =0 ∞   ∞  (ii ) Z { f ( t + T )} = ∑ f ( nT + T ) z − n  Z  f ( t ) = ∑ f ( nT ) z − n     n=0   n=0  ∞ = ∑ f { ( n + 1)T } z − n n =0 ∞ = ∑ f ( mT ) z −( m −1) m =1 ∞  = z ∑ f ( mT ) z − m − f ( 0)  m = 0  = z{ f ( z ) − f ( 0)} Extending this result, we get  f ( T ) f ( 2T ) f { ( k − 1)T }  Z { f ( t + kT )} = z k  f ( z ) − f ( 0 ) − − − ... −   z z 2 z k −1  (3)Frequency Shifting: (i) Z {a f ( n )} = f   n z a (ii) Z {a f ( t )} = f   n z a Proof: (i ) Z { a n f ( n ) } = ∑ a n f ( n ) z − n ∞ n=0 ∞ −n z = ∑ f ( n)  n =0 a z = f  a Similarly (ii) can be proved. Corollary: If Z { f ( t )} = f ( z ) , then Z {e − at f ( t )} = f ( ze aT ) 2
  • 3. The result follows, if we replace a n by e − anT or ( e − aT ) in (ii). n (4)Time Reversal for Bilateral Z-Transform: 1 If Z { f ( n )} = f ( z ) , then Z { f ( − n )} = f   z Proof: ∞ Z { f ( − n )} = ∑ f ( − n)z −n n = −∞ −∞ = ∑ f ( m) z m =∞ m ∞ −m 1 = ∑ f ( m)  m = −∞ z 1 = f  z (5) Differentiation in the Z-Domain: d (i) Z { nf ( n )} = − z f ( z) dz d (ii) Z { nf ( t )} = − z f ( z) dz Proof: (i) ∞ (i ) f ( z ) = Z { f ( n )} = ∑ f ( n ) z − n n =0 ∞ d f ( z ) = ∑ − nf ( n ) z −n −1 dz n =0 1 ∞ ∑ nf ( n ) z −n z n =0 =− d Z { nf ( n )} = − z f ( z) dz Similarly, (ii) can be proved. (6) Initial Value Theorem: (i) If Z { f ( n )} = f ( z ) , then f ( 0 ) = lim f ( z ) z →∞ (ii) If Z { f ( t )} = f ( z ) , then f ( 0 ) = lim f ( z ) z →∞ Proof: ∞ (i ) f ( z ) = ∑ f ( n )z −n n=0 3
  • 4. f (1) f ( 2 ) = f ( 0) + + 2 + ...∞ z z lim{ f ( z )} = f ( 0) z →∞ Similarly, (ii) can be proved. (7) Final value Theorem: (i) If Z { f ( n )} = f ( z ) , then lim{ f ( n )} = lim{( z − 1) f ( z )} n →∞ z →∞ (ii) If Z { f ( t )} = f ( z ) , then lim{ f ( t )} = lim{( z − 1) f ( z )} t →∞ z →∞ Proof: ∞ (i ) Z { f ( n + 1)} = ∑ f ( n + 1) z − n n =0 = ∑ f ( m ) z − m+1 = z{ f ( z ) − f ( 0 )} ∞ m =1 zf ( z ) − zf ( 0 ) − f ( z ) = Z { f ( n + 1)} − Z { f ( n )} ∞ ( z − 1) f ( z ) − zf ( 0) = ∑ { f ( n + 1) − f ( n )} z −n n =0 Taking limits as z tends to 1, lim{( z − 1) f ( z )} − f ( 0 ) = ∑ { f ( n + 1) − f ( n )} ∞ z →1 n =0 = lim{ f (1) − f ( 0)} + { f ( 2 ) − f (1)} +  + { f ( n + 1) − f ( n )} n →∞ = lim{ f ( n + 1) − f ( 0 )} n →∞ = lim{ f ( n ) − f ( 0 )} n →∞ lim{ f ( n )} = lim{( z − 1) f ( z )} n →∞ z →1 Similarly, (ii) can be proved, starting with property 2(ii). (8) Convolution Theorem: Definitions: The convolution of the two sequences { f ( n )} and { g ( n )} is defined as ∞ (i) { f ( n ) * g ( n )} = ∑ f ( r ).g ( n − r ) , if the sequence are non causal and r = −∞ n (ii) { f ( n ) * g ( n )} = ∑ f ( r ).g ( n − r ) , if the sequences are causal. r =0 The convolution of two functions f ( t ) and g ( t ) is defined as n f ( t ) * g ( t ) = ∑ f ( rT ).g ( n − r )T , where T is the sampling period. r =0 4
  • 5. Statement of the theorem: (i) If Z { f ( n )} = f ( z ) , and Z { g ( n )} = g ( z ) , then Z { f ( n ) * g ( n )} = f ( z ).g ( z ). (ii) If Z { f ( t )} = f ( z ) , and Z { g ( t )} = g ( z ) , then Z { f ( t ) * g ( t )} = f ( z ).g ( z ). Proof: (For the bilateral z=transform)  ∞  (i) Z { f ( n ) * g ( n )} = Z  ∑ f ( r ).g ( n − r )  r = −∞  ∞  ∞  = ∑  ∑ f ( r ) g ( n − r ) z − n n = −∞ r = −∞  ∞ ∞ = ∑ f ( r ) ∑ g ( n − r ) z −n r = −∞ n = −∞ By changing the order of summation, ∞  ∞  = ∑ f ( r )  ∑ g ( m ) z −( m+ r )  , by putting n-r=m r = −∞ m= −∞  ∞  ∞  = ∑ f ( r )z −r  ∑ g ( m) z −m  r = −∞ m = −∞  ∞ = ∑ f ( r )z r = −∞ −r .g ( z ) = f ( z ).g ( z ) −r  −s  ∞ ∞ (ii) f ( z ).g ( z ) = ∑ f ( rT ) z ∑ g ( sT ) z  r =0  s =0  = ∑ h( nT ) z − n ……………(1) Say, where h( nT ) = f ( 0.T ) g ( nT ) + f (1.T ).g { ( n − 1)T } + ... + f ( nT ).g ( 0.T ) n = ∑ f ( rT ).g { ( n − r )T } ……………(2) r =0 Using (2) in (1), we get ∞ n  f ( z ).g ( z ) = ∑ ∑ f ( rT ) g { ( n − r )T }  z −n n =0  r = 0  ∞ = ∑ { f ( t ) * g ( t )} z − n n =0 = Z { f ( t ) * g ( t )} 5
  • 6. Z-Transforms of some basic functions: (1) Z {δ ( n )} , where δ ( n ) is the unit impulse sequence defined by 1, for n = 0 δ ( n) =  0, for n ≠ 0 ∞ Z {δ ( n ) } = ∑ δ ( n ) z − n = 1 n=0 (2) Z ( k ) and Z {U ( n )} , Where k is a constant and U ( n ) is the unit step sequence defined by 1, for n ≥ 0 U ( n) =  0, for n < 0 ∞  1 1  (i) Z ( k ) = ∑ kz = k 1 + + 2 +  ∞  −n n =0  z z  kz = z −1 1 Where the region of convergence (ROC) is < 1 or z > 1 . z (ii) In particular, z Z (U ( n ) ) = Z (1) = , if z > 1 and z −1 z Z {U ( t )} = z −1 { } (3) Z {a n }, Z ( − 1) n , Z {e at }, Z {e − at } and Z {a n −1 } (i) Z {a } = z a n , where the ROC is < 1 or z > a . z−a z { (ii) Z ( − 1) =}n z z +1 , where the ROC is z > 1 . (iii) Z {e } = at z . z − e aT (iv) Z {e } = − at z . z − e −aT (v) Z {a } = n −1 1 , if n ≥ 1. z−a (4) Z { n} , Z {na n }, Z {n 2 }, Z { n( n − 1)} and Z { t } . z (i) Z { n} = . ( z − 1) 2 6
  • 7. (ii) Z {na } = n az , Where the ROC is z > a . ( z − a) 2 z ( z + 1) (iii) Z ( n ) = 2 ( z − 1) 3 2z (iv) Z { n( n − 1)} = ( z − 1) 3 Tz (v) Z { t } = ( z − 1) 2 (5) Z {n k } and Z ( t k ) . z ( z + 1) (i) Z {n } = k ( z − 1) 3 (ii) Z {t } = k Tz ( z − 1) 2 1   1  (6) Z   and Z  . n   n + 1 1   z  (i) Z   = log . n  z −1  1   z  (ii) Z   = z log .  n + 1  z −1 an  1 (7) Z   and Z   .  n!   n!  an  a (i) Z  = ez .  n!  1 1 (ii) Putting a=1, we get Z   = e z .  n!  (8) Z {r n cos nθ }, Z {r n sin nθ }, Z { cos nθ } , Z { sin nθ } . z ( z − r cos θ ) (i) Z {r cos nθ } = 2 , if z > r . n z − 2 zr cos θ + r 2 zr sin θ (ii) Z {r sin nθ } = 2 , if z > r . n z − 2 zr cos θ + r 2 z ( z − cos θ ) (iii) Z { cos nθ } = 2 , if z > 1 . z − 2 zr cos θ + 1 In particular, 7
  • 8. nπ  z2 Z cos = 2 .  2  z +1 z sin θ (iv) Z { sin nθ } = 2 , if z > 1 . z − 2 z cos θ + 1 In particular,  nπ  z Z sin = 2 .  2  z +1 (9) Z { cos wt } , Z { sin wt } , Z {e − at cos bt }, Z {e − at sin bt } . z ( z − cos wT ) (i) Z { cos wt } = 2 , if z > 1 . z − 2 z cos wT + 1 z sin wT (ii) Z { sin wt } = 2 , if z > 1 . z − 2 z cos wT + 1 ze aT ( ze aT − cos bT ) (iii) Z {e cos bt } = 2 2 aT − at . z e − 2 ze aT cos bT + 1 (iv) Z {e − at sin bt } = 2 2 aT ze aT sin bT . z e − 2 ze aT cos bT + 1 Problems: (1) Find the bilateral Z-transforms of (i) a n δ ( n − k ) , (ii) − α nU ( − n − 1) , (iii) − nα nU ( − n − 1) , Solution: 1, for n = k (i) δ (n − k) =  0, for n = k ∞ Z {δ ( n − k ) } = ∑δ ( n − k ) z −n = z −k n = −∞ By property 3, −k Z {a δ ( n − k ) } =   n z a 1, if − n − 1 ≥ 0, i.e. if n ≤ 1 U ( − n − 1) =  0, if − n − 1 < 0, i.e. if n > −1 ∞ Z {U ( − n − 1)} = ∑U ( − n − 1) z −n n = −∞ 8
  • 9. ∞ = ∑z n = −∞ −n or ∑z n =1 n = z (1 + z + z +  ∞ )2 z = 1− z Z {a n f ( n )} = f  , z (ii) a By property 3, which is true for bilateral Z-transform also. z Z {α nU ( − n − 1)} = α or z s 1− z α−z α Z {− α nU ( − n − 1)} = z z −α d (iii) Z { nf ( n )} = − z dz { f ( z )}, by property5. αz Z {− nα nU ( − n − 1)} = − z  d  z  = dz  z − α  ( z − α ) 2 (2) Find the Z-transforms of (i) a n cosh an and (ii) 2 n sinh 3n Solution:  n  e an + e − an  (i) Z {a cosh an} = z a   n  2     = 1 2 [{ n } { Z ( ae a ) + Z ( ae − a ) n }] ( z ( b ) ) = z − b  1 z z   z  =  + −a  n 2  z − ae a z − ae    z  2 z − a( e a + e − a )  = 2  z 2 − a( e a + e −a ) z + a 2    z ( z − a cosh a ) = z − 2a( cosh a ) z + a 2 2  n  e 3n − e −3n  (ii) Z {2 sinh 3n} = Z 2   n  2     9
  • 10. = 1 2 [{ n } Z ( 2e 3 ) − Z {( 2e −3 ) n} ] 1 z z  =  − −3  2  z − 2e 3 z − 2e  z 2( e 3 − e −3 )  = 2  z − 2( e + e ) z + 4   2 3 −3  2 z sinh 3 = 2 z − 4 z cosh 3 + 4 (3) Find Z-transforms of 1 (i) f ( n ) = , and n( n − 1) 2n + 3 (ii) f ( n ) = ( n + 1)( n + 2) Solution: 1 1 1 (i) f ( n) = = − n( n − 1) n − 1 n  1  ∞  1  −n Z  = ∑ z  n − 1 n = 2  n − 1  2 3 1 1 1 1 = .  + .  +  1z 2 z 1  1  = − log1 −  z  z  1  z  = log  z  z −1 1   z  Z   = log  [Refer to basic transform (6)] n  z −1  1  1  Z { f ( n )} = Z  − Z   n − 1 n 1   z  =  − 1 log   z   z −1  z −1  z −1 =  log   z   z  2n + 3 1 1 (ii) f ( n ) = = + ( n + 1)( n + 2) n + 1 n + 2 , by partial fractions.  1   z  Z  = z log  [Refer to basic transform (6)]  n + 1  z −1 10
  • 11.  1  ∞ 1 Z =∑ .z − n  n + 2  n =0 n + 2 2 1 1 1 1 1 = + . + .  +  2 3 z 4 z  1  1  2 1  1 3  = z 2  .  + .  +  2  z   3 z     1  1 = z 2 − log1 −  −    z  z  z  = z 2 log − z  z −1  1   1  Z { f ( n )} = Z   + Z   n +1 n+2  z  = z ( z + 1) log −z  z −1 (4) Find the Z-transforms of 2  nπ  (i) sin    4  3  nπ  (ii) sin   , and  6   nπ π  (iii) cos +   2 4 Solution: 2  nπ  1 nπ  (i) Let f ( n ) = sin   = 1 − cos   4  2 2  1 1  nπ  Z { f ( n )} = Z   − Z  cos  2 2  2   π z z − cos  z 1  2 = − 2( z − 1) 2 2 π z − 2 z cos + 1 2 [Refer to basic transform (8)] 1 z z2  =  − 2  2  z − 1 z + 1 3  nπ  (ii) Let f ( n ) = sin    6  3 nπ 1 nπ = sin − sin 4 6 4 2 11
  • 12. 3  nπ  1  nπ  Z { f ( n )} = Z  sin  − Z  sin  4  6  4  2  3 z sin π 1 z sin π = . 2 6 − . 2 2 4 z − 2 z cos π + 1 4 z − 2 z cos π + 1 6 2 By basic transform (8) 3 z 1 z = . 2 − . 2 8 z − z 3 +1 4 z +1  nπ π  (iii) Let f ( n ) = cos +   2 4 nπ π nπ π = cos cos − sin sin 2 4 2 4 1   nπ   nπ  Z { f ( n )} = Z  cos  − Z  sin  2  2   2  1  z2 z  =  2 − 2  2  z + 1 z + 1 1 z ( z − 1) = 2 z +1 2 (5) (i) Use initial value theorem to find f ( 0 ) , when ze aT ( ze aT − cos bT ) f ( z ) = 2 2 aT z e − 2 ze aT cos bT + 1 (ii) Use final value theorem to find f ( ∞ ) , when Tze aT f ( z) = ( ze aT − 1) 2 Solution: (i) By initial value theorem, f ( 0) = lim{ f ( z )} z →∞  aT  aT 1    e  e − z cos bT     = lim      e 2 aT − e cos bT + 1 2 aT z →∞    z z2   = 1. (ii) By final value theorem, f ( ∞ ) = lim{( z − 1) f ( z )} z →1 12
  • 13.  ( z − 1)Tze aT  = lim   ( ze − 1)  z →1 aT = 0. (6) Use convolution theorem to find the sum of the first n natural numbers. Solution: n 1+ 2 + 3 ++ n = ∑k k =0 n = ∑ rU ( r )U ( n − r ) [ U ( r ) = 1, as r ≥ 0 and U ( n − r ) = 1, as r ≤ n] r =0 = { nU ( n )} * U ( n ) ∴ By convolution theorem, n  Z ∑ k  = Z { nU ( n )} Z {U ( n )}  k =o  z z z2 = . = ( z − 1) 2 z − 1 ( z − 1) 3 Taking inverse Z-transforms, −1  z2  n ∑ k = Z  ( z − 1) 3  k =0    1  z ( z + 1) + z ( z − 1)   = Z −1    2  ( z − 1) 3     1   z ( z + 1)    z  = Z −1   + Z −1   2   ( z − 1)  3   ( z − 1) 2       = ( n 2 + n) 1 2 1 = n( n + 1) 2 (7) Use convolution theorem to find the inverse Z-transform of 8z 2 (i) and ( 2 z − 1)( 4 z + 1) z2 (ii) ( z + a) 2 Solution:  8z 2   z z    Z −1   = Z −1  . 1 z+ 1  (i)  ( 2 z − 1)( 4 z + 1)  z − 2  4  13
  • 14.  z   z      = Z −1   * Z −1    z − 12     z + 14    ( ) n 1 n =   * −1 2 4 (− 1 4 ) n−r n 1 r = ∑  r =0  2  ∑ ( 1 2 ) (− 1 4 ) n n −r 1 r =  2 r =0 n n r 1  −1 =  2 ∑ 2  r =0   = ( ) 1   n 1 − 1 2  ( ) n +1  2  1 − − 12   ( )   2  1  n ( ) n  1  =   + . − 1  3  2  2 4    2 = 1 3 2 ( )n 1 + −1 3 4 n ( )  z2   z z  (ii) Z −1  2  = Z −1  .  ( z + a)  z + a z + a  z  −1  z  = Z −1  *Z    z+a  z+a = ( − a) * ( − a) n n n = ∑ ( − a ) .( − a ) r n−r r =0 n = ∑ ( − a) n r =0 = ( n + 1)( − a ) n Inverse Z-transforms: The inverse of Z-transform of f ( z ) has been already defined as Z { f ( z )} = f ( n ) , when Z { f ( n )} = f ( z ) . −1 Z −1 { f ( z )} can be found out by any one of the following methods. Method 1 (Expansion method) 14
  • 15. If f ( z ) can be expanded in a series of ascending powers of z −1 , i.e in the ∞ form ∑ f ( n)z n =0 −n , by binomial, exponential and logarithmic theorems, the coefficient of z − n in the expansion gives Z { f ( z )} . −1 Method 2 (Long division method) g ( z −1 ) When the usual methods of expansion of f ( z ) fail and if f ( z ) = h( z −1 ) , then g ( z −1 ) is divided by h( z −1 ) in the classical manner and hence the expansion ∞ ∑ f ( n)z n =0 −n is obtained in the quotient. Method 3 (partial fraction Method) When f ( z ) is a rational function in which the denominator can be factorised, f ( z ) is resolved in to partial fraction and then Z −1 { f ( z )} is derived as the sum of the inverse Z-transforms of the partial fractions. Method 4 (By Cauchy’s Residue Theorem) By using the relation between the Z-transform and Fourier transform of a sequence, it can be proved that 1 f ( n) = ∫ f ( z ) z dz n −1 2πi C Where C is a circle whose centre is the origin and radius is sufficiently large to include all the isolated singularities of f ( z ) . By Cauchy’s residue theorem, ∫ f ( z ) z dz = 2πi x sum of the residues of f ( z ) z n−1 at the isolated singularities. n −1 ∴ f ( n ) = Sum of the residues of f ( z ) z n −1 at the isolated singularities. Use of Z-transforms to solve Finite Difference equations: Z-transforms can be used to solve finite difference equation of the form ay ( n + 2) + by ( n + 1) + cy ( n ) = φ ( n ) with given values of y(0) and y(1). Taking Z-transforms on both sides of the given difference equation and using the values of y(0) and y(1), we will get y ( z ) . Then Z −1 { y ( z )} will give y ( n ) . To express Z { y ( n + 1)} and Z { y ( n + 2 )} in terms of y ( z ) . (i) z{ y ( n + 1)} = zy ( z ) − zy ( 0) . (ii) Z { y ( n + 2 )} = z 2 y ( z ) − z 2 y ( 0) − zy (1) . 15
  • 16. Problems: 1 + 2 z −1 (1) Find the inverse Z-transform of , by the long division method. 1 − z −1 Solution: (1 − z )1 + 2 z (1 + 3z −1 −1 −1 + 3 z −2 1 − z −1 3 z −1 3 z −1 − 3 z −2 3z −2 3 z − 2 − 3z −3 3 z −3 1 + 2 z −1 Thus = ∑ f ( n ) z − n = 1 + 3 z −1 + 3z − 2 +  + 3 z − n +  1 − z −1 1, for n = 0 ∴ f ( n) =  3, for n ≥ 1 , or f ( n ) = 1 + 2U ( n − 1) 1 (2) Find the inverse Z-transform of , by the long division method. 1 + 4 z −2 Solution: (1 − 4 z −2 )1 (1 − 4 z −2 + 16 z −4 − 64 z −6 1 + 4 z −2 − 4 z −2 − 4 z − 2 − 16 z −4 16 z − 4 16 z − 4 + 64 z −6 − 64 z −6 − 64 z −6 − 256 z −8 256 z −8 1 −2 = 1 − 4 z −2 + 16 z −4 − 64 z −6 +  1 + 4z ∞ nπ −n Thus = ∑ 2 n cos z , n =0 2 nπ f ( n ) = 2 n cos 2 16
  • 17. −1  4z 3  (3) Find Z   by the method of partial fractions.  ( 2 z − 1) ( z − 1)  2 Solution: f ( z)  4z 2  A B C Let = = + +  ( 2 z − 1) ( z − 1)  ( 2 z − 1) ( 2 z − 1) z −1 2 2 z f ( z) 6 2 4 =− − + z 2 z − 1 ( 2 z − 1) 2 z −1 3z 1 z 4z f ( z) = − − . + z− 1 2 2 z− 1 ( 2 2 )z −1  1   z   z  Z −1 { f ( z )} = −3Z −1    −1  2   z  −Z  2  + 4 Z −1    z − 12   z − 1    z − 1      2   ( )   n  Z ( a ) = Z ( na n ) = n 1 z az = −3 1 n − n  + 4 and  2 2  z−a ( z − a)  2 n 1 = 4 − ( n + 3)   2  z2  (4) Find Z −1   , by using Residue theorem.  ( z − a )( z − b )  Solution:  z2  1 z n −1 z 2 Z −1   = ∫  ( z − a )( z − b )  2πi C ( z − a )( z − b ) dz , Where C is the circle whose centre is the origin and which includes the singularities z = a and z = b . z n +1 = { ( Re s.) z = a + ( Re s.) z =b } of ,by Cauchy’s residue ( z − a )( z − b ) theorem. z = a and z = b are simple poles.  n +1  n +1 n +1 ( Re s.) z =a =  z  = a and ( Re s.) z =b = b  z −b   z =a a − b b−a   ∴ Z  −1 z2 = 1 ( a n+1 − b n+1 ) or  ( z − a )( z − b )  b − a a b = .a n − .b n a−b a −b −1  2 z + 4 z  2 (5) Find Z  3  , by using Residue theorem  ( z − 2)  17
  • 18. Solution: By residue theorem,  2z 2 + 4z   2 z n +1 + 4 z n  Z −1   = the residue of   at the only triple pole (z=3).  ( z − 2)   ( z − 2)  3 3 1 d 2  2 z n +1 + 4 z n  R z =3 = 2  ( z − 2) 3  2! dz  ( z − 2 ) 3  = {2( n + 1) nz n −1 + 4n( n − 1) z n −1 } z =2 1 2 = {2( n + 1) n.2 n −1 + 4n( n − 1) 2 n −2 } 1 2 a =n 22 n  2z + 4z  2 Z −1  3  = n2 2n  ( z − 2)  (6) Solve the difference equation y ( n + 3) − 3 y ( n + 1) + 2 y ( n ) = 0, given that y ( 0 ) = 4, y (1) = 0 and y ( 2 ) = 8 . Solution: Taking Z-transforms on both sides of the given equation, we have Z { y ( n + 3)} − 3Z { y ( n + 1)} + 2 Z { y ( n )} = 0 . { z y ( z ) − z y( 0) − z y(1) − zy( 2)} − 3{ zy ( z ) − zy( 0)} + 2 y ( z ) = 0 . 3 3 2 (z 3 − 3 z + 2) y ( z ) = 4 z 3 − 4 z . y( z ) 4z 2 − 4 A B C = = + + z ( z − 1) ( z + 2) z − 1 ( z − 1) z + 2 2 2 8 4 = 3 + 3 z −1 z + 2 8 z 4 z y( z ) = + 3 z −1 3 z + 2 8 4 Inverting, we get y ( n ) = + ( − 2 ) . n 3 3 (7) Solve the equation x n + 2 − 5 x n +1 + 6 x n = 36, given that x0 = x1 = 0. Solution: Taking Z-transforms of the given equation, { z 2 x ( z ) − z 2 x( 0) − zx(1)} − 5{ zx ( z ) − zx( 0)} + 6 x ( z ) = 36 z z 1 . − ( z 2 − 5 z + 6) x ( z ) = 36 z z 1 − 18
  • 19. x( z) 36 = z ( z − 1)( z − 2)( z − 3) 18 36 18 = − + z −1 z − 2 z − 3 z z z ∴ x ( z ) = 18 − 36 + 18 z −1 z−2 z −3 Inverting, we get x n = 18 − 36.( 2 ) + 18.( 3) . n n 19
  • 20. UNIT 5 PART A (1)Form the difference equation from y n = a + b3 n n +1 Ans: y n = a + b3 , y n +1 = a + b3 n y n + 2 − 4 y n +1 + 4 y n = 0 y n + 2 = a + b3 n + 2 (2)Express Z { f ( n + 1)} in terms of f ( z ) Ans: Z { f ( n )} = zF ( z ) − zF ( 0 ) (3)Find the value of Z { f ( n )} when f ( n ) = na n Ans: Z {na n } = Z {a n n} = { Z ( n )} z → z a  z  = 2   ( z − 1)  z → z a az = ( z − a) 2 (4)Define bilateral Z-transform. ∞ Ans : If { f ( n )} is a sequence defined for n = 0,±1,±2,... .,then ∑ f ( n)z n = −∞ −n is called the two-sided or bilateral Z-transform of { f ( n )} and denoted by Z { f ( n )} or f ( z ) ,where z is a complex variable in general. (5)Find the z-transform of ( n + 1)( n + 2 ) Ans: Z { ( n + 1)( n + 2 )} = Z {n 2 + 3n + 2} = Z ( n 2 ) + 3Z ( n ) + 2 z (1) z ( z + 1) z z = +3 +2 ( z − 1) 3 ( z − 1) 2 z −1 (6)Find Z {e −iat } using z-transform. Ans: Z {e −iat } = Z {e −iat .1} = { Z (1)} z → zeiaT 20
  • 21.  z  =   ( z − 1)  z → zeiaT ze iaT = ( ze iat − 1) (7)Define unilateral Z-transform. Ans: If { f ( n )} is a casual sequence, i.e if , f ( n ) = 0 for n<0,then the Z-transform is called one-sided or unilateral Z-transform of { f ( n )} and is defined as ∞ Z { f ( n )} = f ( z ) = ∑ f ( n ) z −n n =0 an  (8)Find Z   using z-transform.  n!  Ans:  a n  ∞ a n −n Z  = ∑ z =∑ ∞ ( az −1 ) n  n!  n =0 n! n =0 n! az −1 ( az −1 ) 2 = 1+ + + 1! 2! a = ez (9) State and prove initial value theorem in z-transform. Ans: (i) If Z { f ( n )} = f ( z ) , then f ( 0 ) = lim f ( z ) z →∞ (ii) If Z { f ( t )} = f ( z ) , then f ( 0 ) = lim f ( z ) z →∞ (i) ∞ f ( z ) = ∑ f ( n ) z −n n =0 f (1) f ( 2 ) = f ( 0) + + 2 + ...∞ z z lim{ f ( z )} = f ( 0) z →∞ Similarly, (ii) can be proved. (10)Find the z-transform of n. Ans: ∞ ∞ n Z { n} = ∑ nz − n = ∑ n n =0 n =0 z 21
  • 22. 1 2 = + + z z2 2 1 1 = 1 −  z z 2   1 1  =   z 1 1−   z 1 z2 z = . = z ( z − 1) 2 ( z − 1) 2 (11) Find the Z-transforms of a n cosh an  n  e an + e − an  Ans: Z {a cosh an} = z a   n  2     1 2 [{n } { = Z ( ae a ) + Z ( ae − a ) n }] ( z ( b ) ) = z − b  1 z z   z  =  + −a  n 2  z − ae a z − ae    z  2 z − a( e a + e − a )  = 2  z 2 − a( e a + e −a ) z + a 2    z ( z − a cosh a ) = z − 2a( cosh a ) z + a 2 2 (12)Use convolution theorem to find the inverse Z-transform of z2 ( z + a) 2 Ans:  z2   z z  Z −1  2  = Z −1  .  ( z + a)  z + a z + a  z  −1  z  = Z −1  *Z    z+a  z+a = ( − a) * ( − a) n n n = ∑ ( − a ) .( − a ) r n−r r =0 n = ∑ ( − a) n r =0 22
  • 23. = ( n + 1)( − a ) n (13) Define Inverse Z-transforms: Ans: The inverse of Z-transform of f ( z ) is defined as Z −1 { f ( z )} = f ( n ) , When Z { f ( n )} = f ( z ) . (14) Use final value theorem to find f ( ∞ ) , when Tze aT f ( z) = ( ze aT − 1) 2 Ans: By final value theorem, f ( ∞ ) = lim{( z − 1) f ( z )} z →1  ( z − 1)Tze aT  = lim   ( ze − 1)  z →1 aT = 0. 2  nπ  (15) Find the Z-transforms of sin    4  2  nπ  1 nπ  Ans: Let f ( n ) = sin   = 1 − cos   4  2 2  1 1  nπ  Z { f ( n )} = Z   − Z  cos  2 2  2   π z z − cos  z 1  2 = − 2( z − 1) 2 2 π z − 2 z cos + 1 2 [Refer to basic transform (8)] 1 z z2  =  − 2  2  z − 1 z + 1 Part B 1  z  (1) (a)Prove that Z   = log , n ≠ 0 . n  z −1  nπ   nπ  Find Z  sin  and Z  cos   2   2  23
  • 24. −1  8z 2  (b)Find Z   ( 2 z − 1)( 4 z + 1)  using Convolution theorem.    (2) (a) Prove that Z ( a ) =  n  z   z−a (b) Solve: y n + 2 + 6 y n +1 + 9 y n = 2 given y 0 = y1 = 0, using n z- transform.  2n + 3  (3)(a) Find the z-transform of f ( n ) =   ( n + 1)( n + 2 )    −1  z 2  (b)Using Convolution theorem find Z    ( z + 2) 2    (4)(a) Solve the difference equation y ( n + 3) − 3 y ( n + 1) + 2 y ( n ) = 0 given y ( 0 ) = 4, y (1) = 0 and y ( 2 ) = 8.  z2  Z −1  , by the method of partial fractions.  ( z + 2) ( z + 4)  (b) Find 2 −1  z3  (5)(a) Find Z  , by the method of partial fractions.  ( z − 1) ( z − 2 )  2 (b) Solve the difference equation y ( k + 2) − 4 y ( k + 1) + 4 y ( k ) = 0 given y ( 0 ) = 1, y (1) = 0  1   z  (6)(a) Prove that Z   = z log ,  n + 1  z −1 (b) State and prove the second shifting theorem in z-transform.  z2   (7)(a) Using Convolution theorems evaluate inverse z-transform of  .   ( z − 1)( z − 3)  (b) Solve the difference equation y ( n ) + 3 y ( n − 1) − 4 y ( n − 2 ) = 0, n ≥ 2, given y ( 0) = 3, y (1) = −2 1 + 2 z −1 (8)(a) Find the inverse Z-transform of , by the long division method. 1 − z −1 (b) Find Z-transforms of 1 (i) f ( n ) = , and n( n − 1) 24
  • 25. 2n + 3 (ii) f ( n ) = ( n + 1)( n + 2) (9) (a) Solve: y n + 2 − 7 y n +1 + 12 y n = 2 given y 0 = y1 = 0, using n z- transform. −1  z  (b) Find Z  2   ( z − 1)( z − 2 )  (10)(a) Find the bilateral Z-transforms of (i) a n δ ( n − k ) , (ii) − α nU ( − n − 1) , (iii) − nα nU ( − n − 1) , (b) Solve the equation x n + 2 − 5 x n +1 + 6 x n = 36, given that x0 = x1 = 0. (11)(a) Use convolution theorem to find the sum of the first n natural numbers. 1 (b) Find the inverse Z-transform of , by the long division method. 1 + 4 z −2 (12) (i) Use initial value theorem to find f ( 0 ) , when ze aT ( ze aT − cos bT ) f ( z) = z 2 e 2 aT − 2 ze aT cos bT + 1 (ii) Use final value theorem to find f ( ∞ ) , when Tze aT f ( z) = ( ze aT − 1) 2 −1  2 z + 4 z  2 (13) (a) Find Z  3  , by using Residue theorem.  ( z − 2)  (b) Find the Z-transforms of 3  nπ   nπ π  (ii) sin   , and (iii) cos +   6   2 4 25