SlideShare a Scribd company logo
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




                 Legendre’s Function

                             N. B. Vyas

                      Department of Mathematics
               Atmiya Institute of Technology and Science


                   Department of Mathematics




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




  The differential equation




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




  The differential equation
         2
  (1 − x )y − 2xy + n(n + 1)y = 0




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




  The differential equation
         2
  (1 − x )y − 2xy + n(n + 1)y = 0
  is called Legendre’s differential equation,
  n is real constant




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




Legendre’s Polynomials:
⇒ P0 (x) = 1




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




Legendre’s Polynomials:
⇒ P0 (x) = 1
⇒ P1 (x) = x




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




Legendre’s Polynomials:
⇒ P0 (x) = 1
⇒ P1 (x) = x
            1
⇒ P2 (x) = (3x2 − 1)
            2




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




Legendre’s Polynomials:
⇒ P0 (x) = 1
⇒ P1 (x) = x
            1
⇒ P2 (x) = (3x2 − 1)
            2
            1
⇒ P3 (x) = (5x3 − 3x)
            2




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




Legendre’s Polynomials:
⇒ P0 (x) = 1
⇒ P1 (x) = x
            1
⇒ P2 (x) = (3x2 − 1)
            2
            1
⇒ P3 (x) = (5x3 − 3x)
            2
            1
⇒ P4 (x) = (35x3 − 30x2 + 3)
            8



                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




Legendre’s Polynomials:
⇒ P0 (x) = 1
⇒ P1 (x) = x
            1
⇒ P2 (x) = (3x2 − 1)
            2
            1
⇒ P3 (x) = (5x3 − 3x)
            2
            1
⇒ P4 (x) = (35x3 − 30x2 + 3)
            8
            1
⇒ P5 (x) = (63x5 − 70x3 + 15x)
            8

                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
   Examples of Legendre’s Polynomials
       Generating Function for Pn (x)
                  Rodrigue’s Formula
       Recurrence Relations for Pn (x)




Ex.1 Express f (x) in terms of
     Legendre’s polynomials where
     f (x) = x3 + 2x2 − x − 3.




                           N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Solution:




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Solution:
 ⇒ P0 (x) = 1
   ∴ 1 = P0 (x)




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Solution:
 ⇒ P0 (x) = 1
   ∴ 1 = P0 (x)
 ⇒ P1 (x) = x
   ∴ x = P1 (x)




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Solution:
 ⇒ P0 (x) = 1
   ∴ 1 = P0 (x)
 ⇒ P1 (x) = x
   ∴ x = P1 (x)
            1
 ⇒ P3 (x) = (5x3 − 3x)
            2




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Solution:
 ⇒ P0 (x) = 1
   ∴ 1 = P0 (x)
 ⇒ P1 (x) = x
   ∴ x = P1 (x)
            1
 ⇒ P3 (x) = (5x3 − 3x)
            2
 ∴ 2P3 (x) = (5x3 − 3x)




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Solution:
 ⇒ P0 (x) = 1
   ∴ 1 = P0 (x)
 ⇒ P1 (x) = x
   ∴ x = P1 (x)
            1
 ⇒ P3 (x) = (5x3 − 3x)
            2
 ∴ 2P3 (x) = (5x3 − 3x)
 ∴ 2P3 (x) + 3x = 5x3




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Solution:
 ⇒ P0 (x) = 1
   ∴ 1 = P0 (x)
 ⇒ P1 (x) = x
   ∴ x = P1 (x)
            1
 ⇒ P3 (x) = (5x3 − 3x)
            2
 ∴ 2P3 (x) = (5x3 − 3x)
 ∴ 2P3 (x) + 3x = 5x3
 ∴ 2P3 (x) + 3P1 (x) = 5x3          { x = P1 (x)}




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Solution:
 ⇒ P0 (x) = 1
   ∴ 1 = P0 (x)
 ⇒ P1 (x) = x
   ∴ x = P1 (x)
            1
 ⇒ P3 (x) = (5x3 − 3x)
            2
 ∴ 2P3 (x) = (5x3 − 3x)
 ∴ 2P3 (x) + 3x = 5x3
 ∴ 2P3 (x) + 3P1 (x) = 5x3          { x = P1 (x)}
         2         3
 ∴ x3 = P3 (x) + P1 (x)
         5         5


                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




          1
⇒ P2 (x) = (3x2 − 1)
          2




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




           1
⇒ P2 (x) = (3x2 − 1)
           2
∴ 2P2 (x) = (3x2 − 1)




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




           1
⇒ P2 (x) = (3x2 − 1)
           2
∴ 2P2 (x) = (3x2 − 1)
∴ 2P2 (x) + 1 = 3x2




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




           1
⇒ P2 (x) = (3x2 − 1)
           2
∴ 2P2 (x) = (3x2 − 1)
∴ 2P2 (x) + 1 = 3x2
∴ 2P2 (x) + P0 (x) = 3x2         { 1 = P0 (x)}




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




           1
⇒ P2 (x) = (3x2 − 1)
           2
∴ 2P2 (x) = (3x2 − 1)
∴ 2P2 (x) + 1 = 3x2
∴ 2P2 (x) + P0 (x) = 3x2 { 1 = P0 (x)}
        2          1
∴ x2 = P2 (x) + P0 (x)
        3          3




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




           1
⇒ P2 (x) = (3x2 − 1)
           2
∴ 2P2 (x) = (3x2 − 1)
∴ 2P2 (x) + 1 = 3x2
∴ 2P2 (x) + P0 (x) = 3x2 { 1 = P0 (x)}
        2          1
∴ x2 = P2 (x) + P0 (x)
        3          3
  Now, f (x) = x3 + 2x2 − x − 3




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




           1
⇒ P2 (x) = (3x2 − 1)
           2
∴ 2P2 (x) = (3x2 − 1)
∴ 2P2 (x) + 1 = 3x2
∴ 2P2 (x) + P0 (x) = 3x2 { 1 = P0 (x)}
        2          1
∴ x2 = P2 (x) + P0 (x)
        3          3
  Now, f (x) = x3 + 2x2 − x − 3
   f (x) = x3 + 2x2 − x − 3
           2         3      4        2
         = P3 (x) + P1 (x) + P2 (x) + P0 (x) − P1 (x) − 3P0 (x)
           5         5      3        3



                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
   Examples of Legendre’s Polynomials
       Generating Function for Pn (x)
                  Rodrigue’s Formula
       Recurrence Relations for Pn (x)




Ex.2 Express x3 − 5x2 + 6x + 1 in
     terms of Legendre’s polynomial.




                           N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
   Examples of Legendre’s Polynomials
       Generating Function for Pn (x)
                  Rodrigue’s Formula
       Recurrence Relations for Pn (x)




Ex.3 Express 4x3 − 2x2 − 3x + 8 in
     terms of Legendre’s polynomial.




                           N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




Generating Function for Pn(x)
∞
                                   1
      Pn(x)tn = √
n=0
                               1 − 2xt + t2
                                             1
                           = (1 − 2xt + t2)− 2


                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




                                                             1
The function (1 − 2xt + t2)− 2 is
called Generating function of
Legendre’s polynomial Pn(x)




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Ex Show that




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Ex Show that
   (i)Pn(1) = 1




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Ex Show that
   (i)Pn(1) = 1
   (ii)Pn(−1) = (−1)n




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Ex Show that
   (i)Pn(1) = 1
   (ii)Pn(−1) = (−1)n
   (iii)Pn(−x) = (−1)nPn(x)


                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)


Solution:
                 ∞
                                                    1
(i) We have           Pn (x)tn = (1 − 2xt + t2 )− 2
                n=0
    Putting x = 1 in eq(1), we get




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)


Solution:
                 ∞
                                                        1
(i) We have           Pn (x)tn = (1 − 2xt + t2 )− 2
                n=0
    Putting x = 1 in eq(1), we get
     ∞
                                        1
          Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1
    n=0




                          N. B. Vyas        Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)


Solution:
                 ∞
                                                        1
(i) We have           Pn (x)tn = (1 − 2xt + t2 )− 2
                n=0
     Putting x = 1 in eq(1), we get
     ∞
                                        1
           Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1
     n=0
      ∞
                         1
 ∴         Pn (1)tn =       = 1 + t + t2 + t3 + ...
                        1−t
     n=0




                          N. B. Vyas        Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)


Solution:
                 ∞
                                                         1
(i) We have           Pn (x)tn = (1 − 2xt + t2 )− 2
                n=0
     Putting x = 1 in eq(1), we get
     ∞
                                         1
           Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1
     n=0
      ∞
                         1
 ∴         Pn (1)tn =       = 1 + t + t2 + t3 + ...
                        1−t
     n=0
      ∞                 ∞
                 n
 ∴         Pn (1)t =          tn
     n=0                n=0




                            N. B. Vyas       Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)


Solution:
                 ∞
                                                         1
(i) We have           Pn (x)tn = (1 − 2xt + t2 )− 2
                n=0
     Putting x = 1 in eq(1), we get
     ∞
                                         1
           Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1
     n=0
      ∞
                         1
 ∴         Pn (1)tn =       = 1 + t + t2 + t3 + ...
                        1−t
     n=0
      ∞                 ∞
                 n
 ∴         Pn (1)t =          tn
     n=0                n=0
     Comparing the coefficient of tn both the sides, we get


                            N. B. Vyas       Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)


Solution:
                  ∞
                                                         1
(i) We have           Pn (x)tn = (1 − 2xt + t2 )− 2
                n=0
     Putting x = 1 in eq(1), we get
     ∞
                                         1
           Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1
     n=0
      ∞
                         1
 ∴         Pn (1)tn =       = 1 + t + t2 + t3 + ...
                        1−t
     n=0
      ∞                 ∞
                  n
 ∴         Pn (1)t =          tn
     n=0                n=0
     Comparing the coefficient of tn both the sides, we get
     Pn (1) = 1

                            N. B. Vyas       Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(ii) Putting x = −1 in eq(1), we get




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(ii) Putting x = −1 in eq(1), we get
     ∞
                                         1
          Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1
    n=0




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(ii) Putting x = −1 in eq(1), we get
     ∞
                                         1
           Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1
     n=0
      ∞
                          1
 ∴         Pn (−1)tn =       = 1 − t + t2 − t3 + ...
                         1+t
     n=0




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(ii) Putting x = −1 in eq(1), we get
     ∞
                                          1
           Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1
     n=0
      ∞
                          1
 ∴         Pn (−1)tn =       = 1 − t + t2 − t3 + ...
                         1+t
     n=0
      ∞                   ∞
 ∴         Pn (−1)tn =        (−1)n tn
     n=0                 n=0




                          N. B. Vyas     Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(ii) Putting x = −1 in eq(1), we get
     ∞
                                          1
           Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1
     n=0
      ∞
                          1
 ∴         Pn (−1)tn =       = 1 − t + t2 − t3 + ...
                         1+t
     n=0
      ∞                   ∞
 ∴         Pn (−1)tn =        (−1)n tn
     n=0                 n=0
     Comparing coefficients of tn , we get




                          N. B. Vyas     Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(ii) Putting x = −1 in eq(1), we get
     ∞
                                          1
           Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1
     n=0
      ∞
                          1
 ∴         Pn (−1)tn =       = 1 − t + t2 − t3 + ...
                         1+t
     n=0
      ∞                   ∞
 ∴         Pn (−1)tn =        (−1)n tn
     n=0                 n=0
     Comparing coefficients of tn , we get
     Pn (−1) = (−1)n



                          N. B. Vyas     Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(iii) Now replacing x by −x in eq(1), we get




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(iii) Now replacing x by −x in eq(1), we get
     ∞
                                          1
          Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a)
    n=0




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(iii) Now replacing x by −x in eq(1), we get
     ∞
                                          1
          Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a)
    n=0
    Now, replacing t by −t in eq(1), we get




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(iii) Now replacing x by −x in eq(1), we get
     ∞
                                          1
          Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a)
    n=0
    Now, replacing t by −t in eq(1), we get
     ∞
                                              1
          Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b)
    n=0




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(iii) Now replacing x by −x in eq(1), we get
     ∞
                                          1
          Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a)
    n=0
    Now, replacing t by −t in eq(1), we get
     ∞
                                              1
          Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b)
    n=0
    from equation (a) and (b)




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(iii) Now replacing x by −x in eq(1), we get
     ∞
                                           1
          Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a)
    n=0
    Now, replacing t by −t in eq(1), we get
     ∞
                                               1
          Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b)
    n=0
    from equation (a) and (b)
     ∞                      ∞
                      n
          Pn (−x)(t) =           Pn (x)(−1)n (t)n
    n=0                    n=0




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(iii) Now replacing x by −x in eq(1), we get
     ∞
                                           1
          Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a)
    n=0
    Now, replacing t by −t in eq(1), we get
     ∞
                                               1
          Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b)
    n=0
    from equation (a) and (b)
     ∞                      ∞
                      n
          Pn (−x)(t) =           Pn (x)(−1)n (t)n
    n=0                    n=0
    Comparing the coefficients of tn , both sides, we get



                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(iii) Now replacing x by −x in eq(1), we get
     ∞
                                           1
          Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a)
    n=0
    Now, replacing t by −t in eq(1), we get
     ∞
                                               1
          Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b)
    n=0
    from equation (a) and (b)
     ∞                      ∞
                      n
          Pn (−x)(t) =           Pn (x)(−1)n (t)n
    n=0                    n=0
    Comparing the coefficients of tn , both sides, we get
    Pn (−x) = (−1)n Pn (x)


                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




               Rodrigue’s Formula

            1 dn
    Pn(x) = n       [(x2 − 1)n]
           2 n! dxn


                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Proof:
    Let y = (x2 − 1)n




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Proof:
    Let y = (x2 − 1)n
    Differentiating wit respect to x




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Proof:
    Let y = (x2 − 1)n
    Differentiating wit respect to x
 ∴ y1 = n(x2 − 1)n−1 (2x)




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Proof:
    Let y = (x2 − 1)n
    Differentiating wit respect to x
 ∴ y1 = n(x2 − 1)n−1 (2x)
        2nx(x2 − 1)n      2nxy
 ∴ y1 =               = 2
          (x2 − 1)       x −1




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Proof:
    Let y = (x2 − 1)n
    Differentiating wit respect to x
 ∴ y1 = n(x2 − 1)n−1 (2x)
        2nx(x2 − 1)n      2nxy
 ∴ y1 =               = 2
           (x2 − 1)      x −1
 ∴ (x2 − 1)y1 = 2nxy




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Proof:
    Let y = (x2 − 1)n
    Differentiating wit respect to x
 ∴ y1 = n(x2 − 1)n−1 (2x)
        2nx(x2 − 1)n      2nxy
 ∴ y1 =               = 2
           (x2 − 1)      x −1
 ∴ (x2 − 1)y1 = 2nxy
    Differentiating with respect to x,




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




Proof:
    Let y = (x2 − 1)n
    Differentiating wit respect to x
 ∴ y1 = n(x2 − 1)n−1 (2x)
        2nx(x2 − 1)n      2nxy
 ∴ y1 =               = 2
           (x2 − 1)      x −1
 ∴ (x2 − 1)y1 = 2nxy
    Differentiating with respect to x,
    (x2 − 1)y2 +2xy1 = 2nxy1 + 2ny




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




      dn
         (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V
     dxn




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




     dn
        (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V
    dxn
   dn
→     ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn
  dxn




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




     dn
        (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V
    dxn
   dn
→     ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn
  dxn
   dn
→     (2xy1 ) = nC0 (2x)yn+1 + nC1 (2)yn
  dxn




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




     dn
        (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V
    dxn
   dn
→     ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn
  dxn
   dn
→     (2xy1 ) = nC0 (2x)yn+1 + nC1 (2)yn
  dxn
   dn
→     (2nxy1 ) = nC0 (2nx)yn+1 + nC1 (2n)yn
  dxn




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




       dn
          (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V
      dxn
     dn
→       ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn
    dxn
     dn
→       (2xy1 ) = nC0 (2x)yn+1 + nC1 (2)yn
    dxn
     dn
→       (2nxy1 ) = nC0 (2nx)yn+1 + nC1 (2n)yn
    dxn
     dn
→       (2ny) = 2nyn
    dxn




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




       dn
          (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V
      dxn
     dn
→       ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn
    dxn
     dn
→       (2xy1 ) = nC0 (2x)yn+1 + nC1 (2)yn
    dxn
     dn
→       (2nxy1 ) = nC0 (2nx)yn+1 + nC1 (2n)yn
    dxn
     dn
→       (2ny) = 2nyn
    dxn
                                    n(n − 1)
    Also nC0 = 1, nC1 = n, nC2 =
                                       2!



                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0
∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0
∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0
∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0
∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0
∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0
                 dn y
  Let v = yn = n
                dx




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0
∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0
∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0
                 dn y
  Let v = yn = n
                 dx
∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2)




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0
∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0
∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0
                 dn y
  Let v = yn = n
                 dx
∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2)
  Equation (2) is a Legendre’s equation in variables v and x




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0
∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0
∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0
                 dn y
  Let v = yn = n
                 dx
∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2)
   Equation (2) is a Legendre’s equation in variables v and x
⇒ Pn (x) is a solution of equation (2)




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0
∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0
∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0
                 dn y
  Let v = yn = n
                 dx
∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2)
   Equation (2) is a Legendre’s equation in variables v and x
⇒ Pn (x) is a solution of equation (2)
   Also, v = f (x) is a solution of equation (2)



                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn
  +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn
∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0
∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0
∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0
                 dn y
  Let v = yn = n
                 dx
∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2)
   Equation (2) is a Legendre’s equation in variables v and x
⇒ Pn (x) is a solution of equation (2)
   Also, v = f (x) is a solution of equation (2)
   Pn = cv where c is constant


                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




               dn y     dn
∴ Pn (x) = c        = c n (x2 − 1)n ——(3)
               dxn     dx




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




           dn y     dn
∴ Pn (x) = c    = c n (x2 − 1)n ——(3)
           dxn     dx
  Now y = (x2 − 1)n




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




           dn y     dn
∴ Pn (x) = c    = c n (x2 − 1)n ——(3)
           dxn     dx
  Now y = (x2 − 1)n
  = (x + 1)n (x − 1)n




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




           dn y     dn
∴ Pn (x) = c    = c n (x2 − 1)n ——(3)
           dxn     dx
  Now y = (x2 − 1)n
  = (x + 1)n (x − 1)n
  dn y             dn
∴      = (x + 1)n n ((x − 1)n )
  dxn             dx




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




           dn y     dn
∴ Pn (x) = c    = c n (x2 − 1)n ——(3)
           dxn     dx
  Now y = (x2 − 1)n
  = (x + 1)n (x − 1)n
  dn y             dn
∴      = (x + 1)n n ((x − 1)n )
  dxn             dx
                 dn−1
  +n(x + 1)n−1 n−1 ((x − 1)n )
                dx




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




           dn y     dn
∴ Pn (x) = c    = c n (x2 − 1)n ——(3)
           dxn     dx
  Now y = (x2 − 1)n
  = (x + 1)n (x − 1)n
  dn y             dn
∴      = (x + 1)n n ((x − 1)n )
  dxn             dx
                 dn−1
  +n(x + 1)n−1 n−1 ((x − 1)n )
                dx
  +...




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




           dn y     dn
∴ Pn (x) = c    = c n (x2 − 1)n ——(3)
           dxn     dx
  Now y = (x2 − 1)n
  = (x + 1)n (x − 1)n
  dn y               dn
∴      = (x + 1)n n ((x − 1)n )
  dxn               dx
                   dn−1
  +n(x + 1)n−1 n−1 ((x − 1)n )
                 dx
  +...
    dn ((x + 1)n )
  +                (x − 1)n
         dxn



                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
 Examples of Legendre’s Polynomials
     Generating Function for Pn (x)
                Rodrigue’s Formula
     Recurrence Relations for Pn (x)




Recurrence Relations for Pn(x) : −




                         N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)


(1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
Proof: We have




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
Proof: We have
        ∞                              1
                                     −
                  n               2 ) 2 ——–(i)
           Pn (x)t = (1 − 2xt + t
       n=0




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
Proof: We have
        ∞                              1
                                     −
                  n               2 ) 2 ——–(i)
           Pn (x)t = (1 − 2xt + t
       n=0
       Differentiating equation (i) partially with respect to t, we
       get




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
Proof: We have
        ∞                              1
                                     −
                  n               2 ) 2 ——–(i)
           Pn (x)t = (1 − 2xt + t
       n=0
       Differentiating equation (i) partially with respect to t, we
       get
        ∞
                           1                 3
           nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t)
                           2
       n=1




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
Proof: We have
        ∞                              1
                                     −
                  n               2 ) 2 ——–(i)
           Pn (x)t = (1 − 2xt + t
       n=0
       Differentiating equation (i) partially with respect to t, we
       get
        ∞
                           1                 3
           nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t)
                           2
       n=1
                                                                 1
                       = (1 − 2xt + t2 )−1 (1 − 2xt + t2 )− 2 (x − t)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
Proof: We have
        ∞                              1
                                     −
                  n               2 ) 2 ——–(i)
           Pn (x)t = (1 − 2xt + t
       n=0
       Differentiating equation (i) partially with respect to t, we
       get
        ∞
                           1                 3
           nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t)
                           2
       n=1
                                                                 1
                       = (1 − 2xt + t2 )−1 (1 − 2xt + t2 )− 2 (x − t)
                                           1
                         (1 − 2xt + t2 )− 2
                       =                     (x − t)
                           (1 − 2xt + t2 )




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
Proof: We have
        ∞                              1
                                     −
                  n               2 ) 2 ——–(i)
           Pn (x)t = (1 − 2xt + t
       n=0
       Differentiating equation (i) partially with respect to t, we
       get
        ∞
                           1                 3
           nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t)
                           2
       n=1
                                                                 1
                       = (1 − 2xt + t2 )−1 (1 − 2xt + t2 )− 2 (x − t)
                                           1
                         (1 − 2xt + t2 )− 2
                       =                     (x − t)
                           (1 − 2xt + t2 )
       from (i)



                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
Proof: We have
        ∞                              1
                                     −
                  n               2 ) 2 ——–(i)
           Pn (x)t = (1 − 2xt + t
       n=0
       Differentiating equation (i) partially with respect to t, we
       get
        ∞
                           1                 3
           nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t)
                           2
       n=1
                                                                         1
                       = (1 − 2xt + t2 )−1 (1 − 2xt + t2 )− 2 (x − t)
                                           1
                         (1 − 2xt + t2 )− 2
                       =                     (x − t)
                           (1 − 2xt + t2 )
       from (i)
                            ∞                                   ∞
                                             n−1
       (1 − 2xt +    t2 )         nPn (x)t         = (x − t)         Pn (x)tn
                            n=1                                n=0
                                N. B. Vyas         Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                             ∞                   ∞
∴        nPn (x)tn−1 − 2x               nPn (x)tn +         nPn (x)tn+1 =
    n=1                           n=1                 n=1
      ∞                    ∞
    x         Pn (x)tn −         Pn (x)tn+1
        n=0                n=0




                            N. B. Vyas      Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                             ∞                   ∞
∴        nPn (x)tn−1 − 2x               nPn (x)tn +         nPn (x)tn+1 =
    n=1                           n=1                 n=1
      ∞                    ∞
    x         Pn (x)tn −         Pn (x)tn+1
        n=0                n=0
    replacing n by n+1 in 1st term, n by n-1 in 3rd term in
    L.H.S.




                            N. B. Vyas      Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                             ∞                   ∞
∴        nPn (x)tn−1 − 2x               nPn (x)tn +         nPn (x)tn+1 =
    n=1                           n=1                 n=1
      ∞                    ∞
    x         Pn (x)tn −         Pn (x)tn+1
        n=0                n=0
    replacing n by n+1 in 1st term, n by n-1 in 3rd term in
    L.H.S.
    replacing n by n-1 in 2nd term in R.H.S




                            N. B. Vyas      Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                             ∞                     ∞
∴         nPn (x)tn−1 − 2x              nPn (x)tn +          nPn (x)tn+1 =
    n=1                           n=1                  n=1
      ∞                    ∞
    x         Pn (x)tn −         Pn (x)tn+1
        n=0                n=0
    replacing n by n+1 in 1st term, n by n-1 in 3rd term in
    L.H.S.
    replacing n by n-1 in 2nd term in R.H.S
    ∞                                     ∞                    ∞
         (n + 1)Pn+1 (x)tn − 2x                nPn (x)tn +          (n −
    n=0                                  n=1                  n=2
                            ∞                    ∞
    1)Pn−1 (x)tn = x             Pn (x)tn −           Pn−1 (x)tn
                           n=0                  n=1




                            N. B. Vyas        Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                             ∞                     ∞
∴         nPn (x)tn−1 − 2x              nPn (x)tn +          nPn (x)tn+1 =
    n=1                           n=1                  n=1
      ∞                    ∞
    x         Pn (x)tn −         Pn (x)tn+1
        n=0                n=0
    replacing n by n+1 in 1st term, n by n-1 in 3rd term in
    L.H.S.
    replacing n by n-1 in 2nd term in R.H.S
    ∞                                     ∞                    ∞
         (n + 1)Pn+1 (x)tn − 2x                nPn (x)tn +          (n −
    n=0                                  n=1                  n=2
                            ∞                    ∞
    1)Pn−1 (x)tn = x             Pn (x)tn −           Pn−1 (x)tn
                           n=0                  n=1
    comparing the coefficients of tn on both the sides

                            N. B. Vyas        Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (n + 1)Pn+1 (x) − 2xnPn (x) + (n − 1)Pn−1 (x) =
  xPn (x) − Pn−1 (x)




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (n + 1)Pn+1 (x) − 2xnPn (x) + (n − 1)Pn−1 (x) =
  xPn (x) − Pn−1 (x)
∴ (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − (n − 1 + 1)Pn−1 (x)




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (n + 1)Pn+1 (x) − 2xnPn (x) + (n − 1)Pn−1 (x) =
  xPn (x) − Pn−1 (x)
∴ (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − (n − 1 + 1)Pn−1 (x)
∴ (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)


(2) nPn (x) = xPn (x) − Pn−1 (x)




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (2) nPn (x) = xPn (x) − Pn−1 (x)
Proof: We have




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (2) nPn (x) = xPn (x) − Pn−1 (x)
Proof: We have
        ∞                                  1
                                           −
                    n
             Pn (x)t = (1 − 2xt +      t2 ) 2   ——–(i)
       n=0




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (2) nPn (x) = xPn (x) − Pn−1 (x)
Proof: We have
        ∞                                  1
                                           −
                    n
             Pn (x)t = (1 − 2xt +      t2 ) 2   ——–(i)
       n=0
       Differentiating equation (i) partially with respect to x, we
       get




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (2) nPn (x) = xPn (x) − Pn−1 (x)
Proof: We have
        ∞                                  1
                                           −
                    n
             Pn (x)t = (1 − 2xt +      t2 ) 2   ——–(i)
       n=0
       Differentiating equation (i) partially with respect to x, we
       get
        ∞
                       1                 3
           Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t)
                       2
       n=0




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (2) nPn (x) = xPn (x) − Pn−1 (x)
Proof: We have
        ∞                                  1
                                           −
                    n
              Pn (x)t = (1 − 2xt +     t2 ) 2    ——–(i)
        n=0
        Differentiating equation (i) partially with respect to x, we
        get
         ∞
                        1                 3
            Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t)
                        2
        n=0
         ∞                                   1
                    n   t(1 − 2xt + t2 )− 2
    ∴         Pn (x)t =                     ————-(ii)
                          (1 − 2xt + t2 )
        n=0




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (2) nPn (x) = xPn (x) − Pn−1 (x)
Proof: We have
        ∞                                  1
                                           −
                    n
             Pn (x)t = (1 − 2xt +      t2 ) 2    ——–(i)
       n=0
       Differentiating equation (i) partially with respect to x, we
       get
        ∞
                       1                 3
           Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t)
                       2
       n=0
        ∞                                    1
                    t(1 − 2xt + t2 )− 2
                    n
   ∴     Pn (x)t =                      ————-(ii)
                      (1 − 2xt + t2 )
     n=0
   ⇒ Differentiating equation (i) partially with respect to t, we
     get



                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (2) nPn (x) = xPn (x) − Pn−1 (x)
Proof: We have
        ∞                                  1
                                           −
                    n
             Pn (x)t = (1 − 2xt +      t2 ) 2    ——–(i)
       n=0
       Differentiating equation (i) partially with respect to x, we
       get
        ∞
                       1                 3
           Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t)
                       2
       n=0
        ∞                                    1
                    t(1 − 2xt + t2 )− 2
                    n
   ∴     Pn (x)t =                      ————-(ii)
                      (1 − 2xt + t2 )
     n=0
   ⇒ Differentiating equation (i) partially with respect to t, we
     get
      ∞
                          1                3
         nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t)
                          2
       n=1

                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (2) nPn (x) = xPn (x) − Pn−1 (x)
Proof: We have
        ∞                                  1
                                           −
                    n
             Pn (x)t = (1 − 2xt +      t2 ) 2   ——–(i)
       n=0
       Differentiating equation (i) partially with respect to x, we
       get
        ∞
                       1                 3
           Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t)
                       2
       n=0
        ∞                                   1
                    t(1 − 2xt + t2 )− 2
                    n
   ∴     Pn (x)t =                      ————-(ii)
                      (1 − 2xt + t2 )
     n=0
   ⇒ Differentiating equation (i) partially with respect to t, we
     get
      ∞
                          1                3
         nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t)
                          2
       n=1
        ∞                                                1
                        n−1    (x − t)(1 −Legendre’s )− 2
                              N. B. Vyas
                                           2xt + t2 Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


   ∞                                  ∞
                 n−1     (x − t)
        nPn (x)t       =                    Pn (x)tn {by eq. (ii)
                            t
  n=1                                 n=0




                        N. B. Vyas          Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


   ∞                                  ∞
                  n−1     (x − t)
        nPn (x)t        =                   Pn (x)tn {by eq. (ii)
                             t
  n=1                                 n=0
    ∞                                  ∞
∴ t         nPn (x)tn−1 = (x − t)            Pn (x)tn
      n=1                             n=0




                         N. B. Vyas         Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                                  ∞
                 n−1     (x − t)
          nPn (x)t     =                     Pn (x)tn {by eq. (ii)
                            t
    n=1                                n=0
      ∞                                 ∞
∴ t        nPn (x)tn−1 = (x − t)              Pn (x)tn
    n=1                                n=0
    ∞                      ∞                     ∞
∴         nPn (x)tn = x         Pn (x)tn −            Pn (x)tn+1
    n=1                   n=0                   n=0




                          N. B. Vyas         Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                                  ∞
                 n−1     (x − t)
          nPn (x)t     =                     Pn (x)tn {by eq. (ii)
                            t
    n=1                                n=0
      ∞                                 ∞
∴ t        nPn (x)tn−1 = (x − t)              Pn (x)tn
    n=1                                n=0
    ∞                      ∞                     ∞
∴         nPn (x)tn = x         Pn (x)tn −            Pn (x)tn+1
    n=1                   n=0                   n=0
    Replacing n by n-1 in        2nd   term in R.H.S.




                          N. B. Vyas         Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                                  ∞
                 n−1     (x − t)
          nPn (x)t     =                     Pn (x)tn {by eq. (ii)
                            t
    n=1                                n=0
      ∞                                 ∞
∴ t        nPn (x)tn−1 = (x − t)              Pn (x)tn
    n=1                                n=0
    ∞                      ∞                     ∞
∴         nPn (x)tn = x         Pn (x)tn −            Pn (x)tn+1
    n=1                   n=0                   n=0
    Replacing n by n-1 in        2nd   term in R.H.S.
    ∞                      ∞                     ∞
                 n                      n
∴         nPn (x)t = x          Pn (x)t −             Pn−1 (x)tn
    n=1                   n=0                   n=1




                          N. B. Vyas         Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                                  ∞
                 n−1     (x − t)
          nPn (x)t     =                     Pn (x)tn {by eq. (ii)
                            t
    n=1                                n=0
      ∞                                 ∞
∴ t        nPn (x)tn−1 = (x − t)              Pn (x)tn
    n=1                                n=0
    ∞                      ∞                     ∞
∴         nPn (x)tn = x         Pn (x)tn −            Pn (x)tn+1
    n=1                   n=0                   n=0
    Replacing n by n-1 in        2nd   term in R.H.S.
    ∞                      ∞                     ∞
                 n                      n
∴         nPn (x)t = x          Pn (x)t −             Pn−1 (x)tn
    n=1                   n=0                   n=1
    comparing the coefficients of tn on both sides, we get



                          N. B. Vyas         Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)


    ∞                                  ∞
                 n−1     (x − t)
          nPn (x)t     =                     Pn (x)tn {by eq. (ii)
                            t
    n=1                                n=0
      ∞                                 ∞
∴ t        nPn (x)tn−1 = (x − t)              Pn (x)tn
    n=1                                n=0
    ∞                      ∞                     ∞
∴         nPn (x)tn = x         Pn (x)tn −            Pn (x)tn+1
    n=1                   n=0                   n=0
    Replacing n by n-1 in        2nd   term in R.H.S.
    ∞                      ∞                     ∞
                 n                      n
∴         nPn (x)t = x          Pn (x)t −             Pn−1 (x)tn
    n=1                   n=0                   n=1
    comparing the coefficients of tn on both sides, we get
    nPn (x) = xPn (x) − Pn−1 (x)


                          N. B. Vyas         Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
    ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
    ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a)
       differentiating equation (a) partially with respect to x, We
       get




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
    ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a)
       differentiating equation (a) partially with respect to x, We
       get
    ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x)
       —(b)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
    ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a)
       differentiating equation (a) partially with respect to x, We
       get
    ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x)
       —(b)
       Also from relation (2)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
    ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a)
       differentiating equation (a) partially with respect to x, We
       get
    ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x)
       —(b)
       Also from relation (2)
       nPn (x) = xPn (x) − Pn−1 (x)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
    ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a)
       differentiating equation (a) partially with respect to x, We
       get
    ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x)
       —(b)
       Also from relation (2)
       nPn (x) = xPn (x) − Pn−1 (x)
    ∴ xPn (x) = nPn (x) + Pn−1 (x)—– (c)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
    ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a)
       differentiating equation (a) partially with respect to x, We
       get
    ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x)
       —(b)
       Also from relation (2)
       nPn (x) = xPn (x) − Pn−1 (x)
    ∴ xPn (x) = nPn (x) + Pn−1 (x)—– (c)
       Substituting the value of (c) in equation (b), we get



                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)


   (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n
Proof: We have ( from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
    ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a)
       differentiating equation (a) partially with respect to x, We
       get
    ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x)
       —(b)
       Also from relation (2)
       nPn (x) = xPn (x) − Pn−1 (x)
    ∴ xPn (x) = nPn (x) + Pn−1 (x)—– (c)
       Substituting the value of (c) in equation (b), we get
    ∴ (2n + 1)Pn (x) + (2n + 1)[nPn (x) + Pn−1 (x)] =
       (n + 1)Pn+1 (x) + nPn−1 (x)
                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (2n + 1)(n + 1)Pn (x) + (2n + 1)Pn−1 (x) =
  (n + 1)Pn+1 (x) + nPn−1 (x)




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (2n + 1)(n + 1)Pn (x) + (2n + 1)Pn−1 (x) =
  (n + 1)Pn+1 (x) + nPn−1 (x)
∴ (2n + 1)(n + 1)Pn (x) = (n + 1)Pn+1 (x) − (n + 1)Pn−1 (x)




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (2n + 1)(n + 1)Pn (x) + (2n + 1)Pn−1 (x) =
  (n + 1)Pn+1 (x) + nPn−1 (x)
∴ (2n + 1)(n + 1)Pn (x) = (n + 1)Pn+1 (x) − (n + 1)Pn−1 (x)
∴ dividing by (n + 1), we get




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
Examples of Legendre’s Polynomials
    Generating Function for Pn (x)
               Rodrigue’s Formula
    Recurrence Relations for Pn (x)




∴ (2n + 1)(n + 1)Pn (x) + (2n + 1)Pn−1 (x) =
  (n + 1)Pn+1 (x) + nPn−1 (x)
∴ (2n + 1)(n + 1)Pn (x) = (n + 1)Pn+1 (x) − (n + 1)Pn−1 (x)
∴ dividing by (n + 1), we get
∴ (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)




                        N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(4) Pn (x) = xPn−1 (x) + nPn−1 (x)




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),
       (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),
       (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a)
       Also we have (from relation (2) ),




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),
       (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a)
       Also we have (from relation (2) ),
    ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),
       (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a)
       Also we have (from relation (2) ),
    ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b)
       Taking (a) - (b), we get




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),
       (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a)
       Also we have (from relation (2) ),
    ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b)
       Taking (a) - (b), we get
    ∴ (n + 1)Pn (x) = Pn+1 (x) − xPn (x)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),
       (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a)
       Also we have (from relation (2) ),
    ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b)
       Taking (a) - (b), we get
    ∴ (n + 1)Pn (x) = Pn+1 (x) − xPn (x)
       replacing n by n − 1, we get




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),
       (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a)
       Also we have (from relation (2) ),
    ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b)
       Taking (a) - (b), we get
    ∴ (n + 1)Pn (x) = Pn+1 (x) − xPn (x)
       replacing n by n − 1, we get
    ∴ nPn−1 (x) = Pn (x) − xPn−1 (x)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (4) Pn (x) = xPn−1 (x) + nPn−1 (x)
Proof: We have (from relation (3) ),
       (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a)
       Also we have (from relation (2) ),
    ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b)
       Taking (a) - (b), we get
    ∴ (n + 1)Pn (x) = Pn+1 (x) − xPn (x)
       replacing n by n − 1, we get
    ∴ nPn−1 (x) = Pn (x) − xPn−1 (x)
    ∴ Pn (x) = xPn−1 (x) + nPn−1 (x)



                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )
       Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )
       Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a)
       also we have (from relation (2) )




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )
       Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a)
       also we have (from relation (2) )
       nPn (x) = xPn (x) − Pn−1 (x)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )
       Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a)
       also we have (from relation (2) )
       nPn (x) = xPn (x) − Pn−1 (x)
       xPn (x) = nPn (x) + Pn−1 (x) ——– (b)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )
       Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a)
       also we have (from relation (2) )
       nPn (x) = xPn (x) − Pn−1 (x)
       xPn (x) = nPn (x) + Pn−1 (x) ——– (b)
       taking (a) - x X (b), we get




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )
       Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a)
       also we have (from relation (2) )
       nPn (x) = xPn (x) − Pn−1 (x)
       xPn (x) = nPn (x) + Pn−1 (x) ——– (b)
       taking (a) - x X (b), we get
       (1 − x2 )Pn (x) = xPn−1 (x) + nPn−1 (x) − nxPn (x) − xPn−1 (x)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )
       Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a)
       also we have (from relation (2) )
       nPn (x) = xPn (x) − Pn−1 (x)
       xPn (x) = nPn (x) + Pn−1 (x) ——– (b)
       taking (a) - x X (b), we get
       (1 − x2 )Pn (x) = xPn−1 (x) + nPn−1 (x) − nxPn (x) − xPn−1 (x)
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]
Proof: We have (from relation (4) )
       Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a)
       also we have (from relation (2) )
       nPn (x) = xPn (x) − Pn−1 (x)
       xPn (x) = nPn (x) + Pn−1 (x) ——– (b)
       taking (a) - x X (b), we get
       (1 − x2 )Pn (x) = xPn−1 (x) + nPn−1 (x) − nxPn (x) − xPn−1 (x)
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)]




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
  Examples of Legendre’s Polynomials
      Generating Function for Pn (x)
                 Rodrigue’s Formula
      Recurrence Relations for Pn (x)




(6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]




                          N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)
       also we have (from relation (1) )




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)
       also we have (from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)
       also we have (from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x)




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)
       also we have (from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)]




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)
       also we have (from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)]
       n(Pn−1 (x) − xPn (x)) = (n + 1)(xPn (x) − Pn+1 (x))




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)
       also we have (from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)]
       n(Pn−1 (x) − xPn (x)) = (n + 1)(xPn (x) − Pn+1 (x))
       from equation (a),




                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)
       also we have (from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)]
       n(Pn−1 (x) − xPn (x)) = (n + 1)(xPn (x) − Pn+1 (x))
       from equation (a),
       (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]



                             N. B. Vyas    Legendre’s Function
Legendre’s Polynomials
     Examples of Legendre’s Polynomials
         Generating Function for Pn (x)
                    Rodrigue’s Formula
         Recurrence Relations for Pn (x)




   (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]
Proof: We have (from relation (5) )
       (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a)
       also we have (from relation (1) )
       (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x)
       (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)]
       n(Pn−1 (x) − xPn (x)) = (n + 1)(xPn (x) − Pn+1 (x))
       from equation (a),
       (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)]



                             N. B. Vyas    Legendre’s Function

More Related Content

PPTX
Complex analysis
PPTX
LYAPUNOV STABILITY PROBLEM SOLUTION
PPTX
Lyapunov stability analysis
PPT
Control chap5
PDF
Chapter 6
PDF
Hossam yassin cv - technical office engineer
PDF
Control system stability routh hurwitz criterion
Complex analysis
LYAPUNOV STABILITY PROBLEM SOLUTION
Lyapunov stability analysis
Control chap5
Chapter 6
Hossam yassin cv - technical office engineer
Control system stability routh hurwitz criterion

What's hot (20)

PDF
B.Tech-II_Unit-II
PDF
Higher order differential equations
PPTX
3.1 higher derivatives
PPT
Mathematics and History of Complex Variables
PPT
Legendre functions
PPT
Introduction to Differential Equations
PDF
Higher Differential Equation
PPT
System Of Linear Equations
PPTX
2. Fixed Point Iteration.pptx
PPT
first order ode with its application
PDF
Point Collocation Method used in the solving of Differential Equations, parti...
PPTX
Spline interpolation numerical methods presentation
PPTX
Second order homogeneous linear differential equations
PDF
Group theory notes
PPT
Limits
PDF
Circles and Tangent Lines
PPTX
Fourier series
PPTX
Lagrange's equation with one application
PPTX
Power series
PPTX
A brief introduction to finite difference method
B.Tech-II_Unit-II
Higher order differential equations
3.1 higher derivatives
Mathematics and History of Complex Variables
Legendre functions
Introduction to Differential Equations
Higher Differential Equation
System Of Linear Equations
2. Fixed Point Iteration.pptx
first order ode with its application
Point Collocation Method used in the solving of Differential Equations, parti...
Spline interpolation numerical methods presentation
Second order homogeneous linear differential equations
Group theory notes
Limits
Circles and Tangent Lines
Fourier series
Lagrange's equation with one application
Power series
A brief introduction to finite difference method
Ad

Viewers also liked (20)

PDF
Legendre
PPT
Legendre's eqaution
PPTX
Bessel’s equation
PPT
Practical Applications of Bessel's function
PPTX
Higher order ODE with applications
PDF
Special functions
PDF
Numerical Methods 1
PPTX
Metric tensor in general relativity
PDF
Jif315 academic planner
PDF
Laplace1
PDF
Academic planner jif 315 20152016
PDF
Gamma and betta function harsh shah
PPT
Mc Coy Call Center Improvement Program 8 6
PDF
3. tensor calculus jan 2013
PDF
Jif 315 lesson 1 Laplace and fourier transform
PPSX
Web analytics and matrics basics
PPT
MATRICS – Sequestration and Trust Deeds
PDF
AP Calculus Slides March 22, 2007
DOC
4PL Biz Module
Legendre
Legendre's eqaution
Bessel’s equation
Practical Applications of Bessel's function
Higher order ODE with applications
Special functions
Numerical Methods 1
Metric tensor in general relativity
Jif315 academic planner
Laplace1
Academic planner jif 315 20152016
Gamma and betta function harsh shah
Mc Coy Call Center Improvement Program 8 6
3. tensor calculus jan 2013
Jif 315 lesson 1 Laplace and fourier transform
Web analytics and matrics basics
MATRICS – Sequestration and Trust Deeds
AP Calculus Slides March 22, 2007
4PL Biz Module
Ad

Similar to Legendre Function (20)

PPT
PPT
Factor theorem
PPTX
polynomials of class 10th
PDF
Admissions in India 2015
PPT
Polynomials
PPTX
Polyomials x
PDF
Research Inventy : International Journal of Engineering and Science
PPTX
Polynomial- Maths project
PPTX
16 partial fraction decompositions x
DOCX
PDF
Polynomials
PPTX
Polynomials
PPT
Polinomials in cd
PDF
Rational Function############# Rational function
PDF
11 x1 t15 01 definitions (2013)
PPT
legendrebangladesh_university_of_engineering_and_technology.ppt
PDF
590-Article Text.pdf
PDF
590-Article Text.pdf
PPT
Rational Zeros and Decarte's Rule of Signs
PPT
POLYNOMIALS
Factor theorem
polynomials of class 10th
Admissions in India 2015
Polynomials
Polyomials x
Research Inventy : International Journal of Engineering and Science
Polynomial- Maths project
16 partial fraction decompositions x
Polynomials
Polynomials
Polinomials in cd
Rational Function############# Rational function
11 x1 t15 01 definitions (2013)
legendrebangladesh_university_of_engineering_and_technology.ppt
590-Article Text.pdf
590-Article Text.pdf
Rational Zeros and Decarte's Rule of Signs
POLYNOMIALS

More from Dr. Nirav Vyas (20)

PDF
Advance Topics in Latex - different packages
PPTX
Numerical Methods Algorithm and C Program
PDF
Reduction forumla
PPTX
Arithmetic Mean, Geometric Mean, Harmonic Mean
PPTX
Geometric progressions
PPTX
Arithmetic progressions
PPTX
Combinations
PPTX
Permutation
PPTX
Matrices and Determinants
PDF
Curve fitting - Lecture Notes
PDF
Trend analysis - Lecture Notes
PDF
Basic Concepts of Statistics - Lecture Notes
PDF
Numerical Methods - Power Method for Eigen values
PDF
Numerical Methods - Oridnary Differential Equations - 3
PDF
Numerical Methods - Oridnary Differential Equations - 2
PDF
Numerical Methods - Oridnary Differential Equations - 1
PDF
Partial Differential Equation - Notes
PDF
Laplace Transforms
PDF
Fourier series 3
PDF
Fourier series 2
Advance Topics in Latex - different packages
Numerical Methods Algorithm and C Program
Reduction forumla
Arithmetic Mean, Geometric Mean, Harmonic Mean
Geometric progressions
Arithmetic progressions
Combinations
Permutation
Matrices and Determinants
Curve fitting - Lecture Notes
Trend analysis - Lecture Notes
Basic Concepts of Statistics - Lecture Notes
Numerical Methods - Power Method for Eigen values
Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 1
Partial Differential Equation - Notes
Laplace Transforms
Fourier series 3
Fourier series 2

Recently uploaded (20)

PDF
Basic Mud Logging Guide for educational purpose
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
Cell Types and Its function , kingdom of life
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PPTX
Institutional Correction lecture only . . .
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
Pharma ospi slides which help in ospi learning
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PPTX
GDM (1) (1).pptx small presentation for students
PDF
Pre independence Education in Inndia.pdf
PPTX
Cell Structure & Organelles in detailed.
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
O7-L3 Supply Chain Operations - ICLT Program
Basic Mud Logging Guide for educational purpose
Final Presentation General Medicine 03-08-2024.pptx
Cell Types and Its function , kingdom of life
TR - Agricultural Crops Production NC III.pdf
STATICS OF THE RIGID BODIES Hibbelers.pdf
Institutional Correction lecture only . . .
Renaissance Architecture: A Journey from Faith to Humanism
Supply Chain Operations Speaking Notes -ICLT Program
Pharma ospi slides which help in ospi learning
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
GDM (1) (1).pptx small presentation for students
Pre independence Education in Inndia.pdf
Cell Structure & Organelles in detailed.
Anesthesia in Laparoscopic Surgery in India
Module 4: Burden of Disease Tutorial Slides S2 2025
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
human mycosis Human fungal infections are called human mycosis..pptx
102 student loan defaulters named and shamed – Is someone you know on the list?
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
O7-L3 Supply Chain Operations - ICLT Program

Legendre Function

  • 1. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Legendre’s Function N. B. Vyas Department of Mathematics Atmiya Institute of Technology and Science Department of Mathematics N. B. Vyas Legendre’s Function
  • 2. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) The differential equation N. B. Vyas Legendre’s Function
  • 3. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) The differential equation 2 (1 − x )y − 2xy + n(n + 1)y = 0 N. B. Vyas Legendre’s Function
  • 4. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) The differential equation 2 (1 − x )y − 2xy + n(n + 1)y = 0 is called Legendre’s differential equation, n is real constant N. B. Vyas Legendre’s Function
  • 5. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Legendre’s Polynomials: ⇒ P0 (x) = 1 N. B. Vyas Legendre’s Function
  • 6. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Legendre’s Polynomials: ⇒ P0 (x) = 1 ⇒ P1 (x) = x N. B. Vyas Legendre’s Function
  • 7. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Legendre’s Polynomials: ⇒ P0 (x) = 1 ⇒ P1 (x) = x 1 ⇒ P2 (x) = (3x2 − 1) 2 N. B. Vyas Legendre’s Function
  • 8. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Legendre’s Polynomials: ⇒ P0 (x) = 1 ⇒ P1 (x) = x 1 ⇒ P2 (x) = (3x2 − 1) 2 1 ⇒ P3 (x) = (5x3 − 3x) 2 N. B. Vyas Legendre’s Function
  • 9. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Legendre’s Polynomials: ⇒ P0 (x) = 1 ⇒ P1 (x) = x 1 ⇒ P2 (x) = (3x2 − 1) 2 1 ⇒ P3 (x) = (5x3 − 3x) 2 1 ⇒ P4 (x) = (35x3 − 30x2 + 3) 8 N. B. Vyas Legendre’s Function
  • 10. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Legendre’s Polynomials: ⇒ P0 (x) = 1 ⇒ P1 (x) = x 1 ⇒ P2 (x) = (3x2 − 1) 2 1 ⇒ P3 (x) = (5x3 − 3x) 2 1 ⇒ P4 (x) = (35x3 − 30x2 + 3) 8 1 ⇒ P5 (x) = (63x5 − 70x3 + 15x) 8 N. B. Vyas Legendre’s Function
  • 11. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Ex.1 Express f (x) in terms of Legendre’s polynomials where f (x) = x3 + 2x2 − x − 3. N. B. Vyas Legendre’s Function
  • 12. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: N. B. Vyas Legendre’s Function
  • 13. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ⇒ P0 (x) = 1 ∴ 1 = P0 (x) N. B. Vyas Legendre’s Function
  • 14. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ⇒ P0 (x) = 1 ∴ 1 = P0 (x) ⇒ P1 (x) = x ∴ x = P1 (x) N. B. Vyas Legendre’s Function
  • 15. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ⇒ P0 (x) = 1 ∴ 1 = P0 (x) ⇒ P1 (x) = x ∴ x = P1 (x) 1 ⇒ P3 (x) = (5x3 − 3x) 2 N. B. Vyas Legendre’s Function
  • 16. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ⇒ P0 (x) = 1 ∴ 1 = P0 (x) ⇒ P1 (x) = x ∴ x = P1 (x) 1 ⇒ P3 (x) = (5x3 − 3x) 2 ∴ 2P3 (x) = (5x3 − 3x) N. B. Vyas Legendre’s Function
  • 17. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ⇒ P0 (x) = 1 ∴ 1 = P0 (x) ⇒ P1 (x) = x ∴ x = P1 (x) 1 ⇒ P3 (x) = (5x3 − 3x) 2 ∴ 2P3 (x) = (5x3 − 3x) ∴ 2P3 (x) + 3x = 5x3 N. B. Vyas Legendre’s Function
  • 18. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ⇒ P0 (x) = 1 ∴ 1 = P0 (x) ⇒ P1 (x) = x ∴ x = P1 (x) 1 ⇒ P3 (x) = (5x3 − 3x) 2 ∴ 2P3 (x) = (5x3 − 3x) ∴ 2P3 (x) + 3x = 5x3 ∴ 2P3 (x) + 3P1 (x) = 5x3 { x = P1 (x)} N. B. Vyas Legendre’s Function
  • 19. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ⇒ P0 (x) = 1 ∴ 1 = P0 (x) ⇒ P1 (x) = x ∴ x = P1 (x) 1 ⇒ P3 (x) = (5x3 − 3x) 2 ∴ 2P3 (x) = (5x3 − 3x) ∴ 2P3 (x) + 3x = 5x3 ∴ 2P3 (x) + 3P1 (x) = 5x3 { x = P1 (x)} 2 3 ∴ x3 = P3 (x) + P1 (x) 5 5 N. B. Vyas Legendre’s Function
  • 20. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) 1 ⇒ P2 (x) = (3x2 − 1) 2 N. B. Vyas Legendre’s Function
  • 21. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) 1 ⇒ P2 (x) = (3x2 − 1) 2 ∴ 2P2 (x) = (3x2 − 1) N. B. Vyas Legendre’s Function
  • 22. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) 1 ⇒ P2 (x) = (3x2 − 1) 2 ∴ 2P2 (x) = (3x2 − 1) ∴ 2P2 (x) + 1 = 3x2 N. B. Vyas Legendre’s Function
  • 23. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) 1 ⇒ P2 (x) = (3x2 − 1) 2 ∴ 2P2 (x) = (3x2 − 1) ∴ 2P2 (x) + 1 = 3x2 ∴ 2P2 (x) + P0 (x) = 3x2 { 1 = P0 (x)} N. B. Vyas Legendre’s Function
  • 24. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) 1 ⇒ P2 (x) = (3x2 − 1) 2 ∴ 2P2 (x) = (3x2 − 1) ∴ 2P2 (x) + 1 = 3x2 ∴ 2P2 (x) + P0 (x) = 3x2 { 1 = P0 (x)} 2 1 ∴ x2 = P2 (x) + P0 (x) 3 3 N. B. Vyas Legendre’s Function
  • 25. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) 1 ⇒ P2 (x) = (3x2 − 1) 2 ∴ 2P2 (x) = (3x2 − 1) ∴ 2P2 (x) + 1 = 3x2 ∴ 2P2 (x) + P0 (x) = 3x2 { 1 = P0 (x)} 2 1 ∴ x2 = P2 (x) + P0 (x) 3 3 Now, f (x) = x3 + 2x2 − x − 3 N. B. Vyas Legendre’s Function
  • 26. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) 1 ⇒ P2 (x) = (3x2 − 1) 2 ∴ 2P2 (x) = (3x2 − 1) ∴ 2P2 (x) + 1 = 3x2 ∴ 2P2 (x) + P0 (x) = 3x2 { 1 = P0 (x)} 2 1 ∴ x2 = P2 (x) + P0 (x) 3 3 Now, f (x) = x3 + 2x2 − x − 3 f (x) = x3 + 2x2 − x − 3 2 3 4 2 = P3 (x) + P1 (x) + P2 (x) + P0 (x) − P1 (x) − 3P0 (x) 5 5 3 3 N. B. Vyas Legendre’s Function
  • 27. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Ex.2 Express x3 − 5x2 + 6x + 1 in terms of Legendre’s polynomial. N. B. Vyas Legendre’s Function
  • 28. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Ex.3 Express 4x3 − 2x2 − 3x + 8 in terms of Legendre’s polynomial. N. B. Vyas Legendre’s Function
  • 29. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Generating Function for Pn(x) ∞ 1 Pn(x)tn = √ n=0 1 − 2xt + t2 1 = (1 − 2xt + t2)− 2 N. B. Vyas Legendre’s Function
  • 30. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) 1 The function (1 − 2xt + t2)− 2 is called Generating function of Legendre’s polynomial Pn(x) N. B. Vyas Legendre’s Function
  • 31. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Ex Show that N. B. Vyas Legendre’s Function
  • 32. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Ex Show that (i)Pn(1) = 1 N. B. Vyas Legendre’s Function
  • 33. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Ex Show that (i)Pn(1) = 1 (ii)Pn(−1) = (−1)n N. B. Vyas Legendre’s Function
  • 34. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Ex Show that (i)Pn(1) = 1 (ii)Pn(−1) = (−1)n (iii)Pn(−x) = (−1)nPn(x) N. B. Vyas Legendre’s Function
  • 35. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ∞ 1 (i) We have Pn (x)tn = (1 − 2xt + t2 )− 2 n=0 Putting x = 1 in eq(1), we get N. B. Vyas Legendre’s Function
  • 36. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ∞ 1 (i) We have Pn (x)tn = (1 − 2xt + t2 )− 2 n=0 Putting x = 1 in eq(1), we get ∞ 1 Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1 n=0 N. B. Vyas Legendre’s Function
  • 37. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ∞ 1 (i) We have Pn (x)tn = (1 − 2xt + t2 )− 2 n=0 Putting x = 1 in eq(1), we get ∞ 1 Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1 n=0 ∞ 1 ∴ Pn (1)tn = = 1 + t + t2 + t3 + ... 1−t n=0 N. B. Vyas Legendre’s Function
  • 38. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ∞ 1 (i) We have Pn (x)tn = (1 − 2xt + t2 )− 2 n=0 Putting x = 1 in eq(1), we get ∞ 1 Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1 n=0 ∞ 1 ∴ Pn (1)tn = = 1 + t + t2 + t3 + ... 1−t n=0 ∞ ∞ n ∴ Pn (1)t = tn n=0 n=0 N. B. Vyas Legendre’s Function
  • 39. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ∞ 1 (i) We have Pn (x)tn = (1 − 2xt + t2 )− 2 n=0 Putting x = 1 in eq(1), we get ∞ 1 Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1 n=0 ∞ 1 ∴ Pn (1)tn = = 1 + t + t2 + t3 + ... 1−t n=0 ∞ ∞ n ∴ Pn (1)t = tn n=0 n=0 Comparing the coefficient of tn both the sides, we get N. B. Vyas Legendre’s Function
  • 40. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Solution: ∞ 1 (i) We have Pn (x)tn = (1 − 2xt + t2 )− 2 n=0 Putting x = 1 in eq(1), we get ∞ 1 Pn (1)tn = (1 − 2t + t2 )− 2 = (1 − t)−1 n=0 ∞ 1 ∴ Pn (1)tn = = 1 + t + t2 + t3 + ... 1−t n=0 ∞ ∞ n ∴ Pn (1)t = tn n=0 n=0 Comparing the coefficient of tn both the sides, we get Pn (1) = 1 N. B. Vyas Legendre’s Function
  • 41. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (ii) Putting x = −1 in eq(1), we get N. B. Vyas Legendre’s Function
  • 42. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (ii) Putting x = −1 in eq(1), we get ∞ 1 Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1 n=0 N. B. Vyas Legendre’s Function
  • 43. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (ii) Putting x = −1 in eq(1), we get ∞ 1 Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1 n=0 ∞ 1 ∴ Pn (−1)tn = = 1 − t + t2 − t3 + ... 1+t n=0 N. B. Vyas Legendre’s Function
  • 44. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (ii) Putting x = −1 in eq(1), we get ∞ 1 Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1 n=0 ∞ 1 ∴ Pn (−1)tn = = 1 − t + t2 − t3 + ... 1+t n=0 ∞ ∞ ∴ Pn (−1)tn = (−1)n tn n=0 n=0 N. B. Vyas Legendre’s Function
  • 45. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (ii) Putting x = −1 in eq(1), we get ∞ 1 Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1 n=0 ∞ 1 ∴ Pn (−1)tn = = 1 − t + t2 − t3 + ... 1+t n=0 ∞ ∞ ∴ Pn (−1)tn = (−1)n tn n=0 n=0 Comparing coefficients of tn , we get N. B. Vyas Legendre’s Function
  • 46. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (ii) Putting x = −1 in eq(1), we get ∞ 1 Pn (−1)tn = (1 + 2t + t2 )− 2 = (1 + t)−1 n=0 ∞ 1 ∴ Pn (−1)tn = = 1 − t + t2 − t3 + ... 1+t n=0 ∞ ∞ ∴ Pn (−1)tn = (−1)n tn n=0 n=0 Comparing coefficients of tn , we get Pn (−1) = (−1)n N. B. Vyas Legendre’s Function
  • 47. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (iii) Now replacing x by −x in eq(1), we get N. B. Vyas Legendre’s Function
  • 48. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (iii) Now replacing x by −x in eq(1), we get ∞ 1 Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a) n=0 N. B. Vyas Legendre’s Function
  • 49. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (iii) Now replacing x by −x in eq(1), we get ∞ 1 Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a) n=0 Now, replacing t by −t in eq(1), we get N. B. Vyas Legendre’s Function
  • 50. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (iii) Now replacing x by −x in eq(1), we get ∞ 1 Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a) n=0 Now, replacing t by −t in eq(1), we get ∞ 1 Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b) n=0 N. B. Vyas Legendre’s Function
  • 51. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (iii) Now replacing x by −x in eq(1), we get ∞ 1 Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a) n=0 Now, replacing t by −t in eq(1), we get ∞ 1 Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b) n=0 from equation (a) and (b) N. B. Vyas Legendre’s Function
  • 52. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (iii) Now replacing x by −x in eq(1), we get ∞ 1 Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a) n=0 Now, replacing t by −t in eq(1), we get ∞ 1 Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b) n=0 from equation (a) and (b) ∞ ∞ n Pn (−x)(t) = Pn (x)(−1)n (t)n n=0 n=0 N. B. Vyas Legendre’s Function
  • 53. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (iii) Now replacing x by −x in eq(1), we get ∞ 1 Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a) n=0 Now, replacing t by −t in eq(1), we get ∞ 1 Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b) n=0 from equation (a) and (b) ∞ ∞ n Pn (−x)(t) = Pn (x)(−1)n (t)n n=0 n=0 Comparing the coefficients of tn , both sides, we get N. B. Vyas Legendre’s Function
  • 54. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (iii) Now replacing x by −x in eq(1), we get ∞ 1 Pn (−x)tn = (1 + 2xt + t2 )− 2 —(a) n=0 Now, replacing t by −t in eq(1), we get ∞ 1 Pn (x)(−t)n = (1 + 2xt + t2 )− 2 —(b) n=0 from equation (a) and (b) ∞ ∞ n Pn (−x)(t) = Pn (x)(−1)n (t)n n=0 n=0 Comparing the coefficients of tn , both sides, we get Pn (−x) = (−1)n Pn (x) N. B. Vyas Legendre’s Function
  • 55. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Rodrigue’s Formula 1 dn Pn(x) = n [(x2 − 1)n] 2 n! dxn N. B. Vyas Legendre’s Function
  • 56. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Proof: Let y = (x2 − 1)n N. B. Vyas Legendre’s Function
  • 57. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Proof: Let y = (x2 − 1)n Differentiating wit respect to x N. B. Vyas Legendre’s Function
  • 58. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Proof: Let y = (x2 − 1)n Differentiating wit respect to x ∴ y1 = n(x2 − 1)n−1 (2x) N. B. Vyas Legendre’s Function
  • 59. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Proof: Let y = (x2 − 1)n Differentiating wit respect to x ∴ y1 = n(x2 − 1)n−1 (2x) 2nx(x2 − 1)n 2nxy ∴ y1 = = 2 (x2 − 1) x −1 N. B. Vyas Legendre’s Function
  • 60. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Proof: Let y = (x2 − 1)n Differentiating wit respect to x ∴ y1 = n(x2 − 1)n−1 (2x) 2nx(x2 − 1)n 2nxy ∴ y1 = = 2 (x2 − 1) x −1 ∴ (x2 − 1)y1 = 2nxy N. B. Vyas Legendre’s Function
  • 61. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Proof: Let y = (x2 − 1)n Differentiating wit respect to x ∴ y1 = n(x2 − 1)n−1 (2x) 2nx(x2 − 1)n 2nxy ∴ y1 = = 2 (x2 − 1) x −1 ∴ (x2 − 1)y1 = 2nxy Differentiating with respect to x, N. B. Vyas Legendre’s Function
  • 62. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Proof: Let y = (x2 − 1)n Differentiating wit respect to x ∴ y1 = n(x2 − 1)n−1 (2x) 2nx(x2 − 1)n 2nxy ∴ y1 = = 2 (x2 − 1) x −1 ∴ (x2 − 1)y1 = 2nxy Differentiating with respect to x, (x2 − 1)y2 +2xy1 = 2nxy1 + 2ny N. B. Vyas Legendre’s Function
  • 63. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V dxn N. B. Vyas Legendre’s Function
  • 64. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V dxn dn → ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn dxn N. B. Vyas Legendre’s Function
  • 65. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V dxn dn → ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn dxn dn → (2xy1 ) = nC0 (2x)yn+1 + nC1 (2)yn dxn N. B. Vyas Legendre’s Function
  • 66. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V dxn dn → ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn dxn dn → (2xy1 ) = nC0 (2x)yn+1 + nC1 (2)yn dxn dn → (2nxy1 ) = nC0 (2nx)yn+1 + nC1 (2n)yn dxn N. B. Vyas Legendre’s Function
  • 67. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V dxn dn → ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn dxn dn → (2xy1 ) = nC0 (2x)yn+1 + nC1 (2)yn dxn dn → (2nxy1 ) = nC0 (2nx)yn+1 + nC1 (2n)yn dxn dn → (2ny) = 2nyn dxn N. B. Vyas Legendre’s Function
  • 68. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn (U V ) = nC0 U Vn + nC1 U1 Vn−1 + ... + nCn Un V dxn dn → ((x2 −1)y2 ) = nC0 (x2 −1)yn+2 +nC1 (2x)yn+1 +nC2 (2)yn dxn dn → (2xy1 ) = nC0 (2x)yn+1 + nC1 (2)yn dxn dn → (2nxy1 ) = nC0 (2nx)yn+1 + nC1 (2n)yn dxn dn → (2ny) = 2nyn dxn n(n − 1) Also nC0 = 1, nC1 = n, nC2 = 2! N. B. Vyas Legendre’s Function
  • 69. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn N. B. Vyas Legendre’s Function
  • 70. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 N. B. Vyas Legendre’s Function
  • 71. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 ∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0 N. B. Vyas Legendre’s Function
  • 72. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 ∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0 ∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0 N. B. Vyas Legendre’s Function
  • 73. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 ∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0 ∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0 dn y Let v = yn = n dx N. B. Vyas Legendre’s Function
  • 74. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 ∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0 ∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0 dn y Let v = yn = n dx ∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2) N. B. Vyas Legendre’s Function
  • 75. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 ∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0 ∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0 dn y Let v = yn = n dx ∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2) Equation (2) is a Legendre’s equation in variables v and x N. B. Vyas Legendre’s Function
  • 76. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 ∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0 ∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0 dn y Let v = yn = n dx ∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2) Equation (2) is a Legendre’s equation in variables v and x ⇒ Pn (x) is a solution of equation (2) N. B. Vyas Legendre’s Function
  • 77. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 ∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0 ∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0 dn y Let v = yn = n dx ∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2) Equation (2) is a Legendre’s equation in variables v and x ⇒ Pn (x) is a solution of equation (2) Also, v = f (x) is a solution of equation (2) N. B. Vyas Legendre’s Function
  • 78. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (x2 − 1)yn+2 + 2nxyn+1 + n(n − 1)yn +2xyn+1 + 2nyn = 2nxyn+1 + n(2n)yn + 2nyn ∴ (x2 − 1)yn+2 + 2xyn+1 + (n2 − n + 2n − 2n2 − 2n)yn = 0 ∴ (x2 − 1)yn+2 + 2xyn+1 − n(n + 1)yn = 0 ∴ (1 − x2 )yn+2 − 2xyn+1 + n(n + 1)yn = 0 dn y Let v = yn = n dx ∴ (1 − x2 )v2 − 2xv1 + n(n + 1)v = 0 ——(2) Equation (2) is a Legendre’s equation in variables v and x ⇒ Pn (x) is a solution of equation (2) Also, v = f (x) is a solution of equation (2) Pn = cv where c is constant N. B. Vyas Legendre’s Function
  • 79. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn y dn ∴ Pn (x) = c = c n (x2 − 1)n ——(3) dxn dx N. B. Vyas Legendre’s Function
  • 80. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn y dn ∴ Pn (x) = c = c n (x2 − 1)n ——(3) dxn dx Now y = (x2 − 1)n N. B. Vyas Legendre’s Function
  • 81. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn y dn ∴ Pn (x) = c = c n (x2 − 1)n ——(3) dxn dx Now y = (x2 − 1)n = (x + 1)n (x − 1)n N. B. Vyas Legendre’s Function
  • 82. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn y dn ∴ Pn (x) = c = c n (x2 − 1)n ——(3) dxn dx Now y = (x2 − 1)n = (x + 1)n (x − 1)n dn y dn ∴ = (x + 1)n n ((x − 1)n ) dxn dx N. B. Vyas Legendre’s Function
  • 83. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn y dn ∴ Pn (x) = c = c n (x2 − 1)n ——(3) dxn dx Now y = (x2 − 1)n = (x + 1)n (x − 1)n dn y dn ∴ = (x + 1)n n ((x − 1)n ) dxn dx dn−1 +n(x + 1)n−1 n−1 ((x − 1)n ) dx N. B. Vyas Legendre’s Function
  • 84. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn y dn ∴ Pn (x) = c = c n (x2 − 1)n ——(3) dxn dx Now y = (x2 − 1)n = (x + 1)n (x − 1)n dn y dn ∴ = (x + 1)n n ((x − 1)n ) dxn dx dn−1 +n(x + 1)n−1 n−1 ((x − 1)n ) dx +... N. B. Vyas Legendre’s Function
  • 85. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) dn y dn ∴ Pn (x) = c = c n (x2 − 1)n ——(3) dxn dx Now y = (x2 − 1)n = (x + 1)n (x − 1)n dn y dn ∴ = (x + 1)n n ((x − 1)n ) dxn dx dn−1 +n(x + 1)n−1 n−1 ((x − 1)n ) dx +... dn ((x + 1)n ) + (x − 1)n dxn N. B. Vyas Legendre’s Function
  • 86. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) Recurrence Relations for Pn(x) : − N. B. Vyas Legendre’s Function
  • 87. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) N. B. Vyas Legendre’s Function
  • 88. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) Proof: We have N. B. Vyas Legendre’s Function
  • 89. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) Proof: We have ∞ 1 − n 2 ) 2 ——–(i) Pn (x)t = (1 − 2xt + t n=0 N. B. Vyas Legendre’s Function
  • 90. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) Proof: We have ∞ 1 − n 2 ) 2 ——–(i) Pn (x)t = (1 − 2xt + t n=0 Differentiating equation (i) partially with respect to t, we get N. B. Vyas Legendre’s Function
  • 91. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) Proof: We have ∞ 1 − n 2 ) 2 ——–(i) Pn (x)t = (1 − 2xt + t n=0 Differentiating equation (i) partially with respect to t, we get ∞ 1 3 nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t) 2 n=1 N. B. Vyas Legendre’s Function
  • 92. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) Proof: We have ∞ 1 − n 2 ) 2 ——–(i) Pn (x)t = (1 − 2xt + t n=0 Differentiating equation (i) partially with respect to t, we get ∞ 1 3 nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t) 2 n=1 1 = (1 − 2xt + t2 )−1 (1 − 2xt + t2 )− 2 (x − t) N. B. Vyas Legendre’s Function
  • 93. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) Proof: We have ∞ 1 − n 2 ) 2 ——–(i) Pn (x)t = (1 − 2xt + t n=0 Differentiating equation (i) partially with respect to t, we get ∞ 1 3 nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t) 2 n=1 1 = (1 − 2xt + t2 )−1 (1 − 2xt + t2 )− 2 (x − t) 1 (1 − 2xt + t2 )− 2 = (x − t) (1 − 2xt + t2 ) N. B. Vyas Legendre’s Function
  • 94. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) Proof: We have ∞ 1 − n 2 ) 2 ——–(i) Pn (x)t = (1 − 2xt + t n=0 Differentiating equation (i) partially with respect to t, we get ∞ 1 3 nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t) 2 n=1 1 = (1 − 2xt + t2 )−1 (1 − 2xt + t2 )− 2 (x − t) 1 (1 − 2xt + t2 )− 2 = (x − t) (1 − 2xt + t2 ) from (i) N. B. Vyas Legendre’s Function
  • 95. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (1) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) Proof: We have ∞ 1 − n 2 ) 2 ——–(i) Pn (x)t = (1 − 2xt + t n=0 Differentiating equation (i) partially with respect to t, we get ∞ 1 3 nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t) 2 n=1 1 = (1 − 2xt + t2 )−1 (1 − 2xt + t2 )− 2 (x − t) 1 (1 − 2xt + t2 )− 2 = (x − t) (1 − 2xt + t2 ) from (i) ∞ ∞ n−1 (1 − 2xt + t2 ) nPn (x)t = (x − t) Pn (x)tn n=1 n=0 N. B. Vyas Legendre’s Function
  • 96. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ ∞ ∴ nPn (x)tn−1 − 2x nPn (x)tn + nPn (x)tn+1 = n=1 n=1 n=1 ∞ ∞ x Pn (x)tn − Pn (x)tn+1 n=0 n=0 N. B. Vyas Legendre’s Function
  • 97. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ ∞ ∴ nPn (x)tn−1 − 2x nPn (x)tn + nPn (x)tn+1 = n=1 n=1 n=1 ∞ ∞ x Pn (x)tn − Pn (x)tn+1 n=0 n=0 replacing n by n+1 in 1st term, n by n-1 in 3rd term in L.H.S. N. B. Vyas Legendre’s Function
  • 98. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ ∞ ∴ nPn (x)tn−1 − 2x nPn (x)tn + nPn (x)tn+1 = n=1 n=1 n=1 ∞ ∞ x Pn (x)tn − Pn (x)tn+1 n=0 n=0 replacing n by n+1 in 1st term, n by n-1 in 3rd term in L.H.S. replacing n by n-1 in 2nd term in R.H.S N. B. Vyas Legendre’s Function
  • 99. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ ∞ ∴ nPn (x)tn−1 − 2x nPn (x)tn + nPn (x)tn+1 = n=1 n=1 n=1 ∞ ∞ x Pn (x)tn − Pn (x)tn+1 n=0 n=0 replacing n by n+1 in 1st term, n by n-1 in 3rd term in L.H.S. replacing n by n-1 in 2nd term in R.H.S ∞ ∞ ∞ (n + 1)Pn+1 (x)tn − 2x nPn (x)tn + (n − n=0 n=1 n=2 ∞ ∞ 1)Pn−1 (x)tn = x Pn (x)tn − Pn−1 (x)tn n=0 n=1 N. B. Vyas Legendre’s Function
  • 100. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ ∞ ∴ nPn (x)tn−1 − 2x nPn (x)tn + nPn (x)tn+1 = n=1 n=1 n=1 ∞ ∞ x Pn (x)tn − Pn (x)tn+1 n=0 n=0 replacing n by n+1 in 1st term, n by n-1 in 3rd term in L.H.S. replacing n by n-1 in 2nd term in R.H.S ∞ ∞ ∞ (n + 1)Pn+1 (x)tn − 2x nPn (x)tn + (n − n=0 n=1 n=2 ∞ ∞ 1)Pn−1 (x)tn = x Pn (x)tn − Pn−1 (x)tn n=0 n=1 comparing the coefficients of tn on both the sides N. B. Vyas Legendre’s Function
  • 101. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (n + 1)Pn+1 (x) − 2xnPn (x) + (n − 1)Pn−1 (x) = xPn (x) − Pn−1 (x) N. B. Vyas Legendre’s Function
  • 102. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (n + 1)Pn+1 (x) − 2xnPn (x) + (n − 1)Pn−1 (x) = xPn (x) − Pn−1 (x) ∴ (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − (n − 1 + 1)Pn−1 (x) N. B. Vyas Legendre’s Function
  • 103. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (n + 1)Pn+1 (x) − 2xnPn (x) + (n − 1)Pn−1 (x) = xPn (x) − Pn−1 (x) ∴ (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − (n − 1 + 1)Pn−1 (x) ∴ (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) N. B. Vyas Legendre’s Function
  • 104. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) N. B. Vyas Legendre’s Function
  • 105. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) Proof: We have N. B. Vyas Legendre’s Function
  • 106. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) Proof: We have ∞ 1 − n Pn (x)t = (1 − 2xt + t2 ) 2 ——–(i) n=0 N. B. Vyas Legendre’s Function
  • 107. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) Proof: We have ∞ 1 − n Pn (x)t = (1 − 2xt + t2 ) 2 ——–(i) n=0 Differentiating equation (i) partially with respect to x, we get N. B. Vyas Legendre’s Function
  • 108. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) Proof: We have ∞ 1 − n Pn (x)t = (1 − 2xt + t2 ) 2 ——–(i) n=0 Differentiating equation (i) partially with respect to x, we get ∞ 1 3 Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t) 2 n=0 N. B. Vyas Legendre’s Function
  • 109. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) Proof: We have ∞ 1 − n Pn (x)t = (1 − 2xt + t2 ) 2 ——–(i) n=0 Differentiating equation (i) partially with respect to x, we get ∞ 1 3 Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t) 2 n=0 ∞ 1 n t(1 − 2xt + t2 )− 2 ∴ Pn (x)t = ————-(ii) (1 − 2xt + t2 ) n=0 N. B. Vyas Legendre’s Function
  • 110. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) Proof: We have ∞ 1 − n Pn (x)t = (1 − 2xt + t2 ) 2 ——–(i) n=0 Differentiating equation (i) partially with respect to x, we get ∞ 1 3 Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t) 2 n=0 ∞ 1 t(1 − 2xt + t2 )− 2 n ∴ Pn (x)t = ————-(ii) (1 − 2xt + t2 ) n=0 ⇒ Differentiating equation (i) partially with respect to t, we get N. B. Vyas Legendre’s Function
  • 111. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) Proof: We have ∞ 1 − n Pn (x)t = (1 − 2xt + t2 ) 2 ——–(i) n=0 Differentiating equation (i) partially with respect to x, we get ∞ 1 3 Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t) 2 n=0 ∞ 1 t(1 − 2xt + t2 )− 2 n ∴ Pn (x)t = ————-(ii) (1 − 2xt + t2 ) n=0 ⇒ Differentiating equation (i) partially with respect to t, we get ∞ 1 3 nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t) 2 n=1 N. B. Vyas Legendre’s Function
  • 112. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (2) nPn (x) = xPn (x) − Pn−1 (x) Proof: We have ∞ 1 − n Pn (x)t = (1 − 2xt + t2 ) 2 ——–(i) n=0 Differentiating equation (i) partially with respect to x, we get ∞ 1 3 Pn (x)tn = − (1 − 2xt + t2 )− 2 (−2t) 2 n=0 ∞ 1 t(1 − 2xt + t2 )− 2 n ∴ Pn (x)t = ————-(ii) (1 − 2xt + t2 ) n=0 ⇒ Differentiating equation (i) partially with respect to t, we get ∞ 1 3 nPn (x)tn−1 = − (1 − 2xt + t2 )− 2 (−2x + 2t) 2 n=1 ∞ 1 n−1 (x − t)(1 −Legendre’s )− 2 N. B. Vyas 2xt + t2 Function
  • 113. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ n−1 (x − t) nPn (x)t = Pn (x)tn {by eq. (ii) t n=1 n=0 N. B. Vyas Legendre’s Function
  • 114. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ n−1 (x − t) nPn (x)t = Pn (x)tn {by eq. (ii) t n=1 n=0 ∞ ∞ ∴ t nPn (x)tn−1 = (x − t) Pn (x)tn n=1 n=0 N. B. Vyas Legendre’s Function
  • 115. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ n−1 (x − t) nPn (x)t = Pn (x)tn {by eq. (ii) t n=1 n=0 ∞ ∞ ∴ t nPn (x)tn−1 = (x − t) Pn (x)tn n=1 n=0 ∞ ∞ ∞ ∴ nPn (x)tn = x Pn (x)tn − Pn (x)tn+1 n=1 n=0 n=0 N. B. Vyas Legendre’s Function
  • 116. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ n−1 (x − t) nPn (x)t = Pn (x)tn {by eq. (ii) t n=1 n=0 ∞ ∞ ∴ t nPn (x)tn−1 = (x − t) Pn (x)tn n=1 n=0 ∞ ∞ ∞ ∴ nPn (x)tn = x Pn (x)tn − Pn (x)tn+1 n=1 n=0 n=0 Replacing n by n-1 in 2nd term in R.H.S. N. B. Vyas Legendre’s Function
  • 117. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ n−1 (x − t) nPn (x)t = Pn (x)tn {by eq. (ii) t n=1 n=0 ∞ ∞ ∴ t nPn (x)tn−1 = (x − t) Pn (x)tn n=1 n=0 ∞ ∞ ∞ ∴ nPn (x)tn = x Pn (x)tn − Pn (x)tn+1 n=1 n=0 n=0 Replacing n by n-1 in 2nd term in R.H.S. ∞ ∞ ∞ n n ∴ nPn (x)t = x Pn (x)t − Pn−1 (x)tn n=1 n=0 n=1 N. B. Vyas Legendre’s Function
  • 118. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ n−1 (x − t) nPn (x)t = Pn (x)tn {by eq. (ii) t n=1 n=0 ∞ ∞ ∴ t nPn (x)tn−1 = (x − t) Pn (x)tn n=1 n=0 ∞ ∞ ∞ ∴ nPn (x)tn = x Pn (x)tn − Pn (x)tn+1 n=1 n=0 n=0 Replacing n by n-1 in 2nd term in R.H.S. ∞ ∞ ∞ n n ∴ nPn (x)t = x Pn (x)t − Pn−1 (x)tn n=1 n=0 n=1 comparing the coefficients of tn on both sides, we get N. B. Vyas Legendre’s Function
  • 119. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∞ ∞ n−1 (x − t) nPn (x)t = Pn (x)tn {by eq. (ii) t n=1 n=0 ∞ ∞ ∴ t nPn (x)tn−1 = (x − t) Pn (x)tn n=1 n=0 ∞ ∞ ∞ ∴ nPn (x)tn = x Pn (x)tn − Pn (x)tn+1 n=1 n=0 n=0 Replacing n by n-1 in 2nd term in R.H.S. ∞ ∞ ∞ n n ∴ nPn (x)t = x Pn (x)t − Pn−1 (x)tn n=1 n=0 n=1 comparing the coefficients of tn on both sides, we get nPn (x) = xPn (x) − Pn−1 (x) N. B. Vyas Legendre’s Function
  • 120. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) N. B. Vyas Legendre’s Function
  • 121. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) N. B. Vyas Legendre’s Function
  • 122. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a) N. B. Vyas Legendre’s Function
  • 123. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a) differentiating equation (a) partially with respect to x, We get N. B. Vyas Legendre’s Function
  • 124. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a) differentiating equation (a) partially with respect to x, We get ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) —(b) N. B. Vyas Legendre’s Function
  • 125. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a) differentiating equation (a) partially with respect to x, We get ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) —(b) Also from relation (2) N. B. Vyas Legendre’s Function
  • 126. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a) differentiating equation (a) partially with respect to x, We get ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) —(b) Also from relation (2) nPn (x) = xPn (x) − Pn−1 (x) N. B. Vyas Legendre’s Function
  • 127. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a) differentiating equation (a) partially with respect to x, We get ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) —(b) Also from relation (2) nPn (x) = xPn (x) − Pn−1 (x) ∴ xPn (x) = nPn (x) + Pn−1 (x)—– (c) N. B. Vyas Legendre’s Function
  • 128. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a) differentiating equation (a) partially with respect to x, We get ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) —(b) Also from relation (2) nPn (x) = xPn (x) − Pn−1 (x) ∴ xPn (x) = nPn (x) + Pn−1 (x)—– (c) Substituting the value of (c) in equation (b), we get N. B. Vyas Legendre’s Function
  • 129. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (3) (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x)n Proof: We have ( from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) ∴ (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) — (a) differentiating equation (a) partially with respect to x, We get ∴ (2n + 1)Pn (x) + (2n + 1)xPn (x) = (n + 1)Pn+1 (x) + nPn−1 (x) —(b) Also from relation (2) nPn (x) = xPn (x) − Pn−1 (x) ∴ xPn (x) = nPn (x) + Pn−1 (x)—– (c) Substituting the value of (c) in equation (b), we get ∴ (2n + 1)Pn (x) + (2n + 1)[nPn (x) + Pn−1 (x)] = (n + 1)Pn+1 (x) + nPn−1 (x) N. B. Vyas Legendre’s Function
  • 130. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (2n + 1)(n + 1)Pn (x) + (2n + 1)Pn−1 (x) = (n + 1)Pn+1 (x) + nPn−1 (x) N. B. Vyas Legendre’s Function
  • 131. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (2n + 1)(n + 1)Pn (x) + (2n + 1)Pn−1 (x) = (n + 1)Pn+1 (x) + nPn−1 (x) ∴ (2n + 1)(n + 1)Pn (x) = (n + 1)Pn+1 (x) − (n + 1)Pn−1 (x) N. B. Vyas Legendre’s Function
  • 132. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (2n + 1)(n + 1)Pn (x) + (2n + 1)Pn−1 (x) = (n + 1)Pn+1 (x) + nPn−1 (x) ∴ (2n + 1)(n + 1)Pn (x) = (n + 1)Pn+1 (x) − (n + 1)Pn−1 (x) ∴ dividing by (n + 1), we get N. B. Vyas Legendre’s Function
  • 133. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) ∴ (2n + 1)(n + 1)Pn (x) + (2n + 1)Pn−1 (x) = (n + 1)Pn+1 (x) + nPn−1 (x) ∴ (2n + 1)(n + 1)Pn (x) = (n + 1)Pn+1 (x) − (n + 1)Pn−1 (x) ∴ dividing by (n + 1), we get ∴ (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) N. B. Vyas Legendre’s Function
  • 134. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) N. B. Vyas Legendre’s Function
  • 135. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), N. B. Vyas Legendre’s Function
  • 136. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a) N. B. Vyas Legendre’s Function
  • 137. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a) Also we have (from relation (2) ), N. B. Vyas Legendre’s Function
  • 138. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a) Also we have (from relation (2) ), ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b) N. B. Vyas Legendre’s Function
  • 139. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a) Also we have (from relation (2) ), ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b) Taking (a) - (b), we get N. B. Vyas Legendre’s Function
  • 140. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a) Also we have (from relation (2) ), ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b) Taking (a) - (b), we get ∴ (n + 1)Pn (x) = Pn+1 (x) − xPn (x) N. B. Vyas Legendre’s Function
  • 141. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a) Also we have (from relation (2) ), ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b) Taking (a) - (b), we get ∴ (n + 1)Pn (x) = Pn+1 (x) − xPn (x) replacing n by n − 1, we get N. B. Vyas Legendre’s Function
  • 142. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a) Also we have (from relation (2) ), ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b) Taking (a) - (b), we get ∴ (n + 1)Pn (x) = Pn+1 (x) − xPn (x) replacing n by n − 1, we get ∴ nPn−1 (x) = Pn (x) − xPn−1 (x) N. B. Vyas Legendre’s Function
  • 143. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (4) Pn (x) = xPn−1 (x) + nPn−1 (x) Proof: We have (from relation (3) ), (2n + 1)Pn (x) = Pn+1 (x) − Pn−1 (x) —–(a) Also we have (from relation (2) ), ∴ nPn (x) = xPn (x) − Pn−1 (x) ——(b) Taking (a) - (b), we get ∴ (n + 1)Pn (x) = Pn+1 (x) − xPn (x) replacing n by n − 1, we get ∴ nPn−1 (x) = Pn (x) − xPn−1 (x) ∴ Pn (x) = xPn−1 (x) + nPn−1 (x) N. B. Vyas Legendre’s Function
  • 144. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] N. B. Vyas Legendre’s Function
  • 145. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) N. B. Vyas Legendre’s Function
  • 146. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a) N. B. Vyas Legendre’s Function
  • 147. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a) also we have (from relation (2) ) N. B. Vyas Legendre’s Function
  • 148. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a) also we have (from relation (2) ) nPn (x) = xPn (x) − Pn−1 (x) N. B. Vyas Legendre’s Function
  • 149. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a) also we have (from relation (2) ) nPn (x) = xPn (x) − Pn−1 (x) xPn (x) = nPn (x) + Pn−1 (x) ——– (b) N. B. Vyas Legendre’s Function
  • 150. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a) also we have (from relation (2) ) nPn (x) = xPn (x) − Pn−1 (x) xPn (x) = nPn (x) + Pn−1 (x) ——– (b) taking (a) - x X (b), we get N. B. Vyas Legendre’s Function
  • 151. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a) also we have (from relation (2) ) nPn (x) = xPn (x) − Pn−1 (x) xPn (x) = nPn (x) + Pn−1 (x) ——– (b) taking (a) - x X (b), we get (1 − x2 )Pn (x) = xPn−1 (x) + nPn−1 (x) − nxPn (x) − xPn−1 (x) N. B. Vyas Legendre’s Function
  • 152. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a) also we have (from relation (2) ) nPn (x) = xPn (x) − Pn−1 (x) xPn (x) = nPn (x) + Pn−1 (x) ——– (b) taking (a) - x X (b), we get (1 − x2 )Pn (x) = xPn−1 (x) + nPn−1 (x) − nxPn (x) − xPn−1 (x) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] N. B. Vyas Legendre’s Function
  • 153. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (5) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] Proof: We have (from relation (4) ) Pn (x) = xPn−1 (x) + nPn−1 (x) ——- (a) also we have (from relation (2) ) nPn (x) = xPn (x) − Pn−1 (x) xPn (x) = nPn (x) + Pn−1 (x) ——– (b) taking (a) - x X (b), we get (1 − x2 )Pn (x) = xPn−1 (x) + nPn−1 (x) − nxPn (x) − xPn−1 (x) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] N. B. Vyas Legendre’s Function
  • 154. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] N. B. Vyas Legendre’s Function
  • 155. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) N. B. Vyas Legendre’s Function
  • 156. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) N. B. Vyas Legendre’s Function
  • 157. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) also we have (from relation (1) ) N. B. Vyas Legendre’s Function
  • 158. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) also we have (from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) N. B. Vyas Legendre’s Function
  • 159. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) also we have (from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x) N. B. Vyas Legendre’s Function
  • 160. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) also we have (from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)] N. B. Vyas Legendre’s Function
  • 161. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) also we have (from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)] n(Pn−1 (x) − xPn (x)) = (n + 1)(xPn (x) − Pn+1 (x)) N. B. Vyas Legendre’s Function
  • 162. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) also we have (from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)] n(Pn−1 (x) − xPn (x)) = (n + 1)(xPn (x) − Pn+1 (x)) from equation (a), N. B. Vyas Legendre’s Function
  • 163. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) also we have (from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)] n(Pn−1 (x) − xPn (x)) = (n + 1)(xPn (x) − Pn+1 (x)) from equation (a), (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] N. B. Vyas Legendre’s Function
  • 164. Legendre’s Polynomials Examples of Legendre’s Polynomials Generating Function for Pn (x) Rodrigue’s Formula Recurrence Relations for Pn (x) (6) (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] Proof: We have (from relation (5) ) (1 − x2 )Pn (x) = n[Pn−1 (x) − xPn (x)] ——(a) also we have (from relation (1) ) (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + nxPn (x) − nPn−1 (x) (n + 1)Pn+1 (x) = (n + 1)xPn (x) + n[xPn (x) − Pn−1 (x)] n(Pn−1 (x) − xPn (x)) = (n + 1)(xPn (x) − Pn+1 (x)) from equation (a), (1 − x2 )Pn (x) = (n + 1)[xPn (x) − Pn+1 (x)] N. B. Vyas Legendre’s Function