Let Pn(x) be the Legendre polynomial of degree n. Then the generating function for Pn(x) is given by:
∞
1
Pn(x)tn = √
n=0
1 − 2xt + t2
Differentiating both sides with respect to t, we get:
∞
∑nPn(x)tn-1 = -xt(1 − 2xt + t2)-1/2 + (1 − 2xt + t2)-3/2
n=1
Multiplying both sides by (1 − 2xt + t2)1/2, we get:
∞
∑