SlideShare a Scribd company logo
Numerical Methods
Ordinary Differential Equations - 1
Dr. N. B. Vyas
Department of Mathematics,
Atmiya Institute of Technology & Science,
Rajkot (Gujarat) - INDIA
niravbvyas@gmail.com
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Ordinary Differential Equations
Taylor’s Series Method:
Consider the first order Differential Equation
dy
dx
= f(x, y), y(x0) = y0
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Ordinary Differential Equations
Taylor’s Series Method:
Consider the first order Differential Equation
dy
dx
= f(x, y), y(x0) = y0
The Taylor’s series is
y(x) = y(x0) +
(x − x0)
1!
y (x0) +
(x − x0)2
2!
y (x0) + . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Ex:1
Solve y = x + y, y(0) = 1 by Taylor’s series
method. Hence find values of y at x = 0.1 and
x = 0.2
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1
y = x + y
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1
y = x + y ⇒ y (0) = 1
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1
y = x + y ⇒ y (0) = 1
y = 1 + y
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1
y = x + y ⇒ y (0) = 1
y = 1 + y ⇒ y (0) = 1 + y (0) = 1 + 1 = 2
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1
y = x + y ⇒ y (0) = 1
y = 1 + y ⇒ y (0) = 1 + y (0) = 1 + 1 = 2
y = y
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1
y = x + y ⇒ y (0) = 1
y = 1 + y ⇒ y (0) = 1 + y (0) = 1 + 1 = 2
y = y ⇒ y (0) = y (0) = 2
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1
y = x + y ⇒ y (0) = 1
y = 1 + y ⇒ y (0) = 1 + y (0) = 1 + 1 = 2
y = y ⇒ y (0) = y (0) = 2
yiv
= y
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1
y = x + y ⇒ y (0) = 1
y = 1 + y ⇒ y (0) = 1 + y (0) = 1 + 1 = 2
y = y ⇒ y (0) = y (0) = 2
yiv
= y ⇒ yiv
(0) = y (0) = 2 . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1
y = x + y ⇒ y (0) = 1
y = 1 + y ⇒ y (0) = 1 + y (0) = 1 + 1 = 2
y = y ⇒ y (0) = y (0) = 2
yiv
= y ⇒ yiv
(0) = y (0) = 2 . . .
Taylor’s series is
y(x) = y(x0)+
(x − x0)
1!
y (x0)+
(x − x0)2
2!
y (x0)+. . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
y(x) = 1 + xy (0) +
x2
2!
y (0) +
x3
3!
y (0) . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
y(x) = 1 + xy (0) +
x2
2!
y (0) +
x3
3!
y (0) . . .
= 1 + x(1) +
x2
2
(2) +
x3
6
(2) +
x4
24
(2) + . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
y(x) = 1 + xy (0) +
x2
2!
y (0) +
x3
3!
y (0) . . .
= 1 + x(1) +
x2
2
(2) +
x3
6
(2) +
x4
24
(2) + . . .
= 1 + x + x2
+
x3
3
+
x4
12
+ . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
y(x) = 1 + xy (0) +
x2
2!
y (0) +
x3
3!
y (0) . . .
= 1 + x(1) +
x2
2
(2) +
x3
6
(2) +
x4
24
(2) + . . .
= 1 + x + x2
+
x3
3
+
x4
12
+ . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
y(x) = 1 + xy (0) +
x2
2!
y (0) +
x3
3!
y (0) . . .
= 1 + x(1) +
x2
2
(2) +
x3
6
(2) +
x4
24
(2) + . . .
= 1 + x + x2
+
x3
3
+
x4
12
+ . . .
y(0.1) = 1 + (0.1) + (0.1)2
+
(0.1)3
3
+
(0.1)4
12
+ . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
y(x) = 1 + xy (0) +
x2
2!
y (0) +
x3
3!
y (0) . . .
= 1 + x(1) +
x2
2
(2) +
x3
6
(2) +
x4
24
(2) + . . .
= 1 + x + x2
+
x3
3
+
x4
12
+ . . .
y(0.1) = 1 + (0.1) + (0.1)2
+
(0.1)3
3
+
(0.1)4
12
+ . . .
= 1.1103
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
y(x) = 1 + xy (0) +
x2
2!
y (0) +
x3
3!
y (0) . . .
= 1 + x(1) +
x2
2
(2) +
x3
6
(2) +
x4
24
(2) + . . .
= 1 + x + x2
+
x3
3
+
x4
12
+ . . .
y(0.1) = 1 + (0.1) + (0.1)2
+
(0.1)3
3
+
(0.1)4
12
+ . . .
= 1.1103
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
y(x) = 1 + xy (0) +
x2
2!
y (0) +
x3
3!
y (0) . . .
= 1 + x(1) +
x2
2
(2) +
x3
6
(2) +
x4
24
(2) + . . .
= 1 + x + x2
+
x3
3
+
x4
12
+ . . .
y(0.1) = 1 + (0.1) + (0.1)2
+
(0.1)3
3
+
(0.1)4
12
+ . . .
= 1.1103
y(0.2) = 1 + (0.2) + (0.2)2
+
(0.2)3
3
+
(0.2)4
12
+ . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
y(x) = 1 + xy (0) +
x2
2!
y (0) +
x3
3!
y (0) . . .
= 1 + x(1) +
x2
2
(2) +
x3
6
(2) +
x4
24
(2) + . . .
= 1 + x + x2
+
x3
3
+
x4
12
+ . . .
y(0.1) = 1 + (0.1) + (0.1)2
+
(0.1)3
3
+
(0.1)4
12
+ . . .
= 1.1103
y(0.2) = 1 + (0.2) + (0.2)2
+
(0.2)3
3
+
(0.2)4
12
+ . . .
= 1.2428
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Ex Using Taylor’s series method, obtain the solution
of
dy
dx
= 3x + y2
, given that y(0) = 1. Find the
value of y for x = 0.1
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 3x + y2
, x0 = 0 and y0 = 1.
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 3x + y2
, x0 = 0 and y0 = 1.
y = 3x + y2
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 3x + y2
, x0 = 0 and y0 = 1.
y = 3x + y2
⇒ y (x0) = 3(x0) + y2
0 = 3(0) + 1 = 1
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 3x + y2
, x0 = 0 and y0 = 1.
y = 3x + y2
⇒ y (x0) = 3(x0) + y2
0 = 3(0) + 1 = 1
y = 3 + 2yy
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 3x + y2
, x0 = 0 and y0 = 1.
y = 3x + y2
⇒ y (x0) = 3(x0) + y2
0 = 3(0) + 1 = 1
y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 3x + y2
, x0 = 0 and y0 = 1.
y = 3x + y2
⇒ y (x0) = 3(x0) + y2
0 = 3(0) + 1 = 1
y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5
y = 2(y )2
+ 2yy
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 3x + y2
, x0 = 0 and y0 = 1.
y = 3x + y2
⇒ y (x0) = 3(x0) + y2
0 = 3(0) + 1 = 1
y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5
y = 2(y )2
+ 2yy ⇒ y (x0) = 2(1)2
+ 2(5) = 12
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 3x + y2
, x0 = 0 and y0 = 1.
y = 3x + y2
⇒ y (x0) = 3(x0) + y2
0 = 3(0) + 1 = 1
y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5
y = 2(y )2
+ 2yy ⇒ y (x0) = 2(1)2
+ 2(5) = 12
By Taylor’s series,
y(x) = y0+(x−x0)y (x0)+
(x − x0)2
2!
y (x0)+
(x − x0)3
3!
y (x0)+. . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 3x + y2
, x0 = 0 and y0 = 1.
y = 3x + y2
⇒ y (x0) = 3(x0) + y2
0 = 3(0) + 1 = 1
y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5
y = 2(y )2
+ 2yy ⇒ y (x0) = 2(1)2
+ 2(5) = 12
By Taylor’s series,
y(x) = y0+(x−x0)y (x0)+
(x − x0)2
2!
y (x0)+
(x − x0)3
3!
y (x0)+. . .
= 1 + x +
x2
2!
(5) +
x3
3!
(12) + . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 3x + y2
, x0 = 0 and y0 = 1.
y = 3x + y2
⇒ y (x0) = 3(x0) + y2
0 = 3(0) + 1 = 1
y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5
y = 2(y )2
+ 2yy ⇒ y (x0) = 2(1)2
+ 2(5) = 12
By Taylor’s series,
y(x) = y0+(x−x0)y (x0)+
(x − x0)2
2!
y (x0)+
(x − x0)3
3!
y (x0)+. . .
= 1 + x +
x2
2!
(5) +
x3
3!
(12) + . . .
= 1 + x +
5x2
2!
+ 2x3
+ . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 3x + y2
, x0 = 0 and y0 = 1.
y = 3x + y2
⇒ y (x0) = 3(x0) + y2
0 = 3(0) + 1 = 1
y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5
y = 2(y )2
+ 2yy ⇒ y (x0) = 2(1)2
+ 2(5) = 12
By Taylor’s series,
y(x) = y0+(x−x0)y (x0)+
(x − x0)2
2!
y (x0)+
(x − x0)3
3!
y (x0)+. . .
= 1 + x +
x2
2!
(5) +
x3
3!
(12) + . . .
= 1 + x +
5x2
2!
+ 2x3
+ . . .
y(0.1) =
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 3x + y2
, x0 = 0 and y0 = 1.
y = 3x + y2
⇒ y (x0) = 3(x0) + y2
0 = 3(0) + 1 = 1
y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5
y = 2(y )2
+ 2yy ⇒ y (x0) = 2(1)2
+ 2(5) = 12
By Taylor’s series,
y(x) = y0+(x−x0)y (x0)+
(x − x0)2
2!
y (x0)+
(x − x0)3
3!
y (x0)+. . .
= 1 + x +
x2
2!
(5) +
x3
3!
(12) + . . .
= 1 + x +
5x2
2!
+ 2x3
+ . . .
y(0.1) =
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Ex Using Taylor’s series method, find the solution of
dy
dx
= 2y + 3ex
, y(0) = 0,at x = 0.2
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(0) + 3e0
= 3
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(0) + 3e0
= 3
y = 2y + 3ex
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(0) + 3e0
= 3
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(3) + 3e0
= 9
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(0) + 3e0
= 3
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(3) + 3e0
= 9
y = 2y + 3ex
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(0) + 3e0
= 3
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(3) + 3e0
= 9
y = 2y + 3ex
⇒ y (x0) = 2(y0 ) + 3ex0
= 2(9) + 3e0
= 21
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(0) + 3e0
= 3
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(3) + 3e0
= 9
y = 2y + 3ex
⇒ y (x0) = 2(y0 ) + 3ex0
= 2(9) + 3e0
= 21
yiv
= 2y + 3ex
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(0) + 3e0
= 3
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(3) + 3e0
= 9
y = 2y + 3ex
⇒ y (x0) = 2(y0 ) + 3ex0
= 2(9) + 3e0
= 21
yiv
= 2y + 3ex
⇒ yiv
(x0) = 45
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(0) + 3e0
= 3
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(3) + 3e0
= 9
y = 2y + 3ex
⇒ y (x0) = 2(y0 ) + 3ex0
= 2(9) + 3e0
= 21
yiv
= 2y + 3ex
⇒ yiv
(x0) = 45
By Taylor’s series,
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(0) + 3e0
= 3
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(3) + 3e0
= 9
y = 2y + 3ex
⇒ y (x0) = 2(y0 ) + 3ex0
= 2(9) + 3e0
= 21
yiv
= 2y + 3ex
⇒ yiv
(x0) = 45
By Taylor’s series,
y(x) = y0+(x−x0)y (x0)+
(x − x0)2
2!
y (x0)+
(x − x0)3
3!
y (x0)+. . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(0) + 3e0
= 3
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(3) + 3e0
= 9
y = 2y + 3ex
⇒ y (x0) = 2(y0 ) + 3ex0
= 2(9) + 3e0
= 21
yiv
= 2y + 3ex
⇒ yiv
(x0) = 45
By Taylor’s series,
y(x) = y0+(x−x0)y (x0)+
(x − x0)2
2!
y (x0)+
(x − x0)3
3!
y (x0)+. . .
= 0 + x(3) +
x2
2!
(9) +
x3
3!
(21) +
x4
4!
(45) + . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(0) + 3e0
= 3
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(3) + 3e0
= 9
y = 2y + 3ex
⇒ y (x0) = 2(y0 ) + 3ex0
= 2(9) + 3e0
= 21
yiv
= 2y + 3ex
⇒ yiv
(x0) = 45
By Taylor’s series,
y(x) = y0+(x−x0)y (x0)+
(x − x0)2
2!
y (x0)+
(x − x0)3
3!
y (x0)+. . .
= 0 + x(3) +
x2
2!
(9) +
x3
3!
(21) +
x4
4!
(45) + . . .
= 3x +
9x2
2
+
7x3
2
+
15x4
8
+ . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series
Sol. Here,y = f(x, y) = 2y + 3ex
, x0 = 0 and y0 = 0.
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(0) + 3e0
= 3
y = 2y + 3ex
⇒ y (x0) = 2(y0) + 3ex0
= 2(3) + 3e0
= 9
y = 2y + 3ex
⇒ y (x0) = 2(y0 ) + 3ex0
= 2(9) + 3e0
= 21
yiv
= 2y + 3ex
⇒ yiv
(x0) = 45
By Taylor’s series,
y(x) = y0+(x−x0)y (x0)+
(x − x0)2
2!
y (x0)+
(x − x0)3
3!
y (x0)+. . .
= 0 + x(3) +
x2
2!
(9) +
x3
3!
(21) +
x4
4!
(45) + . . .
= 3x +
9x2
2
+
7x3
2
+
15x4
8
+ . . .
y(0.2) =
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Ex:
Use Taylor’s series method to solve
dy
dx
= x2
+ y2
,
y(0) = 1. Find y(0.1) correct up to 4 decimal
places.
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Taylor’s Series Method
Ex:
Use Taylor’s series method to solve
dy
dx
= x2
y − 1,
y(0) = 1. Find y(0.03).
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Picard’s Method:
Consider the first order differential equation.
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Picard’s Method:
Consider the first order differential equation.
dy
dx
= f(x, y) − − − (1)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Picard’s Method:
Consider the first order differential equation.
dy
dx
= f(x, y) − − − (1)
subject to y(x0) = y0
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Picard’s Method:
Consider the first order differential equation.
dy
dx
= f(x, y) − − − (1)
subject to y(x0) = y0
The equation (1) can be written as
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Picard’s Method:
Consider the first order differential equation.
dy
dx
= f(x, y) − − − (1)
subject to y(x0) = y0
The equation (1) can be written as
dy = f(x, y)dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Picard’s Method:
Consider the first order differential equation.
dy
dx
= f(x, y) − − − (1)
subject to y(x0) = y0
The equation (1) can be written as
dy = f(x, y)dx
Integrating between the limits for x and y, we get
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Picard’s Method:
Consider the first order differential equation.
dy
dx
= f(x, y) − − − (1)
subject to y(x0) = y0
The equation (1) can be written as
dy = f(x, y)dx
Integrating between the limits for x and y, we get
y
y0
dy =
x
x0
f(x, y)dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Picard’s Method:
Consider the first order differential equation.
dy
dx
= f(x, y) − − − (1)
subject to y(x0) = y0
The equation (1) can be written as
dy = f(x, y)dx
Integrating between the limits for x and y, we get
y
y0
dy =
x
x0
f(x, y)dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
(y − y0) =
x
x0
f(x, y)dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
(y − y0) =
x
x0
f(x, y)dx
y = y0 +
x
x0
f(x, y)dx − − − (2)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
(y − y0) =
x
x0
f(x, y)dx
y = y0 +
x
x0
f(x, y)dx − − − (2)
Equation (2) is known as integral equation and
can be solved by successive approximation or
iteration.
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
(y − y0) =
x
x0
f(x, y)dx
y = y0 +
x
x0
f(x, y)dx − − − (2)
Equation (2) is known as integral equation and
can be solved by successive approximation or
iteration.
Now by Picard’s method, for 1st
approximation
y1
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
(y − y0) =
x
x0
f(x, y)dx
y = y0 +
x
x0
f(x, y)dx − − − (2)
Equation (2) is known as integral equation and
can be solved by successive approximation or
iteration.
Now by Picard’s method, for 1st
approximation
y1
we replace y by y0 in f(x, y) in R.H.S of eq. (2),
we get
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
(y − y0) =
x
x0
f(x, y)dx
y = y0 +
x
x0
f(x, y)dx − − − (2)
Equation (2) is known as integral equation and
can be solved by successive approximation or
iteration.
Now by Picard’s method, for 1st
approximation
y1
we replace y by y0 in f(x, y) in R.H.S of eq. (2),
we get
y1 = y0 +
x
x0
f(x, y0)dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
For 2nd
approximation y2,
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
For 2nd
approximation y2,
we replace y by y1 in f(x, y) in R.H.S of eq. (2),
we get
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
For 2nd
approximation y2,
we replace y by y1 in f(x, y) in R.H.S of eq. (2),
we get
y2 = y0 +
x
x0
f(x, y1)dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
For 2nd
approximation y2,
we replace y by y1 in f(x, y) in R.H.S of eq. (2),
we get
y2 = y0 +
x
x0
f(x, y1)dx
In general,
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
For 2nd
approximation y2,
we replace y by y1 in f(x, y) in R.H.S of eq. (2),
we get
y2 = y0 +
x
x0
f(x, y1)dx
In general,
yn+1 = y0 +
x
x0
f(x, yn)dx for n = 0, 1, 2, . . .
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
For 2nd
approximation y2,
we replace y by y1 in f(x, y) in R.H.S of eq. (2),
we get
y2 = y0 +
x
x0
f(x, y1)dx
In general,
yn+1 = y0 +
x
x0
f(x, yn)dx for n = 0, 1, 2, . . .
stop the process when the two consecutive values
of y are same up to desired accuracy.
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Note:
This method is applicable to a limited class of
equations in which the successive integration can
be performed easily.
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Ex Using Picard’s method solve
dy
dx
= 3 + 2xy where y(0) = 1 for x = 0.1.
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method yn+1 = y0 +
x
x0
f(x, yn) dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method yn+1 = y0 +
x
x0
f(x, yn) dx
Here x0 = 0, y0 = 1, f(x, y) = 3 + 2xy
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method yn+1 = y0 +
x
x0
f(x, yn) dx
Here x0 = 0, y0 = 1, f(x, y) = 3 + 2xy
1st
approximation:
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method yn+1 = y0 +
x
x0
f(x, yn) dx
Here x0 = 0, y0 = 1, f(x, y) = 3 + 2xy
1st
approximation:
put n = 0 and y0 = 1 in f(x, y)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method yn+1 = y0 +
x
x0
f(x, yn) dx
Here x0 = 0, y0 = 1, f(x, y) = 3 + 2xy
1st
approximation:
put n = 0 and y0 = 1 in f(x, y)
y1 = 1 +
x
0
(3 + 2x) dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method yn+1 = y0 +
x
x0
f(x, yn) dx
Here x0 = 0, y0 = 1, f(x, y) = 3 + 2xy
1st
approximation:
put n = 0 and y0 = 1 in f(x, y)
y1 = 1 +
x
0
(3 + 2x) dx
∴ y1 = 1 + 3x + x2
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put n = 1 and y1 = 1 + 3x + x2
in f(x, y)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put n = 1 and y1 = 1 + 3x + x2
in f(x, y)
y2 = 1 +
x
0
3 + 2x(1 + 3x + x2
) dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put n = 1 and y1 = 1 + 3x + x2
in f(x, y)
y2 = 1 +
x
0
3 + 2x(1 + 3x + x2
) dx
= 1 +
x
0
3 + 2x + 6x2
+ 2x3
) dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put n = 1 and y1 = 1 + 3x + x2
in f(x, y)
y2 = 1 +
x
0
3 + 2x(1 + 3x + x2
) dx
= 1 +
x
0
3 + 2x + 6x2
+ 2x3
) dx
∴ y2 = 1 + 3x + x2
+ 2x3
+
x4
2
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put n = 1 and y1 = 1 + 3x + x2
in f(x, y)
y2 = 1 +
x
0
3 + 2x(1 + 3x + x2
) dx
= 1 +
x
0
3 + 2x + 6x2
+ 2x3
) dx
∴ y2 = 1 + 3x + x2
+ 2x3
+
x4
2
which is approximate solution, putting x = 0.1
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put n = 1 and y1 = 1 + 3x + x2
in f(x, y)
y2 = 1 +
x
0
3 + 2x(1 + 3x + x2
) dx
= 1 +
x
0
3 + 2x + 6x2
+ 2x3
) dx
∴ y2 = 1 + 3x + x2
+ 2x3
+
x4
2
which is approximate solution, putting x = 0.1
y(0.1) =
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put n = 1 and y1 = 1 + 3x + x2
in f(x, y)
y2 = 1 +
x
0
3 + 2x(1 + 3x + x2
) dx
= 1 +
x
0
3 + 2x + 6x2
+ 2x3
) dx
∴ y2 = 1 + 3x + x2
+ 2x3
+
x4
2
which is approximate solution, putting x = 0.1
y(0.1) = 1.31205
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Ex:
Using Picard’s method, obtain a solution upto
4th
approx of the equation
dy
dx
= y + x, y(0) = 1.
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 1, f(x, y) = x + y
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 1, f(x, y) = x + y
1st
approximation: put y = y0 = 1 in f(x, y)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 1, f(x, y) = x + y
1st
approximation: put y = y0 = 1 in f(x, y)
‘y1 = 1 +
x
0
(1 + x) dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 1, f(x, y) = x + y
1st
approximation: put y = y0 = 1 in f(x, y)
‘y1 = 1 +
x
0
(1 + x) dx
∴ y1 = 1 + x +
x2
2
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put y = y1 = 1 + x +
x2
2
in f(x, y)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put y = y1 = 1 + x +
x2
2
in f(x, y)
‘y2 = 1 +
x
0
1 + 2x +
x2
2
dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put y = y1 = 1 + x +
x2
2
in f(x, y)
‘y2 = 1 +
x
0
1 + 2x +
x2
2
dx
∴ y2 = 1 + x + x2
+
x3
6
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
3rd
approximation:
put y = 1 + x + x2
+
x3
6
in f(x, y)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
3rd
approximation:
put y = 1 + x + x2
+
x3
6
in f(x, y)
‘y3 = 1 +
x
0
1 + 2x + x2
+
x3
6
dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
3rd
approximation:
put y = 1 + x + x2
+
x3
6
in f(x, y)
‘y3 = 1 +
x
0
1 + 2x + x2
+
x3
6
dx
∴ y3 = 1 + x + x2
+
x3
3
+
x4
24
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
4th
approximation:
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
4th
approximation:
put y = 1 + x + x2
+
x3
3
+
x4
24
in f(x, y)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
4th
approximation:
put y = 1 + x + x2
+
x3
3
+
x4
24
in f(x, y)
‘y4 = 1 +
x
0
1 + 2x + x2
+
x3
3
+
x4
24
dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
4th
approximation:
put y = 1 + x + x2
+
x3
3
+
x4
24
in f(x, y)
‘y4 = 1 +
x
0
1 + 2x + x2
+
x3
3
+
x4
24
dx
∴ y4 = 1 + x + x2
+
x3
3
+
x4
12
+
x5
120
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Ex:
Using Picard’s 2nd
approx. solution of the initial
value problem
dy
dx
= x2
+ y2
,for x = 0.4 correct to
4 decimal places given that y(0) = 0.
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 0, f(x, y) = x2
+ y2
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 0, f(x, y) = x2
+ y2
1st
approximation: put y = y0 = 0 in f(x, y)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 0, f(x, y) = x2
+ y2
1st
approximation: put y = y0 = 0 in f(x, y)
‘y1 = 0 +
x
0
(x2
+ 0) dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 0, f(x, y) = x2
+ y2
1st
approximation: put y = y0 = 0 in f(x, y)
‘y1 = 0 +
x
0
(x2
+ 0) dx
∴ y1 =
x3
3
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put y = y1 =
x3
3
in f(x, y)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put y = y1 =
x3
3
in f(x, y)
‘y2 = y0 +
x
0
x2
+
x3
3
2
dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put y = y1 =
x3
3
in f(x, y)
‘y2 = y0 +
x
0
x2
+
x3
3
2
dx
∴ y2 =
x3
3
+
x7
63
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put y = y1 =
x3
3
in f(x, y)
‘y2 = y0 +
x
0
x2
+
x3
3
2
dx
∴ y2 =
x3
3
+
x7
63
y(0.4) =
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Ex:
Find the value of y for x = 0.1 by Picard’s
method given that
dy
dx
=
y − x
y + x
,y(0) = 1.
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 1, f(x, y) =
y − x
y + x
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 1, f(x, y) =
y − x
y + x
1st
approximation: put y = y0 = 1 in f(x, y)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 1, f(x, y) =
y − x
y + x
1st
approximation: put y = y0 = 1 in f(x, y)
y1 = 1 +
x
0
1 − x
1 + x
dx = 1 +
x
0
2 − (1 + x)
1 + x
dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 1, f(x, y) =
y − x
y + x
1st
approximation: put y = y0 = 1 in f(x, y)
y1 = 1 +
x
0
1 − x
1 + x
dx = 1 +
x
0
2 − (1 + x)
1 + x
dx
= 1 +
x
0
2
1 + x
− 1 dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
Sol.:
By Picard’s method y = y0 +
x
x0
f(x, y) dx
Here x0 = 0, y0 = 1, f(x, y) =
y − x
y + x
1st
approximation: put y = y0 = 1 in f(x, y)
y1 = 1 +
x
0
1 − x
1 + x
dx = 1 +
x
0
2 − (1 + x)
1 + x
dx
= 1 +
x
0
2
1 + x
− 1 dx
∴ y1 = 1 − x + 2log(1 + x)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put y = y1 = 1 + 2log(1 + x) − x in f(x, y)
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put y = y1 = 1 + 2log(1 + x) − x in f(x, y)
y2 = 1 +
x
0
1 − x + 2log(1 + x) − x
1 − x + 2log(1 + x) + x
dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put y = y1 = 1 + 2log(1 + x) − x in f(x, y)
y2 = 1 +
x
0
1 − x + 2log(1 + x) − x
1 − x + 2log(1 + x) + x
dx
= 1 +
x
0
1 − 2x + 2log(1 + x)
1 + 2log(1 + x)
dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
2nd
approximation:
put y = y1 = 1 + 2log(1 + x) − x in f(x, y)
y2 = 1 +
x
0
1 − x + 2log(1 + x) − x
1 − x + 2log(1 + x) + x
dx
= 1 +
x
0
1 − 2x + 2log(1 + x)
1 + 2log(1 + x)
dx
= 1 +
x
0
1 −
2x
1 + 2log(1 + x)
dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
= 1 + x −
x
0
2x
1 + 2log(1 + x)
dx
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
= 1 + x −
x
0
2x
1 + 2log(1 + x)
dx
which is difficult to integrate therefore using 1st
approximation.
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
Picard’s Method
= 1 + x −
x
0
2x
1 + 2log(1 + x)
dx
which is difficult to integrate therefore using 1st
approximation.
y(0.1) =
Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -

More Related Content

PPTX
Newton's forward & backward interpolation
PPTX
presentation on Euler and Modified Euler method ,and Fitting of curve
PPTX
Fourier series
PPTX
Gauss Forward And Backward Central Difference Interpolation Formula
PPTX
Gaussian Elimination Method
PPTX
Newton’s Forward & backward interpolation
PPTX
simpion's 3/8 rule
PPTX
Runge-Kutta methods with examples
Newton's forward & backward interpolation
presentation on Euler and Modified Euler method ,and Fitting of curve
Fourier series
Gauss Forward And Backward Central Difference Interpolation Formula
Gaussian Elimination Method
Newton’s Forward & backward interpolation
simpion's 3/8 rule
Runge-Kutta methods with examples

What's hot (20)

DOCX
Trapezoidal Method IN Numerical Analysis
PPT
Lu decomposition
PPTX
Gauss Elimination & Gauss Jordan Methods in Numerical & Statistical Methods
PDF
Euler's and picard's
PPT
OPERATIONS ON SIGNALS
PDF
Numerical Methods - Oridnary Differential Equations - 3
PDF
Numerical Differentiations Solved examples
PPT
Legendre functions
PPTX
Interpolation
PPTX
Runge Kutta Method
PPTX
Runge kutta
PPTX
Trapezoidal rule
PPTX
Fourier series
PPTX
Laplace Transform of Periodic Function
PPTX
Control System Design
PPTX
Newton Forward Difference Interpolation Method
PPTX
Gauss jordan method.pptx
PPTX
Newton's Backward Interpolation Formula with Example
PDF
Matlab solved problems
PPTX
A brief introduction to finite difference method
Trapezoidal Method IN Numerical Analysis
Lu decomposition
Gauss Elimination & Gauss Jordan Methods in Numerical & Statistical Methods
Euler's and picard's
OPERATIONS ON SIGNALS
Numerical Methods - Oridnary Differential Equations - 3
Numerical Differentiations Solved examples
Legendre functions
Interpolation
Runge Kutta Method
Runge kutta
Trapezoidal rule
Fourier series
Laplace Transform of Periodic Function
Control System Design
Newton Forward Difference Interpolation Method
Gauss jordan method.pptx
Newton's Backward Interpolation Formula with Example
Matlab solved problems
A brief introduction to finite difference method
Ad

Viewers also liked (16)

PDF
PPTX
Numerical integration
PDF
Introduction to material and energy balance
PPT
Material balance Equation
PPTX
Partial differential equations
PDF
Partial Differential Equation - Notes
PDF
Process Instrumentation & Control
DOC
08 basic material balance eqns
PDF
Numerical Methods - Oridnary Differential Equations - 2
PPT
Introduction to Reservoir Engineering
PDF
Numerical Methods 1
PPT
Introduction of process control
PPT
An Introduction to the Finite Element Method
PDF
partial diffrentialequations
PPTX
Industrial process control
PDF
Mass transfer dr auroba
Numerical integration
Introduction to material and energy balance
Material balance Equation
Partial differential equations
Partial Differential Equation - Notes
Process Instrumentation & Control
08 basic material balance eqns
Numerical Methods - Oridnary Differential Equations - 2
Introduction to Reservoir Engineering
Numerical Methods 1
Introduction of process control
An Introduction to the Finite Element Method
partial diffrentialequations
Industrial process control
Mass transfer dr auroba
Ad

Similar to Numerical Methods - Oridnary Differential Equations - 1 (20)

PDF
Study Material Numerical Solution of Odinary Differential Equations
PPT
Introduction to Differential Equations
PPTX
Power Series,Taylor's and Maclaurin's Series
PDF
Euler's Method.pdf
PPTX
Power series
PPTX
Numerical solution of ordinary differential equations
PDF
Week 2
PPTX
Taylor series
PDF
Partial Derivatives Section clg maths nn
PPT
Taylor and maclaurian series
PPT
Top School in india
PDF
Introduction to Numerical Methods for Differential Equations
PPT
03 truncation errors
PPS
Unit vi
PDF
Taylor problem
PPTX
UNDETERMINED COEFFICIENT
PPTX
29 taylor expansions x
PPTX
29 taylor expansions x
PDF
Week 3 [compatibility mode]
DOCX
MATHS ASSIGNMENT.docx
Study Material Numerical Solution of Odinary Differential Equations
Introduction to Differential Equations
Power Series,Taylor's and Maclaurin's Series
Euler's Method.pdf
Power series
Numerical solution of ordinary differential equations
Week 2
Taylor series
Partial Derivatives Section clg maths nn
Taylor and maclaurian series
Top School in india
Introduction to Numerical Methods for Differential Equations
03 truncation errors
Unit vi
Taylor problem
UNDETERMINED COEFFICIENT
29 taylor expansions x
29 taylor expansions x
Week 3 [compatibility mode]
MATHS ASSIGNMENT.docx

More from Dr. Nirav Vyas (20)

PDF
Advance Topics in Latex - different packages
PPTX
Numerical Methods Algorithm and C Program
PDF
Reduction forumla
PPTX
Arithmetic Mean, Geometric Mean, Harmonic Mean
PPTX
Geometric progressions
PPTX
Arithmetic progressions
PPTX
Combinations
PPTX
Permutation
PPTX
Matrices and Determinants
PDF
Curve fitting - Lecture Notes
PDF
Trend analysis - Lecture Notes
PDF
Basic Concepts of Statistics - Lecture Notes
PDF
Numerical Methods - Power Method for Eigen values
PDF
Special functions
PDF
Legendre Function
PDF
Laplace Transforms
PDF
Fourier series 3
PDF
Fourier series 2
PDF
Fourier series 1
PDF
Numerical Methods 3
Advance Topics in Latex - different packages
Numerical Methods Algorithm and C Program
Reduction forumla
Arithmetic Mean, Geometric Mean, Harmonic Mean
Geometric progressions
Arithmetic progressions
Combinations
Permutation
Matrices and Determinants
Curve fitting - Lecture Notes
Trend analysis - Lecture Notes
Basic Concepts of Statistics - Lecture Notes
Numerical Methods - Power Method for Eigen values
Special functions
Legendre Function
Laplace Transforms
Fourier series 3
Fourier series 2
Fourier series 1
Numerical Methods 3

Recently uploaded (20)

PDF
Pre independence Education in Inndia.pdf
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PPTX
PPH.pptx obstetrics and gynecology in nursing
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
Computing-Curriculum for Schools in Ghana
PDF
Classroom Observation Tools for Teachers
PDF
01-Introduction-to-Information-Management.pdf
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
Anesthesia in Laparoscopic Surgery in India
PPTX
GDM (1) (1).pptx small presentation for students
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PPTX
Institutional Correction lecture only . . .
PPTX
master seminar digital applications in india
PPTX
Lesson notes of climatology university.
Pre independence Education in Inndia.pdf
STATICS OF THE RIGID BODIES Hibbelers.pdf
O5-L3 Freight Transport Ops (International) V1.pdf
PPH.pptx obstetrics and gynecology in nursing
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
Computing-Curriculum for Schools in Ghana
Classroom Observation Tools for Teachers
01-Introduction-to-Information-Management.pdf
2.FourierTransform-ShortQuestionswithAnswers.pdf
Module 4: Burden of Disease Tutorial Slides S2 2025
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Microbial diseases, their pathogenesis and prophylaxis
Anesthesia in Laparoscopic Surgery in India
GDM (1) (1).pptx small presentation for students
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Renaissance Architecture: A Journey from Faith to Humanism
Institutional Correction lecture only . . .
master seminar digital applications in india
Lesson notes of climatology university.

Numerical Methods - Oridnary Differential Equations - 1

  • 1. Numerical Methods Ordinary Differential Equations - 1 Dr. N. B. Vyas Department of Mathematics, Atmiya Institute of Technology & Science, Rajkot (Gujarat) - INDIA niravbvyas@gmail.com Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 2. Ordinary Differential Equations Taylor’s Series Method: Consider the first order Differential Equation dy dx = f(x, y), y(x0) = y0 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 3. Ordinary Differential Equations Taylor’s Series Method: Consider the first order Differential Equation dy dx = f(x, y), y(x0) = y0 The Taylor’s series is y(x) = y(x0) + (x − x0) 1! y (x0) + (x − x0)2 2! y (x0) + . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 4. Taylor’s Series Method Ex:1 Solve y = x + y, y(0) = 1 by Taylor’s series method. Hence find values of y at x = 0.1 and x = 0.2 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 5. Taylor’s Series Method Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 6. Taylor’s Series Method Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1 y = x + y Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 7. Taylor’s Series Method Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1 y = x + y ⇒ y (0) = 1 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 8. Taylor’s Series Method Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1 y = x + y ⇒ y (0) = 1 y = 1 + y Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 9. Taylor’s Series Method Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1 y = x + y ⇒ y (0) = 1 y = 1 + y ⇒ y (0) = 1 + y (0) = 1 + 1 = 2 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 10. Taylor’s Series Method Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1 y = x + y ⇒ y (0) = 1 y = 1 + y ⇒ y (0) = 1 + y (0) = 1 + 1 = 2 y = y Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 11. Taylor’s Series Method Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1 y = x + y ⇒ y (0) = 1 y = 1 + y ⇒ y (0) = 1 + y (0) = 1 + 1 = 2 y = y ⇒ y (0) = y (0) = 2 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 12. Taylor’s Series Method Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1 y = x + y ⇒ y (0) = 1 y = 1 + y ⇒ y (0) = 1 + y (0) = 1 + 1 = 2 y = y ⇒ y (0) = y (0) = 2 yiv = y Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 13. Taylor’s Series Method Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1 y = x + y ⇒ y (0) = 1 y = 1 + y ⇒ y (0) = 1 + y (0) = 1 + 1 = 2 y = y ⇒ y (0) = y (0) = 2 yiv = y ⇒ yiv (0) = y (0) = 2 . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 14. Taylor’s Series Method Sol.: Here y = f(x, y) = x + y, x0 = 0 and y0 = 1 y = x + y ⇒ y (0) = 1 y = 1 + y ⇒ y (0) = 1 + y (0) = 1 + 1 = 2 y = y ⇒ y (0) = y (0) = 2 yiv = y ⇒ yiv (0) = y (0) = 2 . . . Taylor’s series is y(x) = y(x0)+ (x − x0) 1! y (x0)+ (x − x0)2 2! y (x0)+. . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 15. Taylor’s Series Method y(x) = 1 + xy (0) + x2 2! y (0) + x3 3! y (0) . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 16. Taylor’s Series Method y(x) = 1 + xy (0) + x2 2! y (0) + x3 3! y (0) . . . = 1 + x(1) + x2 2 (2) + x3 6 (2) + x4 24 (2) + . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 17. Taylor’s Series Method y(x) = 1 + xy (0) + x2 2! y (0) + x3 3! y (0) . . . = 1 + x(1) + x2 2 (2) + x3 6 (2) + x4 24 (2) + . . . = 1 + x + x2 + x3 3 + x4 12 + . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 18. Taylor’s Series Method y(x) = 1 + xy (0) + x2 2! y (0) + x3 3! y (0) . . . = 1 + x(1) + x2 2 (2) + x3 6 (2) + x4 24 (2) + . . . = 1 + x + x2 + x3 3 + x4 12 + . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 19. Taylor’s Series Method y(x) = 1 + xy (0) + x2 2! y (0) + x3 3! y (0) . . . = 1 + x(1) + x2 2 (2) + x3 6 (2) + x4 24 (2) + . . . = 1 + x + x2 + x3 3 + x4 12 + . . . y(0.1) = 1 + (0.1) + (0.1)2 + (0.1)3 3 + (0.1)4 12 + . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 20. Taylor’s Series Method y(x) = 1 + xy (0) + x2 2! y (0) + x3 3! y (0) . . . = 1 + x(1) + x2 2 (2) + x3 6 (2) + x4 24 (2) + . . . = 1 + x + x2 + x3 3 + x4 12 + . . . y(0.1) = 1 + (0.1) + (0.1)2 + (0.1)3 3 + (0.1)4 12 + . . . = 1.1103 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 21. Taylor’s Series Method y(x) = 1 + xy (0) + x2 2! y (0) + x3 3! y (0) . . . = 1 + x(1) + x2 2 (2) + x3 6 (2) + x4 24 (2) + . . . = 1 + x + x2 + x3 3 + x4 12 + . . . y(0.1) = 1 + (0.1) + (0.1)2 + (0.1)3 3 + (0.1)4 12 + . . . = 1.1103 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 22. Taylor’s Series Method y(x) = 1 + xy (0) + x2 2! y (0) + x3 3! y (0) . . . = 1 + x(1) + x2 2 (2) + x3 6 (2) + x4 24 (2) + . . . = 1 + x + x2 + x3 3 + x4 12 + . . . y(0.1) = 1 + (0.1) + (0.1)2 + (0.1)3 3 + (0.1)4 12 + . . . = 1.1103 y(0.2) = 1 + (0.2) + (0.2)2 + (0.2)3 3 + (0.2)4 12 + . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 23. Taylor’s Series Method y(x) = 1 + xy (0) + x2 2! y (0) + x3 3! y (0) . . . = 1 + x(1) + x2 2 (2) + x3 6 (2) + x4 24 (2) + . . . = 1 + x + x2 + x3 3 + x4 12 + . . . y(0.1) = 1 + (0.1) + (0.1)2 + (0.1)3 3 + (0.1)4 12 + . . . = 1.1103 y(0.2) = 1 + (0.2) + (0.2)2 + (0.2)3 3 + (0.2)4 12 + . . . = 1.2428 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 24. Taylor’s Series Ex Using Taylor’s series method, obtain the solution of dy dx = 3x + y2 , given that y(0) = 1. Find the value of y for x = 0.1 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 25. Taylor’s Series Sol. Here,y = f(x, y) = 3x + y2 , x0 = 0 and y0 = 1. Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 26. Taylor’s Series Sol. Here,y = f(x, y) = 3x + y2 , x0 = 0 and y0 = 1. y = 3x + y2 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 27. Taylor’s Series Sol. Here,y = f(x, y) = 3x + y2 , x0 = 0 and y0 = 1. y = 3x + y2 ⇒ y (x0) = 3(x0) + y2 0 = 3(0) + 1 = 1 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 28. Taylor’s Series Sol. Here,y = f(x, y) = 3x + y2 , x0 = 0 and y0 = 1. y = 3x + y2 ⇒ y (x0) = 3(x0) + y2 0 = 3(0) + 1 = 1 y = 3 + 2yy Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 29. Taylor’s Series Sol. Here,y = f(x, y) = 3x + y2 , x0 = 0 and y0 = 1. y = 3x + y2 ⇒ y (x0) = 3(x0) + y2 0 = 3(0) + 1 = 1 y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 30. Taylor’s Series Sol. Here,y = f(x, y) = 3x + y2 , x0 = 0 and y0 = 1. y = 3x + y2 ⇒ y (x0) = 3(x0) + y2 0 = 3(0) + 1 = 1 y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5 y = 2(y )2 + 2yy Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 31. Taylor’s Series Sol. Here,y = f(x, y) = 3x + y2 , x0 = 0 and y0 = 1. y = 3x + y2 ⇒ y (x0) = 3(x0) + y2 0 = 3(0) + 1 = 1 y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5 y = 2(y )2 + 2yy ⇒ y (x0) = 2(1)2 + 2(5) = 12 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 32. Taylor’s Series Sol. Here,y = f(x, y) = 3x + y2 , x0 = 0 and y0 = 1. y = 3x + y2 ⇒ y (x0) = 3(x0) + y2 0 = 3(0) + 1 = 1 y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5 y = 2(y )2 + 2yy ⇒ y (x0) = 2(1)2 + 2(5) = 12 By Taylor’s series, y(x) = y0+(x−x0)y (x0)+ (x − x0)2 2! y (x0)+ (x − x0)3 3! y (x0)+. . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 33. Taylor’s Series Sol. Here,y = f(x, y) = 3x + y2 , x0 = 0 and y0 = 1. y = 3x + y2 ⇒ y (x0) = 3(x0) + y2 0 = 3(0) + 1 = 1 y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5 y = 2(y )2 + 2yy ⇒ y (x0) = 2(1)2 + 2(5) = 12 By Taylor’s series, y(x) = y0+(x−x0)y (x0)+ (x − x0)2 2! y (x0)+ (x − x0)3 3! y (x0)+. . . = 1 + x + x2 2! (5) + x3 3! (12) + . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 34. Taylor’s Series Sol. Here,y = f(x, y) = 3x + y2 , x0 = 0 and y0 = 1. y = 3x + y2 ⇒ y (x0) = 3(x0) + y2 0 = 3(0) + 1 = 1 y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5 y = 2(y )2 + 2yy ⇒ y (x0) = 2(1)2 + 2(5) = 12 By Taylor’s series, y(x) = y0+(x−x0)y (x0)+ (x − x0)2 2! y (x0)+ (x − x0)3 3! y (x0)+. . . = 1 + x + x2 2! (5) + x3 3! (12) + . . . = 1 + x + 5x2 2! + 2x3 + . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 35. Taylor’s Series Sol. Here,y = f(x, y) = 3x + y2 , x0 = 0 and y0 = 1. y = 3x + y2 ⇒ y (x0) = 3(x0) + y2 0 = 3(0) + 1 = 1 y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5 y = 2(y )2 + 2yy ⇒ y (x0) = 2(1)2 + 2(5) = 12 By Taylor’s series, y(x) = y0+(x−x0)y (x0)+ (x − x0)2 2! y (x0)+ (x − x0)3 3! y (x0)+. . . = 1 + x + x2 2! (5) + x3 3! (12) + . . . = 1 + x + 5x2 2! + 2x3 + . . . y(0.1) = Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 36. Taylor’s Series Sol. Here,y = f(x, y) = 3x + y2 , x0 = 0 and y0 = 1. y = 3x + y2 ⇒ y (x0) = 3(x0) + y2 0 = 3(0) + 1 = 1 y = 3 + 2yy ⇒ y (x0) = 3 + 2(1)(1) = 5 y = 2(y )2 + 2yy ⇒ y (x0) = 2(1)2 + 2(5) = 12 By Taylor’s series, y(x) = y0+(x−x0)y (x0)+ (x − x0)2 2! y (x0)+ (x − x0)3 3! y (x0)+. . . = 1 + x + x2 2! (5) + x3 3! (12) + . . . = 1 + x + 5x2 2! + 2x3 + . . . y(0.1) = Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 37. Taylor’s Series Ex Using Taylor’s series method, find the solution of dy dx = 2y + 3ex , y(0) = 0,at x = 0.2 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 38. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 39. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 40. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(0) + 3e0 = 3 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 41. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(0) + 3e0 = 3 y = 2y + 3ex Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 42. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(0) + 3e0 = 3 y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(3) + 3e0 = 9 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 43. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(0) + 3e0 = 3 y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(3) + 3e0 = 9 y = 2y + 3ex Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 44. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(0) + 3e0 = 3 y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(3) + 3e0 = 9 y = 2y + 3ex ⇒ y (x0) = 2(y0 ) + 3ex0 = 2(9) + 3e0 = 21 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 45. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(0) + 3e0 = 3 y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(3) + 3e0 = 9 y = 2y + 3ex ⇒ y (x0) = 2(y0 ) + 3ex0 = 2(9) + 3e0 = 21 yiv = 2y + 3ex Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 46. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(0) + 3e0 = 3 y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(3) + 3e0 = 9 y = 2y + 3ex ⇒ y (x0) = 2(y0 ) + 3ex0 = 2(9) + 3e0 = 21 yiv = 2y + 3ex ⇒ yiv (x0) = 45 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 47. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(0) + 3e0 = 3 y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(3) + 3e0 = 9 y = 2y + 3ex ⇒ y (x0) = 2(y0 ) + 3ex0 = 2(9) + 3e0 = 21 yiv = 2y + 3ex ⇒ yiv (x0) = 45 By Taylor’s series, Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 48. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(0) + 3e0 = 3 y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(3) + 3e0 = 9 y = 2y + 3ex ⇒ y (x0) = 2(y0 ) + 3ex0 = 2(9) + 3e0 = 21 yiv = 2y + 3ex ⇒ yiv (x0) = 45 By Taylor’s series, y(x) = y0+(x−x0)y (x0)+ (x − x0)2 2! y (x0)+ (x − x0)3 3! y (x0)+. . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 49. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(0) + 3e0 = 3 y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(3) + 3e0 = 9 y = 2y + 3ex ⇒ y (x0) = 2(y0 ) + 3ex0 = 2(9) + 3e0 = 21 yiv = 2y + 3ex ⇒ yiv (x0) = 45 By Taylor’s series, y(x) = y0+(x−x0)y (x0)+ (x − x0)2 2! y (x0)+ (x − x0)3 3! y (x0)+. . . = 0 + x(3) + x2 2! (9) + x3 3! (21) + x4 4! (45) + . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 50. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(0) + 3e0 = 3 y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(3) + 3e0 = 9 y = 2y + 3ex ⇒ y (x0) = 2(y0 ) + 3ex0 = 2(9) + 3e0 = 21 yiv = 2y + 3ex ⇒ yiv (x0) = 45 By Taylor’s series, y(x) = y0+(x−x0)y (x0)+ (x − x0)2 2! y (x0)+ (x − x0)3 3! y (x0)+. . . = 0 + x(3) + x2 2! (9) + x3 3! (21) + x4 4! (45) + . . . = 3x + 9x2 2 + 7x3 2 + 15x4 8 + . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 51. Taylor’s Series Sol. Here,y = f(x, y) = 2y + 3ex , x0 = 0 and y0 = 0. y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(0) + 3e0 = 3 y = 2y + 3ex ⇒ y (x0) = 2(y0) + 3ex0 = 2(3) + 3e0 = 9 y = 2y + 3ex ⇒ y (x0) = 2(y0 ) + 3ex0 = 2(9) + 3e0 = 21 yiv = 2y + 3ex ⇒ yiv (x0) = 45 By Taylor’s series, y(x) = y0+(x−x0)y (x0)+ (x − x0)2 2! y (x0)+ (x − x0)3 3! y (x0)+. . . = 0 + x(3) + x2 2! (9) + x3 3! (21) + x4 4! (45) + . . . = 3x + 9x2 2 + 7x3 2 + 15x4 8 + . . . y(0.2) = Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 52. Taylor’s Series Method Ex: Use Taylor’s series method to solve dy dx = x2 + y2 , y(0) = 1. Find y(0.1) correct up to 4 decimal places. Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 53. Taylor’s Series Method Ex: Use Taylor’s series method to solve dy dx = x2 y − 1, y(0) = 1. Find y(0.03). Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 54. Picard’s Method Picard’s Method: Consider the first order differential equation. Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 55. Picard’s Method Picard’s Method: Consider the first order differential equation. dy dx = f(x, y) − − − (1) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 56. Picard’s Method Picard’s Method: Consider the first order differential equation. dy dx = f(x, y) − − − (1) subject to y(x0) = y0 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 57. Picard’s Method Picard’s Method: Consider the first order differential equation. dy dx = f(x, y) − − − (1) subject to y(x0) = y0 The equation (1) can be written as Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 58. Picard’s Method Picard’s Method: Consider the first order differential equation. dy dx = f(x, y) − − − (1) subject to y(x0) = y0 The equation (1) can be written as dy = f(x, y)dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 59. Picard’s Method Picard’s Method: Consider the first order differential equation. dy dx = f(x, y) − − − (1) subject to y(x0) = y0 The equation (1) can be written as dy = f(x, y)dx Integrating between the limits for x and y, we get Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 60. Picard’s Method Picard’s Method: Consider the first order differential equation. dy dx = f(x, y) − − − (1) subject to y(x0) = y0 The equation (1) can be written as dy = f(x, y)dx Integrating between the limits for x and y, we get y y0 dy = x x0 f(x, y)dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 61. Picard’s Method Picard’s Method: Consider the first order differential equation. dy dx = f(x, y) − − − (1) subject to y(x0) = y0 The equation (1) can be written as dy = f(x, y)dx Integrating between the limits for x and y, we get y y0 dy = x x0 f(x, y)dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 62. Picard’s Method (y − y0) = x x0 f(x, y)dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 63. Picard’s Method (y − y0) = x x0 f(x, y)dx y = y0 + x x0 f(x, y)dx − − − (2) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 64. Picard’s Method (y − y0) = x x0 f(x, y)dx y = y0 + x x0 f(x, y)dx − − − (2) Equation (2) is known as integral equation and can be solved by successive approximation or iteration. Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 65. Picard’s Method (y − y0) = x x0 f(x, y)dx y = y0 + x x0 f(x, y)dx − − − (2) Equation (2) is known as integral equation and can be solved by successive approximation or iteration. Now by Picard’s method, for 1st approximation y1 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 66. Picard’s Method (y − y0) = x x0 f(x, y)dx y = y0 + x x0 f(x, y)dx − − − (2) Equation (2) is known as integral equation and can be solved by successive approximation or iteration. Now by Picard’s method, for 1st approximation y1 we replace y by y0 in f(x, y) in R.H.S of eq. (2), we get Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 67. Picard’s Method (y − y0) = x x0 f(x, y)dx y = y0 + x x0 f(x, y)dx − − − (2) Equation (2) is known as integral equation and can be solved by successive approximation or iteration. Now by Picard’s method, for 1st approximation y1 we replace y by y0 in f(x, y) in R.H.S of eq. (2), we get y1 = y0 + x x0 f(x, y0)dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 68. Picard’s Method For 2nd approximation y2, Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 69. Picard’s Method For 2nd approximation y2, we replace y by y1 in f(x, y) in R.H.S of eq. (2), we get Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 70. Picard’s Method For 2nd approximation y2, we replace y by y1 in f(x, y) in R.H.S of eq. (2), we get y2 = y0 + x x0 f(x, y1)dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 71. Picard’s Method For 2nd approximation y2, we replace y by y1 in f(x, y) in R.H.S of eq. (2), we get y2 = y0 + x x0 f(x, y1)dx In general, Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 72. Picard’s Method For 2nd approximation y2, we replace y by y1 in f(x, y) in R.H.S of eq. (2), we get y2 = y0 + x x0 f(x, y1)dx In general, yn+1 = y0 + x x0 f(x, yn)dx for n = 0, 1, 2, . . . Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 73. Picard’s Method For 2nd approximation y2, we replace y by y1 in f(x, y) in R.H.S of eq. (2), we get y2 = y0 + x x0 f(x, y1)dx In general, yn+1 = y0 + x x0 f(x, yn)dx for n = 0, 1, 2, . . . stop the process when the two consecutive values of y are same up to desired accuracy. Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 74. Picard’s Method Note: This method is applicable to a limited class of equations in which the successive integration can be performed easily. Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 75. Picard’s Method Ex Using Picard’s method solve dy dx = 3 + 2xy where y(0) = 1 for x = 0.1. Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 76. Picard’s Method Sol.: By Picard’s method yn+1 = y0 + x x0 f(x, yn) dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 77. Picard’s Method Sol.: By Picard’s method yn+1 = y0 + x x0 f(x, yn) dx Here x0 = 0, y0 = 1, f(x, y) = 3 + 2xy Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 78. Picard’s Method Sol.: By Picard’s method yn+1 = y0 + x x0 f(x, yn) dx Here x0 = 0, y0 = 1, f(x, y) = 3 + 2xy 1st approximation: Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 79. Picard’s Method Sol.: By Picard’s method yn+1 = y0 + x x0 f(x, yn) dx Here x0 = 0, y0 = 1, f(x, y) = 3 + 2xy 1st approximation: put n = 0 and y0 = 1 in f(x, y) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 80. Picard’s Method Sol.: By Picard’s method yn+1 = y0 + x x0 f(x, yn) dx Here x0 = 0, y0 = 1, f(x, y) = 3 + 2xy 1st approximation: put n = 0 and y0 = 1 in f(x, y) y1 = 1 + x 0 (3 + 2x) dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 81. Picard’s Method Sol.: By Picard’s method yn+1 = y0 + x x0 f(x, yn) dx Here x0 = 0, y0 = 1, f(x, y) = 3 + 2xy 1st approximation: put n = 0 and y0 = 1 in f(x, y) y1 = 1 + x 0 (3 + 2x) dx ∴ y1 = 1 + 3x + x2 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 82. Picard’s Method 2nd approximation: Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 83. Picard’s Method 2nd approximation: put n = 1 and y1 = 1 + 3x + x2 in f(x, y) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 84. Picard’s Method 2nd approximation: put n = 1 and y1 = 1 + 3x + x2 in f(x, y) y2 = 1 + x 0 3 + 2x(1 + 3x + x2 ) dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 85. Picard’s Method 2nd approximation: put n = 1 and y1 = 1 + 3x + x2 in f(x, y) y2 = 1 + x 0 3 + 2x(1 + 3x + x2 ) dx = 1 + x 0 3 + 2x + 6x2 + 2x3 ) dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 86. Picard’s Method 2nd approximation: put n = 1 and y1 = 1 + 3x + x2 in f(x, y) y2 = 1 + x 0 3 + 2x(1 + 3x + x2 ) dx = 1 + x 0 3 + 2x + 6x2 + 2x3 ) dx ∴ y2 = 1 + 3x + x2 + 2x3 + x4 2 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 87. Picard’s Method 2nd approximation: put n = 1 and y1 = 1 + 3x + x2 in f(x, y) y2 = 1 + x 0 3 + 2x(1 + 3x + x2 ) dx = 1 + x 0 3 + 2x + 6x2 + 2x3 ) dx ∴ y2 = 1 + 3x + x2 + 2x3 + x4 2 which is approximate solution, putting x = 0.1 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 88. Picard’s Method 2nd approximation: put n = 1 and y1 = 1 + 3x + x2 in f(x, y) y2 = 1 + x 0 3 + 2x(1 + 3x + x2 ) dx = 1 + x 0 3 + 2x + 6x2 + 2x3 ) dx ∴ y2 = 1 + 3x + x2 + 2x3 + x4 2 which is approximate solution, putting x = 0.1 y(0.1) = Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 89. Picard’s Method 2nd approximation: put n = 1 and y1 = 1 + 3x + x2 in f(x, y) y2 = 1 + x 0 3 + 2x(1 + 3x + x2 ) dx = 1 + x 0 3 + 2x + 6x2 + 2x3 ) dx ∴ y2 = 1 + 3x + x2 + 2x3 + x4 2 which is approximate solution, putting x = 0.1 y(0.1) = 1.31205 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 90. Picard’s Method Ex: Using Picard’s method, obtain a solution upto 4th approx of the equation dy dx = y + x, y(0) = 1. Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 91. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 92. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 1, f(x, y) = x + y Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 93. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 1, f(x, y) = x + y 1st approximation: put y = y0 = 1 in f(x, y) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 94. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 1, f(x, y) = x + y 1st approximation: put y = y0 = 1 in f(x, y) ‘y1 = 1 + x 0 (1 + x) dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 95. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 1, f(x, y) = x + y 1st approximation: put y = y0 = 1 in f(x, y) ‘y1 = 1 + x 0 (1 + x) dx ∴ y1 = 1 + x + x2 2 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 96. Picard’s Method 2nd approximation: Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 97. Picard’s Method 2nd approximation: put y = y1 = 1 + x + x2 2 in f(x, y) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 98. Picard’s Method 2nd approximation: put y = y1 = 1 + x + x2 2 in f(x, y) ‘y2 = 1 + x 0 1 + 2x + x2 2 dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 99. Picard’s Method 2nd approximation: put y = y1 = 1 + x + x2 2 in f(x, y) ‘y2 = 1 + x 0 1 + 2x + x2 2 dx ∴ y2 = 1 + x + x2 + x3 6 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 100. Picard’s Method 3rd approximation: put y = 1 + x + x2 + x3 6 in f(x, y) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 101. Picard’s Method 3rd approximation: put y = 1 + x + x2 + x3 6 in f(x, y) ‘y3 = 1 + x 0 1 + 2x + x2 + x3 6 dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 102. Picard’s Method 3rd approximation: put y = 1 + x + x2 + x3 6 in f(x, y) ‘y3 = 1 + x 0 1 + 2x + x2 + x3 6 dx ∴ y3 = 1 + x + x2 + x3 3 + x4 24 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 103. Picard’s Method 4th approximation: Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 104. Picard’s Method 4th approximation: put y = 1 + x + x2 + x3 3 + x4 24 in f(x, y) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 105. Picard’s Method 4th approximation: put y = 1 + x + x2 + x3 3 + x4 24 in f(x, y) ‘y4 = 1 + x 0 1 + 2x + x2 + x3 3 + x4 24 dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 106. Picard’s Method 4th approximation: put y = 1 + x + x2 + x3 3 + x4 24 in f(x, y) ‘y4 = 1 + x 0 1 + 2x + x2 + x3 3 + x4 24 dx ∴ y4 = 1 + x + x2 + x3 3 + x4 12 + x5 120 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 107. Picard’s Method Ex: Using Picard’s 2nd approx. solution of the initial value problem dy dx = x2 + y2 ,for x = 0.4 correct to 4 decimal places given that y(0) = 0. Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 108. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 109. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 0, f(x, y) = x2 + y2 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 110. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 0, f(x, y) = x2 + y2 1st approximation: put y = y0 = 0 in f(x, y) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 111. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 0, f(x, y) = x2 + y2 1st approximation: put y = y0 = 0 in f(x, y) ‘y1 = 0 + x 0 (x2 + 0) dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 112. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 0, f(x, y) = x2 + y2 1st approximation: put y = y0 = 0 in f(x, y) ‘y1 = 0 + x 0 (x2 + 0) dx ∴ y1 = x3 3 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 113. Picard’s Method 2nd approximation: Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 114. Picard’s Method 2nd approximation: put y = y1 = x3 3 in f(x, y) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 115. Picard’s Method 2nd approximation: put y = y1 = x3 3 in f(x, y) ‘y2 = y0 + x 0 x2 + x3 3 2 dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 116. Picard’s Method 2nd approximation: put y = y1 = x3 3 in f(x, y) ‘y2 = y0 + x 0 x2 + x3 3 2 dx ∴ y2 = x3 3 + x7 63 Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 117. Picard’s Method 2nd approximation: put y = y1 = x3 3 in f(x, y) ‘y2 = y0 + x 0 x2 + x3 3 2 dx ∴ y2 = x3 3 + x7 63 y(0.4) = Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 118. Picard’s Method Ex: Find the value of y for x = 0.1 by Picard’s method given that dy dx = y − x y + x ,y(0) = 1. Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 119. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 120. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 1, f(x, y) = y − x y + x Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 121. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 1, f(x, y) = y − x y + x 1st approximation: put y = y0 = 1 in f(x, y) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 122. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 1, f(x, y) = y − x y + x 1st approximation: put y = y0 = 1 in f(x, y) y1 = 1 + x 0 1 − x 1 + x dx = 1 + x 0 2 − (1 + x) 1 + x dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 123. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 1, f(x, y) = y − x y + x 1st approximation: put y = y0 = 1 in f(x, y) y1 = 1 + x 0 1 − x 1 + x dx = 1 + x 0 2 − (1 + x) 1 + x dx = 1 + x 0 2 1 + x − 1 dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 124. Picard’s Method Sol.: By Picard’s method y = y0 + x x0 f(x, y) dx Here x0 = 0, y0 = 1, f(x, y) = y − x y + x 1st approximation: put y = y0 = 1 in f(x, y) y1 = 1 + x 0 1 − x 1 + x dx = 1 + x 0 2 − (1 + x) 1 + x dx = 1 + x 0 2 1 + x − 1 dx ∴ y1 = 1 − x + 2log(1 + x) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 125. Picard’s Method 2nd approximation: Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 126. Picard’s Method 2nd approximation: put y = y1 = 1 + 2log(1 + x) − x in f(x, y) Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 127. Picard’s Method 2nd approximation: put y = y1 = 1 + 2log(1 + x) − x in f(x, y) y2 = 1 + x 0 1 − x + 2log(1 + x) − x 1 − x + 2log(1 + x) + x dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 128. Picard’s Method 2nd approximation: put y = y1 = 1 + 2log(1 + x) − x in f(x, y) y2 = 1 + x 0 1 − x + 2log(1 + x) − x 1 − x + 2log(1 + x) + x dx = 1 + x 0 1 − 2x + 2log(1 + x) 1 + 2log(1 + x) dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 129. Picard’s Method 2nd approximation: put y = y1 = 1 + 2log(1 + x) − x in f(x, y) y2 = 1 + x 0 1 − x + 2log(1 + x) − x 1 − x + 2log(1 + x) + x dx = 1 + x 0 1 − 2x + 2log(1 + x) 1 + 2log(1 + x) dx = 1 + x 0 1 − 2x 1 + 2log(1 + x) dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 130. Picard’s Method = 1 + x − x 0 2x 1 + 2log(1 + x) dx Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 131. Picard’s Method = 1 + x − x 0 2x 1 + 2log(1 + x) dx which is difficult to integrate therefore using 1st approximation. Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -
  • 132. Picard’s Method = 1 + x − x 0 2x 1 + 2log(1 + x) dx which is difficult to integrate therefore using 1st approximation. y(0.1) = Dr. N. B. Vyas Numerical Methods Ordinary Differential Equations -