Laplace Transforms 
Nirav B. Vyas 
Department of Mathematics 
Atmiya Institute of Technology and Science 
Yogidham, Kalavad road 
Rajkot - 360005 . Gujarat 
N. B. Vyas Laplace Transforms
Laplace Transforms 
De
nition: 
Let f(t) be a function of t de
ned for all t  0 then Laplace 
transform of f(t) is denoted by Lff(t)g or  f(s) and is 
de
ned as 
L ff (t)g =  f (s) = 
Z1 
0 
estf (t) dt 
provided the integral exists where s is a parameter ( real or 
complex). 
N. B. Vyas Laplace Transforms
Laplace Transforms 
NOTATIONS: 
The original functions are denoted by lowercase letters such 
as f(t); g(t); ::: 
Laplace transforms by the same letters with bars such as 
 f(s)g(s); ::: 
N. B. Vyas Laplace Transforms
Linearity of the Laplace Transforms 
Theorem 1: 
If Lff (t)g =  f (s) and Lfg (t)g = g (s) then for any constants a and b 
Lfaf (t) + bg (t)g = aL ff (t)g + bL fg (t)g 
N. B. Vyas Laplace Transforms
Linearity of the Laplace Transforms 
Theorem 1: 
If Lff (t)g =  f (s) and Lfg (t)g = g (s) then for any constants a and b 
Lfaf (t) + bg (t)g = aL ff (t)g + bL fg (t)g 
Corollary 1: 
Putting a = 0 and b = 0, we get L[0] = 0 
N. B. Vyas Laplace Transforms
Linearity of the Laplace Transforms 
Theorem 1: 
If Lff (t)g =  f (s) and Lfg (t)g = g (s) then for any constants a and b 
Lfaf (t) + bg (t)g = aL ff (t)g + bL fg (t)g 
Corollary 1: 
Putting a = 0 and b = 0, we get L[0] = 0 
Corollary 2: 
Putting b = 0, we get L[af(t)] = aL[f(t)] 
N. B. Vyas Laplace Transforms
Linearity of the Laplace Transforms 
Theorem 1: 
If Lff (t)g =  f (s) and Lfg (t)g = g (s) then for any constants a and b 
Lfaf (t) + bg (t)g = aL ff (t)g + bL fg (t)g 
Corollary 1: 
Putting a = 0 and b = 0, we get L[0] = 0 
Corollary 2: 
Putting b = 0, we get L[af(t)] = aL[f(t)] 
Corollary 3: 
L[a1f1 (t) + a2f2 (t) + ::: + anfn (t)] 
= a1L[f1(t)] + a2L[f2(t)] + ::: + anL[fn(t)] 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
1 L(1) = 
1 
s 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
1 L(1) = 
1 
s 
2 L(eat) = 
1 
s  a 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
1 L(1) = 
1 
s 
2 L(eat) = 
1 
s  a 
cor.1 If a = 0 ) L(1) = 
1 
s 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
1 L(1) = 
1 
s 
2 L(eat) = 
1 
s  a 
cor.1 If a = 0 ) L(1) = 
1 
s 
cor.2 L[eat] = 
1 
s + a 
if s  a 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
1 L(1) = 
1 
s 
2 L(eat) = 
1 
s  a 
cor.1 If a = 0 ) L(1) = 
1 
s 
cor.2 L[eat] = 
1 
s + a 
if s  a 
cor.3 L[cat] = L[eat log c] = 
1 
s  a logc 
if s  a log c and c  0 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
3 L[sinh at] = 
a 
s2  a2 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
3 L[sinh at] = 
a 
s2  a2 
4 L[cosh at] = 
s 
s2  a2 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
3 L[sinh at] = 
a 
s2  a2 
4 L[cosh at] = 
s 
s2  a2 
5 L[sin at] = 
a 
s2 + a2 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
3 L[sinh at] = 
a 
s2  a2 
4 L[cosh at] = 
s 
s2  a2 
5 L[sin at] = 
a 
s2 + a2 
6 L[cos at] = 
s 
s2 + a2 ; s  0 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
3 L[sinh at] = 
a 
s2  a2 
4 L[cosh at] = 
s 
s2  a2 
5 L[sin at] = 
a 
s2 + a2 
6 L[cos at] = 
s 
s2 + a2 ; s  0 
cor.1 L[sin t] = 
1 
s2 + 1 
; s  0 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
3 L[sinh at] = 
a 
s2  a2 
4 L[cosh at] = 
s 
s2  a2 
5 L[sin at] = 
a 
s2 + a2 
6 L[cos at] = 
s 
s2 + a2 ; s  0 
cor.1 L[sin t] = 
1 
s2 + 1 
; s  0 
cor.2 L[cos t] = 
s 
s2 + 1 
; s  0 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
7 L[tn] = 
(n + 1) 
sn+1 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
7 L[tn] = 
(n + 1) 
sn+1 
= 
n! 
sn+1 ; n = 0; 1; 2; ::: 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
7 L[tn] = 
(n + 1) 
sn+1 
= 
n! 
sn+1 ; n = 0; 1; 2; ::: 
cor.1 If n = 0, L[1] = 
1 
s 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
7 L[tn] = 
(n + 1) 
sn+1 
= 
n! 
sn+1 ; n = 0; 1; 2; ::: 
cor.1 If n = 0, L[1] = 
1 
s 
cor.2 If n =  
1 
2 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
7 L[tn] = 
(n + 1) 
sn+1 
= 
n! 
sn+1 ; n = 0; 1; 2; ::: 
cor.1 If n = 0, L[1] = 
1 
s 
cor.2 If n =  
1 
2 
L 
 
t1 
2 
 
= 
(1 
) 
2 1 
s 
2 
= 
r 
 
s 
N. B. Vyas Laplace Transforms
Laplace Transforms of some elementary functions 
7 L[tn] = 
(n + 1) 
sn+1 
= 
n! 
sn+1 ; n = 0; 1; 2; ::: 
cor.1 If n = 0, L[1] = 
1 
s 
cor.2 If n =  
1 
2 
L 
 
t1 
2 
 
= 
(1 
) 
2 1 
s 
2 
= 
r 
 
s 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform 
1 L 
 
2t3 + e2t + t 
4 
3 
 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform 
1 L 
 
2t3 + e2t + t 
4 
3 
 
2 L 
 
A + B t 
1 
2 + C t 
1 
2 
 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform 
1 L 
 
2t3 + e2t + t 
4 
3 
 
2 L 
 
A + B t 
1 
2 + C t 
1 
2 
 
3 L 
 
eat  1 
a 
 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform 
1 L 
 
2t3 + e2t + t 
4 
3 
 
2 L 
 
A + B t 
1 
2 + C t 
1 
2 
 
3 L 
 
eat  1 
a 
 
4 Lfsin(at + b)g 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform 
1 L 
 
2t3 + e2t + t 
4 
3 
 
2 L 
 
A + B t 
1 
2 + C t 
1 
2 
 
3 L 
 
eat  1 
a 
 
4 Lfsin(at + b)g 
5 Lfsin 2t cos 3tg 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform 
1 L 
 
2t3 + e2t + t 
4 
3 
 
2 L 
 
A + B t 
1 
2 + C t 
1 
2 
 
3 L 
 
eat  1 
a 
 
4 Lfsin(at + b)g 
5 Lfsin 2t cos 3tg 
6 L 
 
cos24t 
	 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform 
1 L 
 
2t3 + e2t + t 
4 
3 
 
2 L 
 
A + B t 
1 
2 + C t 
1 
2 
 
3 L 
 
eat  1 
a 
 
4 Lfsin(at + b)g 
5 Lfsin 2t cos 3tg 
6 L 
 
cos24t 
	 
7 L 
 
cos32t 
	 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
If Lff (t)g =  f (s) then L 
 
eatf (t) 
	 
=  f (s  a) 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
If Lff (t)g =  f (s) then L 
 
eatf (t) 
	 
=  f (s  a) 
Proof: By the def. of Laplace 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
If Lff (t)g =  f (s) then L 
 
eatf (t) 
	 
=  f (s  a) 
Proof: By the def. of Laplace 
 
	 
1R 
L 
eatf (t) 
= 
0 
esteatf (t) dt 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
If Lff (t)g =  f (s) then L 
 
eatf (t) 
	 
=  f (s  a) 
Proof: By the def. of Laplace 
 
	 
1R 
L 
eatf (t) 
= 
0 
esteatf (t) dt 
= 
1R 
0 
e(sa)tf (t) dt 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
If Lff (t)g =  f (s) then L 
 
eatf (t) 
	 
=  f (s  a) 
Proof: By the def. of Laplace 
 
	 
1R 
L 
eatf (t) 
= 
0 
esteatf (t) dt 
= 
1R 
0 
e(sa)tf (t) dt 
= 
1R 
0 
ertf (t) dt 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
If Lff (t)g =  f (s) then L 
 
eatf (t) 
	 
=  f (s  a) 
Proof: By the def. of Laplace 
 
	 
1R 
L 
eatf (t) 
= 
0 
esteatf (t) dt 
= 
1R 
0 
e(sa)tf (t) dt 
= 
1R 
0 
ertf (t) dt 
=  f(r) 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
If Lff (t)g =  f (s) then L 
 
eatf (t) 
	 
=  f (s  a) 
Proof: By the def. of Laplace 
 
	 
1R 
L 
eatf (t) 
= 
0 
esteatf (t) dt 
= 
1R 
0 
e(sa)tf (t) dt 
= 
1R 
0 
ertf (t) dt 
=  f(r) 
=  f(s  a) 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
If Lff (t)g =  f (s) then L 
 
eatf (t) 
	 
=  f (s  a) 
Proof: By the def. of Laplace 
 
	 
1R 
L 
eatf (t) 
= 
0 
esteatf (t) dt 
= 
1R 
0 
e(sa)tf (t) dt 
= 
1R 
0 
ertf (t) dt 
=  f(r) 
=  f(s  a) 
Thus if we know the transformation  f(s) of f(t) then we can 
write the transformation of eatf(t) simply replacing s by s  a to 
get F(s  a) 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
Note: 
1 L(eat) = 
1 
s  a 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
Note: 
1 L(eat) = 
1 
s  a 
2 L[eattn] = 
(n + 1) 
(s  a)n+1 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
Note: 
1 L(eat) = 
1 
s  a 
2 L[eattn] = 
(n + 1) 
(s  a)n+1 
3 L[eatsinh bt] = 
b 
(s  a)2  b2 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
Note: 
1 L(eat) = 
1 
s  a 
2 L[eattn] = 
(n + 1) 
(s  a)n+1 
3 L[eatsinh bt] = 
b 
(s  a)2  b2 
4 L[eatcosh bt] = 
s 
(s  a)2  b2 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
Note: 
1 L(eat) = 
1 
s  a 
2 L[eattn] = 
(n + 1) 
(s  a)n+1 
3 L[eatsinh bt] = 
b 
(s  a)2  b2 
4 L[eatcosh bt] = 
s 
(s  a)2  b2 
5 L[eatsin bt] = 
b 
(s  a)2 + b2 
N. B. Vyas Laplace Transforms
First Shifting Theorem 
Note: 
1 L(eat) = 
1 
s  a 
2 L[eattn] = 
(n + 1) 
(s  a)n+1 
3 L[eatsinh bt] = 
b 
(s  a)2  b2 
4 L[eatcosh bt] = 
s 
(s  a)2  b2 
5 L[eatsin bt] = 
b 
(s  a)2 + b2 
6 L[eatcos bt] = 
s  a 
(s  a)2 + b2 ; s  0 
N. B. Vyas Laplace Transforms
Examples 
1 Find out the Laplace transform of e3t (2 cos 5t  3 sin 5t) 
N. B. Vyas Laplace Transforms
Examples 
1 Find out the Laplace transform of e3t (2 cos 5t  3 sin 5t) 
2 L[eatsinhbt] 
N. B. Vyas Laplace Transforms
Examples 
1 Find out the Laplace transform of e3t (2 cos 5t  3 sin 5t) 
2 L[eatsinhbt] 
3 L[t3e3t] 
N. B. Vyas Laplace Transforms
Examples 
1 Find out the Laplace transform of e3t (2 cos 5t  3 sin 5t) 
2 L[eatsinhbt] 
3 L[t3e3t] 
4 L[(t + 2)2et] 
N. B. Vyas Laplace Transforms
Examples 
1 Find out the Laplace transform of e3t (2 cos 5t  3 sin 5t) 
2 L[eatsinhbt] 
3 L[t3e3t] 
4 L[(t + 2)2et] 
5 L[etsin2t] 
N. B. Vyas Laplace Transforms
Examples 
1 Find out the Laplace transform of e3t (2 cos 5t  3 sin 5t) 
2 L[eatsinhbt] 
3 L[t3e3t] 
4 L[(t + 2)2et] 
5 L[etsin2t] 
6 L[cosh at sin at] 
N. B. Vyas Laplace Transforms
Examples 
Ex. Find the Laplace transform of the function which is de
ned as 
f(t) = 
 
t/T 0  t  T 
1 when t  T 
N. B. Vyas Laplace Transforms
Examples 
Ex. Find Laplace transform of f(t) = 
 
sin t 0  t   
0 when t   
N. B. Vyas Laplace Transforms
Examples 
Ex. Find Laplace transform of f(t) where f(t) = 
 
t 0  t  4 
5 when t  4 
N. B. Vyas Laplace Transforms
Change of Scale property 
If Lff (t)g =  f (s) then L 
 
eatf (bt) 
	 
= 
1 
b 
 f 
 
s  a 
b 
 
; b  0 
N. B. Vyas Laplace Transforms
Change of Scale property 
If Lff (t)g =  f (s) then L 
 
eatf (bt) 
	 
= 
1 
b 
 f 
 
s  a 
b 
 
; b  0 
Proof: By the def. of Laplace 
N. B. Vyas Laplace Transforms
Change of Scale property 
If Lff (t)g =  f (s) then L 
 
eatf (bt) 
	 
= 
1 
b 
 f 
 
s  a 
b 
 
; b  0 
Proof: By the def. of Laplace 
Lff (t)g = 
1 Z 
0 
estf (t) dt 
N. B. Vyas Laplace Transforms
Change of Scale property 
If Lff (t)g =  f (s) then L 
 
eatf (bt) 
	 
= 
1 
b 
 f 
 
s  a 
b 
 
; b  0 
Proof: By the def. of Laplace 
Lff (t)g = 
1 Z 
0 
estf (t) dt 
L 
 
eatf (bt) 
	 
= 
1 Z 
0 
esteatf (bt) dt 
N. B. Vyas Laplace Transforms
Change of Scale property 
If Lff (t)g =  f (s) then L 
 
eatf (bt) 
	 
= 
1 
b 
 f 
 
s  a 
b 
 
; b  0 
Proof: By the def. of Laplace 
Lff (t)g = 
1 Z 
0 
estf (t) dt 
L 
 
eatf (bt) 
	 
= 
1 Z 
0 
esteatf (bt) dt 
= 
1R 
0 
e(sa)tf (bt) dt 
N. B. Vyas Laplace Transforms
Change of Scale property 
If Lff (t)g =  f (s) then L 
 
eatf (bt) 
	 
= 
1 
b 
 f 
 
s  a 
b 
 
; b  0 
Proof: By the def. of Laplace 
Lff (t)g = 
1 Z 
0 
estf (t) dt 
L 
 
eatf (bt) 
	 
= 
1 Z 
0 
esteatf (bt) dt 
= 
1R 
0 
e(sa)tf (bt) dt 
= 
1R 
0 
e( sa 
b )btf (bt) dt 
N. B. Vyas Laplace Transforms
Change of Scale property 
If Lff (t)g =  f (s) then L 
 
eatf (bt) 
	 
= 
1 
b 
 f 
 
s  a 
b 
 
; b  0 
Proof: By the def. of Laplace 
Lff (t)g = 
1 Z 
0 
estf (t) dt 
L 
 
eatf (bt) 
	 
= 
1 Z 
0 
esteatf (bt) dt 
= 
1R 
0 
e(sa)tf (bt) dt 
= 
1R 
0 
e( sa 
b )btf (bt) dt 
Let bt = u ) b dt = du 
N. B. Vyas Laplace Transforms
Change of Scale property 
If Lff (t)g =  f (s) then L 
 
eatf (bt) 
	 
= 
1 
b 
 f 
 
s  a 
b 
 
; b  0 
Proof: By the def. of Laplace 
Lff (t)g = 
1 Z 
0 
estf (t) dt 
L 
 
eatf (bt) 
	 
= 
1 Z 
0 
esteatf (bt) dt 
= 
1R 
0 
e(sa)tf (bt) dt 
= 
1R 
0 
e( sa 
b )btf (bt) dt 
Let bt = u ) b dt = du 
 
	 
1R 
L 
eatf (bt) 
= 
0 
e( sa 
b )uf (u) 
du 
b 
N. B. Vyas Laplace Transforms
Change of Scale property 
If Lff (t)g =  f (s) then L 
 
eatf (bt) 
	 
= 
1 
b 
 f 
 
s  a 
b 
 
; b  0 
Proof: By the def. of Laplace 
Lff (t)g = 
1 Z 
0 
estf (t) dt 
L 
 
eatf (bt) 
	 
= 
1 Z 
0 
esteatf (bt) dt 
= 
1R 
0 
e(sa)tf (bt) dt 
= 
1R 
0 
e( sa 
b )btf (bt) dt 
Let bt = u ) b dt = du 
 
	 
1R 
L 
eatf (bt) 
= 
0 
e( sa 
b )uf (u) 
du 
b 
= 
1 
b 
 f 
 
s  a 
b 
 
N. B. Vyas Laplace Transforms
Inverse Laplace Transform 
If Lff (t)g = f  (s) then f(t) is called the inverse  
Laplace 
transform of f(s)  and it is denoted by L1 
f(s) 
 	 
= f (t) 
N. B. Vyas Laplace Transforms
Inverse Laplace Transform 
If Lff (t)g = f  (s) then f(t) is called the inverse  
Laplace 
transform of f(s)  and it is denoted by L1 
f(s) 
 	 
= f (t) 
1 L1 
 
1 
s 
 
= 1 
N. B. Vyas Laplace Transforms
Inverse Laplace Transform 
If Lff (t)g = f  (s) then f(t) is called the inverse  
Laplace 
transform of f(s)  and it is denoted by L1 
f(s) 
 	 
= f (t) 
1 L1 
 
1 
s 
 
= 1 
2 L1 
 
1 
s  a 
 
= eat 
N. B. Vyas Laplace Transforms
Inverse Laplace Transform 
If Lff (t)g = f  (s) then f(t) is called the inverse  
Laplace 
transform of f(s)  and it is denoted by L1 
f(s) 
 	 
= f (t) 
1 L1 
 
1 
s 
 
= 1 
2 L1 
 
1 
s  a 
 
= eat 
3 L1 
 
1 
s2 + a2 
 
= 
1 
a 
sin at 
N. B. Vyas Laplace Transforms
Inverse Laplace Transform 
If Lff (t)g = f  (s) then f(t) is called the inverse  
Laplace 
transform of f(s)  and it is denoted by L1 
f(s) 
 	 
= f (t) 
1 L1 
 
1 
s 
 
= 1 
2 L1 
 
1 
s  a 
 
= eat 
3 L1 
 
1 
s2 + a2 
 
= 
1 
a 
sin at 
4 L1 
 
s 
s2 + a2 
 
= cos at 
N. B. Vyas Laplace Transforms
Inverse Laplace Transform 
If Lff (t)g = f  (s) then f(t) is called the inverse  
Laplace 
transform of f(s)  and it is denoted by L1 
f(s) 
 	 
= f (t) 
1 L1 
 
1 
s 
 
= 1 
2 L1 
 
1 
s  a 
 
= eat 
3 L1 
 
1 
s2 + a2 
 
= 
1 
a 
sin at 
4 L1 
 
s 
s2 + a2 
 
= cos at 
5 L1 
 
1 
s2  a2 
 
= 
1 
a 
sinh at 
N. B. Vyas Laplace Transforms
Inverse Laplace Transform 
If Lff (t)g = f  (s) then f(t) is called the inverse  
Laplace 
transform of f(s)  and it is denoted by L1 
f(s) 
 	 
= f (t) 
1 L1 
 
1 
s 
 
= 1 
2 L1 
 
1 
s  a 
 
= eat 
3 L1 
 
1 
s2 + a2 
 
= 
1 
a 
sin at 
4 L1 
 
s 
s2 + a2 
 
= cos at 
5 L1 
 
1 
s2  a2 
 
= 
1 
a 
sinh at 
6 L1 
 
s 
s2  a2 
 
= cosh at 
N. B. Vyas Laplace Transforms
Inverse Laplace Transform 
If Lff (t)g = f  (s) then f(t) is called the inverse  
Laplace 
transform of f(s)  and it is denoted by L1 
f(s) 
 	 
= f (t) 
1 L1 
 
1 
s 
 
= 1 
2 L1 
 
1 
s  a 
 
= eat 
3 L1 
 
1 
s2 + a2 
 
= 
1 
a 
sin at 
4 L1 
 
s 
s2 + a2 
 
= cos at 
5 L1 
 
1 
s2  a2 
 
= 
1 
a 
sinh at 
6 L1 
 
s 
s2  a2 
 
= cosh at 
7 L1 
 
1 
sn 
 
= 
tn1 
(n  1)! 
N. B. Vyas Laplace Transforms
Partial Fractions 
N. B. Vyas Laplace Transforms
Partial Fractions 
N. B. Vyas Laplace Transforms
Partial Fractions 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - I 
1 L1 
 
s2  3s + 4 
s3 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - I 
1 L1 
 
s2  3s + 4 
s3 
 
2 L1 
 
3 
2 
 
s4  2s2 + 1 
s5 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - I 
1 L1 
 
s2  3s + 4 
s3 
 
2 L1 
 
3 
2 
 
s4  2s2 + 1 
s5 
 
3 L1 
 
s + 7 
(s + 1)2 + 1 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - I 
1 L1 
 
s2  3s + 4 
s3 
 
2 L1 
 
3 
2 
 
s4  2s2 + 1 
s5 
 
3 L1 
 
s + 7 
(s + 1)2 + 1 
 
4 L1 
 
3s + 5 
(s + 1)4 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - I 
1 L1 
 
s2  3s + 4 
s3 
 
2 L1 
 
3 
2 
 
s4  2s2 + 1 
s5 
 
3 L1 
 
s + 7 
(s + 1)2 + 1 
 
4 L1 
 
3s + 5 
(s + 1)4 
 
5 L1 
 
3s 
s2 + 2s  8 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - I 
1 L1 
 
s2  3s + 4 
s3 
 
2 L1 
 
3 
2 
 
s4  2s2 + 1 
s5 
 
3 L1 
 
s + 7 
(s + 1)2 + 1 
 
4 L1 
 
3s + 5 
(s + 1)4 
 
5 L1 
 
3s 
s2 + 2s  8 
 
6 L1 
 
3s + 7 
s2  2s  3 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - I 
1 L1 
 
s2  3s + 4 
s3 
 
2 L1 
 
3 
2 
 
s4  2s2 + 1 
s5 
 
3 L1 
 
s + 7 
(s + 1)2 + 1 
 
4 L1 
 
3s + 5 
(s + 1)4 
 
5 L1 
 
3s 
s2 + 2s  8 
 
6 L1 
 
3s + 7 
s2  2s  3 
 
7 L1 
 
2s2  6s + 5 
s3  6s2 + 11s  6 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - II 
1 L1 
 
s + 29 
(s + 4)(s2 + 9) 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - II 
1 L1 
 
s + 29 
(s + 4)(s2 + 9) 
 
2 L1 
 
s 
(s2  1) 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - II 
1 L1 
 
s + 29 
(s + 4)(s2 + 9) 
 
2 L1 
 
s 
(s2  1) 
 
3 L1 
 
4s + 5 
(s  1)2(s + 2) 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - II 
1 L1 
 
s + 29 
(s + 4)(s2 + 9) 
 
2 L1 
 
s 
(s2  1) 
 
3 L1 
 
4s + 5 
(s  1)2(s + 2) 
 
4 L1 
 
2s2  1 
(s2 + 1)(s2 + 4) 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - II 
1 L1 
 
s + 29 
(s + 4)(s2 + 9) 
 
2 L1 
 
s 
(s2  1) 
 
3 L1 
 
4s + 5 
(s  1)2(s + 2) 
 
4 L1 
 
2s2  1 
(s2 + 1)(s2 + 4) 
 
5 L1 
 
s 
s4 + s2 + 1 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - II 
1 L1 
 
s + 29 
(s + 4)(s2 + 9) 
 
2 L1 
 
s 
(s2  1) 
 
3 L1 
 
4s + 5 
(s  1)2(s + 2) 
 
4 L1 
 
2s2  1 
(s2 + 1)(s2 + 4) 
 
5 L1 
 
s 
s4 + s2 + 1 
 
6 L1 
 
s 
s4 + 4a4 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform - II 
1 L1 
 
s + 29 
(s + 4)(s2 + 9) 
 
2 L1 
 
s 
(s2  1) 
 
3 L1 
 
4s + 5 
(s  1)2(s + 2) 
 
4 L1 
 
2s2  1 
(s2 + 1)(s2 + 4) 
 
5 L1 
 
s 
s4 + s2 + 1 
 
6 L1 
 
s 
s4 + 4a4 
 
7 L1 
 
s + 3 
s2 + 6s + 13 
 
N. B. Vyas Laplace Transforms
Transformation of Derivatives 
Thm: If f0(t) be continuous and L[f(t)] =  f(s) then 
Lff0(t)g = s  f(s)  f(0) provided lim 
t!1 
estf(t) = 0 
N. B. Vyas Laplace Transforms
Transformation of Derivatives 
Thm: If f0(t) be continuous and L[f(t)] =  f(s) then 
Lff0(t)g = s  f(s)  f(0) provided lim 
t!1 
estf(t) = 0 
i.e. Lff0(t)g = sL ff(t)g  f(0) 
N. B. Vyas Laplace Transforms
Transformation of Derivatives 
Thm: If f0(t) be continuous and L[f(t)] =  f(s) then 
Lff0(t)g = s  f(s)  f(0) provided lim 
t!1 
estf(t) = 0 
i.e. Lff0(t)g = sL ff(t)g  f(0) 
Simillarly Lff00(t)g = sL ff0(t)g  f0(0) 
N. B. Vyas Laplace Transforms
Transformation of Derivatives 
Thm: If f0(t) be continuous and L[f(t)] =  f(s) then 
Lff0(t)g = s  f(s)  f(0) provided lim 
t!1 
estf(t) = 0 
i.e. Lff0(t)g = sL ff(t)g  f(0) 
Simillarly Lff00(t)g = sL ff0(t)g  f0(0) 
= s [sL ff(t)g  f(0)]  f0(0) 
N. B. Vyas Laplace Transforms
Transformation of Derivatives 
Thm: If f0(t) be continuous and L[f(t)] =  f(s) then 
Lff0(t)g = s  f(s)  f(0) provided lim 
t!1 
estf(t) = 0 
i.e. Lff0(t)g = sL ff(t)g  f(0) 
Simillarly Lff00(t)g = sL ff0(t)g  f0(0) 
= s [sL ff(t)g  f(0)]  f0(0) 
= s2Lff(t)g  sf(0)  f0(0) 
N. B. Vyas Laplace Transforms
Transformation of Derivatives 
Thm: If f0(t) be continuous and L[f(t)] =  f(s) then 
Lff0(t)g = s  f(s)  f(0) provided lim 
t!1 
estf(t) = 0 
i.e. Lff0(t)g = sL ff(t)g  f(0) 
Simillarly Lff00(t)g = sL ff0(t)g  f0(0) 
= s [sL ff(t)g  f(0)]  f0(0) 
= s2Lff(t)g  sf(0)  f0(0) 
= s2  f(s)  sf(0)  f0(0) 
N. B. Vyas Laplace Transforms
Transformation of Derivatives 
Thm: If f0(t) be continuous and L[f(t)] =  f(s) then 
Lff0(t)g = s  f(s)  f(0) provided lim 
t!1 
estf(t) = 0 
i.e. Lff0(t)g = sL ff(t)g  f(0) 
Simillarly Lff00(t)g = sL ff0(t)g  f0(0) 
= s [sL ff(t)g  f(0)]  f0(0) 
= s2Lff(t)g  sf(0)  f0(0) 
= s2  f(s)  sf(0)  f0(0) 
In general 
Lffn(t)g = sn  f(s)  sn1f(0)  sn2f0(0)  : : :  fn1(0) 
N. B. Vyas Laplace Transforms
Transformation of Derivatives 
Thm: If f0(t) be continuous and L[f(t)] =  f(s) then 
Lff0(t)g = s  f(s)  f(0) provided lim 
t!1 
estf(t) = 0 
i.e. Lff0(t)g = sL ff(t)g  f(0) 
Simillarly Lff00(t)g = sL ff0(t)g  f0(0) 
= s [sL ff(t)g  f(0)]  f0(0) 
= s2Lff(t)g  sf(0)  f0(0) 
= s2  f(s)  sf(0)  f0(0) 
In general 
Lffn(t)g = sn  f(s)  sn1f(0)  sn2f0(0)  : : :  fn1(0) 
N. B. Vyas Laplace Transforms
Examples of Transformation of Derivatives 
Ex. Derive the Laplace transform of sin at and cos at 
N. B. Vyas Laplace Transforms
Examples of Transformation of Derivatives 
Ex. Derive the Laplace transform of sin at and cos at 
Ex. Obtain Lftng from L(1) = 
1 
s 
N. B. Vyas Laplace Transforms
Examples of Transformation of Derivatives 
Ex. Derive the Laplace transform of sin at and cos at 
Ex. Obtain Lftng from L(1) = 
1 
s 
Ex. Find L(t sin at) 
N. B. Vyas Laplace Transforms
Examples of Transformation of Derivatives 
Ex. Derive the Laplace transform of sin at and cos at 
Ex. Obtain Lftng from L(1) = 
1 
s 
Ex. Find L(t sin at) 
Ex. Find L(t cos at) 
N. B. Vyas Laplace Transforms
Transformation of Integrals 
Thm: If L[f(t)] =  f(s) then L 
Z t 
0 
 
f(u)du 
= 
1 
s 
 f(s) 
N. B. Vyas Laplace Transforms
Transformation of Integrals 
Thm: If L[f(t)] =  f(s) then L 
Z t 
0 
 
f(u)du 
= 
1 
s 
 f(s) 
Proof: Let I(t) = 
Z t 
0 
f(u)du 
N. B. Vyas Laplace Transforms
Transformation of Integrals 
Thm: If L[f(t)] =  f(s) then L 
Z t 
0 
 
f(u)du 
= 
1 
s 
 f(s) 
Proof: Let I(t) = 
Z t 
0 
f(u)du 
) I0(t) = 
d 
dt 
Z t 
0 
 
= f(t) 
f(u)du 
N. B. Vyas Laplace Transforms
Transformation of Integrals 
Thm: If L[f(t)] =  f(s) then L 
Z t 
0 
 
f(u)du 
= 
1 
s 
 f(s) 
Proof: Let I(t) = 
Z t 
0 
f(u)du 
) I0(t) = 
d 
dt 
Z t 
0 
 
= f(t) and I(0) = 0 
f(u)du 
N. B. Vyas Laplace Transforms
Transformation of Integrals 
Thm: If L[f(t)] =  f(s) then L 
Z t 
0 
 
f(u)du 
= 
1 
s 
 f(s) 
Proof: Let I(t) = 
Z t 
0 
f(u)du 
) I0(t) = 
d 
dt 
Z t 
0 
 
= f(t) and I(0) = 0 
f(u)du 
) Lff(t)g = LfI0(t)g = sI(s)  I(0) = sI(s) 
N. B. Vyas Laplace Transforms
Transformation of Integrals 
Thm: If L[f(t)] =  f(s) then L 
Z t 
0 
 
f(u)du 
= 
1 
s 
 f(s) 
Proof: Let I(t) = 
Z t 
0 
f(u)du 
) I0(t) = 
d 
dt 
Z t 
0 
 
= f(t) and I(0) = 0 
f(u)du 
) Lff(t)g = LfI0(t)g = sI(s)  I(0) = sI(s) 
) Lff(t)g = sI(s) 
N. B. Vyas Laplace Transforms
Transformation of Integrals 
Thm: If L[f(t)] =  f(s) then L 
Z t 
0 
 
f(u)du 
= 
1 
s 
 f(s) 
Proof: Let I(t) = 
Z t 
0 
f(u)du 
) I0(t) = 
d 
dt 
Z t 
0 
 
= f(t) and I(0) = 0 
f(u)du 
) Lff(t)g = LfI0(t)g = sI(s)  I(0) = sI(s) 
) Lff(t)g = sI(s) 
) Lff(t)g = sL fI(t)g 
N. B. Vyas Laplace Transforms
Transformation of Integrals 
Thm: If L[f(t)] =  f(s) then L 
Z t 
0 
 
f(u)du 
= 
1 
s 
 f(s) 
Proof: Let I(t) = 
Z t 
0 
f(u)du 
) I0(t) = 
d 
dt 
Z t 
0 
 
= f(t) and I(0) = 0 
f(u)du 
) Lff(t)g = LfI0(t)g = sI(s)  I(0) = sI(s) 
) Lff(t)g = sI(s) 
) Lff(t)g = Z sL fI(t)g 
t 
) f(s)  = sL 
0 
 
f(u)du 
N. B. Vyas Laplace Transforms
Transformation of Integrals 
Thm: If L[f(t)] =  f(s) then L 
Z t 
0 
 
f(u)du 
= 
1 
s 
 f(s) 
Proof: Let I(t) = 
Z t 
0 
f(u)du 
) I0(t) = 
d 
dt 
Z t 
0 
 
= f(t) and I(0) = 0 
f(u)du 
) Lff(t)g = LfI0(t)g = sI(s)  I(0) = sI(s) 
) Lff(t)g = sI(s) 
) Lff(t)g = Z sL fI(t)g 
t 
) f(s)  = sL 
0 
 
f(u)du 
) 1 
s 
 f(s) = L 
Z t 
0 
 
f(u)du 
N. B. Vyas Laplace Transforms
Transformation of Integrals 
Thm: If L[f(t)] =  f(s) then L 
Z t 
0 
 
f(u)du 
= 
1 
s 
 f(s) 
Proof: Let I(t) = 
Z t 
0 
f(u)du 
) I0(t) = 
d 
dt 
Z t 
0 
 
= f(t) and I(0) = 0 
f(u)du 
) Lff(t)g = LfI0(t)g = sI(s)  I(0) = sI(s) 
) Lff(t)g = sI(s) 
) Lff(t)g = Z sL fI(t)g 
t 
) f(s)  = sL 
0 
 
f(u)du 
) 1 
s 
 f(s) = L 
Z t 
0 
 
f(u)du 
) L1 
 
1 
s 
 f(s) 
 
= 
Z t 
0 
f(u)du 
N. B. Vyas Laplace Transforms
Examples of Transformation of Integrals 
Ex. Prove that: L1 
 
1 
s2 + 1 
 
= sin t 
Ex. Prove that: L1 
 
1 
s(s2 + 1) 
 
= 1  cos t 
Ex. Find inverse Laplace transform of 
1 
s3(s2 + a2) 
N. B. Vyas Laplace Transforms
Multiplication by tn 
Thm: If L[f(t)] =  f(s) then Lftnf(t)g = (1)n dn 
dsn 
 
 f(s) 
 
N. B. Vyas Laplace Transforms
Multiplication by tn 
Thm: If L[f(t)] =  f(s) then Lftnf(t)g = (1)n dn 
dsn 
 
 f(s) 
 
if Lftf (t)g = (1)1 d 
ds 
 
 f(s) 
 
then L1 
 
 f0(s) 
	 
= tf (t) 
N. B. Vyas Laplace Transforms
Examples of Laplace transform when tn is in 
multiplication 
1 L 
 
t2eat 
	 
N. B. Vyas Laplace Transforms
Examples of Laplace transform when tn is in 
multiplication 
1 L 
 
t2eat 
	 
2 L 
 
t3e3t 
	 
N. B. Vyas Laplace Transforms
Examples of Laplace transform when tn is in 
multiplication 
1 L 
 
t2eat 
	 
2 L 
 
t3e3t 
	 
3 Lftcos atg 
N. B. Vyas Laplace Transforms
Examples of Laplace transform when tn is in 
multiplication 
1 L 
 
t2eat 
	 
2 L 
 
t3e3t 
	 
3 Lftcos atg 
4 L 
 
tsin2t 
	 
N. B. Vyas Laplace Transforms
Examples of Laplace transform when tn is in 
multiplication 
1 L 
 
t2eat 
	 
2 L 
 
t3e3t 
	 
3 Lftcos atg 
4 L 
 
tsin2t 
	 
5 L 
 
te2tcos 3t 
	 
N. B. Vyas Laplace Transforms
Examples of Laplace transform when tn is in 
multiplication 
1 L 
 
t2eat 
	 
2 L 
 
t3e3t 
	 
3 Lftcos atg 
4 L 
 
tsin2t 
	 
5 L 
 
te2tcos 3t 
	 
6 Lftcos(4t + 3)g 
N. B. Vyas Laplace Transforms
Division by t 
Thm: If L[f(t)] =  f(s) then L 
 
1 
t 
 
f(t) 
= 
Z 1 
s 
 f(s) provided the 
integral exists. 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform when t is in division 
1 L 
 
sin t 
t 
 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform when t is in division 
1 L 
 
sin t 
t 
 
2 L 
 
1  cos 2t 
t 
 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform when t is in division 
1 L 
 
sin t 
t 
 
2 L 
 
1  cos 2t 
t 
 
3 L 
 
eat  ebt 
t 
 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform when t is in division 
1 L 
 
sin t 
t 
 
2 L 
 
1  cos 2t 
t 
 
3 L 
 
eat  ebt 
t 
 
4 L 
 
cos 2t  cos 3t 
t 
 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform when t is in division 
1 L 
 
sin t 
t 
 
2 L 
 
1  cos 2t 
t 
 
3 L 
 
eat  ebt 
t 
 
4 L 
 
cos 2t  cos 3t 
t 
 
5 L 
 
1  et 
t 
 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform when t is in division 
1 L 
 
sin t 
t 
 
2 L 
 
1  cos 2t 
t 
 
3 L 
 
eat  ebt 
t 
 
4 L 
 
cos 2t  cos 3t 
t 
 
5 L 
 
1  et 
t 
 
6 L 
 
cos at  cos bt 
t 
 
N. B. Vyas Laplace Transforms
Examples of Laplace Transform when t is in division 
1 L 
 
sin t 
t 
 
2 L 
 
1  cos 2t 
t 
 
3 L 
 
eat  ebt 
t 
 
4 L 
 
cos 2t  cos 3t 
t 
 
5 L 
 
1  et 
t 
 
6 L 
 
cos at  cos bt 
t 
 
7 L 
 
etsin t 
t 
 
N. B. Vyas Laplace Transforms
Examples of in
nite integral using Laplace Transform 
1 Find 
Z 1 
0 
te2tsin t dt 
N. B. Vyas Laplace Transforms
Examples of in
nite integral using Laplace Transform 
1 Find 
Z 1 
0 
te2tsin t dt 
2 Find 
Z 1 
0 
sin mt 
t 
dt 
N. B. Vyas Laplace Transforms
Examples of in
nite integral using Laplace Transform 
1 Find 
Z 1 
0 
te2tsin t dt 
2 Find 
Z 1 
0 
sin mt 
t 
dt 
3 Find 
Z 1 
0 
et  e3t 
t 
dt 
N. B. Vyas Laplace Transforms
Examples of in
nite integral using Laplace Transform 
1 Find 
Z 1 
0 
te2tsin t dt 
2 Find 
Z 1 
0 
sin mt 
t 
dt 
3 Find 
Z 1 
0 
et  e3t 
t 
dt 
4 Find 
Z 1 
0 
etsin2 t 
t 
dt 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform 
1 L1 
 
s 
(s2 + a2)2 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform 
1 L1 
 
s 
(s2 + a2)2 
 
2 L1 
 
cot1 s 
a 
 
N. B. Vyas Laplace Transforms
Examples of Inverse Laplace Transform 
1 L1 
 
s 
(s2 + a2)2 
 
2 L1 
 
cot1 s 
a 
 
3 L1 
 
log 
 
s + 1 
s  1 
 
N. B. Vyas Laplace Transforms
Convolution 
Defn: 
Convolution of function Z f(t) and g(t) is denoted f(t)  g(t) and 
t 
de
ned as f(t)  g(t) = 
0 
f(u)g(t  u) du 
N. B. Vyas Laplace Transforms
Convolution 
Defn: 
Convolution of function Z f(t) and g(t) is denoted f(t)  g(t) and 
t 
de
ned as f(t)  g(t) = 
0 
f(u)g(t  u) du 
Theorem:  
Convolution theorem 
If L1 
f(s) 
 	 
= f(t) and L1 fg(s)g = g(t) then 
L1 
 
 f(s)g(s) 
 
= 
Z t 
0 
f(u)g(t  u) du 
N. B. Vyas Laplace Transforms
Convolution 
Proof: Let (t) = 
Z t 
0 
f(u)g(t  u) du 
N. B. Vyas Laplace Transforms
Convolution 
Proof: Let (t) = 
Z t 
0 
f(u)g(t  u) du 
then L((t)) = 
Z 1 
0 
est 
Z t 
0 
 
dt 
f(u)g(t  u) du 
N. B. Vyas Laplace Transforms
Convolution 
Proof: Let (t) = 
Z t 
0 
f(u)g(t  u) du 
then L((t)) = 
Z 1 
0 
est 
Z t 
0 
 
dt 
f(u)g(t  u) du 
= 
Z 1 
0 
Z t 
0 
estf(u)g(t  u) du dt 
N. B. Vyas Laplace Transforms
Convolution 
Proof: Let (t) = 
Z t 
0 
f(u)g(t  u) du 
then L((t)) = 
Z 1 
0 
est 
Z t 
0 
 
dt 
f(u)g(t  u) du 
= 
Z 1 
0 
Z t 
0 
estf(u)g(t  u) du dt 
The region integration for this double integration is entire area 
lying between the lines u = 0 and u = t. On changing the order 
of integration, we get 
N. B. Vyas Laplace Transforms
Convolution 
Proof: Let (t) = 
Z t 
0 
f(u)g(t  u) du 
then L((t)) = 
Z 1 
0 
est 
Z t 
0 
 
dt 
f(u)g(t  u) du 
= 
Z 1 
0 
Z t 
0 
estf(u)g(t  u) du dt 
The region integration for this double integration is entire area 
lying between the lines u = 0 and u = t. On changing the order 
of integration, Z we get 
1 
L((t)) = 
0 
Z 1 
u 
estf(u)g(t  u) dt du 
N. B. Vyas Laplace Transforms
Convolution 
Proof: Let (t) = 
Z t 
0 
f(u)g(t  u) du 
then L((t)) = 
Z 1 
0 
est 
Z t 
0 
 
dt 
f(u)g(t  u) du 
= 
Z 1 
0 
Z t 
0 
estf(u)g(t  u) du dt 
The region integration for this double integration is entire area 
lying between the lines u = 0 and u = t. On changing the order 
of integration, Z we get 
1 
L((t)) = 
0 
Z 1 
u 
estf(u)g(t  u) dt du 
= 
Z 1 
0 
esuf(u) 
Z 1 
u 
 
du 
est+sug(t  u) dt 
N. B. Vyas Laplace Transforms
Convolution 
Proof: Let (t) = 
Z t 
0 
f(u)g(t  u) du 
then L((t)) = 
Z 1 
0 
est 
Z t 
0 
 
dt 
f(u)g(t  u) du 
= 
Z 1 
0 
Z t 
0 
estf(u)g(t  u) du dt 
The region integration for this double integration is entire area 
lying between the lines u = 0 and u = t. On changing the order 
of integration, Z we get 
1 
L((t)) = 
0 
Z 1 
u 
estf(u)g(t  u) dt du 
= 
Z 1 
0 
esuf(u) 
Z 1 
u 
 
du 
est+sug(t  u) dt 
= 
Z 1 
0 
esuf(u) 
Z 1 
u 
 
du 
es(tu)g(t  u) dt 
N. B. Vyas Laplace Transforms
Convolution 
Proof: Let (t) = 
Z t 
0 
f(u)g(t  u) du 
then L((t)) = 
Z 1 
0 
est 
Z t 
0 
 
dt 
f(u)g(t  u) du 
= 
Z 1 
0 
Z t 
0 
estf(u)g(t  u) du dt 
The region integration for this double integration is entire area 
lying between the lines u = 0 and u = t. On changing the order 
of integration, Z we get 
1 
L((t)) = 
0 
Z 1 
u 
estf(u)g(t  u) dt du 
= 
Z 1 
0 
esuf(u) 
Z 1 
u 
 
du 
est+sug(t  u) dt 
= 
Z 1 
0 
esuf(u) 
Z 1 
u 
 
du 
es(tu)g(t  u) dt 
= 
Z 1 
0 
esuf(u) 
Z 1 
u 
esvg(v) dv 
 
du, Putting t  u = v 
N. B. Vyas Laplace Transforms
Convolution 
= 
Z 1 
0 
esuf(u)g(s)du 
N. B. Vyas Laplace Transforms
Convolution 
= 
Z 1 
0 
esuf(u)g(s)du 
= g(s) 
Z 1 
0 
esuf(u)du 
N. B. Vyas Laplace Transforms
Convolution 
= 
Z 1 
0 
esuf(u)g(s)du 
= g(s) 
Z 1 
0 
esuf(u)du 
) L((t)) = g(s)  f(s) 
N. B. Vyas Laplace Transforms
Convolution 
= 
Z 1 
0 
esuf(u)g(s)du 
= g(s) 
Z 1 
0 
esuf(u)du 
) L((t)) = g(s) f(s) 
  
L1 
g(s) f(s) 
 	 
= (t) = 
Z t 
0 
f(u)g(t  u) du 
N. B. Vyas Laplace Transforms
Examples of Convolution theorem 
Apply convolution theorem to evaluate: 
Ex. L1 
 
1 
s2(s  1) 
 
N. B. Vyas Laplace Transforms
Examples of Convolution theorem 
Apply convolution theorem to evaluate: 
Ex. L1 
 
1 
s2(s  1) 
 
Ex. L1 
 
s 
(s2 + 4)2 
 
N. B. Vyas Laplace Transforms
Examples of Convolution theorem 
Apply convolution theorem to evaluate: 
Ex. L1 
 
1 
s2(s  1) 
 
Ex. L1 
 
s 
(s2 + 4)2 
 
Ex. L1 
 
1 
(s + a)(s + b) 
 
N. B. Vyas Laplace Transforms
Examples of Convolution theorem 
Apply convolution theorem to evaluate: 
Ex. L1 
 
1 
s2(s  1) 
 
Ex. L1 
 
s 
(s2 + 4)2 
 
Ex. L1 
 
1 
(s + a)(s + b) 
 
Ex. L1 
 
1 
s(s2 + 4) 
 
N. B. Vyas Laplace Transforms
Application to Dierential Equations 
Ex. Use transform method to solve y00 + 3y0 + 2y = et, y(0) = 1 , 
y0(0) = 0 
N. B. Vyas Laplace Transforms
Application to Dierential Equations 
Ex. Use transform method to solve y00 + 3y0 + 2y = et, y(0) = 1 , 
y0(0) = 0 
Ex. Solve the equation x00 + 2x0 + 5x = et sin t, x(0) = 0 , x0(0) = 1 
N. B. Vyas Laplace Transforms
Laplace transform of Periodic function 
If f(t) is sectionally continuous function over an 
interval of length p (0  t  p) and f(t) is a 
periodic function with period p (p  0), that is 
f(t + p) = f(t), then its Laplace transform exists 
and 
1 
Lff(t)g = 
1  eps 
Z p 
0 
estf(t)dt, (s  0) 
N. B. Vyas Laplace Transforms
Laplace transform of Periodic function 
Periodic Square Wave 
Ex. Find the Laplace transform of the square wave 
function of period 2a de
ned as 
f(t) = 
 
k if 0  t  a 
k if a  t  2a 
N. B. Vyas Laplace Transforms
Laplace transform of Periodic function 
Periodic Triangular Wave 
Ex. Find the Laplace transform of periodic function 
f(t) = 
 
t if 0  t  a 
2a  t if a  t  2a 
with period 2a 
N. B. Vyas Laplace Transforms
Unit Step function or Heaviside's unit function 
The Heaviside step function, or the unit step 
function, usually denoted by H (but sometimes u 
or ), is a discontinuous function whose value is 
zero for negative argument and one for positive 
argument. 
N. B. Vyas Laplace Transforms
Unit Step function or Heaviside's unit function 
The Heaviside step function, or the unit step 
function, usually denoted by H (but sometimes u 
or ), is a discontinuous function whose value is 
zero for negative argument and one for positive 
argument. 
The function is used in the mathematics of control 
theory, signal processing, structural mechanics, 
etc.. 
N. B. Vyas Laplace Transforms
Unit Step function or Heaviside's unit function 
It is denoted by ua(t) or  
u(t  a) or H(t  a) and 
is de
ned as H(t  a) = 
0 t  a 
1 t  a 
N. B. Vyas Laplace Transforms

More Related Content

PPTX
Laplace Transform And Its Applications
PPTX
Laplace transform and its applications
PPTX
Laplace transform
PPTX
Application of Laplace Transforme
PPTX
Applications Of Laplace Transforms
PPT
Laplace transform
PPTX
Laplace Transform and its applications
PPTX
Laplace transform
Laplace Transform And Its Applications
Laplace transform and its applications
Laplace transform
Application of Laplace Transforme
Applications Of Laplace Transforms
Laplace transform
Laplace Transform and its applications
Laplace transform

What's hot (20)

PDF
Using Laplace Transforms to Solve Differential Equations
PPT
Inverse laplace transforms
PPTX
Laplace transform
PPT
Laplace transform
PPT
Presentation on laplace transforms
PPTX
the fourier series
PDF
Inverse laplace
PPTX
Laplace transforms
PPTX
Integral calculus
PPT
linear transfermation.pptx
PPT
Laplace transform
PPT
Fourier series
PPTX
Linear differential equation
PDF
Laplace transforms
PPTX
differential equations
PPT
Laplace transforms
PPTX
Application of Differential Equation
PPTX
application of differential equation and multiple integral
PPTX
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
PPTX
Laplace transform
Using Laplace Transforms to Solve Differential Equations
Inverse laplace transforms
Laplace transform
Laplace transform
Presentation on laplace transforms
the fourier series
Inverse laplace
Laplace transforms
Integral calculus
linear transfermation.pptx
Laplace transform
Fourier series
Linear differential equation
Laplace transforms
differential equations
Laplace transforms
Application of Differential Equation
application of differential equation and multiple integral
APPLICATIONS OF DIFFERENTIAL EQUATIONS-ZBJ
Laplace transform
Ad

Similar to Laplace Transforms (20)

PDF
LaplaceTransformIIT.pdf
PDF
NotesLaplace.pdf
PPT
Ch06 2
DOC
Chapter 9(laplace transform)
PPT
unit7 LAPLACE TRANSFORMS power point presentation
PDF
Jif 315 lesson 1 Laplace and fourier transform
PDF
lec04.pdf
PDF
Inverse Laplace Transform
PDF
Laplace transforms and problems
PDF
Laplace transform
PPTX
PPT
laplace Tranform, definition, Examples, methods
PDF
PDF
Free Ebooks Download
PPT
Laplace_1.ppt
PDF
Evaluation of integrals by Laplace transforms
PDF
Inverse Laplace Transform
PDF
Laplace Transform Handout MA201 (July Nov 2022) IIT Guwahati
PPT
On Laplace Transform.ppt
LaplaceTransformIIT.pdf
NotesLaplace.pdf
Ch06 2
Chapter 9(laplace transform)
unit7 LAPLACE TRANSFORMS power point presentation
Jif 315 lesson 1 Laplace and fourier transform
lec04.pdf
Inverse Laplace Transform
Laplace transforms and problems
Laplace transform
laplace Tranform, definition, Examples, methods
Free Ebooks Download
Laplace_1.ppt
Evaluation of integrals by Laplace transforms
Inverse Laplace Transform
Laplace Transform Handout MA201 (July Nov 2022) IIT Guwahati
On Laplace Transform.ppt
Ad

More from Dr. Nirav Vyas (20)

PDF
Advance Topics in Latex - different packages
PPTX
Numerical Methods Algorithm and C Program
PDF
Reduction forumla
PPTX
Arithmetic Mean, Geometric Mean, Harmonic Mean
PPTX
Geometric progressions
PPTX
Arithmetic progressions
PPTX
Combinations
PPTX
Permutation
PPTX
Matrices and Determinants
PDF
Curve fitting - Lecture Notes
PDF
Trend analysis - Lecture Notes
PDF
Basic Concepts of Statistics - Lecture Notes
PDF
Numerical Methods - Power Method for Eigen values
PDF
Numerical Methods - Oridnary Differential Equations - 3
PDF
Numerical Methods - Oridnary Differential Equations - 2
PDF
Numerical Methods - Oridnary Differential Equations - 1
PDF
Partial Differential Equation - Notes
PDF
Special functions
PDF
Legendre Function
PDF
Fourier series 3
Advance Topics in Latex - different packages
Numerical Methods Algorithm and C Program
Reduction forumla
Arithmetic Mean, Geometric Mean, Harmonic Mean
Geometric progressions
Arithmetic progressions
Combinations
Permutation
Matrices and Determinants
Curve fitting - Lecture Notes
Trend analysis - Lecture Notes
Basic Concepts of Statistics - Lecture Notes
Numerical Methods - Power Method for Eigen values
Numerical Methods - Oridnary Differential Equations - 3
Numerical Methods - Oridnary Differential Equations - 2
Numerical Methods - Oridnary Differential Equations - 1
Partial Differential Equation - Notes
Special functions
Legendre Function
Fourier series 3

Recently uploaded (20)

PPTX
Computer Architecture Input Output Memory.pptx
PDF
AI-driven educational solutions for real-life interventions in the Philippine...
PDF
Complications of Minimal Access-Surgery.pdf
PDF
Journal of Dental Science - UDMY (2022).pdf
PDF
Climate and Adaptation MCQs class 7 from chatgpt
PDF
Race Reva University – Shaping Future Leaders in Artificial Intelligence
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PPTX
Education and Perspectives of Education.pptx
PPTX
What’s under the hood: Parsing standardized learning content for AI
PDF
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 1).pdf
PPTX
Core Concepts of Personalized Learning and Virtual Learning Environments
PDF
My India Quiz Book_20210205121199924.pdf
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PDF
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PDF
Literature_Review_methods_ BRACU_MKT426 course material
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PDF
IP : I ; Unit I : Preformulation Studies
PPTX
Module on health assessment of CHN. pptx
Computer Architecture Input Output Memory.pptx
AI-driven educational solutions for real-life interventions in the Philippine...
Complications of Minimal Access-Surgery.pdf
Journal of Dental Science - UDMY (2022).pdf
Climate and Adaptation MCQs class 7 from chatgpt
Race Reva University – Shaping Future Leaders in Artificial Intelligence
A powerpoint presentation on the Revised K-10 Science Shaping Paper
Education and Perspectives of Education.pptx
What’s under the hood: Parsing standardized learning content for AI
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 1).pdf
Core Concepts of Personalized Learning and Virtual Learning Environments
My India Quiz Book_20210205121199924.pdf
Cambridge-Practice-Tests-for-IELTS-12.docx
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
Literature_Review_methods_ BRACU_MKT426 course material
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
IP : I ; Unit I : Preformulation Studies
Module on health assessment of CHN. pptx

Laplace Transforms

  • 1. Laplace Transforms Nirav B. Vyas Department of Mathematics Atmiya Institute of Technology and Science Yogidham, Kalavad road Rajkot - 360005 . Gujarat N. B. Vyas Laplace Transforms
  • 3. nition: Let f(t) be a function of t de
  • 4. ned for all t 0 then Laplace transform of f(t) is denoted by Lff(t)g or f(s) and is de
  • 5. ned as L ff (t)g = f (s) = Z1 0 estf (t) dt provided the integral exists where s is a parameter ( real or complex). N. B. Vyas Laplace Transforms
  • 6. Laplace Transforms NOTATIONS: The original functions are denoted by lowercase letters such as f(t); g(t); ::: Laplace transforms by the same letters with bars such as f(s)g(s); ::: N. B. Vyas Laplace Transforms
  • 7. Linearity of the Laplace Transforms Theorem 1: If Lff (t)g = f (s) and Lfg (t)g = g (s) then for any constants a and b Lfaf (t) + bg (t)g = aL ff (t)g + bL fg (t)g N. B. Vyas Laplace Transforms
  • 8. Linearity of the Laplace Transforms Theorem 1: If Lff (t)g = f (s) and Lfg (t)g = g (s) then for any constants a and b Lfaf (t) + bg (t)g = aL ff (t)g + bL fg (t)g Corollary 1: Putting a = 0 and b = 0, we get L[0] = 0 N. B. Vyas Laplace Transforms
  • 9. Linearity of the Laplace Transforms Theorem 1: If Lff (t)g = f (s) and Lfg (t)g = g (s) then for any constants a and b Lfaf (t) + bg (t)g = aL ff (t)g + bL fg (t)g Corollary 1: Putting a = 0 and b = 0, we get L[0] = 0 Corollary 2: Putting b = 0, we get L[af(t)] = aL[f(t)] N. B. Vyas Laplace Transforms
  • 10. Linearity of the Laplace Transforms Theorem 1: If Lff (t)g = f (s) and Lfg (t)g = g (s) then for any constants a and b Lfaf (t) + bg (t)g = aL ff (t)g + bL fg (t)g Corollary 1: Putting a = 0 and b = 0, we get L[0] = 0 Corollary 2: Putting b = 0, we get L[af(t)] = aL[f(t)] Corollary 3: L[a1f1 (t) + a2f2 (t) + ::: + anfn (t)] = a1L[f1(t)] + a2L[f2(t)] + ::: + anL[fn(t)] N. B. Vyas Laplace Transforms
  • 11. Laplace Transforms of some elementary functions 1 L(1) = 1 s N. B. Vyas Laplace Transforms
  • 12. Laplace Transforms of some elementary functions 1 L(1) = 1 s 2 L(eat) = 1 s a N. B. Vyas Laplace Transforms
  • 13. Laplace Transforms of some elementary functions 1 L(1) = 1 s 2 L(eat) = 1 s a cor.1 If a = 0 ) L(1) = 1 s N. B. Vyas Laplace Transforms
  • 14. Laplace Transforms of some elementary functions 1 L(1) = 1 s 2 L(eat) = 1 s a cor.1 If a = 0 ) L(1) = 1 s cor.2 L[eat] = 1 s + a if s a N. B. Vyas Laplace Transforms
  • 15. Laplace Transforms of some elementary functions 1 L(1) = 1 s 2 L(eat) = 1 s a cor.1 If a = 0 ) L(1) = 1 s cor.2 L[eat] = 1 s + a if s a cor.3 L[cat] = L[eat log c] = 1 s a logc if s a log c and c 0 N. B. Vyas Laplace Transforms
  • 16. Laplace Transforms of some elementary functions 3 L[sinh at] = a s2 a2 N. B. Vyas Laplace Transforms
  • 17. Laplace Transforms of some elementary functions 3 L[sinh at] = a s2 a2 4 L[cosh at] = s s2 a2 N. B. Vyas Laplace Transforms
  • 18. Laplace Transforms of some elementary functions 3 L[sinh at] = a s2 a2 4 L[cosh at] = s s2 a2 5 L[sin at] = a s2 + a2 N. B. Vyas Laplace Transforms
  • 19. Laplace Transforms of some elementary functions 3 L[sinh at] = a s2 a2 4 L[cosh at] = s s2 a2 5 L[sin at] = a s2 + a2 6 L[cos at] = s s2 + a2 ; s 0 N. B. Vyas Laplace Transforms
  • 20. Laplace Transforms of some elementary functions 3 L[sinh at] = a s2 a2 4 L[cosh at] = s s2 a2 5 L[sin at] = a s2 + a2 6 L[cos at] = s s2 + a2 ; s 0 cor.1 L[sin t] = 1 s2 + 1 ; s 0 N. B. Vyas Laplace Transforms
  • 21. Laplace Transforms of some elementary functions 3 L[sinh at] = a s2 a2 4 L[cosh at] = s s2 a2 5 L[sin at] = a s2 + a2 6 L[cos at] = s s2 + a2 ; s 0 cor.1 L[sin t] = 1 s2 + 1 ; s 0 cor.2 L[cos t] = s s2 + 1 ; s 0 N. B. Vyas Laplace Transforms
  • 22. Laplace Transforms of some elementary functions 7 L[tn] = (n + 1) sn+1 N. B. Vyas Laplace Transforms
  • 23. Laplace Transforms of some elementary functions 7 L[tn] = (n + 1) sn+1 = n! sn+1 ; n = 0; 1; 2; ::: N. B. Vyas Laplace Transforms
  • 24. Laplace Transforms of some elementary functions 7 L[tn] = (n + 1) sn+1 = n! sn+1 ; n = 0; 1; 2; ::: cor.1 If n = 0, L[1] = 1 s N. B. Vyas Laplace Transforms
  • 25. Laplace Transforms of some elementary functions 7 L[tn] = (n + 1) sn+1 = n! sn+1 ; n = 0; 1; 2; ::: cor.1 If n = 0, L[1] = 1 s cor.2 If n = 1 2 N. B. Vyas Laplace Transforms
  • 26. Laplace Transforms of some elementary functions 7 L[tn] = (n + 1) sn+1 = n! sn+1 ; n = 0; 1; 2; ::: cor.1 If n = 0, L[1] = 1 s cor.2 If n = 1 2 L t1 2 = (1 ) 2 1 s 2 = r s N. B. Vyas Laplace Transforms
  • 27. Laplace Transforms of some elementary functions 7 L[tn] = (n + 1) sn+1 = n! sn+1 ; n = 0; 1; 2; ::: cor.1 If n = 0, L[1] = 1 s cor.2 If n = 1 2 L t1 2 = (1 ) 2 1 s 2 = r s N. B. Vyas Laplace Transforms
  • 28. Examples of Laplace Transform 1 L 2t3 + e2t + t 4 3 N. B. Vyas Laplace Transforms
  • 29. Examples of Laplace Transform 1 L 2t3 + e2t + t 4 3 2 L A + B t 1 2 + C t 1 2 N. B. Vyas Laplace Transforms
  • 30. Examples of Laplace Transform 1 L 2t3 + e2t + t 4 3 2 L A + B t 1 2 + C t 1 2 3 L eat 1 a N. B. Vyas Laplace Transforms
  • 31. Examples of Laplace Transform 1 L 2t3 + e2t + t 4 3 2 L A + B t 1 2 + C t 1 2 3 L eat 1 a 4 Lfsin(at + b)g N. B. Vyas Laplace Transforms
  • 32. Examples of Laplace Transform 1 L 2t3 + e2t + t 4 3 2 L A + B t 1 2 + C t 1 2 3 L eat 1 a 4 Lfsin(at + b)g 5 Lfsin 2t cos 3tg N. B. Vyas Laplace Transforms
  • 33. Examples of Laplace Transform 1 L 2t3 + e2t + t 4 3 2 L A + B t 1 2 + C t 1 2 3 L eat 1 a 4 Lfsin(at + b)g 5 Lfsin 2t cos 3tg 6 L cos24t N. B. Vyas Laplace Transforms
  • 34. Examples of Laplace Transform 1 L 2t3 + e2t + t 4 3 2 L A + B t 1 2 + C t 1 2 3 L eat 1 a 4 Lfsin(at + b)g 5 Lfsin 2t cos 3tg 6 L cos24t 7 L cos32t N. B. Vyas Laplace Transforms
  • 35. First Shifting Theorem If Lff (t)g = f (s) then L eatf (t) = f (s a) N. B. Vyas Laplace Transforms
  • 36. First Shifting Theorem If Lff (t)g = f (s) then L eatf (t) = f (s a) Proof: By the def. of Laplace N. B. Vyas Laplace Transforms
  • 37. First Shifting Theorem If Lff (t)g = f (s) then L eatf (t) = f (s a) Proof: By the def. of Laplace 1R L eatf (t) = 0 esteatf (t) dt N. B. Vyas Laplace Transforms
  • 38. First Shifting Theorem If Lff (t)g = f (s) then L eatf (t) = f (s a) Proof: By the def. of Laplace 1R L eatf (t) = 0 esteatf (t) dt = 1R 0 e(sa)tf (t) dt N. B. Vyas Laplace Transforms
  • 39. First Shifting Theorem If Lff (t)g = f (s) then L eatf (t) = f (s a) Proof: By the def. of Laplace 1R L eatf (t) = 0 esteatf (t) dt = 1R 0 e(sa)tf (t) dt = 1R 0 ertf (t) dt N. B. Vyas Laplace Transforms
  • 40. First Shifting Theorem If Lff (t)g = f (s) then L eatf (t) = f (s a) Proof: By the def. of Laplace 1R L eatf (t) = 0 esteatf (t) dt = 1R 0 e(sa)tf (t) dt = 1R 0 ertf (t) dt = f(r) N. B. Vyas Laplace Transforms
  • 41. First Shifting Theorem If Lff (t)g = f (s) then L eatf (t) = f (s a) Proof: By the def. of Laplace 1R L eatf (t) = 0 esteatf (t) dt = 1R 0 e(sa)tf (t) dt = 1R 0 ertf (t) dt = f(r) = f(s a) N. B. Vyas Laplace Transforms
  • 42. First Shifting Theorem If Lff (t)g = f (s) then L eatf (t) = f (s a) Proof: By the def. of Laplace 1R L eatf (t) = 0 esteatf (t) dt = 1R 0 e(sa)tf (t) dt = 1R 0 ertf (t) dt = f(r) = f(s a) Thus if we know the transformation f(s) of f(t) then we can write the transformation of eatf(t) simply replacing s by s a to get F(s a) N. B. Vyas Laplace Transforms
  • 43. First Shifting Theorem Note: 1 L(eat) = 1 s a N. B. Vyas Laplace Transforms
  • 44. First Shifting Theorem Note: 1 L(eat) = 1 s a 2 L[eattn] = (n + 1) (s a)n+1 N. B. Vyas Laplace Transforms
  • 45. First Shifting Theorem Note: 1 L(eat) = 1 s a 2 L[eattn] = (n + 1) (s a)n+1 3 L[eatsinh bt] = b (s a)2 b2 N. B. Vyas Laplace Transforms
  • 46. First Shifting Theorem Note: 1 L(eat) = 1 s a 2 L[eattn] = (n + 1) (s a)n+1 3 L[eatsinh bt] = b (s a)2 b2 4 L[eatcosh bt] = s (s a)2 b2 N. B. Vyas Laplace Transforms
  • 47. First Shifting Theorem Note: 1 L(eat) = 1 s a 2 L[eattn] = (n + 1) (s a)n+1 3 L[eatsinh bt] = b (s a)2 b2 4 L[eatcosh bt] = s (s a)2 b2 5 L[eatsin bt] = b (s a)2 + b2 N. B. Vyas Laplace Transforms
  • 48. First Shifting Theorem Note: 1 L(eat) = 1 s a 2 L[eattn] = (n + 1) (s a)n+1 3 L[eatsinh bt] = b (s a)2 b2 4 L[eatcosh bt] = s (s a)2 b2 5 L[eatsin bt] = b (s a)2 + b2 6 L[eatcos bt] = s a (s a)2 + b2 ; s 0 N. B. Vyas Laplace Transforms
  • 49. Examples 1 Find out the Laplace transform of e3t (2 cos 5t 3 sin 5t) N. B. Vyas Laplace Transforms
  • 50. Examples 1 Find out the Laplace transform of e3t (2 cos 5t 3 sin 5t) 2 L[eatsinhbt] N. B. Vyas Laplace Transforms
  • 51. Examples 1 Find out the Laplace transform of e3t (2 cos 5t 3 sin 5t) 2 L[eatsinhbt] 3 L[t3e3t] N. B. Vyas Laplace Transforms
  • 52. Examples 1 Find out the Laplace transform of e3t (2 cos 5t 3 sin 5t) 2 L[eatsinhbt] 3 L[t3e3t] 4 L[(t + 2)2et] N. B. Vyas Laplace Transforms
  • 53. Examples 1 Find out the Laplace transform of e3t (2 cos 5t 3 sin 5t) 2 L[eatsinhbt] 3 L[t3e3t] 4 L[(t + 2)2et] 5 L[etsin2t] N. B. Vyas Laplace Transforms
  • 54. Examples 1 Find out the Laplace transform of e3t (2 cos 5t 3 sin 5t) 2 L[eatsinhbt] 3 L[t3e3t] 4 L[(t + 2)2et] 5 L[etsin2t] 6 L[cosh at sin at] N. B. Vyas Laplace Transforms
  • 55. Examples Ex. Find the Laplace transform of the function which is de
  • 56. ned as f(t) = t/T 0 t T 1 when t T N. B. Vyas Laplace Transforms
  • 57. Examples Ex. Find Laplace transform of f(t) = sin t 0 t 0 when t N. B. Vyas Laplace Transforms
  • 58. Examples Ex. Find Laplace transform of f(t) where f(t) = t 0 t 4 5 when t 4 N. B. Vyas Laplace Transforms
  • 59. Change of Scale property If Lff (t)g = f (s) then L eatf (bt) = 1 b f s a b ; b 0 N. B. Vyas Laplace Transforms
  • 60. Change of Scale property If Lff (t)g = f (s) then L eatf (bt) = 1 b f s a b ; b 0 Proof: By the def. of Laplace N. B. Vyas Laplace Transforms
  • 61. Change of Scale property If Lff (t)g = f (s) then L eatf (bt) = 1 b f s a b ; b 0 Proof: By the def. of Laplace Lff (t)g = 1 Z 0 estf (t) dt N. B. Vyas Laplace Transforms
  • 62. Change of Scale property If Lff (t)g = f (s) then L eatf (bt) = 1 b f s a b ; b 0 Proof: By the def. of Laplace Lff (t)g = 1 Z 0 estf (t) dt L eatf (bt) = 1 Z 0 esteatf (bt) dt N. B. Vyas Laplace Transforms
  • 63. Change of Scale property If Lff (t)g = f (s) then L eatf (bt) = 1 b f s a b ; b 0 Proof: By the def. of Laplace Lff (t)g = 1 Z 0 estf (t) dt L eatf (bt) = 1 Z 0 esteatf (bt) dt = 1R 0 e(sa)tf (bt) dt N. B. Vyas Laplace Transforms
  • 64. Change of Scale property If Lff (t)g = f (s) then L eatf (bt) = 1 b f s a b ; b 0 Proof: By the def. of Laplace Lff (t)g = 1 Z 0 estf (t) dt L eatf (bt) = 1 Z 0 esteatf (bt) dt = 1R 0 e(sa)tf (bt) dt = 1R 0 e( sa b )btf (bt) dt N. B. Vyas Laplace Transforms
  • 65. Change of Scale property If Lff (t)g = f (s) then L eatf (bt) = 1 b f s a b ; b 0 Proof: By the def. of Laplace Lff (t)g = 1 Z 0 estf (t) dt L eatf (bt) = 1 Z 0 esteatf (bt) dt = 1R 0 e(sa)tf (bt) dt = 1R 0 e( sa b )btf (bt) dt Let bt = u ) b dt = du N. B. Vyas Laplace Transforms
  • 66. Change of Scale property If Lff (t)g = f (s) then L eatf (bt) = 1 b f s a b ; b 0 Proof: By the def. of Laplace Lff (t)g = 1 Z 0 estf (t) dt L eatf (bt) = 1 Z 0 esteatf (bt) dt = 1R 0 e(sa)tf (bt) dt = 1R 0 e( sa b )btf (bt) dt Let bt = u ) b dt = du 1R L eatf (bt) = 0 e( sa b )uf (u) du b N. B. Vyas Laplace Transforms
  • 67. Change of Scale property If Lff (t)g = f (s) then L eatf (bt) = 1 b f s a b ; b 0 Proof: By the def. of Laplace Lff (t)g = 1 Z 0 estf (t) dt L eatf (bt) = 1 Z 0 esteatf (bt) dt = 1R 0 e(sa)tf (bt) dt = 1R 0 e( sa b )btf (bt) dt Let bt = u ) b dt = du 1R L eatf (bt) = 0 e( sa b )uf (u) du b = 1 b f s a b N. B. Vyas Laplace Transforms
  • 68. Inverse Laplace Transform If Lff (t)g = f (s) then f(t) is called the inverse Laplace transform of f(s) and it is denoted by L1 f(s) = f (t) N. B. Vyas Laplace Transforms
  • 69. Inverse Laplace Transform If Lff (t)g = f (s) then f(t) is called the inverse Laplace transform of f(s) and it is denoted by L1 f(s) = f (t) 1 L1 1 s = 1 N. B. Vyas Laplace Transforms
  • 70. Inverse Laplace Transform If Lff (t)g = f (s) then f(t) is called the inverse Laplace transform of f(s) and it is denoted by L1 f(s) = f (t) 1 L1 1 s = 1 2 L1 1 s a = eat N. B. Vyas Laplace Transforms
  • 71. Inverse Laplace Transform If Lff (t)g = f (s) then f(t) is called the inverse Laplace transform of f(s) and it is denoted by L1 f(s) = f (t) 1 L1 1 s = 1 2 L1 1 s a = eat 3 L1 1 s2 + a2 = 1 a sin at N. B. Vyas Laplace Transforms
  • 72. Inverse Laplace Transform If Lff (t)g = f (s) then f(t) is called the inverse Laplace transform of f(s) and it is denoted by L1 f(s) = f (t) 1 L1 1 s = 1 2 L1 1 s a = eat 3 L1 1 s2 + a2 = 1 a sin at 4 L1 s s2 + a2 = cos at N. B. Vyas Laplace Transforms
  • 73. Inverse Laplace Transform If Lff (t)g = f (s) then f(t) is called the inverse Laplace transform of f(s) and it is denoted by L1 f(s) = f (t) 1 L1 1 s = 1 2 L1 1 s a = eat 3 L1 1 s2 + a2 = 1 a sin at 4 L1 s s2 + a2 = cos at 5 L1 1 s2 a2 = 1 a sinh at N. B. Vyas Laplace Transforms
  • 74. Inverse Laplace Transform If Lff (t)g = f (s) then f(t) is called the inverse Laplace transform of f(s) and it is denoted by L1 f(s) = f (t) 1 L1 1 s = 1 2 L1 1 s a = eat 3 L1 1 s2 + a2 = 1 a sin at 4 L1 s s2 + a2 = cos at 5 L1 1 s2 a2 = 1 a sinh at 6 L1 s s2 a2 = cosh at N. B. Vyas Laplace Transforms
  • 75. Inverse Laplace Transform If Lff (t)g = f (s) then f(t) is called the inverse Laplace transform of f(s) and it is denoted by L1 f(s) = f (t) 1 L1 1 s = 1 2 L1 1 s a = eat 3 L1 1 s2 + a2 = 1 a sin at 4 L1 s s2 + a2 = cos at 5 L1 1 s2 a2 = 1 a sinh at 6 L1 s s2 a2 = cosh at 7 L1 1 sn = tn1 (n 1)! N. B. Vyas Laplace Transforms
  • 76. Partial Fractions N. B. Vyas Laplace Transforms
  • 77. Partial Fractions N. B. Vyas Laplace Transforms
  • 78. Partial Fractions N. B. Vyas Laplace Transforms
  • 79. Examples of Inverse Laplace Transform - I 1 L1 s2 3s + 4 s3 N. B. Vyas Laplace Transforms
  • 80. Examples of Inverse Laplace Transform - I 1 L1 s2 3s + 4 s3 2 L1 3 2 s4 2s2 + 1 s5 N. B. Vyas Laplace Transforms
  • 81. Examples of Inverse Laplace Transform - I 1 L1 s2 3s + 4 s3 2 L1 3 2 s4 2s2 + 1 s5 3 L1 s + 7 (s + 1)2 + 1 N. B. Vyas Laplace Transforms
  • 82. Examples of Inverse Laplace Transform - I 1 L1 s2 3s + 4 s3 2 L1 3 2 s4 2s2 + 1 s5 3 L1 s + 7 (s + 1)2 + 1 4 L1 3s + 5 (s + 1)4 N. B. Vyas Laplace Transforms
  • 83. Examples of Inverse Laplace Transform - I 1 L1 s2 3s + 4 s3 2 L1 3 2 s4 2s2 + 1 s5 3 L1 s + 7 (s + 1)2 + 1 4 L1 3s + 5 (s + 1)4 5 L1 3s s2 + 2s 8 N. B. Vyas Laplace Transforms
  • 84. Examples of Inverse Laplace Transform - I 1 L1 s2 3s + 4 s3 2 L1 3 2 s4 2s2 + 1 s5 3 L1 s + 7 (s + 1)2 + 1 4 L1 3s + 5 (s + 1)4 5 L1 3s s2 + 2s 8 6 L1 3s + 7 s2 2s 3 N. B. Vyas Laplace Transforms
  • 85. Examples of Inverse Laplace Transform - I 1 L1 s2 3s + 4 s3 2 L1 3 2 s4 2s2 + 1 s5 3 L1 s + 7 (s + 1)2 + 1 4 L1 3s + 5 (s + 1)4 5 L1 3s s2 + 2s 8 6 L1 3s + 7 s2 2s 3 7 L1 2s2 6s + 5 s3 6s2 + 11s 6 N. B. Vyas Laplace Transforms
  • 86. Examples of Inverse Laplace Transform - II 1 L1 s + 29 (s + 4)(s2 + 9) N. B. Vyas Laplace Transforms
  • 87. Examples of Inverse Laplace Transform - II 1 L1 s + 29 (s + 4)(s2 + 9) 2 L1 s (s2 1) N. B. Vyas Laplace Transforms
  • 88. Examples of Inverse Laplace Transform - II 1 L1 s + 29 (s + 4)(s2 + 9) 2 L1 s (s2 1) 3 L1 4s + 5 (s 1)2(s + 2) N. B. Vyas Laplace Transforms
  • 89. Examples of Inverse Laplace Transform - II 1 L1 s + 29 (s + 4)(s2 + 9) 2 L1 s (s2 1) 3 L1 4s + 5 (s 1)2(s + 2) 4 L1 2s2 1 (s2 + 1)(s2 + 4) N. B. Vyas Laplace Transforms
  • 90. Examples of Inverse Laplace Transform - II 1 L1 s + 29 (s + 4)(s2 + 9) 2 L1 s (s2 1) 3 L1 4s + 5 (s 1)2(s + 2) 4 L1 2s2 1 (s2 + 1)(s2 + 4) 5 L1 s s4 + s2 + 1 N. B. Vyas Laplace Transforms
  • 91. Examples of Inverse Laplace Transform - II 1 L1 s + 29 (s + 4)(s2 + 9) 2 L1 s (s2 1) 3 L1 4s + 5 (s 1)2(s + 2) 4 L1 2s2 1 (s2 + 1)(s2 + 4) 5 L1 s s4 + s2 + 1 6 L1 s s4 + 4a4 N. B. Vyas Laplace Transforms
  • 92. Examples of Inverse Laplace Transform - II 1 L1 s + 29 (s + 4)(s2 + 9) 2 L1 s (s2 1) 3 L1 4s + 5 (s 1)2(s + 2) 4 L1 2s2 1 (s2 + 1)(s2 + 4) 5 L1 s s4 + s2 + 1 6 L1 s s4 + 4a4 7 L1 s + 3 s2 + 6s + 13 N. B. Vyas Laplace Transforms
  • 93. Transformation of Derivatives Thm: If f0(t) be continuous and L[f(t)] = f(s) then Lff0(t)g = s f(s) f(0) provided lim t!1 estf(t) = 0 N. B. Vyas Laplace Transforms
  • 94. Transformation of Derivatives Thm: If f0(t) be continuous and L[f(t)] = f(s) then Lff0(t)g = s f(s) f(0) provided lim t!1 estf(t) = 0 i.e. Lff0(t)g = sL ff(t)g f(0) N. B. Vyas Laplace Transforms
  • 95. Transformation of Derivatives Thm: If f0(t) be continuous and L[f(t)] = f(s) then Lff0(t)g = s f(s) f(0) provided lim t!1 estf(t) = 0 i.e. Lff0(t)g = sL ff(t)g f(0) Simillarly Lff00(t)g = sL ff0(t)g f0(0) N. B. Vyas Laplace Transforms
  • 96. Transformation of Derivatives Thm: If f0(t) be continuous and L[f(t)] = f(s) then Lff0(t)g = s f(s) f(0) provided lim t!1 estf(t) = 0 i.e. Lff0(t)g = sL ff(t)g f(0) Simillarly Lff00(t)g = sL ff0(t)g f0(0) = s [sL ff(t)g f(0)] f0(0) N. B. Vyas Laplace Transforms
  • 97. Transformation of Derivatives Thm: If f0(t) be continuous and L[f(t)] = f(s) then Lff0(t)g = s f(s) f(0) provided lim t!1 estf(t) = 0 i.e. Lff0(t)g = sL ff(t)g f(0) Simillarly Lff00(t)g = sL ff0(t)g f0(0) = s [sL ff(t)g f(0)] f0(0) = s2Lff(t)g sf(0) f0(0) N. B. Vyas Laplace Transforms
  • 98. Transformation of Derivatives Thm: If f0(t) be continuous and L[f(t)] = f(s) then Lff0(t)g = s f(s) f(0) provided lim t!1 estf(t) = 0 i.e. Lff0(t)g = sL ff(t)g f(0) Simillarly Lff00(t)g = sL ff0(t)g f0(0) = s [sL ff(t)g f(0)] f0(0) = s2Lff(t)g sf(0) f0(0) = s2 f(s) sf(0) f0(0) N. B. Vyas Laplace Transforms
  • 99. Transformation of Derivatives Thm: If f0(t) be continuous and L[f(t)] = f(s) then Lff0(t)g = s f(s) f(0) provided lim t!1 estf(t) = 0 i.e. Lff0(t)g = sL ff(t)g f(0) Simillarly Lff00(t)g = sL ff0(t)g f0(0) = s [sL ff(t)g f(0)] f0(0) = s2Lff(t)g sf(0) f0(0) = s2 f(s) sf(0) f0(0) In general Lffn(t)g = sn f(s) sn1f(0) sn2f0(0) : : : fn1(0) N. B. Vyas Laplace Transforms
  • 100. Transformation of Derivatives Thm: If f0(t) be continuous and L[f(t)] = f(s) then Lff0(t)g = s f(s) f(0) provided lim t!1 estf(t) = 0 i.e. Lff0(t)g = sL ff(t)g f(0) Simillarly Lff00(t)g = sL ff0(t)g f0(0) = s [sL ff(t)g f(0)] f0(0) = s2Lff(t)g sf(0) f0(0) = s2 f(s) sf(0) f0(0) In general Lffn(t)g = sn f(s) sn1f(0) sn2f0(0) : : : fn1(0) N. B. Vyas Laplace Transforms
  • 101. Examples of Transformation of Derivatives Ex. Derive the Laplace transform of sin at and cos at N. B. Vyas Laplace Transforms
  • 102. Examples of Transformation of Derivatives Ex. Derive the Laplace transform of sin at and cos at Ex. Obtain Lftng from L(1) = 1 s N. B. Vyas Laplace Transforms
  • 103. Examples of Transformation of Derivatives Ex. Derive the Laplace transform of sin at and cos at Ex. Obtain Lftng from L(1) = 1 s Ex. Find L(t sin at) N. B. Vyas Laplace Transforms
  • 104. Examples of Transformation of Derivatives Ex. Derive the Laplace transform of sin at and cos at Ex. Obtain Lftng from L(1) = 1 s Ex. Find L(t sin at) Ex. Find L(t cos at) N. B. Vyas Laplace Transforms
  • 105. Transformation of Integrals Thm: If L[f(t)] = f(s) then L Z t 0 f(u)du = 1 s f(s) N. B. Vyas Laplace Transforms
  • 106. Transformation of Integrals Thm: If L[f(t)] = f(s) then L Z t 0 f(u)du = 1 s f(s) Proof: Let I(t) = Z t 0 f(u)du N. B. Vyas Laplace Transforms
  • 107. Transformation of Integrals Thm: If L[f(t)] = f(s) then L Z t 0 f(u)du = 1 s f(s) Proof: Let I(t) = Z t 0 f(u)du ) I0(t) = d dt Z t 0 = f(t) f(u)du N. B. Vyas Laplace Transforms
  • 108. Transformation of Integrals Thm: If L[f(t)] = f(s) then L Z t 0 f(u)du = 1 s f(s) Proof: Let I(t) = Z t 0 f(u)du ) I0(t) = d dt Z t 0 = f(t) and I(0) = 0 f(u)du N. B. Vyas Laplace Transforms
  • 109. Transformation of Integrals Thm: If L[f(t)] = f(s) then L Z t 0 f(u)du = 1 s f(s) Proof: Let I(t) = Z t 0 f(u)du ) I0(t) = d dt Z t 0 = f(t) and I(0) = 0 f(u)du ) Lff(t)g = LfI0(t)g = sI(s) I(0) = sI(s) N. B. Vyas Laplace Transforms
  • 110. Transformation of Integrals Thm: If L[f(t)] = f(s) then L Z t 0 f(u)du = 1 s f(s) Proof: Let I(t) = Z t 0 f(u)du ) I0(t) = d dt Z t 0 = f(t) and I(0) = 0 f(u)du ) Lff(t)g = LfI0(t)g = sI(s) I(0) = sI(s) ) Lff(t)g = sI(s) N. B. Vyas Laplace Transforms
  • 111. Transformation of Integrals Thm: If L[f(t)] = f(s) then L Z t 0 f(u)du = 1 s f(s) Proof: Let I(t) = Z t 0 f(u)du ) I0(t) = d dt Z t 0 = f(t) and I(0) = 0 f(u)du ) Lff(t)g = LfI0(t)g = sI(s) I(0) = sI(s) ) Lff(t)g = sI(s) ) Lff(t)g = sL fI(t)g N. B. Vyas Laplace Transforms
  • 112. Transformation of Integrals Thm: If L[f(t)] = f(s) then L Z t 0 f(u)du = 1 s f(s) Proof: Let I(t) = Z t 0 f(u)du ) I0(t) = d dt Z t 0 = f(t) and I(0) = 0 f(u)du ) Lff(t)g = LfI0(t)g = sI(s) I(0) = sI(s) ) Lff(t)g = sI(s) ) Lff(t)g = Z sL fI(t)g t ) f(s) = sL 0 f(u)du N. B. Vyas Laplace Transforms
  • 113. Transformation of Integrals Thm: If L[f(t)] = f(s) then L Z t 0 f(u)du = 1 s f(s) Proof: Let I(t) = Z t 0 f(u)du ) I0(t) = d dt Z t 0 = f(t) and I(0) = 0 f(u)du ) Lff(t)g = LfI0(t)g = sI(s) I(0) = sI(s) ) Lff(t)g = sI(s) ) Lff(t)g = Z sL fI(t)g t ) f(s) = sL 0 f(u)du ) 1 s f(s) = L Z t 0 f(u)du N. B. Vyas Laplace Transforms
  • 114. Transformation of Integrals Thm: If L[f(t)] = f(s) then L Z t 0 f(u)du = 1 s f(s) Proof: Let I(t) = Z t 0 f(u)du ) I0(t) = d dt Z t 0 = f(t) and I(0) = 0 f(u)du ) Lff(t)g = LfI0(t)g = sI(s) I(0) = sI(s) ) Lff(t)g = sI(s) ) Lff(t)g = Z sL fI(t)g t ) f(s) = sL 0 f(u)du ) 1 s f(s) = L Z t 0 f(u)du ) L1 1 s f(s) = Z t 0 f(u)du N. B. Vyas Laplace Transforms
  • 115. Examples of Transformation of Integrals Ex. Prove that: L1 1 s2 + 1 = sin t Ex. Prove that: L1 1 s(s2 + 1) = 1 cos t Ex. Find inverse Laplace transform of 1 s3(s2 + a2) N. B. Vyas Laplace Transforms
  • 116. Multiplication by tn Thm: If L[f(t)] = f(s) then Lftnf(t)g = (1)n dn dsn f(s) N. B. Vyas Laplace Transforms
  • 117. Multiplication by tn Thm: If L[f(t)] = f(s) then Lftnf(t)g = (1)n dn dsn f(s) if Lftf (t)g = (1)1 d ds f(s) then L1 f0(s) = tf (t) N. B. Vyas Laplace Transforms
  • 118. Examples of Laplace transform when tn is in multiplication 1 L t2eat N. B. Vyas Laplace Transforms
  • 119. Examples of Laplace transform when tn is in multiplication 1 L t2eat 2 L t3e3t N. B. Vyas Laplace Transforms
  • 120. Examples of Laplace transform when tn is in multiplication 1 L t2eat 2 L t3e3t 3 Lftcos atg N. B. Vyas Laplace Transforms
  • 121. Examples of Laplace transform when tn is in multiplication 1 L t2eat 2 L t3e3t 3 Lftcos atg 4 L tsin2t N. B. Vyas Laplace Transforms
  • 122. Examples of Laplace transform when tn is in multiplication 1 L t2eat 2 L t3e3t 3 Lftcos atg 4 L tsin2t 5 L te2tcos 3t N. B. Vyas Laplace Transforms
  • 123. Examples of Laplace transform when tn is in multiplication 1 L t2eat 2 L t3e3t 3 Lftcos atg 4 L tsin2t 5 L te2tcos 3t 6 Lftcos(4t + 3)g N. B. Vyas Laplace Transforms
  • 124. Division by t Thm: If L[f(t)] = f(s) then L 1 t f(t) = Z 1 s f(s) provided the integral exists. N. B. Vyas Laplace Transforms
  • 125. Examples of Laplace Transform when t is in division 1 L sin t t N. B. Vyas Laplace Transforms
  • 126. Examples of Laplace Transform when t is in division 1 L sin t t 2 L 1 cos 2t t N. B. Vyas Laplace Transforms
  • 127. Examples of Laplace Transform when t is in division 1 L sin t t 2 L 1 cos 2t t 3 L eat ebt t N. B. Vyas Laplace Transforms
  • 128. Examples of Laplace Transform when t is in division 1 L sin t t 2 L 1 cos 2t t 3 L eat ebt t 4 L cos 2t cos 3t t N. B. Vyas Laplace Transforms
  • 129. Examples of Laplace Transform when t is in division 1 L sin t t 2 L 1 cos 2t t 3 L eat ebt t 4 L cos 2t cos 3t t 5 L 1 et t N. B. Vyas Laplace Transforms
  • 130. Examples of Laplace Transform when t is in division 1 L sin t t 2 L 1 cos 2t t 3 L eat ebt t 4 L cos 2t cos 3t t 5 L 1 et t 6 L cos at cos bt t N. B. Vyas Laplace Transforms
  • 131. Examples of Laplace Transform when t is in division 1 L sin t t 2 L 1 cos 2t t 3 L eat ebt t 4 L cos 2t cos 3t t 5 L 1 et t 6 L cos at cos bt t 7 L etsin t t N. B. Vyas Laplace Transforms
  • 133. nite integral using Laplace Transform 1 Find Z 1 0 te2tsin t dt N. B. Vyas Laplace Transforms
  • 135. nite integral using Laplace Transform 1 Find Z 1 0 te2tsin t dt 2 Find Z 1 0 sin mt t dt N. B. Vyas Laplace Transforms
  • 137. nite integral using Laplace Transform 1 Find Z 1 0 te2tsin t dt 2 Find Z 1 0 sin mt t dt 3 Find Z 1 0 et e3t t dt N. B. Vyas Laplace Transforms
  • 139. nite integral using Laplace Transform 1 Find Z 1 0 te2tsin t dt 2 Find Z 1 0 sin mt t dt 3 Find Z 1 0 et e3t t dt 4 Find Z 1 0 etsin2 t t dt N. B. Vyas Laplace Transforms
  • 140. Examples of Inverse Laplace Transform 1 L1 s (s2 + a2)2 N. B. Vyas Laplace Transforms
  • 141. Examples of Inverse Laplace Transform 1 L1 s (s2 + a2)2 2 L1 cot1 s a N. B. Vyas Laplace Transforms
  • 142. Examples of Inverse Laplace Transform 1 L1 s (s2 + a2)2 2 L1 cot1 s a 3 L1 log s + 1 s 1 N. B. Vyas Laplace Transforms
  • 143. Convolution Defn: Convolution of function Z f(t) and g(t) is denoted f(t) g(t) and t de
  • 144. ned as f(t) g(t) = 0 f(u)g(t u) du N. B. Vyas Laplace Transforms
  • 145. Convolution Defn: Convolution of function Z f(t) and g(t) is denoted f(t) g(t) and t de
  • 146. ned as f(t) g(t) = 0 f(u)g(t u) du Theorem: Convolution theorem If L1 f(s) = f(t) and L1 fg(s)g = g(t) then L1 f(s)g(s) = Z t 0 f(u)g(t u) du N. B. Vyas Laplace Transforms
  • 147. Convolution Proof: Let (t) = Z t 0 f(u)g(t u) du N. B. Vyas Laplace Transforms
  • 148. Convolution Proof: Let (t) = Z t 0 f(u)g(t u) du then L((t)) = Z 1 0 est Z t 0 dt f(u)g(t u) du N. B. Vyas Laplace Transforms
  • 149. Convolution Proof: Let (t) = Z t 0 f(u)g(t u) du then L((t)) = Z 1 0 est Z t 0 dt f(u)g(t u) du = Z 1 0 Z t 0 estf(u)g(t u) du dt N. B. Vyas Laplace Transforms
  • 150. Convolution Proof: Let (t) = Z t 0 f(u)g(t u) du then L((t)) = Z 1 0 est Z t 0 dt f(u)g(t u) du = Z 1 0 Z t 0 estf(u)g(t u) du dt The region integration for this double integration is entire area lying between the lines u = 0 and u = t. On changing the order of integration, we get N. B. Vyas Laplace Transforms
  • 151. Convolution Proof: Let (t) = Z t 0 f(u)g(t u) du then L((t)) = Z 1 0 est Z t 0 dt f(u)g(t u) du = Z 1 0 Z t 0 estf(u)g(t u) du dt The region integration for this double integration is entire area lying between the lines u = 0 and u = t. On changing the order of integration, Z we get 1 L((t)) = 0 Z 1 u estf(u)g(t u) dt du N. B. Vyas Laplace Transforms
  • 152. Convolution Proof: Let (t) = Z t 0 f(u)g(t u) du then L((t)) = Z 1 0 est Z t 0 dt f(u)g(t u) du = Z 1 0 Z t 0 estf(u)g(t u) du dt The region integration for this double integration is entire area lying between the lines u = 0 and u = t. On changing the order of integration, Z we get 1 L((t)) = 0 Z 1 u estf(u)g(t u) dt du = Z 1 0 esuf(u) Z 1 u du est+sug(t u) dt N. B. Vyas Laplace Transforms
  • 153. Convolution Proof: Let (t) = Z t 0 f(u)g(t u) du then L((t)) = Z 1 0 est Z t 0 dt f(u)g(t u) du = Z 1 0 Z t 0 estf(u)g(t u) du dt The region integration for this double integration is entire area lying between the lines u = 0 and u = t. On changing the order of integration, Z we get 1 L((t)) = 0 Z 1 u estf(u)g(t u) dt du = Z 1 0 esuf(u) Z 1 u du est+sug(t u) dt = Z 1 0 esuf(u) Z 1 u du es(tu)g(t u) dt N. B. Vyas Laplace Transforms
  • 154. Convolution Proof: Let (t) = Z t 0 f(u)g(t u) du then L((t)) = Z 1 0 est Z t 0 dt f(u)g(t u) du = Z 1 0 Z t 0 estf(u)g(t u) du dt The region integration for this double integration is entire area lying between the lines u = 0 and u = t. On changing the order of integration, Z we get 1 L((t)) = 0 Z 1 u estf(u)g(t u) dt du = Z 1 0 esuf(u) Z 1 u du est+sug(t u) dt = Z 1 0 esuf(u) Z 1 u du es(tu)g(t u) dt = Z 1 0 esuf(u) Z 1 u esvg(v) dv du, Putting t u = v N. B. Vyas Laplace Transforms
  • 155. Convolution = Z 1 0 esuf(u)g(s)du N. B. Vyas Laplace Transforms
  • 156. Convolution = Z 1 0 esuf(u)g(s)du = g(s) Z 1 0 esuf(u)du N. B. Vyas Laplace Transforms
  • 157. Convolution = Z 1 0 esuf(u)g(s)du = g(s) Z 1 0 esuf(u)du ) L((t)) = g(s) f(s) N. B. Vyas Laplace Transforms
  • 158. Convolution = Z 1 0 esuf(u)g(s)du = g(s) Z 1 0 esuf(u)du ) L((t)) = g(s) f(s) L1 g(s) f(s) = (t) = Z t 0 f(u)g(t u) du N. B. Vyas Laplace Transforms
  • 159. Examples of Convolution theorem Apply convolution theorem to evaluate: Ex. L1 1 s2(s 1) N. B. Vyas Laplace Transforms
  • 160. Examples of Convolution theorem Apply convolution theorem to evaluate: Ex. L1 1 s2(s 1) Ex. L1 s (s2 + 4)2 N. B. Vyas Laplace Transforms
  • 161. Examples of Convolution theorem Apply convolution theorem to evaluate: Ex. L1 1 s2(s 1) Ex. L1 s (s2 + 4)2 Ex. L1 1 (s + a)(s + b) N. B. Vyas Laplace Transforms
  • 162. Examples of Convolution theorem Apply convolution theorem to evaluate: Ex. L1 1 s2(s 1) Ex. L1 s (s2 + 4)2 Ex. L1 1 (s + a)(s + b) Ex. L1 1 s(s2 + 4) N. B. Vyas Laplace Transforms
  • 163. Application to Dierential Equations Ex. Use transform method to solve y00 + 3y0 + 2y = et, y(0) = 1 , y0(0) = 0 N. B. Vyas Laplace Transforms
  • 164. Application to Dierential Equations Ex. Use transform method to solve y00 + 3y0 + 2y = et, y(0) = 1 , y0(0) = 0 Ex. Solve the equation x00 + 2x0 + 5x = et sin t, x(0) = 0 , x0(0) = 1 N. B. Vyas Laplace Transforms
  • 165. Laplace transform of Periodic function If f(t) is sectionally continuous function over an interval of length p (0 t p) and f(t) is a periodic function with period p (p 0), that is f(t + p) = f(t), then its Laplace transform exists and 1 Lff(t)g = 1 eps Z p 0 estf(t)dt, (s 0) N. B. Vyas Laplace Transforms
  • 166. Laplace transform of Periodic function Periodic Square Wave Ex. Find the Laplace transform of the square wave function of period 2a de
  • 167. ned as f(t) = k if 0 t a k if a t 2a N. B. Vyas Laplace Transforms
  • 168. Laplace transform of Periodic function Periodic Triangular Wave Ex. Find the Laplace transform of periodic function f(t) = t if 0 t a 2a t if a t 2a with period 2a N. B. Vyas Laplace Transforms
  • 169. Unit Step function or Heaviside's unit function The Heaviside step function, or the unit step function, usually denoted by H (but sometimes u or ), is a discontinuous function whose value is zero for negative argument and one for positive argument. N. B. Vyas Laplace Transforms
  • 170. Unit Step function or Heaviside's unit function The Heaviside step function, or the unit step function, usually denoted by H (but sometimes u or ), is a discontinuous function whose value is zero for negative argument and one for positive argument. The function is used in the mathematics of control theory, signal processing, structural mechanics, etc.. N. B. Vyas Laplace Transforms
  • 171. Unit Step function or Heaviside's unit function It is denoted by ua(t) or u(t a) or H(t a) and is de
  • 172. ned as H(t a) = 0 t a 1 t a N. B. Vyas Laplace Transforms
  • 173. Unit Step function or Heaviside's unit function It is denoted by ua(t) or u(t a) or H(t a) and is de
  • 174. ned as H(t a) = 0 t a 1 t a In particular, when a = 0 H(t) = 0 t 0 1 t 0 N. B. Vyas Laplace Transforms
  • 175. Unit Step function or Heaviside's unit function N. B. Vyas Laplace Transforms
  • 176. Unit Step function or Heaviside's unit function Laplace Transform of Unit Step Function: By de
  • 177. nition of Z Laplace transform 1 Lfu(t a)g = 0 estu(t a)dt N. B. Vyas Laplace Transforms
  • 178. Unit Step function or Heaviside's unit function Laplace Transform of Unit Step Function: By de
  • 179. nition of Z Laplace transform 1 Lfu(t a)g = 0 estu(t a)dt = Z a 0 est(0)dt + Z 1 a est(1)dt N. B. Vyas Laplace Transforms
  • 180. Unit Step function or Heaviside's unit function Laplace Transform of Unit Step Function: By de
  • 181. nition of Z Laplace transform 1 Lfu(t a)g = 0 estu(t a)dt = Z a 0 est(0)dt + Z 1 a est(1)dt = Z 1 a estdt = est s 1 a = 1 s eas N. B. Vyas Laplace Transforms
  • 182. Unit Step function or Heaviside's unit function Laplace Transform of Unit Step Function: By de
  • 183. nition of Z Laplace transform 1 Lfu(t a)g = 0 estu(t a)dt = Z a 0 est(0)dt + Z 1 a est(1)dt = Z 1 a estdt = est s 1 a = 1 s eas ) L1 1 s eas = u(t a) N. B. Vyas Laplace Transforms
  • 184. Unit Step function or Heaviside's unit function Laplace Transform of Unit Step Function: By de
  • 185. nition of Z Laplace transform 1 Lfu(t a)g = 0 estu(t a)dt = Z a 0 est(0)dt + Z 1 a est(1)dt = Z 1 a estdt = est s 1 a = 1 s eas ) L1 1 s eas = u(t a) In particular, if a = 0 N. B. Vyas Laplace Transforms
  • 186. Unit Step function or Heaviside's unit function Laplace Transform of Unit Step Function: By de
  • 187. nition of Z Laplace transform 1 Lfu(t a)g = 0 estu(t a)dt = Z a 0 est(0)dt + Z 1 a est(1)dt = Z 1 a estdt = est s 1 a = 1 s eas ) L1 1 s eas = u(t a) In particular, if a = 0 L(u(t)) = 1 s ) L1 1 s = u(t) N. B. Vyas Laplace Transforms
  • 188. Second Shifting Theorem Second Shifting Theorem: If Lff(t)g = f(s), then Lff(t a)u(t a)g = eas f(s) N. B. Vyas Laplace Transforms
  • 189. Second Shifting Theorem Second Shifting Theorem: If Lff(t)g = f(s), then Lff(t a)u(t a)g = eas f(s) ) L1[eas f(s)] = f(t a)u(t a) Corollary: Lff(t)H(t a)g = easLff(t + a)g N. B. Vyas Laplace Transforms
  • 190. Second Shifting Theorem Second Shifting Theorem: If Lff(t)g = f(s), then Lff(t a)u(t a)g = eas f(s) ) L1[eas f(s)] = f(t a)u(t a) Corollary: Lff(t)H(t a)g = easLff(t + a)g Corollary: LfH(t a) H(t b)g = eas ebs s N. B. Vyas Laplace Transforms
  • 191. Second Shifting Theorem Second Shifting Theorem: If Lff(t)g = f(s), then Lff(t a)u(t a)g = eas f(s) ) L1[eas f(s)] = f(t a)u(t a) Corollary: Lff(t)H(t a)g = easLff(t + a)g Corollary: LfH(t a) H(t b)g = eas ebs s Corollary: Lff(t) [H(t a) H(t b)]g = easLff(t+a)gebsLff(t+b)g N. B. Vyas Laplace Transforms