Laplace Transform And Its
Applications
Subject: Advanced Engineering Mathematics(2130002)
Branch: Civil Engineering (3rd Sem.)
Guided by:-
Dr. Manisha Patel
Name Enrollment No.
Maharshi Dave 160420106007
Kishan Bhanderi 160420106022
Nimesh Nakrani 160420106032
Smit Savaliya 160420106057
Namat Uttah 160420106067
Deep Kalthiya 1604201060
Team Members:-
Topics
 Definition of Laplace Transform
 Linearity of the Laplace Transform
 Laplace Transform of some Elementary Functions
 First Shifting Theorem
 Inverse Laplace Transform
 Laplace Transform of Derivatives & Integral
 Differentiation & Integration of Laplace Transform
 Evaluation of Integrals By Laplace Transform
 Convolution Theorem
 Application to Differential Equations
 Laplace Transform of Periodic Functions
 Unit Step Function
 Second Shifting Theorem
 Dirac Delta Function
Definition of Laplace Transform
 Let f(t) be a given function of t defined for all
then the Laplace Transform ot f(t) denoted by L{f(t)}
or or F(s) or is defined as
provided the integral exists,where s is a parameter real
or complex.
0t
)(sf )(s
dttfessFsftfL st
)()()()()}({
0



 
Linearity of the Laplace Transform
 If L{f(t)}= and then for any
constants a and b
)(sf )()]([ sgtgL 
)]([)]([)]()([ tgbLtfaLtbgtafL 
)]([)]([)}()({
)()(
)]()([)}()({
Definition-By:Proof
00
0
tgbLtfaLtbgtafL
dttgebdttfea
dttbgtafetbgtafL
stst
st











Laplace Transform of some Elementary
Functions
asif
a-s
1
)(
e.)e(
Definition-By:Proof
a-s
1
)L(e(2)
)0(,
s
1
1.)1(
Definition-By:Proof
s
1
L(1)(1)
0
)(
0
)(
0
atat
at
00
























 



as
e
dtedteL
s
s
e
dteL
tas
tasst
st
st
|a|s,
a-s
s
at]L[coshly,(5)Similar
|a|s,
a-s
a
11
2
1
)]()([
2
1
2
e
Lat)L(sinh
definitionBy
2
e
atcoshand
2
e
atsinhhave-We:Proof
a-s
a
at]L[sinh(4)
-as,
1
]L[e3)(
22
22
at
atat
22
at-

















 












asas
eLeL
e
ee
as
atat
at
atat
0s,
as
s
at]L[cosand
as
a
at]L[sin
getweparts,imaginaryandrealEquating
as
a
i
as
s
as
ias
1
)L(e1
]e[]sin[cos
sincose
Formula]s[Euler'sincosethatknow-We:Proof
0s,
as
s
at]L[cosand
as
a
at]L[sin(6)
2222
222222
at
iat
iat
ix
2222































as
ias
LatiatL
atiat
xix

   n!1n0,1,2...n
n!
)(or
0,n-1n,
1
)(
1
ust,.)-L(:Proof
n!
or
1
)()8(
1
0
1
1
0
1)1(
1
0
0
11







































n
n
nx
n
n
nu
n
n
u
nstn
nn
n
S
tL
ndxxe
S
n
tL
duue
S
s
du
s
u
e
puttingdttet
SS
n
tL
First Shifting Theorem
)(f]f(t)L[e,
)(f]f(t)L[e
)(f)(f
ra-swhere)(e
)(e
)(ef(t)]L[e
DefinitionByProof
)(f]f(t)L[ethen,(s)fL[f(t)]If
shifting-stheorem,shiftingFirst-Theorem
at-
at
0
rt-
0
a)t-(s-
0
st-at
at
asSimilarly
as
asr
dttf
dttf
dttfe
as
at














22)-(s
2-s
)4cosL(e
2s
s
L(cosh2t)
)2coshL(e(1)
43)(s
3s
)4cosL(e
4s
s
L(cos4t)
)4cosL(e(1)
:
22
2t
22
2t
22
3t-
22
3t-










t
t
t
t
Eg
Inverse Laplace Transform
)()}({L
bydenotedisand(s)foftransformlaplaceinverse
thecalledisf(t)then(s),fL[f(t)]If-Definition
1-
tfsf 

2
1
2
1
12
1
)2(
2
1
)1(
1
2
1
C
than0s
2
1
B
than-2s
-1A
than-1s
2)1)(sc(s1)(s)B(s2)(s)A(s1
)2()1())(2)(1(
1
2)(s)1)(s(s
1
L)1(
21
1
1




































tt
ee
sss
L
If
If
If
s
C
s
B
s
A
sss
L
Laplace Transform of Derivatives &
Integral
 
f(u)du(s)f
1
LAlso
(s)f
1
f(u)duLthen(s),fL{f(t)}If
f(t)ofnintegratiotheoftransformLaplace
(0)(0)....ffs-f(0)s-(s)fs(t)}L{f
f(0)-(s)fsf(0)-sL{f(t)}(t)}fL{
and0f(t)elimprovidedexists,(t)}fL{then
continous,piecewiseis(t)fand0tallforcontinousisf(t)If
f(t)ofderivativetheoftransformLaplace
t
0
1-
t
0
1-n2-n1-nnn
st
t





















s
s
22
2
22
3
22
2n
s
a
at)L(sin
at)L(sins
s
a-
a-at)L(sinssinat}L{-a
thisfroma(0)f0,f(0)Also
sinat-a(t)fandatcosa(t)fsinat thenf(t)Let:Sol
atsinoftransformlaplaceDeriveExample
a
a
a








)1(
1
)(
1
cos
cosf(u)-Here:Sol
cos
2
0
0


















ss
sf
s
uduL
u
uduLEg
t
t
Differentiation & Integration of Laplace
Transform











0
n
n
nn
ds(s)f
t
f(t)
Lthen
,transformLaplacehas
t
f(t)
and(s)fL{f(t)}If
TransformsLaplaceofnIntegratio
1,2,3,...nwhere,(s)]f[
ds
d
(-1)f(t)]L[tthen(s)fL{f(t)}If
TranformLaplaceofationDifferenti
3
2
2
2
2at2
at2
)(
2
)(
1
1
)1()e(-:Sol
)e(:
as
asds
d
asds
d
tL
tLExample

































































ss
s
s
s
ds
t
t
LExample
s
11
11
1
s
22
cottan
2
tantan
tan
1
.t)L(sin-:Sol
sin
Evaluation of Integrals By Laplace
Transform






















1
)1()cos(
1
)(cos
cos)cos(
cos)(3
)()}({
cos-:Example
2
2
0
0
0
3
s
s
ds
d
ttL
s
s
tL
tdttettL
tttfs
dttfetfL
tdtte
st
st
t
25
2
100
8
)19(
19
cos
cos
)1(
1
)cos(
)1(
2)1(
1
2
0
3
0
22
2
22
22























tdtte
tdtte
s
s
ttL
s
ss
t
st
Convolution Theorem
g(t)*f(t)
g*fu)-g(tf(u)(s)}g(s)f{L
theng(t)(s)}g{Landf(t)(s)}f{LIf
t
0
1-
-1-1




 
)1(e
e
.e
.
)1(
1
)1(
1
.
1
)1(
1
n theoremconvolutioby
)(
1
1
(s)gand)(
1
(s)fhavewe:
)1(
1
:
t
0
t
0
t
0
2
1
1
2
1
2
2
1












































t
eue
dueu
dueu
ss
L
ss
L
ss
L
eL
s
tL
s
HereSol
ss
LExample
tuu
t
u
t
ut
t
Application to Differential Equations
04L(y))yL(
sidebothontranformLaplaceTaking
.
.
(0)y-(0)ys-y(0)s-Y(s)s(t))yL(
(0)y-sy(0)-Y(s)s(t))yL(
y(0)-sY(s)(t))yL(
Y(s)L(y(t))
6(0)y1y(0)04yy:
23
2





eg
tt
s
s
2sin
2
3
2cos
4s
6
4s
Y(s)
transformlaplaceinverseTaking
4s
6
Y(s)
06-s-4)Y(s)(s
04(Y(s))(0)y-sy(0)-Y(s)s
22
2
2
2










Laplace Transform of Periodic Functions
 



p
0
st
0)(sf(t)dte
e-1
1
L{f(t)}
ispperiodwith
f(t)functionperiodiccontinouspiecewiseaoftransformlaplaceThe
0tallforf(t)p)f(t
if0)p(
periodithfunction wperiodicbetosaidisf(t)Afunction-Definition
ps-






























































2w
sπ
hcot
ws
w
e
e
.
e1
e1
.
ws
w
e1
ws
w
.
e1
1
L[F(t)]
e1
ws
w
wcoswt)ssinwt(
ws
e
sinwtdteNow
tallforf(t)
w
π
tfand
w
π
t0forsinwtf(t)
0t|sinwt|f(t)
ofionrectificatwave-fulltheoftransformlaplacetheFind
22
2w
sπ
2w
sπ
w
sπ
w
sπ
22
w
sπ
22
w
sπ
w
sπ
22
2
w
π
0
w
π
0
22
st
st
Unit Step Function
s
1
L{u(t)}
0aif
e
s
1
s
e
(1)dte(0)dte
a)dt-u(tea)}-L{u(t
at1,
at0,a)-u(t
as-
a
st-
a
st-
a
0
st-
0
st-



















Second Shifting Theorem
a))L(f(tea))-u(tL(f(t)-Corr.
L(f(t))e
(s)fea))-u(ta)-L(f(t
then(s)fL(f(t))If
as-
as
as-





 
)(cos)2(
)2(cos)2()2(L
)()()(L
theroemshiftingsecondBy
(ii)L
33
1
}{.
}{)]2(L[e
2,ef(t)
)]2((i)L[e
22
1
22
2
1-
1-
22
2
1-
)3(2
)62(
362
)2(323t-
3t-
-3t
ttu
ttu
s
s
Ltu
s
se
atuatfsfe
s
se
s
e
s
e
eLee
eLetu
a
tuExample
s
as
s
s
s
ts
ts












































Dirac Delta function
1))((
))((
0
1
0lim
0







tL
eatL
tε, a
εat, a
ε
at, -a)δ(t
as
ε


 sin3tcos3t2ex(t)
sin3t2ecos3t2ex
inversionon
92)(s
6
92)(s
2)2(s
134ss
102s
x
2(1)x13x(0)]-x4[s(0)]x-sx(0)x[s
haveweTransform,LaplaceTaking
0(0)xand2x(0)0,t(t),213xx4x
0(0)xand2x(0)0,at therew
(t)213xx4xequationthe-Solve:Example
2t
2t-2t-
222
2



















Application of Laplace Transforme

More Related Content

PPTX
Laplace Transformation & Its Application
PPTX
Metal semiconductor contacts
PPTX
Asymptotic Notation
PPT
Presentation on laplace transforms
PPTX
Fourier series
PPTX
Data Structure and Algorithms.pptx
PDF
Modern Control - Lec 06 - PID Tuning
PPT
NUMERICAL METHODS -Iterative methods(indirect method)
Laplace Transformation & Its Application
Metal semiconductor contacts
Asymptotic Notation
Presentation on laplace transforms
Fourier series
Data Structure and Algorithms.pptx
Modern Control - Lec 06 - PID Tuning
NUMERICAL METHODS -Iterative methods(indirect method)

What's hot (20)

PPT
Laplace transform
PPTX
Applications Of Laplace Transforms
PDF
Using Laplace Transforms to Solve Differential Equations
PPTX
Laplace transform
PPTX
Laplace transforms
PPTX
Over view of Laplace Transform and its Properties
PPTX
Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
PPTX
Laplace transform and its application
PPTX
Laplace Transform and its applications
PPTX
Laplace transformation
PPTX
Importance & Application of Laplace Transform
PPTX
Laplace transform
PPT
Laplace transforms
PPTX
Laplace transform and its applications
PPT
Laplace transform
PPTX
Laplace transform and its application
PPTX
Laplace transform & fourier series
DOCX
Laplace transform
PPTX
Application of fourier series
PPTX
Laplace transform
Applications Of Laplace Transforms
Using Laplace Transforms to Solve Differential Equations
Laplace transform
Laplace transforms
Over view of Laplace Transform and its Properties
Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
Laplace transform and its application
Laplace Transform and its applications
Laplace transformation
Importance & Application of Laplace Transform
Laplace transform
Laplace transforms
Laplace transform and its applications
Laplace transform
Laplace transform and its application
Laplace transform & fourier series
Laplace transform
Application of fourier series
Ad

Similar to Application of Laplace Transforme (20)

PPS
M1 unit viii-jntuworld
PPTX
Math slide Presentation with extra .pptx
PPTX
EM3MICROPROJECT ROLLNO-54_AND_55.pptx
PPT
Damped force vibrating Model Laplace Transforms
PDF
NAS-Ch4-Application of Laplace Transform
PPTX
Laplace Transform And Its Applications
PPTX
Laplaces transformer
PPTX
Laplace Transform of Periodic Function
PPTX
Laplace transform
PPTX
Laplace Final.pptx
PPTX
ct ppt 1.pptxnxjwkwodkwjjdjxjqosowoo19di
PDF
Production Engineering - Laplace Transformation
PPTX
160280102011 c1 aem
PDF
LaplaceA.pdf
PDF
LaplaceA ppt.pdf
PDF
hsu-Chapter 6 Laplace transform.pdf
PPT
23MA202-Mathematical Foundations for Engineering - Laplace Transform
PDF
Adv math[unit 2]
PDF
IPC - Lectures 16-18 (Laplace Transform).pdf
PPT
laplace Tranform, definition, Examples, methods
M1 unit viii-jntuworld
Math slide Presentation with extra .pptx
EM3MICROPROJECT ROLLNO-54_AND_55.pptx
Damped force vibrating Model Laplace Transforms
NAS-Ch4-Application of Laplace Transform
Laplace Transform And Its Applications
Laplaces transformer
Laplace Transform of Periodic Function
Laplace transform
Laplace Final.pptx
ct ppt 1.pptxnxjwkwodkwjjdjxjqosowoo19di
Production Engineering - Laplace Transformation
160280102011 c1 aem
LaplaceA.pdf
LaplaceA ppt.pdf
hsu-Chapter 6 Laplace transform.pdf
23MA202-Mathematical Foundations for Engineering - Laplace Transform
Adv math[unit 2]
IPC - Lectures 16-18 (Laplace Transform).pdf
laplace Tranform, definition, Examples, methods
Ad

More from Maharshi Dave (9)

PPTX
Geographical information system
PPTX
Types of loads
PPT
TYPES OF PILE FOUNDATION & APPLICATIONS
PPTX
Strings CPU GTU
PPTX
Reality show
PPTX
Introduction to environment,ecology and ecosystem
PPTX
Air compressor
PPTX
Application of partial derivatives
PPTX
Ece impacts of infrastructural development on economy of india
Geographical information system
Types of loads
TYPES OF PILE FOUNDATION & APPLICATIONS
Strings CPU GTU
Reality show
Introduction to environment,ecology and ecosystem
Air compressor
Application of partial derivatives
Ece impacts of infrastructural development on economy of india

Recently uploaded (20)

PDF
ChapteR012372321DFGDSFGDFGDFSGDFGDFGDFGSDFGDFGFD
PDF
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
PDF
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PPTX
Chemical Technological Processes, Feasibility Study and Chemical Process Indu...
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
PDF
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
PPTX
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PDF
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
PPTX
CyberSecurity Mobile and Wireless Devices
PDF
737-MAX_SRG.pdf student reference guides
PPTX
Software Engineering and software moduleing
PPTX
Current and future trends in Computer Vision.pptx
PDF
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
PPTX
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
PDF
distributed database system" (DDBS) is often used to refer to both the distri...
PPTX
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
ChapteR012372321DFGDSFGDFGDFSGDFGDFGDFGSDFGDFGFD
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
Fundamentals of safety and accident prevention -final (1).pptx
Chemical Technological Processes, Feasibility Study and Chemical Process Indu...
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
22EC502-MICROCONTROLLER AND INTERFACING-8051 MICROCONTROLLER.pdf
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
August 2025 - Top 10 Read Articles in Network Security & Its Applications
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
CyberSecurity Mobile and Wireless Devices
737-MAX_SRG.pdf student reference guides
Software Engineering and software moduleing
Current and future trends in Computer Vision.pptx
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
distributed database system" (DDBS) is often used to refer to both the distri...
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx

Application of Laplace Transforme