SlideShare a Scribd company logo
Planck/Einstein:	
  
               E = hν = ω

                De	
  Broglie:	
  
                       h
                p = = k
                       λ

       Classical	
  wave	
  equa3on:	
  
       ∂ 2 Ψ(x,t)    2 ∂ Ψ(x,t)
                        2
                  =v
           ∂t 2
                          ∂x 2

                Schrödinger	
  
            Ψ(x,t) = Aei(kx − ω t )


    ∂               ∂                      ∂ ax
       Ψ = −iωΨ ⇒ i Ψ = EΨ                   e = aeax
    ∂t              ∂t                     ∂x

∂2                 2 ∂2    ⎛ p2 ⎞
     Ψ = −k Ψ ⇒ −
           2
                          Ψ=⎜      Ψ
∂x 2              2m ∂x 2   ⎝ 2m ⎟
                                 ⎠
Time	
  dependent	
  Schrödinger	
  equa3on	
  
          ∂         ⎛ p2   ⎞
        i Ψ = EΨ = ⎜    +V⎟ Ψ
          ∂t        ⎝ 2m   ⎠

         ∂    ⎛  2 ∂2    ⎞
       i Ψ = ⎜ −       +V⎟ Ψ
         ∂t   ⎝ 2m ∂x 2   ⎠
                     ∂      ˆ
                i      Ψ = HΨ
                     ∂t


Time	
  independent	
  Schrödinger	
  equa3on	
  
           (standing	
  wave	
  solu0on)	
  
             Ψ(x,t) = Ψ(x)e−iEt /
                    ∂
               i      Ψ = EΨ
                    ∂t
             ˆ
             H Ψ(x) = EΨ(x)
Par3cle	
  in	
  a	
  box	
  
                                                                        H	
  atom	
  
       0             0<x<L
V=                                                                              1
      C      x < 0 or x > L                                             V =−
                                                                                r




                                      ⎛ 2 2     ⎞
                                        −
                                      ⎜ 2m ∇ + V ⎟ Ψ n = En Ψ n
                                      ⎝          ⎠


                                                                        Rigid	
  Rotor	
  
        Harmonic	
  oscillator	
                                  (rota0onal	
  spectroscopy)	
  
     (vibra0onal	
  spectroscopy)	
  
                                                           1⎛ 1 ∂             ∂   1 ∂2 ⎞
                V = kx  1      2
                                                       ∇ = 2⎜
                                                         2
                                                                       sin θ    + 2
                        2
                                                          r ⎝ sin θ ∂θ       ∂θ sin θ ∂φ 2 ⎟
                                                                                           ⎠
                                                                          V =0
⎛ 2 2 1 ⎞
             ⎜ − 2m ∇ − r ⎟ Ψ n = En Ψ n
             ⎝            ⎠
             −me4                 13.6 eV
En =                         =−               n = 1, 2, 3,...
       2 ( 4πε 0 ) n
                    2
         2               2
                                     n2


                        1 −r
                  Ψ1 =      e      1s
                         π
                    1 ⎛       r⎞
          Ψ 2,0 =      ⎜ 1 − ⎟ e− r /2 2s
                    8π ⎝      2⎠
                      1
            Ψ 2,1 =         xe− r /2 2 p
                    4 2π


                        Probability	
  	
  

              P(x) = Ψ(x) dx
                                        2



                Probability	
  density	
  
                   (amplitude)	
  	
  
                             Ψ(x)
                                       2
Par3cle	
  in	
  a	
  box	
  
                                                                         H	
  atom	
  
       0             0<x<L
V=                                                                               1
      C      x < 0 or x > L                                              V =−
                                                                                 r




                                      ⎛ 2 2     ⎞
                                        −
                                      ⎜ 2m ∇ + V ⎟ Ψ n = En Ψ n
                                      ⎝          ⎠



        Harmonic	
  oscillator	
                                  Probability	
  density	
  
     (vibra0onal	
  spectroscopy)	
                                  (amplitude)	
  	
  
                                                                           Ψ(x)
                                                                                         2
                V = 1 kx 2
                    2
⎛ 2 2 1 ⎞
             ⎜ − 2m ∇ − r ⎟ Ψ n = En Ψ n
             ⎝            ⎠
             −me4                 13.6 eV
En =                         =−                 n = 1, 2, 3,...
       2 ( 4πε 0 ) n
                    2
         2               2
                                     n2


                        1 −r
                 Ψ1 =       e      1s
                         π
                    1 ⎛       r⎞
          Ψ 2,0 =      ⎜ 1 − ⎟ e− r /2 2s
                    8π ⎝      2⎠
                      1
            Ψ 2,1 =         xe− r /2 2 p
                    4 2π


                        Probability	
  	
  

              P(x) = Ψ(x) dx
                                         2


               Probability	
  density	
  	
  

                          Ψ(x)
                                     2
Peer instructions questions for basic quantum mechanics
End	
  of	
  video	
  slides	
  
Please	
  start	
  your	
  Socra0ve	
  app	
  

or	
  go	
  to	
  m.socra3ve.com	
  in	
  your	
  browser	
  

               Room	
  number	
  9076	
  
⎛ 2 2 1 ⎞
                 ⎜ − 2m ∇ − r ⎟ Ψ n = En Ψ n
                 ⎝            ⎠
                 −me4                        13.6 eV
En =                                 =−                         n = 1, 2, 3,...
         2 ( 4πε 0 ) n
                           2
             2                   2
                                                n2


                                       1 −r
                         Ψ1 =            e  1s
                                       π



      What	
  is	
  the	
  most	
  probable	
  posi0on	
  
of	
  an	
  electron	
  in	
  the	
  1s	
  orbital	
  of	
  H	
  atom?	
  

                       A	
  	
  	
  	
  inside	
  the	
  nucleus	
  

                       B	
  	
  	
  	
  outside	
  the	
  nucleus	
  

                       C	
  	
  	
  	
  don’t	
  know	
  
⎛ 2 2 1 ⎞
                 ⎜ − 2m ∇ − r ⎟ Ψ n = En Ψ n
                 ⎝            ⎠
                 −me4                        13.6 eV
En =                                 =−                         n = 1, 2, 3,...
         2 ( 4πε 0 ) n
                           2
             2                   2
                                                n2


                                       1 −r
                         Ψ1 =            e  1s
                                       π



      What	
  is	
  the	
  most	
  probable	
  posi0on	
  
of	
  an	
  electron	
  in	
  the	
  1s	
  orbital	
  of	
  H	
  atom?	
  

                       A	
  	
  	
  	
  inside	
  the	
  nucleus	
  

                       B	
  	
  	
  	
  outside	
  the	
  nucleus	
  

                       C	
  	
  	
  	
  don’t	
  know	
  
⎛ 2 2 1 ⎞
                 ⎜ − 2m ∇ − r ⎟ Ψ n = En Ψ n
                 ⎝            ⎠
                 −me4                    13.6 eV
En =                                =−                      n = 1, 2, 3,...
         2 ( 4πε 0 ) n
                           2
             2                  2
                                            n2


                                     1 −r
                         Ψ1 =          e  1s
                                     π



      What	
  is	
  the	
  most	
  probable	
  posi0on	
  
of	
  an	
  electron	
  in	
  the	
  1s	
  orbital	
  of	
  H	
  atom?	
  

                                Probability	
  	
  

                     P(x) = Ψ(x) dx
                                                  2



                                    Very	
  small	
  for	
  nucleus	
  
Par0cle	
  in	
  a	
  box	
                                                Harmonic	
  oscillator	
  




          Why	
  is	
  the	
  probability	
  density	
  higher	
  at	
  the	
  edges	
  
          than	
  in	
  the	
  middle	
  for	
  high	
  energy	
  solu0ons	
  to	
  the	
  
          Schrödinger	
  equa0on	
  for	
  the	
  harmonic	
  oscillator?	
  

                           Enter	
  your	
  answer	
  on	
  Socra0ve	
  
⎛ 2 2 1 ⎞
              ⎜ − 2m ∇ − r ⎟ Ψ n = En Ψ n
              ⎝            ⎠
              −me4                              13.6 eV
En =                                       =−             n = 1, 2, 3,...
       2 ( 4πε 0 ) n
                               2
          2                           2
                                                   n2


                                       1 −r
                          Ψ1 =             e    1s
                                        π
                                   1 ⎛       r⎞
          Ψ 2,0 =                     ⎜ 1 − ⎟ e− r /2     2s
                                   8π ⎝      2⎠

What	
  is	
  the	
  lowest	
  excita3on	
  energy	
  
                of	
  the	
  H	
  atom?	
  

              A	
  	
  	
  	
  13.6	
  eV	
  

              B	
  	
  	
  	
  10.2	
  eV	
  

              C	
  	
  	
  	
  6.8	
  eV	
  

              D	
  	
  	
  don’t	
  know	
  
⎛ 2 2 1 ⎞
              ⎜ − 2m ∇ − r ⎟ Ψ n = En Ψ n
              ⎝            ⎠
              −me4                              13.6 eV
En =                                       =−             n = 1, 2, 3,...
       2 ( 4πε 0 ) n
                               2
          2                           2
                                                   n2


                                       1 −r
                          Ψ1 =             e    1s
                                        π
                                   1 ⎛       r⎞
          Ψ 2,0 =                     ⎜ 1 − ⎟ e− r /2     2s
                                   8π ⎝      2⎠

What	
  is	
  the	
  lowest	
  excita3on	
  energy	
  
                of	
  the	
  H	
  atom?	
  

              A	
  	
  	
  	
  13.6	
  eV	
  

              B	
  	
  	
  	
  10.2	
  eV	
  

              C	
  	
  	
  	
  6.8	
  eV	
  

              D	
  	
  	
  don’t	
  know	
  
⎛ 2 2 1 ⎞
              ⎜ − 2m ∇ − r ⎟ Ψ n = En Ψ n
              ⎝            ⎠                                                ΔE = E2 − E1
              −me4                              13.6 eV                          −13.6 −13.6
En =                                       =−             n = 1, 2, 3,...      =       −
       2 ( 4πε 0 ) n                                                              4     1
                               2
          2                           2
                                                   n2
                                                                               = 10.2 eV

                                       1 −r
                          Ψ1 =             e    1s
                                        π
                                   1 ⎛       r⎞
          Ψ 2,0 =                     ⎜ 1 − ⎟ e− r /2     2s
                                   8π ⎝      2⎠

What	
  is	
  the	
  lowest	
  excita3on	
  energy	
  
                of	
  the	
  H	
  atom?	
  

              A	
  	
  	
  	
  13.6	
  eV	
  

              B	
  	
  	
  	
  10.2	
  eV	
  

              C	
  	
  	
  	
  6.8	
  eV	
  

              D	
  	
  	
  don’t	
  know	
  
+4.2	
  eV	
  




-­‐4.5	
  eV	
  
Par3cle	
  in	
  a	
  box	
  




                                  L	
  =	
  2.94	
  nm	
  



⎛  2      ⎞                                 0               0<x<L                        h2n2
⎜ −  ∇ + V ⎟ Ψ n = En Ψ n         V=                                                 En =                   n = 1, 2, 3...
⎝ 2m       ⎠                                 C        x < 0 or x > L                      8mL2



                                           h2
                   E12 − E11 = (12 − 11 )
                                       2
                                                = 1.60 × 10 −19 J (1.0 eV)
                                                  2

+4.2	
  eV	
  
                                              2
                                          8mL


-­‐4.5	
  eV	
              Experiment	
  =	
  2.5	
  eV	
  	
  (497	
  nm	
  /	
  blue	
  green)	
  	
  
⎛ 2π x ⎞
              1/2
       ⎛ 2⎞
Ψ(x) = ⎜ ⎟          sin ⎜
       ⎝ L⎠             ⎝ L ⎟  ⎠
Par3cle	
  in	
  a	
  box:	
  	
  
some	
  useful	
  predic3ons	
  for	
  nano	
  sized	
  systems	
  
                                              h2
           ΔE = En +1 − En = (2n + 1)
                                             8mL2
            Excita0on	
  energy	
  (band	
  gap)	
  	
  
                  Increases	
  with	
  n	
  
              Decreases	
  faster	
  with	
  L	
  

          ΔE	
  decreases	
  with	
  molecular	
  size	
  

       Absorp0on	
  wave	
  length	
  (λ)	
  increases	
              hc
                                                                 λ=
               with	
  molecular	
  size	
                            ΔE
             8mc L2
         λ=
              h (2n + 1)
                                                   L2
                (
             = 3.30 × 10 m    12        −1
                                             )   (2n + 1)
               ⎛             −1   1 m ⎞ L2
             = ⎜ 3.30 × 10 m × 9
                          12
                                      ⎟
               ⎝                10 nm ⎠ (2n + 1)
                                         L2
                (
             = 3300 nm        −1
                                   )   (2n + 1)
Based	
  on	
  

                                                                     L2
                           λ = ( 3300 nm                  −1
                                                               )   (2n + 1)

                  Where	
  does	
  1,3,5-­‐hexatriene	
  absorb	
  light?	
  
(you	
  can	
  use	
  h[p://dgu.ki.ku.dk/molcalc/editor	
  to	
  es0mate	
  length)	
  




                                A	
  	
  	
  	
  ca	
  50	
  nm	
  

                                B	
  	
  	
  	
  ca	
  100	
  nm	
  

                                C	
  	
  	
  	
  ca	
  300	
  nm	
  

                                D	
  	
  	
  	
  don’t	
  know	
  
Based	
  on	
  

                                                                     L2
                           λ = ( 3300 nm                  −1
                                                               )   (2n + 1)

                  Where	
  does	
  1,3,5-­‐hexatriene	
  absorb	
  light?	
  
(you	
  can	
  use	
  h[p://dgu.ki.ku.dk/molcalc/editor	
  to	
  es0mate	
  length)	
  



                                                                                                         L2
                                A	
  	
  	
  	
  ca	
  50	
  nm	
             λ = ( 3300 nm   −1
                                                                                                   )   (2n + 1)
                                                                                                       0.8 2
                                B	
  	
  	
  	
  ca	
  100	
  nm	
  
                                                                                 (
                                                                               = 3300 nm   )  −1

                                                                                                          7
                                C	
  	
  	
  	
  ca	
  300	
  nm	
             = ( 3300 nm )  −1
                                                                                                       ( 0.09 )
                                D	
  	
  	
  	
  don’t	
  know	
               = 302 nm
Based	
  on	
  

                                                        L2
                           λ = ( 3300 nm     −1
                                                  )   (2n + 1)

                  Where	
  does	
  1,3,5-­‐hexatriene	
  absorb	
  light?	
  
(you	
  can	
  use	
  h[p://dgu.ki.ku.dk/molcalc/editor	
  to	
  es0mate	
  length)	
  



                                                            L2
                            λ = ( 3300 nm      −1
                                                      )   (2n + 1)
                                                          0.8 2
                                 (
                               = 3300 nm   )   −1

                                                             7
                                                                          Experiment:	
  
                                                                            258	
  nm	
  
                               = ( 3300 nm )   −1
                                                          ( 0.09 )
                               = 302 nm
Based	
  on	
  

                                         Orbital	
  theory	
  


                        Where	
  does	
  1,3,5-­‐hexatriene	
  absorb	
  light?	
  
(you	
  can	
  use	
  h[p://dgu.ki.ku.dk/molcalc/editor	
  to	
  compute	
  orbital	
  energies)	
  




                                      A	
  	
  	
  	
  ca	
  50	
  nm	
  

                                      B	
  	
  	
  	
  ca	
  100	
  nm	
  

                                      C	
  	
  	
  	
  ca	
  300	
  nm	
  

                                      D	
  	
  	
  	
  don’t	
  know	
  
Based	
  on	
  

                                         Orbital	
  theory	
  


                        Where	
  does	
  1,3,5-­‐hexatriene	
  absorb	
  light?	
  
(you	
  can	
  use	
  h[p://dgu.ki.ku.dk/molcalc/editor	
  to	
  compute	
  orbital	
  energies)	
  

                                                                                  hc
                                                                             λ=
                                                                                  ΔE
                                      A	
  	
  	
  	
  ca	
  50	
  nm	
             1240 eV nm
                                                                              =
                                      B	
  	
  	
  	
  ca	
  100	
  nm	
  
                                                                                (5.72 − (−6.28)) eV
                                                                              = 103 nm
                                      C	
  	
  	
  	
  ca	
  300	
  nm	
  

                                      D	
  	
  	
  	
  don’t	
  know	
             Experiment:	
  
                                                                                     258	
  nm	
  
m	
  
                                          Based	
  on	
  

                                                              L2
                               λ = ( 3300 nm       −1
                                                        )   (2n + 1)

          As	
  the	
  length	
  is	
  increased	
  for	
  what	
  value	
  of	
  m	
  does	
  	
  
              trans-­‐polyacetylene	
  stop	
  absorbing	
  visible	
  light?	
  
(you	
  can	
  use	
  h[p://dgu.ki.ku.dk/molcalc/editor	
  to	
  es0mate	
  length)	
  
m	
  
                                                    Based	
  on	
  
                                                                       L2
                                          λ = ( 401 nm      −1
                                                                 )   (2n + 1)
                    As	
  the	
  length	
  is	
  increased	
  for	
  what	
  value	
  of	
  m	
  does	
  	
  
                        trans-­‐polyacetylene	
  stop	
  absorbing	
  visible	
  light?	
  
          (you	
  can	
  use	
  h[p://dgu.ki.ku.dk/molcalc/editor	
  to	
  es0mate	
  length)	
  

                                                                          1.04
                                                                               = 0.260 nm/n
                                                                            4
                                                                                                 L = 0.264n

                                                                                                                       0.0697n 2
                                                                                       λ = ( 3300 nm       −1
                                                                                                                   )    (2n + 1)
0.8                                                                                                                  n2
 3
    = 0.267 nm/n                                                                             (
                                                                                          = 230 nm        −1
                                                                                                               )   (2n + 1)
m	
  
                                                             Based	
  on	
  
                                                                                     L2
                                                   λ = ( 401 nm           −1
                                                                               )   (2n + 1)
                        As	
  the	
  length	
  is	
  increased	
  for	
  what	
  value	
  of	
  m	
  does	
  	
  
                            trans-­‐polyacetylene	
  stop	
  absorbing	
  visible	
  light?	
  
              (you	
  can	
  use	
  h[p://dgu.ki.ku.dk/molcalc/editor	
  to	
  es0mate	
  length)	
  

                                                         n2
                          λ = ( 230 nm        −1
                                                   )   (2n + 1)

                                                                  λ	
  
 Visible	
  light	
  stops	
  at	
  about	
  800	
  nm	
  
                                n2
       (
800 = 230 nm         −1
                          )   (2n + 1)
                                       ⇒ n ≈ 7 or 8


                                        m ≈ 5 or 6                                               n	
  

More Related Content

PDF
Proceedings Different Quantum Spectra For The Same Classical System
DOC
Chapter 3 (maths 3)
PDF
Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...
DOC
Chapter 5 (maths 3)
PDF
Example triple integral
PDF
Exponentials integrals
PDF
Fourier series 1
PDF
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)
Proceedings Different Quantum Spectra For The Same Classical System
Chapter 3 (maths 3)
Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...
Chapter 5 (maths 3)
Example triple integral
Exponentials integrals
Fourier series 1
[Vvedensky d.] group_theory,_problems_and_solution(book_fi.org)

What's hot (18)

PPT
Fourier series
PPTX
SERIES SOLUTION OF ORDINARY DIFFERENTIALL EQUATION
PDF
Fourier series
PDF
adv-2015-16-solution-09
PDF
11X1 T11 07 chord of contact (2010)
PPTX
senior seminar
PDF
SOME THOUGHTS ON DIVERGENT SERIES
PPT
Ch07 5
PPTX
Complex form fourier series
PDF
Relative superior mandelbrot sets and relative
PDF
PPT
Nanotechnology2
PPT
MATLAB ODE
PDF
How to Solve a Partial Differential Equation on a surface
PDF
11.solution of linear and nonlinear partial differential equations using mixt...
PDF
Solution of linear and nonlinear partial differential equations using mixture...
PDF
Interpolation techniques - Background and implementation
Fourier series
SERIES SOLUTION OF ORDINARY DIFFERENTIALL EQUATION
Fourier series
adv-2015-16-solution-09
11X1 T11 07 chord of contact (2010)
senior seminar
SOME THOUGHTS ON DIVERGENT SERIES
Ch07 5
Complex form fourier series
Relative superior mandelbrot sets and relative
Nanotechnology2
MATLAB ODE
How to Solve a Partial Differential Equation on a surface
11.solution of linear and nonlinear partial differential equations using mixt...
Solution of linear and nonlinear partial differential equations using mixture...
Interpolation techniques - Background and implementation
Ad

Similar to Peer instructions questions for basic quantum mechanics (20)

PDF
Cosmin Crucean: Perturbative QED on de Sitter Universe.
PDF
Formulario cuantica 2
PDF
Quantum modes - Ion Cotaescu
PDF
修士論文発表会
PDF
Research Inventy : International Journal of Engineering and Science
PDF
F3006 formulas final
PPT
Ysu conference presentation alaverdyan
PDF
Ct24621630
PDF
Study of the impact of dielectric constant perturbation on electromagnetic
PDF
ADI for Tensor Structured Equations
PDF
ADI for Tensor Structured Equations
PDF
PDF
Solucionario circuitos eléctricos - dorf, svoboda - 6ed
PDF
Sheet1 simplified
PDF
Solution manual for introduction to electric circuits
PDF
Dorf svoboda-circuitos-elc3a9ctricos-6ta-edicion
PDF
[E book] introduction to electric circuits 6th ed [r. c. dorf and j. a. svoboda]
PDF
9789740329480
PDF
Schrodingermaxwell
DOC
Solution 3 a ph o 8
Cosmin Crucean: Perturbative QED on de Sitter Universe.
Formulario cuantica 2
Quantum modes - Ion Cotaescu
修士論文発表会
Research Inventy : International Journal of Engineering and Science
F3006 formulas final
Ysu conference presentation alaverdyan
Ct24621630
Study of the impact of dielectric constant perturbation on electromagnetic
ADI for Tensor Structured Equations
ADI for Tensor Structured Equations
Solucionario circuitos eléctricos - dorf, svoboda - 6ed
Sheet1 simplified
Solution manual for introduction to electric circuits
Dorf svoboda-circuitos-elc3a9ctricos-6ta-edicion
[E book] introduction to electric circuits 6th ed [r. c. dorf and j. a. svoboda]
9789740329480
Schrodingermaxwell
Solution 3 a ph o 8
Ad

More from molmodbasics (20)

PDF
xyz2mol for organometallic compounds
PDF
Chemical Space Exploration
PDF
ChemRxiv, Plan S, and OA publishing
PDF
A Quantum Chemist Meets Cheminformatics
PDF
Can We Automate Computational Studies of Enzymes? Lessons from Small-Molecul...
PDF
Open is Better
PDF
Proteiner du kan regne med
PDF
Using semiempirical methods for fast and automated predictions
PDF
Jan H. Jensen: profile
PDF
Why I blog
PDF
Why I tweet
PDF
Can semiempirical methods be used for high throughput screening (for enzyme m...
PDF
Thermodynamics for Biochemists: a YouTube textbook
PDF
Predicting accurate absolute binding energies in aqueous solution: thermodyn...
PDF
I lecture nomore
PDF
Teaching Tools and Tips
PDF
Short answer questions on thermodynamics
PDF
Different kinds of peer instruction questions for thermodynamics
PDF
Teaching Tools and Tips
PDF
Quantum Biochemistry: the rise of semiempirical methods
xyz2mol for organometallic compounds
Chemical Space Exploration
ChemRxiv, Plan S, and OA publishing
A Quantum Chemist Meets Cheminformatics
Can We Automate Computational Studies of Enzymes? Lessons from Small-Molecul...
Open is Better
Proteiner du kan regne med
Using semiempirical methods for fast and automated predictions
Jan H. Jensen: profile
Why I blog
Why I tweet
Can semiempirical methods be used for high throughput screening (for enzyme m...
Thermodynamics for Biochemists: a YouTube textbook
Predicting accurate absolute binding energies in aqueous solution: thermodyn...
I lecture nomore
Teaching Tools and Tips
Short answer questions on thermodynamics
Different kinds of peer instruction questions for thermodynamics
Teaching Tools and Tips
Quantum Biochemistry: the rise of semiempirical methods

Recently uploaded (20)

PDF
Encapsulation theory and applications.pdf
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
KodekX | Application Modernization Development
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Approach and Philosophy of On baking technology
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Encapsulation_ Review paper, used for researhc scholars
PPTX
Cloud computing and distributed systems.
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PPTX
MYSQL Presentation for SQL database connectivity
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Encapsulation theory and applications.pdf
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Agricultural_Statistics_at_a_Glance_2022_0.pdf
KodekX | Application Modernization Development
MIND Revenue Release Quarter 2 2025 Press Release
Approach and Philosophy of On baking technology
Chapter 3 Spatial Domain Image Processing.pdf
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
NewMind AI Weekly Chronicles - August'25 Week I
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Unlocking AI with Model Context Protocol (MCP)
Encapsulation_ Review paper, used for researhc scholars
Cloud computing and distributed systems.
Reach Out and Touch Someone: Haptics and Empathic Computing
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
20250228 LYD VKU AI Blended-Learning.pptx
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
MYSQL Presentation for SQL database connectivity
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...

Peer instructions questions for basic quantum mechanics

  • 1. Planck/Einstein:   E = hν = ω De  Broglie:   h p = = k λ Classical  wave  equa3on:   ∂ 2 Ψ(x,t) 2 ∂ Ψ(x,t) 2 =v ∂t 2 ∂x 2 Schrödinger   Ψ(x,t) = Aei(kx − ω t ) ∂ ∂ ∂ ax Ψ = −iωΨ ⇒ i Ψ = EΨ e = aeax ∂t ∂t ∂x ∂2  2 ∂2 ⎛ p2 ⎞ Ψ = −k Ψ ⇒ − 2 Ψ=⎜ Ψ ∂x 2 2m ∂x 2 ⎝ 2m ⎟ ⎠
  • 2. Time  dependent  Schrödinger  equa3on   ∂ ⎛ p2 ⎞ i Ψ = EΨ = ⎜ +V⎟ Ψ ∂t ⎝ 2m ⎠ ∂ ⎛  2 ∂2 ⎞ i Ψ = ⎜ − +V⎟ Ψ ∂t ⎝ 2m ∂x 2 ⎠ ∂ ˆ i Ψ = HΨ ∂t Time  independent  Schrödinger  equa3on   (standing  wave  solu0on)   Ψ(x,t) = Ψ(x)e−iEt / ∂ i Ψ = EΨ ∂t ˆ H Ψ(x) = EΨ(x)
  • 3. Par3cle  in  a  box   H  atom   0 0<x<L V= 1 C x < 0 or x > L V =− r ⎛ 2 2 ⎞ − ⎜ 2m ∇ + V ⎟ Ψ n = En Ψ n ⎝ ⎠ Rigid  Rotor   Harmonic  oscillator   (rota0onal  spectroscopy)   (vibra0onal  spectroscopy)   1⎛ 1 ∂ ∂ 1 ∂2 ⎞ V = kx 1 2 ∇ = 2⎜ 2 sin θ + 2 2 r ⎝ sin θ ∂θ ∂θ sin θ ∂φ 2 ⎟ ⎠ V =0
  • 4. ⎛ 2 2 1 ⎞ ⎜ − 2m ∇ − r ⎟ Ψ n = En Ψ n ⎝ ⎠ −me4 13.6 eV En = =− n = 1, 2, 3,... 2 ( 4πε 0 ) n 2 2 2 n2 1 −r Ψ1 = e 1s π 1 ⎛ r⎞ Ψ 2,0 = ⎜ 1 − ⎟ e− r /2 2s 8π ⎝ 2⎠ 1 Ψ 2,1 = xe− r /2 2 p 4 2π Probability     P(x) = Ψ(x) dx 2 Probability  density   (amplitude)     Ψ(x) 2
  • 5. Par3cle  in  a  box   H  atom   0 0<x<L V= 1 C x < 0 or x > L V =− r ⎛ 2 2 ⎞ − ⎜ 2m ∇ + V ⎟ Ψ n = En Ψ n ⎝ ⎠ Harmonic  oscillator   Probability  density   (vibra0onal  spectroscopy)   (amplitude)     Ψ(x) 2 V = 1 kx 2 2
  • 6. ⎛ 2 2 1 ⎞ ⎜ − 2m ∇ − r ⎟ Ψ n = En Ψ n ⎝ ⎠ −me4 13.6 eV En = =− n = 1, 2, 3,... 2 ( 4πε 0 ) n 2 2 2 n2 1 −r Ψ1 = e 1s π 1 ⎛ r⎞ Ψ 2,0 = ⎜ 1 − ⎟ e− r /2 2s 8π ⎝ 2⎠ 1 Ψ 2,1 = xe− r /2 2 p 4 2π Probability     P(x) = Ψ(x) dx 2 Probability  density     Ψ(x) 2
  • 8. End  of  video  slides  
  • 9. Please  start  your  Socra0ve  app   or  go  to  m.socra3ve.com  in  your  browser   Room  number  9076  
  • 10. ⎛ 2 2 1 ⎞ ⎜ − 2m ∇ − r ⎟ Ψ n = En Ψ n ⎝ ⎠ −me4 13.6 eV En = =− n = 1, 2, 3,... 2 ( 4πε 0 ) n 2 2 2 n2 1 −r Ψ1 = e 1s π What  is  the  most  probable  posi0on   of  an  electron  in  the  1s  orbital  of  H  atom?   A        inside  the  nucleus   B        outside  the  nucleus   C        don’t  know  
  • 11. ⎛ 2 2 1 ⎞ ⎜ − 2m ∇ − r ⎟ Ψ n = En Ψ n ⎝ ⎠ −me4 13.6 eV En = =− n = 1, 2, 3,... 2 ( 4πε 0 ) n 2 2 2 n2 1 −r Ψ1 = e 1s π What  is  the  most  probable  posi0on   of  an  electron  in  the  1s  orbital  of  H  atom?   A        inside  the  nucleus   B        outside  the  nucleus   C        don’t  know  
  • 12. ⎛ 2 2 1 ⎞ ⎜ − 2m ∇ − r ⎟ Ψ n = En Ψ n ⎝ ⎠ −me4 13.6 eV En = =− n = 1, 2, 3,... 2 ( 4πε 0 ) n 2 2 2 n2 1 −r Ψ1 = e 1s π What  is  the  most  probable  posi0on   of  an  electron  in  the  1s  orbital  of  H  atom?   Probability     P(x) = Ψ(x) dx 2 Very  small  for  nucleus  
  • 13. Par0cle  in  a  box   Harmonic  oscillator   Why  is  the  probability  density  higher  at  the  edges   than  in  the  middle  for  high  energy  solu0ons  to  the   Schrödinger  equa0on  for  the  harmonic  oscillator?   Enter  your  answer  on  Socra0ve  
  • 14. ⎛ 2 2 1 ⎞ ⎜ − 2m ∇ − r ⎟ Ψ n = En Ψ n ⎝ ⎠ −me4 13.6 eV En = =− n = 1, 2, 3,... 2 ( 4πε 0 ) n 2 2 2 n2 1 −r Ψ1 = e 1s π 1 ⎛ r⎞ Ψ 2,0 = ⎜ 1 − ⎟ e− r /2 2s 8π ⎝ 2⎠ What  is  the  lowest  excita3on  energy   of  the  H  atom?   A        13.6  eV   B        10.2  eV   C        6.8  eV   D      don’t  know  
  • 15. ⎛ 2 2 1 ⎞ ⎜ − 2m ∇ − r ⎟ Ψ n = En Ψ n ⎝ ⎠ −me4 13.6 eV En = =− n = 1, 2, 3,... 2 ( 4πε 0 ) n 2 2 2 n2 1 −r Ψ1 = e 1s π 1 ⎛ r⎞ Ψ 2,0 = ⎜ 1 − ⎟ e− r /2 2s 8π ⎝ 2⎠ What  is  the  lowest  excita3on  energy   of  the  H  atom?   A        13.6  eV   B        10.2  eV   C        6.8  eV   D      don’t  know  
  • 16. ⎛ 2 2 1 ⎞ ⎜ − 2m ∇ − r ⎟ Ψ n = En Ψ n ⎝ ⎠ ΔE = E2 − E1 −me4 13.6 eV −13.6 −13.6 En = =− n = 1, 2, 3,... = − 2 ( 4πε 0 ) n 4 1 2 2 2 n2 = 10.2 eV 1 −r Ψ1 = e 1s π 1 ⎛ r⎞ Ψ 2,0 = ⎜ 1 − ⎟ e− r /2 2s 8π ⎝ 2⎠ What  is  the  lowest  excita3on  energy   of  the  H  atom?   A        13.6  eV   B        10.2  eV   C        6.8  eV   D      don’t  know  
  • 18. Par3cle  in  a  box   L  =  2.94  nm   ⎛  2 ⎞ 0 0<x<L h2n2 ⎜ − ∇ + V ⎟ Ψ n = En Ψ n V= En = n = 1, 2, 3... ⎝ 2m ⎠ C x < 0 or x > L 8mL2 h2 E12 − E11 = (12 − 11 ) 2 = 1.60 × 10 −19 J (1.0 eV) 2 +4.2  eV   2 8mL -­‐4.5  eV   Experiment  =  2.5  eV    (497  nm  /  blue  green)    
  • 19. ⎛ 2π x ⎞ 1/2 ⎛ 2⎞ Ψ(x) = ⎜ ⎟ sin ⎜ ⎝ L⎠ ⎝ L ⎟ ⎠
  • 20. Par3cle  in  a  box:     some  useful  predic3ons  for  nano  sized  systems   h2 ΔE = En +1 − En = (2n + 1) 8mL2 Excita0on  energy  (band  gap)     Increases  with  n   Decreases  faster  with  L   ΔE  decreases  with  molecular  size   Absorp0on  wave  length  (λ)  increases   hc λ= with  molecular  size   ΔE 8mc L2 λ= h (2n + 1) L2 ( = 3.30 × 10 m 12 −1 ) (2n + 1) ⎛ −1 1 m ⎞ L2 = ⎜ 3.30 × 10 m × 9 12 ⎟ ⎝ 10 nm ⎠ (2n + 1) L2 ( = 3300 nm −1 ) (2n + 1)
  • 21. Based  on   L2 λ = ( 3300 nm −1 ) (2n + 1) Where  does  1,3,5-­‐hexatriene  absorb  light?   (you  can  use  h[p://dgu.ki.ku.dk/molcalc/editor  to  es0mate  length)   A        ca  50  nm   B        ca  100  nm   C        ca  300  nm   D        don’t  know  
  • 22. Based  on   L2 λ = ( 3300 nm −1 ) (2n + 1) Where  does  1,3,5-­‐hexatriene  absorb  light?   (you  can  use  h[p://dgu.ki.ku.dk/molcalc/editor  to  es0mate  length)   L2 A        ca  50  nm   λ = ( 3300 nm −1 ) (2n + 1) 0.8 2 B        ca  100  nm   ( = 3300 nm ) −1 7 C        ca  300  nm   = ( 3300 nm ) −1 ( 0.09 ) D        don’t  know   = 302 nm
  • 23. Based  on   L2 λ = ( 3300 nm −1 ) (2n + 1) Where  does  1,3,5-­‐hexatriene  absorb  light?   (you  can  use  h[p://dgu.ki.ku.dk/molcalc/editor  to  es0mate  length)   L2 λ = ( 3300 nm −1 ) (2n + 1) 0.8 2 ( = 3300 nm ) −1 7 Experiment:   258  nm   = ( 3300 nm ) −1 ( 0.09 ) = 302 nm
  • 24. Based  on   Orbital  theory   Where  does  1,3,5-­‐hexatriene  absorb  light?   (you  can  use  h[p://dgu.ki.ku.dk/molcalc/editor  to  compute  orbital  energies)   A        ca  50  nm   B        ca  100  nm   C        ca  300  nm   D        don’t  know  
  • 25. Based  on   Orbital  theory   Where  does  1,3,5-­‐hexatriene  absorb  light?   (you  can  use  h[p://dgu.ki.ku.dk/molcalc/editor  to  compute  orbital  energies)   hc λ= ΔE A        ca  50  nm   1240 eV nm = B        ca  100  nm   (5.72 − (−6.28)) eV = 103 nm C        ca  300  nm   D        don’t  know   Experiment:   258  nm  
  • 26. m   Based  on   L2 λ = ( 3300 nm −1 ) (2n + 1) As  the  length  is  increased  for  what  value  of  m  does     trans-­‐polyacetylene  stop  absorbing  visible  light?   (you  can  use  h[p://dgu.ki.ku.dk/molcalc/editor  to  es0mate  length)  
  • 27. m   Based  on   L2 λ = ( 401 nm −1 ) (2n + 1) As  the  length  is  increased  for  what  value  of  m  does     trans-­‐polyacetylene  stop  absorbing  visible  light?   (you  can  use  h[p://dgu.ki.ku.dk/molcalc/editor  to  es0mate  length)   1.04 = 0.260 nm/n 4 L = 0.264n 0.0697n 2 λ = ( 3300 nm −1 ) (2n + 1) 0.8 n2 3 = 0.267 nm/n ( = 230 nm −1 ) (2n + 1)
  • 28. m   Based  on   L2 λ = ( 401 nm −1 ) (2n + 1) As  the  length  is  increased  for  what  value  of  m  does     trans-­‐polyacetylene  stop  absorbing  visible  light?   (you  can  use  h[p://dgu.ki.ku.dk/molcalc/editor  to  es0mate  length)   n2 λ = ( 230 nm −1 ) (2n + 1) λ   Visible  light  stops  at  about  800  nm   n2 ( 800 = 230 nm −1 ) (2n + 1) ⇒ n ≈ 7 or 8 m ≈ 5 or 6 n