SlideShare a Scribd company logo
Equation of a line through a
 point and intersection of
    another two lines
Equation of a line through a
    point and intersection of
       another two lines
e.g. Find the equation of the line that passes through the intersection of
     2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2).
Equation of a line through a
    point and intersection of
       another two lines
e.g. Find the equation of the line that passes through the intersection of
     2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2).
         2x  y 1  0
        3x  5 y  9  0
Equation of a line through a
    point and intersection of
       another two lines
e.g. Find the equation of the line that passes through the intersection of
     2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2).
         2x  y 1  0          10 x  5 y  5
                           
        3x  5 y  9  0         3x  5 y  9
Equation of a line through a
    point and intersection of
       another two lines
e.g. Find the equation of the line that passes through the intersection of
     2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2).
         2x  y 1  0          10 x  5 y  5 ()
                           
        3x  5 y  9  0         3x  5 y  9
Equation of a line through a
    point and intersection of
       another two lines
e.g. Find the equation of the line that passes through the intersection of
     2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2).
         2x  y 1  0          10 x  5 y  5 ()
                           
        3x  5 y  9  0         3x  5 y  9
                                 7x        =  14
Equation of a line through a
    point and intersection of
       another two lines
e.g. Find the equation of the line that passes through the intersection of
     2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2).
         2x  y 1  0          10 x  5 y  5 ()
                           
        3x  5 y  9  0         3x  5 y  9
                                 7x        =  14
                                         x  2
Equation of a line through a
    point and intersection of
       another two lines
e.g. Find the equation of the line that passes through the intersection of
     2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2).
         2x  y 1  0          10 x  5 y  5 ()
                           
        3x  5 y  9  0         3x  5 y  9
                                 7x        =  14
                                         x  2      2  2   y  1  0
                                                                     y3
Equation of a line through a
    point and intersection of
       another two lines
e.g. Find the equation of the line that passes through the intersection of
     2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2).
          2x  y 1  0         10 x  5 y  5 ()
                           
        3x  5 y  9  0         3x  5 y  9
                                 7x        =  14
                                         x  2      2  2   y  1  0
                                                                     y3
                                        the lines intersect at  2,3
Equation of a line through a
    point and intersection of
       another two lines
e.g. Find the equation of the line that passes through the intersection of
     2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2).
          2x  y 1  0         10 x  5 y  5 ()
                           
        3x  5 y  9  0         3x  5 y  9
                                 7x        =  14
                                         x  2      2  2   y  1  0
                                                                     y3
    3 2                                the lines intersect at  2,3
 m
    2  1
    1
  
    3
Equation of a line through a
    point and intersection of
       another two lines
e.g. Find the equation of the line that passes through the intersection of
     2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2).
          2x  y 1  0        10 x  5 y  5 ()
                         
       3x  5 y  9  0          3x  5 y  9
                                7x        =  14
                                        x  2      2  2   y  1  0
                                                                    y3
    3 2                 1
                y  2    x  1     the lines intersect at  2,3
 m
    2  1               3
    1
  
    3
Equation of a line through a
    point and intersection of
       another two lines
e.g. Find the equation of the line that passes through the intersection of
     2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2).
          2x  y 1  0         10 x  5 y  5 ()
                          
       3x  5 y  9  0          3x  5 y  9
                                 7x        =  14
                                         x  2      2  2   y  1  0
                                                                     y3
    3 2                  1
                y  2    x  1      the lines intersect at  2,3
 m
    2  1                3
    1             3y  6  x 1
  
    3            x  3y  7  0
Alternatively
Alternatively
                a1 x  b1 y  c1  k  a2 x  b2 y  c2   0
Alternatively
                a1 x  b1 y  c1  k  a2 x  b2 y  c2   0

                2 x  y  1  k  3x  5 y  9   0
Alternatively
                 a1 x  b1 y  c1  k  a2 x  b2 y  c2   0

                 2 x  y  1  k  3x  5 y  9   0
        1, 2  : 2 1   2   1  k  3 1  5  2   9   0
Alternatively
                 a1 x  b1 y  c1  k  a2 x  b2 y  c2   0

                 2 x  y  1  k  3x  5 y  9   0
        1, 2  : 2 1   2   1  k  3 1  5  2   9   0
                                            5  4k  0
Alternatively
                 a1 x  b1 y  c1  k  a2 x  b2 y  c2   0

                 2 x  y  1  k  3x  5 y  9   0
        1, 2  : 2 1   2   1  k  3 1  5  2   9   0
                                            5  4k  0
                                                 4k  5
                                                      5
                                                 k 
                                                      4
Alternatively
                 a1 x  b1 y  c1  k  a2 x  b2 y  c2   0

                 2 x  y  1  k  3x  5 y  9   0
        1, 2  : 2 1   2   1  k  3 1  5  2   9   0
                                            5  4k  0
                                                 4k  5
                                                      5
                                                 k 
                                                      4
                5
  2x  y 1       3x  5 y  9   0
                4
Alternatively
                  a1 x  b1 y  c1  k  a2 x  b2 y  c2   0

                  2 x  y  1  k  3x  5 y  9   0
         1, 2  : 2 1   2   1  k  3 1  5  2   9   0
                                             5  4k  0
                                                  4k  5
                                                       5
                                                  k 
                                                       4
                5
  2x  y 1       3x  5 y  9   0
                4
8 x  4 y  4  15 x  25 y  45  0
Alternatively
                  a1 x  b1 y  c1  k  a2 x  b2 y  c2   0

                  2 x  y  1  k  3x  5 y  9   0
         1, 2  : 2 1   2   1  k  3 1  5  2   9   0
                                             5  4k  0
                                                  4k  5
                                                       5
                                                  k 
                                                       4
                5
  2x  y 1       3x  5 y  9   0
                4
8 x  4 y  4  15 x  25 y  45  0
                 7 x  21 y  49  0
Alternatively
                  a1 x  b1 y  c1  k  a2 x  b2 y  c2   0

                  2 x  y  1  k  3x  5 y  9   0
         1, 2  : 2 1   2   1  k  3 1  5  2   9   0
                                             5  4k  0
                                                  4k  5
                                                       5
                                                  k 
                                                       4
                5
  2x  y 1       3x  5 y  9   0
                4
8 x  4 y  4  15 x  25 y  45  0
                 7 x  21 y  49  0
                      x  3y  7  0
Alternatively
                  a1 x  b1 y  c1  k  a2 x  b2 y  c2   0

                  2 x  y  1  k  3x  5 y  9   0
         1, 2  : 2 1   2   1  k  3 1  5  2   9   0
                                             5  4k  0
                                                  4k  5
                                                       5
                                                  k 
                                                       4
                5
  2x  y 1       3x  5 y  9   0
                4
8 x  4 y  4  15 x  25 y  45  0               Exercise 5F; 2b, 3b, 6b(i),
                                                     7ab (i, iii), 9, 10, 13*
                 7 x  21 y  49  0
                      x  3y  7  0            Exercise 5G; 2 to 14 evens, 15*

More Related Content

PPTX
Operations on Polynomials
PPTX
Factoring polynomials
PPT
Operations on Polynomials
PPTX
Factoring polynomials
PPT
Factoring and Box Method
PPT
Factoring notes
PPT
Swartz Factoring
PPTX
Unit 3 polynomials
Operations on Polynomials
Factoring polynomials
Operations on Polynomials
Factoring polynomials
Factoring and Box Method
Factoring notes
Swartz Factoring
Unit 3 polynomials

What's hot (18)

PPT
Prashant tiwari ppt.on
PPTX
Punnett squares presentation teachership academy
PPT
Polynomials and factoring
PDF
Multiplying Polynomials
PDF
U1 04 factorizacion
PDF
Tema 1 Repaso productos notables
PDF
Tema# 2 Repaso de factorización
PDF
Algebra factoring
PPTX
Sifat Limit Fungsi Aljabar dan Contoh Soal
PPTX
7 2 adding and subtracting polynomials
PPTX
Multiplication of polynomials
PDF
Topic 1 adding & subtracting polynomials
PDF
Succesive differntiation
PPT
Diamond and box factoring student version
PPTX
Factoring Polynomials
PDF
add maths module 5
PPT
Adding and subtracting polynomials
PPT
Factoring by grouping ppt
Prashant tiwari ppt.on
Punnett squares presentation teachership academy
Polynomials and factoring
Multiplying Polynomials
U1 04 factorizacion
Tema 1 Repaso productos notables
Tema# 2 Repaso de factorización
Algebra factoring
Sifat Limit Fungsi Aljabar dan Contoh Soal
7 2 adding and subtracting polynomials
Multiplication of polynomials
Topic 1 adding & subtracting polynomials
Succesive differntiation
Diamond and box factoring student version
Factoring Polynomials
add maths module 5
Adding and subtracting polynomials
Factoring by grouping ppt
Ad

Viewers also liked (16)

PDF
12 x1 t01 03 integrating derivative on function (2013)
PDF
11 x1 t13 07 products of intercepts (2012)
PDF
X2 t08 04 inequality techniques (2012)
PDF
X2 t02 03 roots & coefficients (2013)
PDF
11 x1 t05 02 gradient (2013)
PDF
11 x1 t13 05 tangent theorems 1 (2012)
PDF
11 x1 t05 05 perpendicular distance (2013)
PDF
11 x1 t13 06 tangent theorems 2 (2012)
PDF
11 x1 t05 03 equation of lines (2013)
PDF
X2 t08 03 inequalities & graphs (2012)
PDF
11 x1 t05 04 point slope formula (2013)
PPT
11X1 T07 01 definitions & chord theorems
PDF
12 x1 t01 01 log laws (2013)
PDF
X2 t02 04 forming polynomials (2013)
PDF
12 x1 t01 02 differentiating logs (2013)
PPT
Goodbye slideshare UPDATE
12 x1 t01 03 integrating derivative on function (2013)
11 x1 t13 07 products of intercepts (2012)
X2 t08 04 inequality techniques (2012)
X2 t02 03 roots & coefficients (2013)
11 x1 t05 02 gradient (2013)
11 x1 t13 05 tangent theorems 1 (2012)
11 x1 t05 05 perpendicular distance (2013)
11 x1 t13 06 tangent theorems 2 (2012)
11 x1 t05 03 equation of lines (2013)
X2 t08 03 inequalities & graphs (2012)
11 x1 t05 04 point slope formula (2013)
11X1 T07 01 definitions & chord theorems
12 x1 t01 01 log laws (2013)
X2 t02 04 forming polynomials (2013)
12 x1 t01 02 differentiating logs (2013)
Goodbye slideshare UPDATE
Ad

Similar to 11 x1 t05 06 line through pt of intersection (2013) (20)

PPT
11 X1 T05 06 Line Through Pt Of Intersection
PPT
Topic 8 (Writing Equations Of A Straight Lines)
DOC
3rd period review withanswers
DOC
3rd period review withanswers
DOC
3rd Period Review Withanswers
PDF
7.1 7.3 reteach (review)
DOC
Mth 4101-2 b
PPTX
Two point form Equation of a line
PPTX
Linear equations in two variables practice problems
KEY
0903 ch 9 day 3
PPT
03.-Equations-and-inequalities-Grade-10-Term-3.ppt
DOCX
.Chapter7&8.
PDF
Mathemstics fsc Ex-4-4-FSC-part2-ver3 (1).pdf
PPT
Algebra 1 Item No 59
DOC
Simultaneous eqn2
PPTX
Yr.12 Transition Workshop 2012- 2013
PPTX
Yr.12 Transition Workshop 2012-2013
PDF
LECTURE-EQUATION OF A LINE
PPT
pairs of linear equation in two variable
PPTX
January18
11 X1 T05 06 Line Through Pt Of Intersection
Topic 8 (Writing Equations Of A Straight Lines)
3rd period review withanswers
3rd period review withanswers
3rd Period Review Withanswers
7.1 7.3 reteach (review)
Mth 4101-2 b
Two point form Equation of a line
Linear equations in two variables practice problems
0903 ch 9 day 3
03.-Equations-and-inequalities-Grade-10-Term-3.ppt
.Chapter7&8.
Mathemstics fsc Ex-4-4-FSC-part2-ver3 (1).pdf
Algebra 1 Item No 59
Simultaneous eqn2
Yr.12 Transition Workshop 2012- 2013
Yr.12 Transition Workshop 2012-2013
LECTURE-EQUATION OF A LINE
pairs of linear equation in two variable
January18

More from Nigel Simmons (20)

PPT
Goodbye slideshare
PDF
12 x1 t02 02 integrating exponentials (2014)
PDF
11 x1 t01 03 factorising (2014)
PDF
11 x1 t01 02 binomial products (2014)
PDF
12 x1 t02 01 differentiating exponentials (2014)
PDF
11 x1 t01 01 algebra & indices (2014)
PDF
X2 t02 02 multiple roots (2013)
PDF
X2 t02 01 factorising complex expressions (2013)
PDF
11 x1 t16 07 approximations (2013)
PDF
11 x1 t16 06 derivative times function (2013)
PDF
11 x1 t16 05 volumes (2013)
PDF
11 x1 t16 04 areas (2013)
PDF
11 x1 t16 03 indefinite integral (2013)
PDF
11 x1 t16 02 definite integral (2013)
PDF
11 x1 t16 01 area under curve (2013)
PDF
X2 t01 11 nth roots of unity (2012)
PDF
X2 t01 10 complex & trig (2013)
PDF
X2 t01 09 de moivres theorem
PDF
X2 t01 08 locus & complex nos 2 (2013)
PDF
X2 t01 07 locus & complex nos 1 (2013)
Goodbye slideshare
12 x1 t02 02 integrating exponentials (2014)
11 x1 t01 03 factorising (2014)
11 x1 t01 02 binomial products (2014)
12 x1 t02 01 differentiating exponentials (2014)
11 x1 t01 01 algebra & indices (2014)
X2 t02 02 multiple roots (2013)
X2 t02 01 factorising complex expressions (2013)
11 x1 t16 07 approximations (2013)
11 x1 t16 06 derivative times function (2013)
11 x1 t16 05 volumes (2013)
11 x1 t16 04 areas (2013)
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 02 definite integral (2013)
11 x1 t16 01 area under curve (2013)
X2 t01 11 nth roots of unity (2012)
X2 t01 10 complex & trig (2013)
X2 t01 09 de moivres theorem
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 07 locus & complex nos 1 (2013)

Recently uploaded (20)

PPTX
History, Philosophy and sociology of education (1).pptx
PPTX
Unit 4 Skeletal System.ppt.pptxopresentatiom
PDF
Hazard Identification & Risk Assessment .pdf
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PDF
advance database management system book.pdf
PDF
IGGE1 Understanding the Self1234567891011
PDF
Weekly quiz Compilation Jan -July 25.pdf
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
Classroom Observation Tools for Teachers
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PPTX
Cell Types and Its function , kingdom of life
PPTX
UNIT III MENTAL HEALTH NURSING ASSESSMENT
PPTX
Digestion and Absorption of Carbohydrates, Proteina and Fats
PDF
Computing-Curriculum for Schools in Ghana
PDF
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
PPTX
Lesson notes of climatology university.
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PDF
Indian roads congress 037 - 2012 Flexible pavement
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
History, Philosophy and sociology of education (1).pptx
Unit 4 Skeletal System.ppt.pptxopresentatiom
Hazard Identification & Risk Assessment .pdf
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
advance database management system book.pdf
IGGE1 Understanding the Self1234567891011
Weekly quiz Compilation Jan -July 25.pdf
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Classroom Observation Tools for Teachers
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
Cell Types and Its function , kingdom of life
UNIT III MENTAL HEALTH NURSING ASSESSMENT
Digestion and Absorption of Carbohydrates, Proteina and Fats
Computing-Curriculum for Schools in Ghana
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
Lesson notes of climatology university.
Practical Manual AGRO-233 Principles and Practices of Natural Farming
Indian roads congress 037 - 2012 Flexible pavement
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf

11 x1 t05 06 line through pt of intersection (2013)

  • 1. Equation of a line through a point and intersection of another two lines
  • 2. Equation of a line through a point and intersection of another two lines e.g. Find the equation of the line that passes through the intersection of 2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2).
  • 3. Equation of a line through a point and intersection of another two lines e.g. Find the equation of the line that passes through the intersection of 2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2). 2x  y 1  0 3x  5 y  9  0
  • 4. Equation of a line through a point and intersection of another two lines e.g. Find the equation of the line that passes through the intersection of 2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2). 2x  y 1  0 10 x  5 y  5  3x  5 y  9  0 3x  5 y  9
  • 5. Equation of a line through a point and intersection of another two lines e.g. Find the equation of the line that passes through the intersection of 2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2). 2x  y 1  0 10 x  5 y  5 ()  3x  5 y  9  0 3x  5 y  9
  • 6. Equation of a line through a point and intersection of another two lines e.g. Find the equation of the line that passes through the intersection of 2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2). 2x  y 1  0 10 x  5 y  5 ()  3x  5 y  9  0 3x  5 y  9 7x =  14
  • 7. Equation of a line through a point and intersection of another two lines e.g. Find the equation of the line that passes through the intersection of 2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2). 2x  y 1  0 10 x  5 y  5 ()  3x  5 y  9  0 3x  5 y  9 7x =  14 x  2
  • 8. Equation of a line through a point and intersection of another two lines e.g. Find the equation of the line that passes through the intersection of 2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2). 2x  y 1  0 10 x  5 y  5 ()  3x  5 y  9  0 3x  5 y  9 7x =  14 x  2  2  2   y  1  0 y3
  • 9. Equation of a line through a point and intersection of another two lines e.g. Find the equation of the line that passes through the intersection of 2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2). 2x  y 1  0 10 x  5 y  5 ()  3x  5 y  9  0 3x  5 y  9 7x =  14 x  2  2  2   y  1  0 y3  the lines intersect at  2,3
  • 10. Equation of a line through a point and intersection of another two lines e.g. Find the equation of the line that passes through the intersection of 2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2). 2x  y 1  0 10 x  5 y  5 ()  3x  5 y  9  0 3x  5 y  9 7x =  14 x  2  2  2   y  1  0 y3 3 2  the lines intersect at  2,3 m 2  1 1  3
  • 11. Equation of a line through a point and intersection of another two lines e.g. Find the equation of the line that passes through the intersection of 2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2). 2x  y 1  0 10 x  5 y  5 ()  3x  5 y  9  0 3x  5 y  9 7x =  14 x  2  2  2   y  1  0 y3 3 2 1 y  2    x  1  the lines intersect at  2,3 m 2  1 3 1  3
  • 12. Equation of a line through a point and intersection of another two lines e.g. Find the equation of the line that passes through the intersection of 2x + y + 1= 0 and 3x + 5y – 9 = 0 and the point (1,2). 2x  y 1  0 10 x  5 y  5 ()  3x  5 y  9  0 3x  5 y  9 7x =  14 x  2  2  2   y  1  0 y3 3 2 1 y  2    x  1  the lines intersect at  2,3 m 2  1 3 1 3y  6  x 1  3 x  3y  7  0
  • 14. Alternatively a1 x  b1 y  c1  k  a2 x  b2 y  c2   0
  • 15. Alternatively a1 x  b1 y  c1  k  a2 x  b2 y  c2   0 2 x  y  1  k  3x  5 y  9   0
  • 16. Alternatively a1 x  b1 y  c1  k  a2 x  b2 y  c2   0 2 x  y  1  k  3x  5 y  9   0 1, 2  : 2 1   2   1  k  3 1  5  2   9   0
  • 17. Alternatively a1 x  b1 y  c1  k  a2 x  b2 y  c2   0 2 x  y  1  k  3x  5 y  9   0 1, 2  : 2 1   2   1  k  3 1  5  2   9   0 5  4k  0
  • 18. Alternatively a1 x  b1 y  c1  k  a2 x  b2 y  c2   0 2 x  y  1  k  3x  5 y  9   0 1, 2  : 2 1   2   1  k  3 1  5  2   9   0 5  4k  0 4k  5 5 k  4
  • 19. Alternatively a1 x  b1 y  c1  k  a2 x  b2 y  c2   0 2 x  y  1  k  3x  5 y  9   0 1, 2  : 2 1   2   1  k  3 1  5  2   9   0 5  4k  0 4k  5 5 k  4 5 2x  y 1  3x  5 y  9   0 4
  • 20. Alternatively a1 x  b1 y  c1  k  a2 x  b2 y  c2   0 2 x  y  1  k  3x  5 y  9   0 1, 2  : 2 1   2   1  k  3 1  5  2   9   0 5  4k  0 4k  5 5 k  4 5 2x  y 1  3x  5 y  9   0 4 8 x  4 y  4  15 x  25 y  45  0
  • 21. Alternatively a1 x  b1 y  c1  k  a2 x  b2 y  c2   0 2 x  y  1  k  3x  5 y  9   0 1, 2  : 2 1   2   1  k  3 1  5  2   9   0 5  4k  0 4k  5 5 k  4 5 2x  y 1  3x  5 y  9   0 4 8 x  4 y  4  15 x  25 y  45  0 7 x  21 y  49  0
  • 22. Alternatively a1 x  b1 y  c1  k  a2 x  b2 y  c2   0 2 x  y  1  k  3x  5 y  9   0 1, 2  : 2 1   2   1  k  3 1  5  2   9   0 5  4k  0 4k  5 5 k  4 5 2x  y 1  3x  5 y  9   0 4 8 x  4 y  4  15 x  25 y  45  0 7 x  21 y  49  0 x  3y  7  0
  • 23. Alternatively a1 x  b1 y  c1  k  a2 x  b2 y  c2   0 2 x  y  1  k  3x  5 y  9   0 1, 2  : 2 1   2   1  k  3 1  5  2   9   0 5  4k  0 4k  5 5 k  4 5 2x  y 1  3x  5 y  9   0 4 8 x  4 y  4  15 x  25 y  45  0 Exercise 5F; 2b, 3b, 6b(i), 7ab (i, iii), 9, 10, 13* 7 x  21 y  49  0 x  3y  7  0 Exercise 5G; 2 to 14 evens, 15*