Graphing Trig
 Functions
Graphing Trig
1) Sine Curve
             Functions
Graphing Trig
1) Sine Curve
             Functions
                y
                1




                -1
Graphing Trig
  1) Sine Curve
               Functions
                  y
                  1


 2                    2   3   4   x

                  -1
Graphing Trig
  1) Sine Curve
               Functions
                  y
                  1


 2                    2   3   4   x

                  -1
Graphing Trig
  1) Sine Curve
               Functions
                  y
                  1


 2                    2   3   4   x

                  -1
Graphing Trig
  1) Sine Curve
               Functions
                  y
                  1


 2                    2   3   4   x

                  -1
Graphing Trig
  1) Sine Curve
               Functions
                  y
                  1              y  sin x


 2                    2   3           4   x

                  -1
Graphing Trig
  1) Sine Curve
                 Functions
                        y
                        1              y  sin x


 2                          2   3           4   x

                        -1

  domain : all real x
Graphing Trig
  1) Sine Curve
                 Functionsy
                          1             y  sin x

 2                           2   3           4   x
                      -1

  domain : all real x
    range : - 1  y  1
Graphing Trig
  1) Sine Curve
                 Functionsy
                                  period
                          1                      y  sin x

 2                                    2   3           4   x
                      -1

  domain : all real x
    range : - 1  y  1
Graphing Trig
  1) Sine Curve
                 Functionsy
                                        period
                          1                              y  sin x

 2                                          2     3           4   x
                      -1
                              In general;
  domain : all real x             y  a sin bx  c 
    range : - 1  y  1                   2
                                 period       units
                                           b
Graphing Trig
  1) Sine Curve
                 Functions
                     y
                                     period
                     1                                y  sin x
             amplitude

 2                                       2     3           4   x
                      -1
                           In general;
  domain : all real x          y  a sin bx  c 
    range : - 1  y  1                2
                              period       units
                                        b
Graphing Trig
  1) Sine Curve
                 Functions
                     y
                                     period
                     1                                y  sin x
             amplitude

 2                                       2     3           4   x
                      -1
                           In general;
  domain : all real x          y  a sin bx  c 
    range : - 1  y  1                2
                              period       units
                                        b
                             amplitude  a units
Graphing Trig
  1) Sine Curve
                 Functions
                     y
                                     period
                     1                                  y  sin x
             amplitude

 2                                       2      3            4   x
                      -1
                           In general;
  domain : all real x          y  a sin bx  c 
    range : - 1  y  1                2                     period
                              period       units divisions 
                                        b                       4
                             amplitude  a units
Graphing Trig
  1) Sine Curve
                 Functions
                     y
                                     period
                     1                                  y  sin x
             amplitude

 2                                       2      3            4   x
                      -1
                           In general;
  domain : all real x          y  a sin bx  c 
    range : - 1  y  1                2                     period
                              period       units divisions 
                                        b                       4
                                                          c
                             amplitude  a units shift  to left
                                                          b

e.g. y  5 sin  9 x  
                       
                     2

e.g. y  5 sin  9 x  
                                     2
                     2    period       units
                                        9

e.g. y  5 sin  9 x  
                                   2
                     2    period      units
                                      9
                            amplitude  5 units

e.g. y  5 sin  9 x  
                                   2                         
                     2    period      units    divisions 
                                      9                         18
                            amplitude  5 units

e.g. y  5 sin  9 x  
                                   2                         
                     2    period      units    divisions 
                                      9                     18
                                                         
                            amplitude  5 units   shift  to right
                                                         18

e.g. y  5 sin  9 x  
                                   2                         
                     2    period      units    divisions 
                                      9                     18
                                                         
                            amplitude  5 units   shift  to right
                                                         18


                              y
                              5


                                                  2
                                                          x
                        9     -5           9         9

e.g. y  5 sin  9 x  
                                   2                         
                     2    period      units    divisions 
                                      9                     18
                                                         
                            amplitude  5 units   shift  to right
                                                         18


                              y
                              5


                                                  2
                                                          x
                        9     -5           9         9

e.g. y  5 sin  9 x  
                                   2                         
                     2    period      units    divisions 
                                      9                     18
                                                         
                            amplitude  5 units   shift  to right
                                                         18


                              y
                              5


                                                  2
                                                          x
                        9     -5           9         9

e.g. y  5 sin  9 x  
                                   2                         
                     2    period      units    divisions 
                                      9                     18
                                                         
                            amplitude  5 units   shift  to right
                                                         18


                              y
                              5


                                                  2
                                                          x
                        9     -5           9         9

e.g. y  5 sin  9 x  
                                   2                         
                     2    period      units    divisions 
                                      9                     18
                                                         
                            amplitude  5 units   shift  to right
                                                         18


                              y
                              5


                                                  2
                                                          x
                        9     -5           9         9

e.g. y  5 sin  9 x  
                                   2                         
                     2    period      units    divisions 
                                      9                     18
                                                         
                            amplitude  5 units   shift  to right
                                                         18


                              y                              9x   
                                                  y  5 sin         
                              5                                   2 


                                                  2
                                                          x
                        9     -5           9         9
2) Cosine Curve
2) Cosine Curve   y  a cosbx  c 
2) Cosine Curve    y  a cosbx  c 
                           2
                  period     units
                            b
2) Cosine Curve     y  a cosbx  c 
                            2
                   period     units
                             b
                  amplitude  a units
2) Cosine Curve     y  a cosbx  c 
                            2                   period
                   period     units divisions 
                             b                     4
                  amplitude  a units
2) Cosine Curve     y  a cosbx  c 
                            2                   period
                   period     units divisions 
                             b                      4
                                             c
                  amplitude  a units shift  to left
                                             b
2) Cosine Curve       y  a cosbx  c 
                              2                   period
                     period     units divisions 
                               b                      4
                                               c
                    amplitude  a units shift  to left
                                               b
                 x    2
 e.g. y  4 cos       
                 8     
2) Cosine Curve      y  a cosbx  c 
                             2                   period
                    period     units divisions 
                              b                      4
                                              c
                   amplitude  a units shift  to left
                                              b
                 x    2            2
 e.g. y  4 cos           period 
                8                      1
                                         8
                                      16
2) Cosine Curve      y  a cosbx  c 
                             2                   period
                    period     units divisions 
                              b                      4
                                              c
                   amplitude  a units shift  to left
                                              b
                 x    2            2
 e.g. y  4 cos           period 
                8                      1
                                         8
                                      16
                            amplitude  4
2) Cosine Curve      y  a cosbx  c 
                             2                   period
                    period     units divisions 
                              b                      4
                                              c
                   amplitude  a units shift  to left
                                              b
                 x    2            2
 e.g. y  4 cos           period          divisions  4
                8                      1
                                         8
                                      16
                            amplitude  4
2) Cosine Curve      y  a cosbx  c 
                             2                    period
                    period     units divisions 
                              b                       4
                                              c
                   amplitude  a units shift  to left
                                              b
                 x    2            2
 e.g. y  4 cos           period           divisions  4
                8                      1
                                         8    shift  8 to left, 2 up,
                                      16    upside down
                              amplitude  4
2) Cosine Curve      y  a cosbx  c 
                             2                    period
                    period     units divisions 
                              b                       4
                                              c
                   amplitude  a units shift  to left
                                              b
                 x    2            2
 e.g. y  4 cos           period           divisions  4
                8                      1
                                         8    shift  8 to left, 2 up,
                                      16    upside down
          y
                             amplitude  4
             6

             2

  8                    8         16    x
             -2
2) Cosine Curve      y  a cosbx  c 
                             2                    period
                    period     units divisions 
                              b                       4
                                              c
                   amplitude  a units shift  to left
                                              b
                 x    2            2
 e.g. y  4 cos           period           divisions  4
                8                      1
                                         8    shift  8 to left, 2 up,
                                      16    upside down
          y
                             amplitude  4
             6

             2

  8                    8         16    x
             -2
2) Cosine Curve      y  a cosbx  c 
                             2                    period
                    period     units divisions 
                              b                       4
                                              c
                   amplitude  a units shift  to left
                                              b
                 x    2            2
 e.g. y  4 cos           period           divisions  4
                8                      1
                                         8    shift  8 to left, 2 up,
                                      16    upside down
          y
                             amplitude  4
             6

             2

  8                    8         16    x
             -2
2) Cosine Curve      y  a cosbx  c 
                             2                    period
                    period     units divisions 
                              b                       4
                                              c
                   amplitude  a units shift  to left
                                              b
                 x    2            2
 e.g. y  4 cos           period           divisions  4
                8                      1
                                         8    shift  8 to left, 2 up,
                                      16    upside down
          y
                             amplitude  4
             6

             2

  8                    8         16    x
             -2
2) Cosine Curve      y  a cosbx  c 
                             2                    period
                    period     units divisions 
                              b                       4
                                              c
                   amplitude  a units shift  to left
                                              b
                 x    2            2
 e.g. y  4 cos           period           divisions  4
                8                      1
                                         8    shift  8 to left, 2 up,
                                      16    upside down
          y
                             amplitude  4
             6

             2

  8                    8         16    x
             -2
2) Cosine Curve      y  a cosbx  c 
                             2                    period
                    period     units divisions 
                              b                       4
                                              c
                   amplitude  a units shift  to left
                                              b
                 x    2            2
 e.g. y  4 cos           period           divisions  4
                8                      1
                                         8    shift  8 to left, 2 up,
                                      16    upside down
          y
                             amplitude  4
                                            y  4 cos     2
                                                              
                                                         x
             6                                         
                                                       8     
             2

  8                    8         16    x
             -2
3) Tangent Curve
3) Tangent Curve   y  a tan bx  c 
3) Tangent Curve   y  a tan bx  c 
                              
                   period        units
                              b
3) Tangent Curve   y  a tan bx  c     divisions 
                                                      period
                                                       2
                   period        units
                              b
3) Tangent Curve   y  a tan bx  c     divisions 
                                                      period
                                                 c
                                                        2
                   period        units   shift  to left
                              b                   b
3) Tangent Curve        y  a tan bx  c    divisions 
                                                          period
                                                     c
                                                            2
                       period        units   shift  to left
                                  b                   b

 e.g. y  e tan x  2 
3) Tangent Curve        y  a tan bx  c        divisions 
                                                              period
                                                         c
                                                                2
                       period        units       shift  to left
                                  b                       b

 e.g. y  e tan x  2                     
                                  period 
                                              
                                          1
3) Tangent Curve        y  a tan bx  c        divisions 
                                                              period
                                                         c
                                                                2
                       period        units       shift  to left
                                  b                       b

 e.g. y  e tan x  2                                            1
                                  period                 divisions 
                                                                     2
                                          1
3) Tangent Curve        y  a tan bx  c        divisions 
                                                              period
                                                         c
                                                                2
                       period        units       shift  to left
                                  b                       b

 e.g. y  e tan x  2                                             1
                                  period                 divisions 
                                                                      2
                                          1              shift  2 to right
3) Tangent Curve        y  a tan bx  c         divisions 
                                                               period
                                                          c
                                                                 2
                        period        units       shift  to left
                                   b                       b

 e.g. y  e tan x  2                                              1
                                   period                 divisions 
                                                                       2
                                           1              shift  2 to right
        y




                    1              2               x
3) Tangent Curve        y  a tan bx  c         divisions 
                                                               period
                                                          c
                                                                 2
                        period        units       shift  to left
                                   b                       b

 e.g. y  e tan x  2                                              1
                                   period                 divisions 
                                                                       2
                                           1              shift  2 to right
        y




                    1              2               x
3) Tangent Curve        y  a tan bx  c         divisions 
                                                               period
                                                          c
                                                                 2
                        period        units       shift  to left
                                   b                       b

 e.g. y  e tan x  2                                              1
                                   period                 divisions 
                                                                       2
                                           1              shift  2 to right
        y




                    1              2               x
3) Tangent Curve        y  a tan bx  c         divisions 
                                                               period
                                                          c
                                                                 2
                        period        units       shift  to left
                                   b                       b

 e.g. y  e tan x  2                                              1
                                   period                 divisions 
                                                                       2
                                           1              shift  2 to right
        y
                                           y  e tan x  2 




                    1              2               x
3) Tangent Curve        y  a tan bx  c         divisions 
                                                               period
                                                          c
                                                                 2
                        period        units       shift  to left
                                   b                       b

 e.g. y  e tan x  2                                              1
                                   period                 divisions 
                                                                       2
                                           1              shift  2 to right
        y
                                           y  e tan x  2 



                                                        Exercise 14C; 2b, 3b,
                    1              2               x    4b, 5bce, 8, 9, 10b, 13,
                                                             15, 16, 17, 20

More Related Content

PDF
Mhf4 U Trig
PDF
12 x1 t04 06 integrating functions of time (2012)
PDF
12 x1 t04 06 integrating functions of time (2013)
PDF
Weighted Lasso for Network inference
PDF
Dsp U Lec07 Realization Of Discrete Time Systems
PDF
Nonlinear Stochastic Programming by the Monte-Carlo method
PDF
Collier
PPTX
Mhf4 U Trig
12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2013)
Weighted Lasso for Network inference
Dsp U Lec07 Realization Of Discrete Time Systems
Nonlinear Stochastic Programming by the Monte-Carlo method
Collier

What's hot (9)

PDF
On gradient Ricci solitons
PDF
Section7 stochastic
PDF
P805 bourgeois
PPTX
Cepstral coefficients
PDF
X2 t08 03 inequalities & graphs (2012)
PDF
X2 T08 01 inequalities and graphs (2010)
PDF
WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR SPARSE IMPULSE RESPONSE IDENTIFI...
PDF
Multi-subject models of the resting brain
PDF
Learning and comparing multi-subject models of brain functional connecitivity
On gradient Ricci solitons
Section7 stochastic
P805 bourgeois
Cepstral coefficients
X2 t08 03 inequalities & graphs (2012)
X2 T08 01 inequalities and graphs (2010)
WAVELET-PACKET-BASED ADAPTIVE ALGORITHM FOR SPARSE IMPULSE RESPONSE IDENTIFI...
Multi-subject models of the resting brain
Learning and comparing multi-subject models of brain functional connecitivity
Ad

Similar to 12 x1 t03 02 graphing trig functions (2012) (20)

KEY
0504 ch 5 day 4
DOC
Sin cos questions
DOC
Sin cos questions
PDF
Inverse circular function
PDF
sol pg 89
PPTX
Graphing Exponentials
PDF
Form 4 formulae and note
PDF
1010n3a
DOCX
Graphs of trigonometric functions
PDF
Xi maths ch3_trigo_func_formulae
PPT
4.5 graphs of trigonometry functions
PPT
Graphs of trigonometry functions
DOC
C3 January 2012 QP
KEY
0708 ch 7 day 8
PPTX
Math1_F24_Calculus_Lec_3_TrigFn.pptxMath1_F24_Calculus_Lec_3_TrigFn.pptx
DOC
Up1 math t 2012
PDF
Monfort Emath Paper1_printed
PDF
H 2004 2007
PDF
Exercise #6 notes
DOC
Mathematics
0504 ch 5 day 4
Sin cos questions
Sin cos questions
Inverse circular function
sol pg 89
Graphing Exponentials
Form 4 formulae and note
1010n3a
Graphs of trigonometric functions
Xi maths ch3_trigo_func_formulae
4.5 graphs of trigonometry functions
Graphs of trigonometry functions
C3 January 2012 QP
0708 ch 7 day 8
Math1_F24_Calculus_Lec_3_TrigFn.pptxMath1_F24_Calculus_Lec_3_TrigFn.pptx
Up1 math t 2012
Monfort Emath Paper1_printed
H 2004 2007
Exercise #6 notes
Mathematics
Ad

More from Nigel Simmons (20)

PPT
Goodbye slideshare UPDATE
PPT
Goodbye slideshare
PDF
12 x1 t02 02 integrating exponentials (2014)
PDF
11 x1 t01 03 factorising (2014)
PDF
11 x1 t01 02 binomial products (2014)
PDF
12 x1 t02 01 differentiating exponentials (2014)
PDF
11 x1 t01 01 algebra & indices (2014)
PDF
12 x1 t01 03 integrating derivative on function (2013)
PDF
12 x1 t01 02 differentiating logs (2013)
PDF
12 x1 t01 01 log laws (2013)
PDF
X2 t02 04 forming polynomials (2013)
PDF
X2 t02 03 roots & coefficients (2013)
PDF
X2 t02 02 multiple roots (2013)
PDF
X2 t02 01 factorising complex expressions (2013)
PDF
11 x1 t16 07 approximations (2013)
PDF
11 x1 t16 06 derivative times function (2013)
PDF
11 x1 t16 05 volumes (2013)
PDF
11 x1 t16 04 areas (2013)
PDF
11 x1 t16 03 indefinite integral (2013)
PDF
11 x1 t16 02 definite integral (2013)
Goodbye slideshare UPDATE
Goodbye slideshare
12 x1 t02 02 integrating exponentials (2014)
11 x1 t01 03 factorising (2014)
11 x1 t01 02 binomial products (2014)
12 x1 t02 01 differentiating exponentials (2014)
11 x1 t01 01 algebra & indices (2014)
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 01 log laws (2013)
X2 t02 04 forming polynomials (2013)
X2 t02 03 roots & coefficients (2013)
X2 t02 02 multiple roots (2013)
X2 t02 01 factorising complex expressions (2013)
11 x1 t16 07 approximations (2013)
11 x1 t16 06 derivative times function (2013)
11 x1 t16 05 volumes (2013)
11 x1 t16 04 areas (2013)
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 02 definite integral (2013)

Recently uploaded (20)

PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PDF
Race Reva University – Shaping Future Leaders in Artificial Intelligence
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PPTX
Virtual and Augmented Reality in Current Scenario
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
Empowerment Technology for Senior High School Guide
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
PDF
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 2).pdf
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PPTX
Module on health assessment of CHN. pptx
PPTX
What’s under the hood: Parsing standardized learning content for AI
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PDF
Journal of Dental Science - UDMY (2021).pdf
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PDF
Mucosal Drug Delivery system_NDDS_BPHARMACY__SEM VII_PCI.pdf
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PPTX
Computer Architecture Input Output Memory.pptx
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
FORM 1 BIOLOGY MIND MAPS and their schemes
Race Reva University – Shaping Future Leaders in Artificial Intelligence
B.Sc. DS Unit 2 Software Engineering.pptx
Virtual and Augmented Reality in Current Scenario
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
What if we spent less time fighting change, and more time building what’s rig...
Empowerment Technology for Senior High School Guide
Cambridge-Practice-Tests-for-IELTS-12.docx
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 2).pdf
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
Module on health assessment of CHN. pptx
What’s under the hood: Parsing standardized learning content for AI
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
Journal of Dental Science - UDMY (2021).pdf
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
Mucosal Drug Delivery system_NDDS_BPHARMACY__SEM VII_PCI.pdf
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
Computer Architecture Input Output Memory.pptx

12 x1 t03 02 graphing trig functions (2012)

  • 2. Graphing Trig 1) Sine Curve Functions
  • 3. Graphing Trig 1) Sine Curve Functions y 1 -1
  • 4. Graphing Trig 1) Sine Curve Functions y 1  2   2 3 4 x -1
  • 5. Graphing Trig 1) Sine Curve Functions y 1  2   2 3 4 x -1
  • 6. Graphing Trig 1) Sine Curve Functions y 1  2   2 3 4 x -1
  • 7. Graphing Trig 1) Sine Curve Functions y 1  2   2 3 4 x -1
  • 8. Graphing Trig 1) Sine Curve Functions y 1 y  sin x  2   2 3 4 x -1
  • 9. Graphing Trig 1) Sine Curve Functions y 1 y  sin x  2   2 3 4 x -1 domain : all real x
  • 10. Graphing Trig 1) Sine Curve Functionsy 1 y  sin x  2   2 3 4 x -1 domain : all real x range : - 1  y  1
  • 11. Graphing Trig 1) Sine Curve Functionsy period 1 y  sin x  2   2 3 4 x -1 domain : all real x range : - 1  y  1
  • 12. Graphing Trig 1) Sine Curve Functionsy period 1 y  sin x  2   2 3 4 x -1 In general; domain : all real x y  a sin bx  c  range : - 1  y  1 2 period  units b
  • 13. Graphing Trig 1) Sine Curve Functions y period 1 y  sin x amplitude  2   2 3 4 x -1 In general; domain : all real x y  a sin bx  c  range : - 1  y  1 2 period  units b
  • 14. Graphing Trig 1) Sine Curve Functions y period 1 y  sin x amplitude  2   2 3 4 x -1 In general; domain : all real x y  a sin bx  c  range : - 1  y  1 2 period  units b amplitude  a units
  • 15. Graphing Trig 1) Sine Curve Functions y period 1 y  sin x amplitude  2   2 3 4 x -1 In general; domain : all real x y  a sin bx  c  range : - 1  y  1 2 period period  units divisions  b 4 amplitude  a units
  • 16. Graphing Trig 1) Sine Curve Functions y period 1 y  sin x amplitude  2   2 3 4 x -1 In general; domain : all real x y  a sin bx  c  range : - 1  y  1 2 period period  units divisions  b 4 c amplitude  a units shift  to left b
  • 17.  e.g. y  5 sin  9 x      2
  • 18.  e.g. y  5 sin  9 x     2  2 period  units 9
  • 19.  e.g. y  5 sin  9 x     2  2 period  units 9 amplitude  5 units
  • 20.  e.g. y  5 sin  9 x     2   2 period  units divisions  9 18 amplitude  5 units
  • 21.  e.g. y  5 sin  9 x     2   2 period  units divisions  9 18  amplitude  5 units shift  to right 18
  • 22.  e.g. y  5 sin  9 x     2   2 period  units divisions  9 18  amplitude  5 units shift  to right 18 y 5   2  x 9 -5 9 9
  • 23.  e.g. y  5 sin  9 x     2   2 period  units divisions  9 18  amplitude  5 units shift  to right 18 y 5   2  x 9 -5 9 9
  • 24.  e.g. y  5 sin  9 x     2   2 period  units divisions  9 18  amplitude  5 units shift  to right 18 y 5   2  x 9 -5 9 9
  • 25.  e.g. y  5 sin  9 x     2   2 period  units divisions  9 18  amplitude  5 units shift  to right 18 y 5   2  x 9 -5 9 9
  • 26.  e.g. y  5 sin  9 x     2   2 period  units divisions  9 18  amplitude  5 units shift  to right 18 y 5   2  x 9 -5 9 9
  • 27.  e.g. y  5 sin  9 x     2   2 period  units divisions  9 18  amplitude  5 units shift  to right 18 y  9x    y  5 sin   5  2    2  x 9 -5 9 9
  • 29. 2) Cosine Curve y  a cosbx  c 
  • 30. 2) Cosine Curve y  a cosbx  c  2 period  units b
  • 31. 2) Cosine Curve y  a cosbx  c  2 period  units b amplitude  a units
  • 32. 2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 amplitude  a units
  • 33. 2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 c amplitude  a units shift  to left b
  • 34. 2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 c amplitude  a units shift  to left b  x    2 e.g. y  4 cos   8 
  • 35. 2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 c amplitude  a units shift  to left b  x    2 2 e.g. y  4 cos  period  8  1 8  16
  • 36. 2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 c amplitude  a units shift  to left b  x    2 2 e.g. y  4 cos  period  8  1 8  16 amplitude  4
  • 37. 2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 c amplitude  a units shift  to left b  x    2 2 e.g. y  4 cos  period  divisions  4 8  1 8  16 amplitude  4
  • 38. 2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 c amplitude  a units shift  to left b  x    2 2 e.g. y  4 cos  period  divisions  4 8  1 8 shift  8 to left, 2 up,  16 upside down amplitude  4
  • 39. 2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 c amplitude  a units shift  to left b  x    2 2 e.g. y  4 cos  period  divisions  4 8  1 8 shift  8 to left, 2 up,  16 upside down y amplitude  4 6 2  8 8 16 x -2
  • 40. 2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 c amplitude  a units shift  to left b  x    2 2 e.g. y  4 cos  period  divisions  4 8  1 8 shift  8 to left, 2 up,  16 upside down y amplitude  4 6 2  8 8 16 x -2
  • 41. 2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 c amplitude  a units shift  to left b  x    2 2 e.g. y  4 cos  period  divisions  4 8  1 8 shift  8 to left, 2 up,  16 upside down y amplitude  4 6 2  8 8 16 x -2
  • 42. 2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 c amplitude  a units shift  to left b  x    2 2 e.g. y  4 cos  period  divisions  4 8  1 8 shift  8 to left, 2 up,  16 upside down y amplitude  4 6 2  8 8 16 x -2
  • 43. 2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 c amplitude  a units shift  to left b  x    2 2 e.g. y  4 cos  period  divisions  4 8  1 8 shift  8 to left, 2 up,  16 upside down y amplitude  4 6 2  8 8 16 x -2
  • 44. 2) Cosine Curve y  a cosbx  c  2 period period  units divisions  b 4 c amplitude  a units shift  to left b  x    2 2 e.g. y  4 cos  period  divisions  4 8  1 8 shift  8 to left, 2 up,  16 upside down y amplitude  4 y  4 cos     2  x 6  8  2  8 8 16 x -2
  • 46. 3) Tangent Curve y  a tan bx  c 
  • 47. 3) Tangent Curve y  a tan bx  c   period  units b
  • 48. 3) Tangent Curve y  a tan bx  c  divisions  period  2 period  units b
  • 49. 3) Tangent Curve y  a tan bx  c  divisions  period  c 2 period  units shift  to left b b
  • 50. 3) Tangent Curve y  a tan bx  c  divisions  period  c 2 period  units shift  to left b b e.g. y  e tan x  2 
  • 51. 3) Tangent Curve y  a tan bx  c  divisions  period  c 2 period  units shift  to left b b e.g. y  e tan x  2   period   1
  • 52. 3) Tangent Curve y  a tan bx  c  divisions  period  c 2 period  units shift  to left b b e.g. y  e tan x  2   1 period  divisions   2 1
  • 53. 3) Tangent Curve y  a tan bx  c  divisions  period  c 2 period  units shift  to left b b e.g. y  e tan x  2   1 period  divisions   2 1 shift  2 to right
  • 54. 3) Tangent Curve y  a tan bx  c  divisions  period  c 2 period  units shift  to left b b e.g. y  e tan x  2   1 period  divisions   2 1 shift  2 to right y 1 2 x
  • 55. 3) Tangent Curve y  a tan bx  c  divisions  period  c 2 period  units shift  to left b b e.g. y  e tan x  2   1 period  divisions   2 1 shift  2 to right y 1 2 x
  • 56. 3) Tangent Curve y  a tan bx  c  divisions  period  c 2 period  units shift  to left b b e.g. y  e tan x  2   1 period  divisions   2 1 shift  2 to right y 1 2 x
  • 57. 3) Tangent Curve y  a tan bx  c  divisions  period  c 2 period  units shift  to left b b e.g. y  e tan x  2   1 period  divisions   2 1 shift  2 to right y y  e tan x  2  1 2 x
  • 58. 3) Tangent Curve y  a tan bx  c  divisions  period  c 2 period  units shift  to left b b e.g. y  e tan x  2   1 period  divisions   2 1 shift  2 to right y y  e tan x  2  Exercise 14C; 2b, 3b, 1 2 x 4b, 5bce, 8, 9, 10b, 13, 15, 16, 17, 20