SlideShare a Scribd company logo
Integration Involving
    Inverse Trig
Integration Involving
    Inverse Trig
            sin 1    c
     dx               x
   a x
     2   2          
                    a
Integration Involving
    Inverse Trig
            sin 1    c
     dx               x                xc
   a x
     2   2          
                    a
                                      1
                              OR  cos  
                                       a
Integration Involving
    Inverse Trig
            sin 1    c
     dx               x                  xc
   a x
     2   2          
                    a
                                        1
                                OR  cos  
                                         a
     dx       1    1  x 
 a 2  x 2  a tan  a   c
                       
Integration Involving
               Inverse Trig
                        sin 1    c
                 dx               x                  xc
               a x
                 2   2          
                                a
                                                    1
                                            OR  cos  
                                                     a
                 dx       1    1  x 
             a 2  x 2  a tan  a   c
                                   
e.g.
            dx
   i 
           4  x2
Integration Involving
               Inverse Trig
                       sin 1    c
                dx               x                  xc
              a x
                2   2          
                               a
                                                   1
                                           OR  cos  
                                                    a
                dx       1    1  x 
            a 2  x 2  a tan  a   c
                                  
e.g.
           dx
   i 
          4  x2
            1  x 
       sin    c
               2
Integration Involving
               Inverse Trig
                       sin 1    c
                dx               x                  xc
              a x
                2   2          
                               a
                                                   1
                                           OR  cos  
                                                    a
                dx       1    1  x 
            a 2  x 2  a tan  a   c
                                  
e.g.
           dx
   i                 ii 
                                 dx
          4  x2               9  x2
            1  x 
       sin    c
               2
Integration Involving
               Inverse Trig
                       sin 1    c
                dx               x                  xc
              a x
                2   2          
                               a
                                                   1
                                           OR  cos  
                                                    a
                dx       1    1  x 
            a 2  x 2  a tan  a   c
                                  
e.g.
           dx
   i                 ii 
                                 dx
          4  x2               9  x2
            1  x         1 1  x 
       sin    c       tan    c
               2          3       3
Integration Involving
               Inverse Trig
                       sin 1    c
                dx               x                  xc
              a x
                2   2          
                               a
                                                   1
                                           OR  cos  
                                                    a
                dx       1    1  x 
            a 2  x 2  a tan  a   c
                                  
e.g.                                          1
           dx                                   dx
   i                 ii 
                                dx
                                       iii 
          4  x2               9 x 2
                                             0 2  x2
            1  x         1 1  x 
       sin    c       tan    c
               2          3      3
Integration Involving
               Inverse Trig
                       sin 1    c
                dx               x                  xc
              a x
                2   2          
                               a
                                                     1
                                           OR  cos  
                                                    a
                dx       1    1  x 
            a 2  x 2  a tan  a   c
                                  
e.g.                                                                   1
                                                                 x 
                                                       sin 1  
                                              1
           dx                                   dx
   i                 ii 
                                dx
                                       iii                    
          4  x2               9 x 2
                                             0 2 x 2
                                                                2  0
            1  x         1 1  x 
       sin    c       tan    c
               2          3      3
Integration Involving
               Inverse Trig
                       sin 1    c
                dx               x                  xc
              a x
                2   2          
                               a
                                                      1
                                           OR  cos  
                                                    a
                dx       1    1  x 
            a 2  x 2  a tan  a   c
                                  
e.g.                                                                     1
                                                                  x 
                                                       sin 1  
                                              1
           dx                                   dx
   i                 ii 
                                dx
                                       iii                    
          4  x2               9 x 2
                                             0 2 x 2
                                                                2  0
                                                            1 1
            1  x         1 1  x                  sin          sin 1 0
       sin    c       tan    c                           2
               2          3      3
Integration Involving
               Inverse Trig
                       sin 1    c
                dx               x                  xc
              a x
                2   2          
                               a
                                           OR  cos  
                                                    a
                                                       1




                dx       1    1  x 
            a 2  x 2  a tan  a   c
                                  
e.g.                                                                      1
                                                                   x 
                                                       sin 1  
                                               1
           dx                                   dx
   i                 ii 
                                dx
                                       iii                   
          4  x2               9 x 2
                                             0 2 x 2
                                                                2  0
                                                            1 1
            1  x         1 1  x                  sin           sin 1 0
       sin    c       tan    c                            2
               2          3      3                  
                                                       0
                                                         4
                                                                
                                                            
                                                                4
0
iv  Find sin 1 e x and hence evaluate 
          d                                        ex
                                                           dx
                                           log 2 1  e
                                                        2x
          dx
0
iv  Find sin 1 e x and hence evaluate 
          d                                        ex
                                                           dx
                                           log 2 1  e
                                                        2x
          dx
                       ex
   d
      sin 1 e x  
   dx                 1 e 2 x
0
 iv  Find sin 1 e x and hence evaluate 
           d                                        ex
                                                            dx
                                            log 2 1  e
                                                         2x
           dx
                           ex
       d
         sin 1 e x  
      dx                  1 e 2 x
                   dx  sin e log 2
    0
           ex
                          1 x 0

  log 2 1  e
               2x
0
 iv  Find sin 1 e x and hence evaluate 
           d                                        ex
                                                            dx
                                            log 2 1  e
                                                         2x
           dx
                           ex
       d
         sin 1 e x  
      dx                  1 e 2 x
                   dx  sin e log 2
    0
           ex
                          1 x 0

  log 2 1  e
               2x


                      sin 1 e 0  sin 1 e log 2
                             1    1   1
                      sin 1  sin
                                   2
                          
                            
                         2       6
                         
                     
                         3
0
 iv  Find sin 1 e x and hence evaluate 
           d                                        ex
                                                            dx
                                            log 2 1  e
                                                         2x
           dx
                           ex
       d
         sin 1 e x                                v 
                                                                dx
      dx                  1 e 2 x                            4  9x2
                   dx  sin e log 2
    0
           ex
                          1 x 0

  log 2 1  e
               2x


                      sin 1 e 0  sin 1 e log 2
                             1    1   1
                      sin 1  sin
                                   2
                          
                            
                         2       6
                         
                     
                         3
0
 iv  Find sin 1 e x and hence evaluate 
           d                                        ex
                                                            dx
                                            log 2 1  e
                                                         2x
           dx
                           ex
       d
         sin 1 e x                                v 
                                                                dx
                                                                       
                                                                            dx
      dx                  1 e 2 x                            4  9x 2
                                                                            4 2
                                                                          3 x
                   dx  sin e log 2
    0
           ex
                          1 x 0
                                                                           9
  log 2 1  e
               2x


                      sin 1 e 0  sin 1 e log 2
                             1    1   1
                      sin 1  sin
                                   2
                          
                            
                         2       6
                         
                     
                         3
0
 iv  Find sin 1 e x and hence evaluate 
           d                                        ex
                                                            dx
                                            log 2 1  e
                                                         2x
           dx
                           ex
       d
         sin 1 e x                                v 
                                                                dx
                                                                       
                                                                            dx
      dx                  1 e 2 x                            4  9x 2
                                                                            4 2
                                                                          3 x
                   dx  sin e log 2
    0
           ex
                          1 x 0
                                                                           9
  log 2 1  e
               2x
                                                                        1    dx
                                                                        
                      sin 1 e 0  sin 1 e log 2                     3 4 2
                                                                              x
                             1    1   1
                                                                            9
                      sin 1  sin
                                   2
                          
                            
                         2       6
                         
                     
                         3
0
 iv  Find sin 1 e x and hence evaluate 
           d                                        ex
                                                            dx
                                            log 2 1  e
                                                         2x
           dx
                           ex
       d
         sin 1 e x                                v 
                                                                dx
                                                                       
                                                                            dx
      dx                  1 e 2 x                            4  9x 2
                                                                            4 2
                                                                          3 x
                   dx  sin e log 2
    0
           ex
                          1 x 0
                                                                           9
  log 2 1  e
               2x
                                                                        1    dx
                                                                        
                      sin 1 e 0  sin 1 e log 2                     3 4 2
                                                                              x
                             1    1   1
                                                                            9
                      sin 1  sin
                                   2                                 1 1  3 x 
                                                                     sin    c
                                                                   3    2
                            
                         2       6
                         
                     
                         3
0
 iv  Find sin 1 e x and hence evaluate 
           d                                        ex
                                                            dx
                                            log 2 1  e
                                                         2x
           dx
                           ex
       d
         sin 1 e x                                v 
                                                                dx
                                                                       
                                                                            dx
      dx                  1 e 2 x                            4  9x 2
                                                                            4 2
                                                                          3 x
                   dx  sin e log 2
    0
           ex
                          1 x 0
                                                                           9
  log 2 1  e
               2x
                                                                        1    dx
                                                                        
                      sin 1 e 0  sin 1 e log 2                     3 4 2
                                                                              x
                             1    1   1
                                                                            9
                      sin 1  sin
                                   2                                 1 1  3 x 
                                                                     sin    c
                                                                   3    2
                            
                         2       6
                         
                     
                         3              Exercise 1E; 2, 3, 4a, 5b, 6 & 7bdf, 9,
                                                12, 13, 16, 17, 20, 22

More Related Content

PPTX
Graph transformations
PPT
Fungsi komposisi
DOC
Rpp matematika (persamaan, pertidaksamaan dan fungsi kuadrat)
PPT
PPt on Functions
DOCX
Pola bilangan
PPTX
1 himpunan - logika
DOCX
Judul skripsi mat
PPTX
Definite Integral and Properties of Definite Integral
Graph transformations
Fungsi komposisi
Rpp matematika (persamaan, pertidaksamaan dan fungsi kuadrat)
PPt on Functions
Pola bilangan
1 himpunan - logika
Judul skripsi mat
Definite Integral and Properties of Definite Integral

What's hot (20)

PDF
document (3).pdf
PPTX
Pangkat Rasional dan Bentuk Akar
PPTX
Polynomials
PDF
Integration formulas
PDF
Chapter1 functions
PPT
Section 7.3 trigonometric equations
PPTX
Linear equations in one variable
PPTX
Linear functions
PPTX
Fungsi naik dan fungsi turun
PPTX
persamaan dan pertidaksamaan linear satu variabel yang memuat nilai mutlak (p...
PPTX
Bilangan prima dan tfm ( teori & aplikasi )
PDF
18. modul limit fungsi pak sukani
PDF
Sistem Persamaan Linear Tiga Variabel
DOCX
Sistem Koordinat
PPT
Ppt statistik smp kelas ix
PPTX
DisMath-lecture-1-Introduction-to-Discrete-Maths-08032022-114934am.pptx
PDF
11. soal soal lingkaran
PPS
Integral Tak Wajar ( Kalkulus 2 )
PPTX
Identitas trigonometri
PPTX
Suku Banyak
document (3).pdf
Pangkat Rasional dan Bentuk Akar
Polynomials
Integration formulas
Chapter1 functions
Section 7.3 trigonometric equations
Linear equations in one variable
Linear functions
Fungsi naik dan fungsi turun
persamaan dan pertidaksamaan linear satu variabel yang memuat nilai mutlak (p...
Bilangan prima dan tfm ( teori & aplikasi )
18. modul limit fungsi pak sukani
Sistem Persamaan Linear Tiga Variabel
Sistem Koordinat
Ppt statistik smp kelas ix
DisMath-lecture-1-Introduction-to-Discrete-Maths-08032022-114934am.pptx
11. soal soal lingkaran
Integral Tak Wajar ( Kalkulus 2 )
Identitas trigonometri
Suku Banyak
Ad

Viewers also liked (8)

PDF
12 x1 t05 03 graphing inverse trig (2013)
PDF
X2 T04 04 curve sketching - reciprocal functions
PDF
12 x1 t05 04 differentiating inverse trig (2013)
PDF
12 x1 t05 02 inverse trig functions (2012)
PDF
12 x1 t05 06 general solutions (2012)
PDF
12X1 T05 01 inverse functions (2010)
PDF
12 x1 t05 01 inverse functions (2013)
PPT
Goodbye slideshare UPDATE
12 x1 t05 03 graphing inverse trig (2013)
X2 T04 04 curve sketching - reciprocal functions
12 x1 t05 04 differentiating inverse trig (2013)
12 x1 t05 02 inverse trig functions (2012)
12 x1 t05 06 general solutions (2012)
12X1 T05 01 inverse functions (2010)
12 x1 t05 01 inverse functions (2013)
Goodbye slideshare UPDATE
Ad

More from Nigel Simmons (20)

PPT
Goodbye slideshare
PDF
12 x1 t02 02 integrating exponentials (2014)
PDF
11 x1 t01 03 factorising (2014)
PDF
11 x1 t01 02 binomial products (2014)
PDF
12 x1 t02 01 differentiating exponentials (2014)
PDF
11 x1 t01 01 algebra & indices (2014)
PDF
12 x1 t01 03 integrating derivative on function (2013)
PDF
12 x1 t01 02 differentiating logs (2013)
PDF
12 x1 t01 01 log laws (2013)
PDF
X2 t02 04 forming polynomials (2013)
PDF
X2 t02 03 roots & coefficients (2013)
PDF
X2 t02 02 multiple roots (2013)
PDF
X2 t02 01 factorising complex expressions (2013)
PDF
11 x1 t16 07 approximations (2013)
PDF
11 x1 t16 06 derivative times function (2013)
PDF
11 x1 t16 05 volumes (2013)
PDF
11 x1 t16 04 areas (2013)
PDF
11 x1 t16 03 indefinite integral (2013)
PDF
11 x1 t16 02 definite integral (2013)
PDF
11 x1 t16 01 area under curve (2013)
Goodbye slideshare
12 x1 t02 02 integrating exponentials (2014)
11 x1 t01 03 factorising (2014)
11 x1 t01 02 binomial products (2014)
12 x1 t02 01 differentiating exponentials (2014)
11 x1 t01 01 algebra & indices (2014)
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 01 log laws (2013)
X2 t02 04 forming polynomials (2013)
X2 t02 03 roots & coefficients (2013)
X2 t02 02 multiple roots (2013)
X2 t02 01 factorising complex expressions (2013)
11 x1 t16 07 approximations (2013)
11 x1 t16 06 derivative times function (2013)
11 x1 t16 05 volumes (2013)
11 x1 t16 04 areas (2013)
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 02 definite integral (2013)
11 x1 t16 01 area under curve (2013)

Recently uploaded (6)

PDF
Cold positive punishment of the student سزادانی ئەرێنی ساردی قوتابی.pdf
PDF
فورمولر عمومی مضمون فزیک برای همه انجنیران
PDF
15 AUG 2025 PS 15 AUG 2025 PS 15 AUG 2025 PS
PPTX
Madison dsfnsd dslsf sada;sdmas;ds;dls.pptx
PDF
Materi seni rupa untuk sekolah dasar materi tentang seni rupa
PPTX
Tahfidz Qur’an TIMING tampa musik bagian 2.pptx
Cold positive punishment of the student سزادانی ئەرێنی ساردی قوتابی.pdf
فورمولر عمومی مضمون فزیک برای همه انجنیران
15 AUG 2025 PS 15 AUG 2025 PS 15 AUG 2025 PS
Madison dsfnsd dslsf sada;sdmas;ds;dls.pptx
Materi seni rupa untuk sekolah dasar materi tentang seni rupa
Tahfidz Qur’an TIMING tampa musik bagian 2.pptx

12 x1 t05 05 integration with inverse trig (2013)

  • 1. Integration Involving Inverse Trig
  • 2. Integration Involving Inverse Trig  sin 1    c dx x  a x 2 2  a
  • 3. Integration Involving Inverse Trig  sin 1    c dx x  xc  a x 2 2  a 1 OR  cos   a
  • 4. Integration Involving Inverse Trig  sin 1    c dx x  xc  a x 2 2  a 1 OR  cos   a dx 1 1  x   a 2  x 2  a tan  a   c  
  • 5. Integration Involving Inverse Trig  sin 1    c dx x  xc  a x 2 2  a 1 OR  cos   a dx 1 1  x   a 2  x 2  a tan  a   c   e.g. dx i  4  x2
  • 6. Integration Involving Inverse Trig  sin 1    c dx x  xc  a x 2 2  a 1 OR  cos   a dx 1 1  x   a 2  x 2  a tan  a   c   e.g. dx i  4  x2 1  x   sin    c 2
  • 7. Integration Involving Inverse Trig  sin 1    c dx x  xc  a x 2 2  a 1 OR  cos   a dx 1 1  x   a 2  x 2  a tan  a   c   e.g. dx i  ii  dx 4  x2 9  x2 1  x   sin    c 2
  • 8. Integration Involving Inverse Trig  sin 1    c dx x  xc  a x 2 2  a 1 OR  cos   a dx 1 1  x   a 2  x 2  a tan  a   c   e.g. dx i  ii  dx 4  x2 9  x2 1  x  1 1  x   sin    c  tan    c 2 3 3
  • 9. Integration Involving Inverse Trig  sin 1    c dx x  xc  a x 2 2  a 1 OR  cos   a dx 1 1  x   a 2  x 2  a tan  a   c   e.g. 1 dx dx i  ii  dx iii  4  x2 9 x 2 0 2  x2 1  x  1 1  x   sin    c  tan    c 2 3 3
  • 10. Integration Involving Inverse Trig  sin 1    c dx x  xc  a x 2 2  a 1 OR  cos   a dx 1 1  x   a 2  x 2  a tan  a   c   e.g. 1  x   sin 1   1 dx dx i  ii  dx iii    4  x2 9 x 2 0 2 x 2   2  0 1  x  1 1  x   sin    c  tan    c 2 3 3
  • 11. Integration Involving Inverse Trig  sin 1    c dx x  xc  a x 2 2  a 1 OR  cos   a dx 1 1  x   a 2  x 2  a tan  a   c   e.g. 1  x   sin 1   1 dx dx i  ii  dx iii    4  x2 9 x 2 0 2 x 2   2  0 1 1 1  x  1 1  x   sin  sin 1 0  sin    c  tan    c 2 2 3 3
  • 12. Integration Involving Inverse Trig  sin 1    c dx x  xc  a x 2 2  a OR  cos   a 1 dx 1 1  x   a 2  x 2  a tan  a   c   e.g. 1  x   sin 1   1 dx dx i  ii  dx iii   4  x2 9 x 2 0 2 x 2   2  0 1 1 1  x  1 1  x   sin  sin 1 0  sin    c  tan    c 2 2 3 3   0 4   4
  • 13. 0 iv  Find sin 1 e x and hence evaluate  d ex dx  log 2 1  e 2x dx
  • 14. 0 iv  Find sin 1 e x and hence evaluate  d ex dx  log 2 1  e 2x dx ex d sin 1 e x   dx 1 e 2 x
  • 15. 0 iv  Find sin 1 e x and hence evaluate  d ex dx  log 2 1  e 2x dx ex d sin 1 e x   dx 1 e 2 x dx  sin e log 2 0 ex   1 x 0  log 2 1  e 2x
  • 16. 0 iv  Find sin 1 e x and hence evaluate  d ex dx  log 2 1  e 2x dx ex d sin 1 e x   dx 1 e 2 x dx  sin e log 2 0 ex   1 x 0  log 2 1  e 2x  sin 1 e 0  sin 1 e log 2 1 1 1  sin 1  sin 2     2 6   3
  • 17. 0 iv  Find sin 1 e x and hence evaluate  d ex dx  log 2 1  e 2x dx ex d sin 1 e x   v  dx dx 1 e 2 x 4  9x2 dx  sin e log 2 0 ex   1 x 0  log 2 1  e 2x  sin 1 e 0  sin 1 e log 2 1 1 1  sin 1  sin 2     2 6   3
  • 18. 0 iv  Find sin 1 e x and hence evaluate  d ex dx  log 2 1  e 2x dx ex d sin 1 e x   v  dx  dx dx 1 e 2 x 4  9x 2 4 2 3 x dx  sin e log 2 0 ex   1 x 0 9  log 2 1  e 2x  sin 1 e 0  sin 1 e log 2 1 1 1  sin 1  sin 2     2 6   3
  • 19. 0 iv  Find sin 1 e x and hence evaluate  d ex dx  log 2 1  e 2x dx ex d sin 1 e x   v  dx  dx dx 1 e 2 x 4  9x 2 4 2 3 x dx  sin e log 2 0 ex   1 x 0 9  log 2 1  e 2x 1 dx    sin 1 e 0  sin 1 e log 2 3 4 2 x 1 1 1 9  sin 1  sin 2     2 6   3
  • 20. 0 iv  Find sin 1 e x and hence evaluate  d ex dx  log 2 1  e 2x dx ex d sin 1 e x   v  dx  dx dx 1 e 2 x 4  9x 2 4 2 3 x dx  sin e log 2 0 ex   1 x 0 9  log 2 1  e 2x 1 dx    sin 1 e 0  sin 1 e log 2 3 4 2 x 1 1 1 9  sin 1  sin 2 1 1  3 x   sin    c   3 2   2 6   3
  • 21. 0 iv  Find sin 1 e x and hence evaluate  d ex dx  log 2 1  e 2x dx ex d sin 1 e x   v  dx  dx dx 1 e 2 x 4  9x 2 4 2 3 x dx  sin e log 2 0 ex   1 x 0 9  log 2 1  e 2x 1 dx    sin 1 e 0  sin 1 e log 2 3 4 2 x 1 1 1 9  sin 1  sin 2 1 1  3 x   sin    c   3 2   2 6   3 Exercise 1E; 2, 3, 4a, 5b, 6 & 7bdf, 9, 12, 13, 16, 17, 20, 22