SlideShare a Scribd company logo
Inverse Functions
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
If in this new relation, for each x value in the domain there is a
maximum of one y value, (i.e. it is a function), then it is called the
inverse function to y = f(x) and is symbolised y  f 1  x 
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
If in this new relation, for each x value in the domain there is a
maximum of one y value, (i.e. it is a function), then it is called the
inverse function to y = f(x) and is symbolised y  f 1  x 
A function and its inverse function are reflections of each other in
the line y = x.
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
If in this new relation, for each x value in the domain there is a
maximum of one y value, (i.e. it is a function), then it is called the
inverse function to y = f(x) and is symbolised y  f 1  x 
A function and its inverse function are reflections of each other in
the line y = x.
If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x 
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
If in this new relation, for each x value in the domain there is a
maximum of one y value, (i.e. it is a function), then it is called the
inverse function to y = f(x) and is symbolised y  f 1  x 
A function and its inverse function are reflections of each other in
the line y = x.
If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x 
The domain of y  f  x  is the range of y  f 1  x 
Inverse Functions
If y = f(x) is a function, then for each x in the domain, there is a
maximum of one y value.
The relation obtained by interchanging x and y is x = f(y)
e.g. y  x 3  x  x  y 3  y
If in this new relation, for each x value in the domain there is a
maximum of one y value, (i.e. it is a function), then it is called the
inverse function to y = f(x) and is symbolised y  f 1  x 
A function and its inverse function are reflections of each other in
the line y = x.
If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x 
The domain of y  f  x  is the range of y  f 1  x 
The range of y  f  x  is the domain of y  f 1  x 
Testing For Inverse Functions
Testing For Inverse Functions
(1) Use a horizontal line test
Testing For Inverse Functions
(1) Use a horizontal line test


e.g.
 i  y  x 2   y



                           x
Testing For Inverse Functions
(1) Use a horizontal line test


e.g.
 i  y  x 2   y



                           x


   Only has an inverse relation
Testing For Inverse Functions
(1) Use a horizontal line test


e.g.
 i  y  x 2   y                 ii  y  x 3   y



                           x                          x


   Only has an inverse relation
Testing For Inverse Functions
(1) Use a horizontal line test


e.g.
 i  y  x 2   y                 ii  y  x 3    y



                           x                                  x


   Only has an inverse relation            Has an inverse function
Testing For Inverse Functions
(1) Use a horizontal line test
                OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
e.g.
 i  y  x 2   y                            ii  y  x 3     y



                              x                                            x


   Only has an inverse relation                       Has an inverse function
Testing For Inverse Functions
(1) Use a horizontal line test
                OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
e.g.
 i  y  x 2   y                            ii  y  x 3     y



                              x                                            x


   Only has an inverse relation                       Has an inverse function
             OR
    x  y2
Testing For Inverse Functions
(1) Use a horizontal line test
                OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
e.g.
 i  y  x 2   y                            ii  y  x 3     y



                              x                                            x


   Only has an inverse relation                       Has an inverse function
             OR
    x  y2
    y x
    NOT UNIQUE
Testing For Inverse Functions
(1) Use a horizontal line test
              OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
e.g.
 i  y  x 2   y                            ii  y  x 3     y



                              x                                            x


   Only has an inverse relation                       Has an inverse function
             OR                                                OR
    x  y2                                            x  y3
    y x
    NOT UNIQUE
Testing For Inverse Functions
(1) Use a horizontal line test
              OR
2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique.
e.g.
 i  y  x 2   y                            ii  y  x 3     y



                              x                                            x


   Only has an inverse relation                       Has an inverse function
             OR                                                OR
    x  y2                                            x  y3
    y x                                             y3 x
    NOT UNIQUE                                        UNIQUE
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
inverse function), then;
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
inverse function), then;

       f 1  f  x   x
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
inverse function), then;

       f 1  f  x   x   AND       f  f 1  x   x
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND       f  f 1  x   x

e.g.            2x 1
        f x 
                3  2x
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND       f  f 1  x   x

e.g.            2x 1
        f x 
                3  2x
     2x 1      2 y 1
y          x
     3  2x     3 2y
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND       f  f 1  x   x

e.g.            2x 1
        f x 
                3  2x
     2x 1           2 y 1
y          x
     3  2x          3 2y
       3  2 y x  2 y  1
         3 x  2 xy  2 y  1
        2 x  2  y  3 x  1
                       3x  1
                   y
                       2x  2
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND         f  f 1  x   x

e.g.            2x 1                          2x 1  
        f x                               3         1
                3  2x                          3  2x 
                            f 1  f  x   
                                               2x 1 
   2x 1            2 y 1                   2        2
y         x                                 3  2x 
   3  2x           3 2y
     3  2 y x  2 y  1
      3 x  2 xy  2 y  1
     2 x  2  y  3 x  1
                    3x  1
                y
                    2x  2
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x   AND          f  f 1  x   x

e.g.            2x 1                           2x 1  
        f x                                3         1
                3  2x                           3  2x 
                            f 1  f  x   
                                                2x 1 
   2x 1            2 y 1                    2        2
y         x                                  3  2x 
   3  2x           3 2y
     3  2 y x  2 y  1                    6x  3  3  2x
                                            
      3 x  2 xy  2 y  1                    4x  2  6  4x
     2 x  2  y  3 x  1                 
                                              8x
                    3x  1                     8
                y                          x
                    2x  2
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x    AND          f  f 1  x   x

e.g.            2x 1                           2x 1                         3x  1  
        f x                                3         1                   2          1
                3  2x
                                                             f  f 1  x   
                                                 3  2x                          2x  2 
                            f 1  f  x   
                                                2x 1                             3x  1 
   2x 1            2 y 1                    2         2                  3  2         
y         x                                  3  2x                            2x  2 
   3  2x           3 2y
     3  2 y x  2 y  1                    6x  3  3  2x
                                            
      3 x  2 xy  2 y  1                    4x  2  6  4x
     2 x  2  y  3 x  1                 
                                              8x
                    3x  1                     8
                y                          x
                    2x  2
If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an
       inverse function), then;

              f 1  f  x   x    AND           f  f 1  x   x

e.g.            2x 1                           2x 1                          3x  1  
        f x                                3         1                    2          1
                3  2x
                                                             f  f 1  x   
                                                 3  2x                           2x  2 
                            f 1  f  x   
                                                2x 1                              3x  1 
   2x 1            2 y 1                    2         2                   3  2         
y         x                                  3  2x                             2x  2 
   3  2x           3 2y
     3  2 y x  2 y  1                    6x  3  3  2x                 6x  2  2x  2
                                                                          
      3 x  2 xy  2 y  1                    4x  2  6  4x                 6x  6  6x  2
     2 x  2  y  3 x  1                 
                                              8x
                                                                           
                                                                             8x
                    3x  1                     8                              8
                y                          x                             x
                    2x  2
Restricting The Domain
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
                                                            y  x3

                                                              x
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
       Domain: all real x
                                                            y  x3
      Range: all real y
                                                              x
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
       Domain: all real x
                                                            y  x3
      Range: all real y

  f 1 : x  y 3                                              x
                1
     y  x     3
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
       Domain: all real x
                                                            y  x3
      Range: all real y

  f 1 : x  y 3                                              x
                1
     y  x     3


       Domain: all real x
       Range: all real y
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
       Domain: all real x
                                                            y  x3
      Range: all real y

  f 1 : x  y 3                                              x
                1
     y  x     3


       Domain: all real x
       Range: all real y
Restricting The Domain
If a function does not have an inverse, we can obtain an inverse
function by restricting the domain of the original function.
When restricting the domain you need to capture as much of the
range as possible.
 e.g. i  y  x 3
                                                   y
       Domain: all real x
                                                            y  x3
      Range: all real y

  f 1 : x  y 3                                              x
                1
                                                   1
     y  x     3
                                             yx   3

       Domain: all real x
       Range: all real y
y  ex
ii  y  e x
                y

                1

                        x
y  ex
ii  y  e x
                         y
    Domain: all real x
   Range: y > 0          1
y  ex
    ii  y  e x
                               y
          Domain: all real x
         Range: y > 0          1

    1                                 x
f        :xe   y


      y  log x
y  ex
    ii  y  e x
                               y
          Domain: all real x
         Range: y > 0          1

    1                                 x
f        :xe   y


      y  log x

          Domain: x > 0
          Range: all real y
y  ex
    ii  y  e x
                               y
          Domain: all real x
         Range: y > 0          1

    1                                 x
f        :xe   y


      y  log x

          Domain: x > 0
          Range: all real y
y  ex
    ii  y  e x
                               y
          Domain: all real x                y  log x
         Range: y > 0          1
                                   1       x
    1
f        :xe   y


      y  log x

          Domain: x > 0
          Range: all real y
iii  y  x 2   y  x2   y



                              x
iii  y  x 2           y  x2   y
    Domain: all real x
    Range: y  0
                                      x
iii  y  x 2           y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                        x
iii  y  x 2                 y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
iii  y  x 2                 y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
    Range: y  0
iii  y  x 2                 y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
    Range: y  0
     f 1 : x  y 2
                  1
         y  x   2
iii  y  x 2                 y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
    Range: y  0
     f 1 : x  y 2
                  1
         y  x   2


   Domain: x  0
   Range: y  0
iii  y  x 2                 y  x2   y
    Domain: all real x
    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
    Range: y  0
     f 1 : x  y 2
                  1
         y  x   2


   Domain: x  0
   Range: y  0
iii  y  x 2                 y  x2                 1
                                        y
    Domain: all real x                          yx   2


    Range: y  0
    NO INVERSE                              x
    Restricted Domain: x  0
    Range: y  0
     f 1 : x  y 2
                  1
         y  x   2


   Domain: x  0
   Range: y  0
iii  y  x 2                   y  x2                              1
                                               y
    Domain: all real x                                         yx   2


    Range: y  0
    NO INVERSE                                             x
    Restricted Domain: x  0
    Range: y  0
     f 1 : x  y 2
                  1
         y  x   2


   Domain: x  0                         Book 2
                         Exercise 1A; 2, 4bdf, 7, 9, 13, 14, 16, 19
   Range: y  0

More Related Content

PDF
11 X1 T02 08 inverse functions (2010)
PDF
12X1 T05 01 inverse functions (2010)
PPTX
1.6 inverse function (optional)
PPTX
53 inverse function (optional)
PDF
Universal algebra (1)
PDF
Algebra 2 Section 5-3
PDF
11 X1 T03 03 symmetry (2010)
PDF
Lesson 15: Inverse Functions and Logarithms
11 X1 T02 08 inverse functions (2010)
12X1 T05 01 inverse functions (2010)
1.6 inverse function (optional)
53 inverse function (optional)
Universal algebra (1)
Algebra 2 Section 5-3
11 X1 T03 03 symmetry (2010)
Lesson 15: Inverse Functions and Logarithms

What's hot (12)

PDF
Lesson 15: Inverse Functions and Logarithms
ODP
Inverse Functions
PPTX
4 5 inverse functions
PDF
Lesson 15: Inverse Functions And Logarithms
PPTX
Inverse functions
PPT
Inverse functions and relations
PPTX
4.1 inverse functions
PPT
7.7 one to_one_functions_-_inverse_functions
PPT
Calc 5.3
PPT
Inverse functions 1.6
PPT
Inverse Functions
PDF
Ch07
Lesson 15: Inverse Functions and Logarithms
Inverse Functions
4 5 inverse functions
Lesson 15: Inverse Functions And Logarithms
Inverse functions
Inverse functions and relations
4.1 inverse functions
7.7 one to_one_functions_-_inverse_functions
Calc 5.3
Inverse functions 1.6
Inverse Functions
Ch07
Ad

Viewers also liked (19)

PDF
12 x1 t04 04 travel graphs (2013)
PDF
12 x1 t04 07 approximations to roots (2013)
PDF
12 x1 t04 03 further growth & decay (2012)
PDF
12 x1 t04 06 integrating functions of time (2012)
PDF
12 x1 t05 05 integration with inverse trig (2012)
PDF
12 x1 t04 02 growth & decay (2013)
PDF
12 x1 t04 01 rates of change (2013)
PDF
12 x1 t05 04 differentiating inverse trig (2013)
PDF
12 x1 t05 03 graphing inverse trig (2013)
PDF
X2 T04 04 curve sketching - reciprocal functions
PDF
12 x1 t03 02 graphing trig functions (2013)
PDF
12 x1 t05 03 graphing inverse trig (2012)
PDF
12 x1 t05 05 integration with inverse trig (2013)
PDF
12 x1 t04 05 displacement, velocity, acceleration (2012)
PDF
12 x1 t05 02 inverse trig functions (2012)
PDF
12 x1 t05 06 general solutions (2012)
PDF
12 x1 t05 06 general solutions (2013)
PDF
12 x1 t05 04 differentiating inverse trig (2012)
PPT
Goodbye slideshare UPDATE
12 x1 t04 04 travel graphs (2013)
12 x1 t04 07 approximations to roots (2013)
12 x1 t04 03 further growth & decay (2012)
12 x1 t04 06 integrating functions of time (2012)
12 x1 t05 05 integration with inverse trig (2012)
12 x1 t04 02 growth & decay (2013)
12 x1 t04 01 rates of change (2013)
12 x1 t05 04 differentiating inverse trig (2013)
12 x1 t05 03 graphing inverse trig (2013)
X2 T04 04 curve sketching - reciprocal functions
12 x1 t03 02 graphing trig functions (2013)
12 x1 t05 03 graphing inverse trig (2012)
12 x1 t05 05 integration with inverse trig (2013)
12 x1 t04 05 displacement, velocity, acceleration (2012)
12 x1 t05 02 inverse trig functions (2012)
12 x1 t05 06 general solutions (2012)
12 x1 t05 06 general solutions (2013)
12 x1 t05 04 differentiating inverse trig (2012)
Goodbye slideshare UPDATE
Ad

Similar to 12 x1 t05 01 inverse functions (2013) (20)

PDF
11 x1 t02 08 inverse functions (2013)
PDF
11 x1 t02 08 inverse functions (2012)
PDF
11X1 T02 08 inverse functions (2011)
PPTX
Unit 1.5
PDF
Module 3 exponential and logarithmic functions
PPT
Topic 3 Inverse of function, steps to find inverse and properties of inverse
PPTX
7_One.to.one.and.Inverse Functions-Gen-Math.pptx
ZIP
AA Section 8-2
PDF
4.1 Inverse Functions
PPT
Inverse Functions, one to one and inverse functions
DOC
Chapter 1 (functions).
PPT
479573615-356355019-PPT-3-3-Graphs-of-Inverse-Functions.ppt
PPT
PreCalc Section 1.6.ppt
PPTX
Genmath week 4nnnnnnnnnnnnnnnnnnnnnnnnnn
PDF
inverse function in mathematics and engineering
PPT
Inverse functions
PDF
4.1 Inverse Functions
PPT
Inverses & One-to-One
PDF
3.7 Inverse Functions
PPTX
Inverse functions
11 x1 t02 08 inverse functions (2013)
11 x1 t02 08 inverse functions (2012)
11X1 T02 08 inverse functions (2011)
Unit 1.5
Module 3 exponential and logarithmic functions
Topic 3 Inverse of function, steps to find inverse and properties of inverse
7_One.to.one.and.Inverse Functions-Gen-Math.pptx
AA Section 8-2
4.1 Inverse Functions
Inverse Functions, one to one and inverse functions
Chapter 1 (functions).
479573615-356355019-PPT-3-3-Graphs-of-Inverse-Functions.ppt
PreCalc Section 1.6.ppt
Genmath week 4nnnnnnnnnnnnnnnnnnnnnnnnnn
inverse function in mathematics and engineering
Inverse functions
4.1 Inverse Functions
Inverses & One-to-One
3.7 Inverse Functions
Inverse functions

More from Nigel Simmons (20)

PPT
Goodbye slideshare
PDF
12 x1 t02 02 integrating exponentials (2014)
PDF
11 x1 t01 03 factorising (2014)
PDF
11 x1 t01 02 binomial products (2014)
PDF
12 x1 t02 01 differentiating exponentials (2014)
PDF
11 x1 t01 01 algebra & indices (2014)
PDF
12 x1 t01 03 integrating derivative on function (2013)
PDF
12 x1 t01 02 differentiating logs (2013)
PDF
12 x1 t01 01 log laws (2013)
PDF
X2 t02 04 forming polynomials (2013)
PDF
X2 t02 03 roots & coefficients (2013)
PDF
X2 t02 02 multiple roots (2013)
PDF
X2 t02 01 factorising complex expressions (2013)
PDF
11 x1 t16 07 approximations (2013)
PDF
11 x1 t16 06 derivative times function (2013)
PDF
11 x1 t16 05 volumes (2013)
PDF
11 x1 t16 04 areas (2013)
PDF
11 x1 t16 03 indefinite integral (2013)
PDF
11 x1 t16 02 definite integral (2013)
PDF
11 x1 t16 01 area under curve (2013)
Goodbye slideshare
12 x1 t02 02 integrating exponentials (2014)
11 x1 t01 03 factorising (2014)
11 x1 t01 02 binomial products (2014)
12 x1 t02 01 differentiating exponentials (2014)
11 x1 t01 01 algebra & indices (2014)
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 01 log laws (2013)
X2 t02 04 forming polynomials (2013)
X2 t02 03 roots & coefficients (2013)
X2 t02 02 multiple roots (2013)
X2 t02 01 factorising complex expressions (2013)
11 x1 t16 07 approximations (2013)
11 x1 t16 06 derivative times function (2013)
11 x1 t16 05 volumes (2013)
11 x1 t16 04 areas (2013)
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 02 definite integral (2013)
11 x1 t16 01 area under curve (2013)

Recently uploaded (20)

PPTX
Introduction to Building Materials
PPTX
Cell Types and Its function , kingdom of life
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Empowerment Technology for Senior High School Guide
PPTX
UNIT III MENTAL HEALTH NURSING ASSESSMENT
PDF
What if we spent less time fighting change, and more time building what’s rig...
PPTX
Digestion and Absorption of Carbohydrates, Proteina and Fats
PDF
Computing-Curriculum for Schools in Ghana
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
Trump Administration's workforce development strategy
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PPTX
History, Philosophy and sociology of education (1).pptx
PDF
RMMM.pdf make it easy to upload and study
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PDF
SOIL: Factor, Horizon, Process, Classification, Degradation, Conservation
Introduction to Building Materials
Cell Types and Its function , kingdom of life
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Final Presentation General Medicine 03-08-2024.pptx
Empowerment Technology for Senior High School Guide
UNIT III MENTAL HEALTH NURSING ASSESSMENT
What if we spent less time fighting change, and more time building what’s rig...
Digestion and Absorption of Carbohydrates, Proteina and Fats
Computing-Curriculum for Schools in Ghana
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Trump Administration's workforce development strategy
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
202450812 BayCHI UCSC-SV 20250812 v17.pptx
History, Philosophy and sociology of education (1).pptx
RMMM.pdf make it easy to upload and study
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
Practical Manual AGRO-233 Principles and Practices of Natural Farming
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
SOIL: Factor, Horizon, Process, Classification, Degradation, Conservation

12 x1 t05 01 inverse functions (2013)

  • 2. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value.
  • 3. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y)
  • 4. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y
  • 5. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y If in this new relation, for each x value in the domain there is a maximum of one y value, (i.e. it is a function), then it is called the inverse function to y = f(x) and is symbolised y  f 1  x 
  • 6. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y If in this new relation, for each x value in the domain there is a maximum of one y value, (i.e. it is a function), then it is called the inverse function to y = f(x) and is symbolised y  f 1  x  A function and its inverse function are reflections of each other in the line y = x.
  • 7. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y If in this new relation, for each x value in the domain there is a maximum of one y value, (i.e. it is a function), then it is called the inverse function to y = f(x) and is symbolised y  f 1  x  A function and its inverse function are reflections of each other in the line y = x. If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x 
  • 8. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y If in this new relation, for each x value in the domain there is a maximum of one y value, (i.e. it is a function), then it is called the inverse function to y = f(x) and is symbolised y  f 1  x  A function and its inverse function are reflections of each other in the line y = x. If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x  The domain of y  f  x  is the range of y  f 1  x 
  • 9. Inverse Functions If y = f(x) is a function, then for each x in the domain, there is a maximum of one y value. The relation obtained by interchanging x and y is x = f(y) e.g. y  x 3  x  x  y 3  y If in this new relation, for each x value in the domain there is a maximum of one y value, (i.e. it is a function), then it is called the inverse function to y = f(x) and is symbolised y  f 1  x  A function and its inverse function are reflections of each other in the line y = x. If a, b  is a point on y  f  x , then b, a  is a point on y  f 1  x  The domain of y  f  x  is the range of y  f 1  x  The range of y  f  x  is the domain of y  f 1  x 
  • 10. Testing For Inverse Functions
  • 11. Testing For Inverse Functions (1) Use a horizontal line test
  • 12. Testing For Inverse Functions (1) Use a horizontal line test e.g. i  y  x 2 y x
  • 13. Testing For Inverse Functions (1) Use a horizontal line test e.g. i  y  x 2 y x Only has an inverse relation
  • 14. Testing For Inverse Functions (1) Use a horizontal line test e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation
  • 15. Testing For Inverse Functions (1) Use a horizontal line test e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function
  • 16. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function
  • 17. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function OR x  y2
  • 18. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function OR x  y2 y x NOT UNIQUE
  • 19. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function OR OR x  y2 x  y3 y x NOT UNIQUE
  • 20. Testing For Inverse Functions (1) Use a horizontal line test OR 2 When x  f  y  is rewritten as y  g  x , y  g  x  is unique. e.g. i  y  x 2 y ii  y  x 3 y x x Only has an inverse relation Has an inverse function OR OR x  y2 x  y3 y x y3 x NOT UNIQUE UNIQUE
  • 21. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then;
  • 22. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x
  • 23. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x
  • 24. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1 f x  3  2x
  • 25. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1 f x  3  2x 2x 1 2 y 1 y x 3  2x 3 2y
  • 26. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1 f x  3  2x 2x 1 2 y 1 y x 3  2x 3 2y 3  2 y x  2 y  1 3 x  2 xy  2 y  1 2 x  2  y  3 x  1 3x  1 y 2x  2
  • 27. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1  2x 1   f x  3  1 3  2x 3  2x  f 1  f  x     2x 1  2x 1 2 y 1 2 2 y x  3  2x  3  2x 3 2y 3  2 y x  2 y  1 3 x  2 xy  2 y  1 2 x  2  y  3 x  1 3x  1 y 2x  2
  • 28. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1  2x 1   f x  3  1 3  2x 3  2x  f 1  f  x     2x 1  2x 1 2 y 1 2 2 y x  3  2x  3  2x 3 2y 3  2 y x  2 y  1 6x  3  3  2x  3 x  2 xy  2 y  1 4x  2  6  4x 2 x  2  y  3 x  1  8x 3x  1 8 y x 2x  2
  • 29. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1  2x 1    3x  1   f x  3  1 2  1 3  2x f  f 1  x    3  2x  2x  2  f 1  f  x     2x 1   3x  1  2x 1 2 y 1 2  2 3  2  y x  3  2x   2x  2  3  2x 3 2y 3  2 y x  2 y  1 6x  3  3  2x  3 x  2 xy  2 y  1 4x  2  6  4x 2 x  2  y  3 x  1  8x 3x  1 8 y x 2x  2
  • 30. If the inverse relation of y= f(x) is a function, (i.e. y = f(x) has an inverse function), then; f 1  f  x   x AND f  f 1  x   x e.g. 2x 1  2x 1    3x  1   f x  3  1 2  1 3  2x f  f 1  x    3  2x  2x  2  f 1  f  x     2x 1   3x  1  2x 1 2 y 1 2  2 3  2  y x  3  2x   2x  2  3  2x 3 2y 3  2 y x  2 y  1 6x  3  3  2x 6x  2  2x  2   3 x  2 xy  2 y  1 4x  2  6  4x 6x  6  6x  2 2 x  2  y  3 x  1  8x  8x 3x  1 8 8 y x x 2x  2
  • 32. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function.
  • 33. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible.
  • 34. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y y  x3 x
  • 35. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y Domain: all real x y  x3 Range: all real y x
  • 36. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y Domain: all real x y  x3 Range: all real y f 1 : x  y 3 x 1 y  x 3
  • 37. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y Domain: all real x y  x3 Range: all real y f 1 : x  y 3 x 1 y  x 3 Domain: all real x Range: all real y
  • 38. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y Domain: all real x y  x3 Range: all real y f 1 : x  y 3 x 1 y  x 3 Domain: all real x Range: all real y
  • 39. Restricting The Domain If a function does not have an inverse, we can obtain an inverse function by restricting the domain of the original function. When restricting the domain you need to capture as much of the range as possible. e.g. i  y  x 3 y Domain: all real x y  x3 Range: all real y f 1 : x  y 3 x 1 1 y  x 3 yx 3 Domain: all real x Range: all real y
  • 40. y  ex ii  y  e x y 1 x
  • 41. y  ex ii  y  e x y Domain: all real x Range: y > 0 1
  • 42. y  ex ii  y  e x y Domain: all real x Range: y > 0 1 1 x f :xe y  y  log x
  • 43. y  ex ii  y  e x y Domain: all real x Range: y > 0 1 1 x f :xe y  y  log x Domain: x > 0 Range: all real y
  • 44. y  ex ii  y  e x y Domain: all real x Range: y > 0 1 1 x f :xe y  y  log x Domain: x > 0 Range: all real y
  • 45. y  ex ii  y  e x y Domain: all real x y  log x Range: y > 0 1 1 x 1 f :xe y  y  log x Domain: x > 0 Range: all real y
  • 46. iii  y  x 2 y  x2 y x
  • 47. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 x
  • 48. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x
  • 49. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x Restricted Domain: x  0
  • 50. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0
  • 51. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0 f 1 : x  y 2 1 y  x 2
  • 52. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0 f 1 : x  y 2 1 y  x 2 Domain: x  0 Range: y  0
  • 53. iii  y  x 2 y  x2 y Domain: all real x Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0 f 1 : x  y 2 1 y  x 2 Domain: x  0 Range: y  0
  • 54. iii  y  x 2 y  x2 1 y Domain: all real x yx 2 Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0 f 1 : x  y 2 1 y  x 2 Domain: x  0 Range: y  0
  • 55. iii  y  x 2 y  x2 1 y Domain: all real x yx 2 Range: y  0 NO INVERSE x Restricted Domain: x  0 Range: y  0 f 1 : x  y 2 1 y  x 2 Domain: x  0 Book 2 Exercise 1A; 2, 4bdf, 7, 9, 13, 14, 16, 19 Range: y  0