Graphing Inverse
 Trig Functions
Graphing Inverse
        Trig Functions
                   x
e.g i  y  5 sin
                1

                   3
Graphing Inverse
        Trig Functions
                    x
e.g i  y  5 sin
               1

                   3
Domain:  1  x  1
                   3
             3 x  3
Graphing Inverse
        Trig Functions
                    x
e.g i  y  5 sin
                1

                    3
Domain:  1  x  1
                   3
              3 x  3
Range:    y  
              2 5 2
             5       5
                 y
              2        2
Graphing Inverse
        Trig Functions
                    x
e.g i  y  5 sin
                1
                                     y
                    3
Domain:  1  x  1                 5
                   3                 2
              3 x  3
Range:    y           -3            3   x
              2 5 2
             5       5            5
                 y           
              2        2             2
Graphing Inverse
        Trig Functions
                    x
e.g i  y  5 sin
                1
                                     y
                    3                           1 x
Domain:  1  x  1                 5   y  5 sin
                                                   3
                   3                 2
              3 x  3
Range:    y           -3            3     x
              2 5 2
             5       5            5
                 y           
              2        2             2
ii  y  tan 1  3  x 2 
ii  y  tan 1  3  x 2 

Domain: 3  x 2  0
              3x 3
ii  y  tan 1  3  x 2 

Domain: 3  x 2  0
              3x 3
 Range: x  3, y  tan 1 0
                 0
ii  y  tan 1  3  x 2 

Domain: 3  x 2  0
              3x 3
 Range: x  3, y  tan 1 0
                 0
             x   3, y  tan 1 0
                        0
ii  y  tan 1  3  x 2 

Domain: 3  x 2  0
              3x 3
 Range: x  3, y  tan 1 0
                 0
             x   3, y  tan 1 0
                        0
             x  0, y  tan 1 3
                           
                       
                           3
ii  y  tan 1  3  x 2 

Domain: 3  x 2  0
              3x 3
 Range: x  3, y  tan 1 0
                 0
             x   3, y  tan 1 0
                        0
             x  0, y  tan 1 3
                           
                       
                           3
                           
                 0 y
                           3
ii  y  tan 1  3  x 2 

Domain: 3  x 2  0
              3x 3                      y
 Range: x  3, y  tan 1 0                
                                           3
                 0
             x   3, y  tan 1 0
                        0                         x
                                      3       3
             x  0, y  tan 1 3
                           
                       
                           3
                           
                 0 y
                           3
ii  y  tan 1  3  x 2 

Domain: 3  x 2  0
              3x 3                      y
 Range: x  3, y  tan 1 0                            
                                               y  tan 1 3  x 2   
                                           3
                 0
             x   3, y  tan 1 0
                        0                                  x
                                      3          3
             x  0, y  tan 1 3
                           
                       
                           3
                           
                 0 y
                           3
(iii ) y  sin 1 sin x
(iii ) y  sin 1 sin x
Domain:  1  sin x  1
                all real x
(iii ) y  sin 1 sin x
Domain:  1  sin x  1
                  all real x

                         
Range:             y
              2           2
(iii ) y  sin 1 sin x
Domain:  1  sin x  1
                  all real x
                                            y
                         
Range:             y
              2           2         
                                    2

                                                 x
                                        
                                    
                                        2
(iii ) y  sin 1 sin x
Domain:  1  sin x  1
                  all real x
                                            y
                         
Range:             y
              2           2                    y  sin 1 sin x
                                    2

                                                           x
                                        
                                    
                                        2
(iv) y  sin sin 1 x
(iv) y  sin sin 1 x
Domain:  1  x  1
(iv) y  sin sin 1 x
Domain:  1  x  1

Range: when x  1, y  sin sin 1 1
                                
                         sin
                                2
                        1
(iv) y  sin sin 1 x
Domain:  1  x  1

Range: when x  1, y  sin sin 1 1
                                 
                          sin
                                 2
                       1
        when x  1, y  sin sin 1  1
                               
                         sin    
                               2
                         1
(iv) y  sin sin 1 x
Domain:  1  x  1

Range: when x  1, y  sin sin 1 1
                                 
                          sin
                                 2
                       1
        when x  1, y  sin sin 1  1
                              
                        sin       
                              2
                        1
        when x  0, y  sin sin 1 0
                        sin 0
                        0
                 1  y  1
y
(iv) y  sin sin 1 x
Domain:  1  x  1                              1

Range: when x  1, y  sin sin 1 1
                                            -1        1   x
                                 
                          sin                   -1
                                 2
                       1
        when x  1, y  sin sin 1  1
                              
                        sin       
                              2
                        1
        when x  0, y  sin sin 1 0
                        sin 0
                        0
                 1  y  1
y
(iv) y  sin sin 1 x
Domain:  1  x  1                                   y  sin sin 1 x
                                                 1

Range: when x  1, y  sin sin 1 1
                                            -1        1    x
                                 
                          sin                   -1
                                 2
                       1
        when x  1, y  sin sin 1  1
                              
                        sin       
                              2
                        1
        when x  0, y  sin sin 1 0
                        sin 0
                        0
                 1  y  1
y
(iv) y  sin sin 1 x
Domain:  1  x  1                                       y  sin sin 1 x
                                                  1

Range: when x  1, y  sin sin 1 1
                                             -1          1     x
                                 
                          sin                    -1
                                 2
                       1
        when x  1, y  sin sin 1  1
                              
                        sin       
                              2
                        1                 Exercise 1C; 2 to 5ace,
        when x  0, y  sin sin 1 0         6a b i,iii, 9, 11 to 15
                        sin 0
                        0
                 1  y  1

More Related Content

PDF
12X1 T05 03 graphing inverse trig (2010)
PDF
Calculus :Tutorial 3
PDF
12X1 T05 02 inverse trig functions (2010)
PDF
Pedro metodos 5
PDF
Limites trigonometricos1
PDF
Patrixusca
PDF
Limites funciones ii
PPTX
3.2.nenoteiktais integraalis
12X1 T05 03 graphing inverse trig (2010)
Calculus :Tutorial 3
12X1 T05 02 inverse trig functions (2010)
Pedro metodos 5
Limites trigonometricos1
Patrixusca
Limites funciones ii
3.2.nenoteiktais integraalis

What's hot (8)

PDF
Wiris edu ardo
PPSX
Shirin1
PDF
Ejercicios de limites 2º bach.ccss
PDF
Hephuongtrinh bookbooming
PDF
Algebra 3
PDF
Tarea 3
PDF
Serie de maclaurin para 1/(1-x)
PPTX
Modul 1 pd linier orde satu
Wiris edu ardo
Shirin1
Ejercicios de limites 2º bach.ccss
Hephuongtrinh bookbooming
Algebra 3
Tarea 3
Serie de maclaurin para 1/(1-x)
Modul 1 pd linier orde satu
Ad

Viewers also liked (15)

PDF
12 x1 t05 02 inverse trig functions (2012)
PDF
12 x1 t05 06 general solutions (2012)
PDF
12 x1 t05 04 differentiating inverse trig (2012)
PDF
11 x1 t01 06 equations & inequations (2013)
PDF
12 x1 t04 04 travel graphs (2013)
PDF
12 x1 t04 07 approximations to roots (2013)
PDF
12 x1 t04 02 growth & decay (2013)
PDF
12 x1 t05 05 integration with inverse trig (2012)
PDF
12 x1 t04 03 further growth & decay (2012)
PDF
12 x1 t04 06 integrating functions of time (2012)
PDF
12 x1 t04 01 rates of change (2013)
PDF
12 x1 t03 02 graphing trig functions (2013)
PDF
12 x1 t04 05 displacement, velocity, acceleration (2012)
PDF
12 x1 t05 01 inverse functions (2013)
PDF
12 x1 t05 06 general solutions (2013)
12 x1 t05 02 inverse trig functions (2012)
12 x1 t05 06 general solutions (2012)
12 x1 t05 04 differentiating inverse trig (2012)
11 x1 t01 06 equations & inequations (2013)
12 x1 t04 04 travel graphs (2013)
12 x1 t04 07 approximations to roots (2013)
12 x1 t04 02 growth & decay (2013)
12 x1 t05 05 integration with inverse trig (2012)
12 x1 t04 03 further growth & decay (2012)
12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 01 rates of change (2013)
12 x1 t03 02 graphing trig functions (2013)
12 x1 t04 05 displacement, velocity, acceleration (2012)
12 x1 t05 01 inverse functions (2013)
12 x1 t05 06 general solutions (2013)
Ad

More from Nigel Simmons (20)

PPT
Goodbye slideshare UPDATE
PPT
Goodbye slideshare
PDF
12 x1 t02 02 integrating exponentials (2014)
PDF
11 x1 t01 03 factorising (2014)
PDF
11 x1 t01 02 binomial products (2014)
PDF
12 x1 t02 01 differentiating exponentials (2014)
PDF
11 x1 t01 01 algebra & indices (2014)
PDF
12 x1 t01 03 integrating derivative on function (2013)
PDF
12 x1 t01 02 differentiating logs (2013)
PDF
12 x1 t01 01 log laws (2013)
PDF
X2 t02 04 forming polynomials (2013)
PDF
X2 t02 03 roots & coefficients (2013)
PDF
X2 t02 02 multiple roots (2013)
PDF
X2 t02 01 factorising complex expressions (2013)
PDF
11 x1 t16 07 approximations (2013)
PDF
11 x1 t16 06 derivative times function (2013)
PDF
11 x1 t16 05 volumes (2013)
PDF
11 x1 t16 04 areas (2013)
PDF
11 x1 t16 03 indefinite integral (2013)
PDF
11 x1 t16 02 definite integral (2013)
Goodbye slideshare UPDATE
Goodbye slideshare
12 x1 t02 02 integrating exponentials (2014)
11 x1 t01 03 factorising (2014)
11 x1 t01 02 binomial products (2014)
12 x1 t02 01 differentiating exponentials (2014)
11 x1 t01 01 algebra & indices (2014)
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 01 log laws (2013)
X2 t02 04 forming polynomials (2013)
X2 t02 03 roots & coefficients (2013)
X2 t02 02 multiple roots (2013)
X2 t02 01 factorising complex expressions (2013)
11 x1 t16 07 approximations (2013)
11 x1 t16 06 derivative times function (2013)
11 x1 t16 05 volumes (2013)
11 x1 t16 04 areas (2013)
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 02 definite integral (2013)

Recently uploaded (6)

PDF
کاریگەری دەربرێنی خۆش و دەربڕێنی ناخۆش لەسەر خوێندکار لە چووارچێوەی بەرێوەبرد...
PDF
فورمولر عمومی مضمون فزیک برای همه انجنیران
PPTX
Madison dsfnsd dslsf sada;sdmas;ds;dls.pptx
PDF
Cold positive punishment of the student سزادانی ئەرێنی ساردی قوتابی.pdf
PPTX
Presentation on chemistry class 11 and class 12
PDF
Materi seni rupa untuk sekolah dasar materi tentang seni rupa
کاریگەری دەربرێنی خۆش و دەربڕێنی ناخۆش لەسەر خوێندکار لە چووارچێوەی بەرێوەبرد...
فورمولر عمومی مضمون فزیک برای همه انجنیران
Madison dsfnsd dslsf sada;sdmas;ds;dls.pptx
Cold positive punishment of the student سزادانی ئەرێنی ساردی قوتابی.pdf
Presentation on chemistry class 11 and class 12
Materi seni rupa untuk sekolah dasar materi tentang seni rupa

12 x1 t05 03 graphing inverse trig (2012)

  • 2. Graphing Inverse Trig Functions x e.g i  y  5 sin 1 3
  • 3. Graphing Inverse Trig Functions x e.g i  y  5 sin 1 3 Domain:  1  x  1 3 3 x  3
  • 4. Graphing Inverse Trig Functions x e.g i  y  5 sin 1 3 Domain:  1  x  1 3 3 x  3 Range:    y   2 5 2 5 5   y 2 2
  • 5. Graphing Inverse Trig Functions x e.g i  y  5 sin 1 y 3 Domain:  1  x  1 5 3 2 3 x  3 Range:    y   -3 3 x 2 5 2 5 5 5   y  2 2 2
  • 6. Graphing Inverse Trig Functions x e.g i  y  5 sin 1 y 3 1 x Domain:  1  x  1 5 y  5 sin 3 3 2 3 x  3 Range:    y   -3 3 x 2 5 2 5 5 5   y  2 2 2
  • 7. ii  y  tan 1  3  x 2 
  • 8. ii  y  tan 1  3  x 2  Domain: 3  x 2  0  3x 3
  • 9. ii  y  tan 1  3  x 2  Domain: 3  x 2  0  3x 3 Range: x  3, y  tan 1 0 0
  • 10. ii  y  tan 1  3  x 2  Domain: 3  x 2  0  3x 3 Range: x  3, y  tan 1 0 0 x   3, y  tan 1 0 0
  • 11. ii  y  tan 1  3  x 2  Domain: 3  x 2  0  3x 3 Range: x  3, y  tan 1 0 0 x   3, y  tan 1 0 0 x  0, y  tan 1 3   3
  • 12. ii  y  tan 1  3  x 2  Domain: 3  x 2  0  3x 3 Range: x  3, y  tan 1 0 0 x   3, y  tan 1 0 0 x  0, y  tan 1 3   3  0 y 3
  • 13. ii  y  tan 1  3  x 2  Domain: 3  x 2  0  3x 3 y Range: x  3, y  tan 1 0  3 0 x   3, y  tan 1 0 0 x  3 3 x  0, y  tan 1 3   3  0 y 3
  • 14. ii  y  tan 1  3  x 2  Domain: 3  x 2  0  3x 3 y Range: x  3, y  tan 1 0   y  tan 1 3  x 2  3 0 x   3, y  tan 1 0 0 x  3 3 x  0, y  tan 1 3   3  0 y 3
  • 15. (iii ) y  sin 1 sin x
  • 16. (iii ) y  sin 1 sin x Domain:  1  sin x  1 all real x
  • 17. (iii ) y  sin 1 sin x Domain:  1  sin x  1 all real x   Range:   y 2 2
  • 18. (iii ) y  sin 1 sin x Domain:  1  sin x  1 all real x y   Range:   y 2 2  2   x   2
  • 19. (iii ) y  sin 1 sin x Domain:  1  sin x  1 all real x y   Range:   y 2 2  y  sin 1 sin x 2   x   2
  • 20. (iv) y  sin sin 1 x
  • 21. (iv) y  sin sin 1 x Domain:  1  x  1
  • 22. (iv) y  sin sin 1 x Domain:  1  x  1 Range: when x  1, y  sin sin 1 1   sin 2 1
  • 23. (iv) y  sin sin 1 x Domain:  1  x  1 Range: when x  1, y  sin sin 1 1   sin 2 1 when x  1, y  sin sin 1  1    sin    2  1
  • 24. (iv) y  sin sin 1 x Domain:  1  x  1 Range: when x  1, y  sin sin 1 1   sin 2 1 when x  1, y  sin sin 1  1    sin    2  1 when x  0, y  sin sin 1 0  sin 0 0 1  y  1
  • 25. y (iv) y  sin sin 1 x Domain:  1  x  1 1 Range: when x  1, y  sin sin 1 1 -1 1 x   sin -1 2 1 when x  1, y  sin sin 1  1    sin    2  1 when x  0, y  sin sin 1 0  sin 0 0 1  y  1
  • 26. y (iv) y  sin sin 1 x Domain:  1  x  1 y  sin sin 1 x 1 Range: when x  1, y  sin sin 1 1 -1 1 x   sin -1 2 1 when x  1, y  sin sin 1  1    sin    2  1 when x  0, y  sin sin 1 0  sin 0 0 1  y  1
  • 27. y (iv) y  sin sin 1 x Domain:  1  x  1 y  sin sin 1 x 1 Range: when x  1, y  sin sin 1 1 -1 1 x   sin -1 2 1 when x  1, y  sin sin 1  1    sin    2  1 Exercise 1C; 2 to 5ace, when x  0, y  sin sin 1 0 6a b i,iii, 9, 11 to 15  sin 0 0 1  y  1