Velocity & Acceleration in
        Terms of x
Velocity & Acceleration in
        Terms of x
If v = f(x);
Velocity & Acceleration in
        Terms of x
If v = f(x);
               d 2x d  1 2 
                      v 
               dt 2
                     dx  2 
Velocity & Acceleration in
        Terms of x
If v = f(x);
                     d 2x d  1 2 
                            v 
                     dt 2
                           dx  2 
 Proof: d 2 x dv
            2
              
        dt      dt
Velocity & Acceleration in
        Terms of x
If v = f(x);
                    d 2x d  1 2 
                           v 
                    dt 2
                          dx  2 
 Proof: d 2 x dv
            2
              
        dt      dt
                dv dx
               
                dx dt
Velocity & Acceleration in
        Terms of x
If v = f(x);
                    d 2x d  1 2 
                           v 
                    dt 2
                          dx  2 
 Proof: d 2 x dv
            2
              
        dt      dt
                dv dx
               
                dx dt
                dv
               v
                dx
Velocity & Acceleration in
        Terms of x
If v = f(x);
                     d 2x d  1 2 
                            v 
                     dt 2
                           dx  2 
 Proof: d 2 x dv
            2
              
        dt      dt
                dv dx
               
                dx dt
                dv
               v
                dx
                dv d  1 2 
                  v 
                dx dv  2 
Velocity & Acceleration in
        Terms of x
If v = f(x);
                     d 2x d  1 2 
                            v 
                     dt 2
                           dx  2 
 Proof: d 2 x dv
            2
              
        dt      dt
                dv dx
               
                dx dt
                dv
               v
                dx
                dv d  1 2 
                  v 
                dx dv  2 
                 v2 
                 d 1
                        
                 dx  2 
e.g. (i) A particle moves in a straight line so that   3  2 x
                                                      x
         Find its velocity in terms of x given that v = 2 when x = 1.
e.g. (i) A particle moves in a straight line so that   3  2 x
                                                      x
         Find its velocity in terms of x given that v = 2 when x = 1.
       d 1 2 
           v   3  2x
       dx  2 
e.g. (i) A particle moves in a straight line so that   3  2 x
                                                      x
         Find its velocity in terms of x given that v = 2 when x = 1.
       d 1 2 
           v   3  2x
       dx  2 
             1 2
               v  3x  x 2  c
             2
e.g. (i) A particle moves in a straight line so that   3  2 x
                                                      x
         Find its velocity in terms of x given that v = 2 when x = 1.
       d 1 2 
           v   3  2x
       dx  2 
             1 2
               v  3x  x 2  c
             2
             when x  1, v  2
             1 2
         i.e. 2   31  12  c
             2
                  c0
e.g. (i) A particle moves in a straight line so that   3  2 x
                                                      x
         Find its velocity in terms of x given that v = 2 when x = 1.
       d 1 2 
           v   3  2x
       dx  2 
             1 2
               v  3x  x 2  c
             2
             when x  1, v  2
             1 2
         i.e. 2   31  12  c
             2
                  c0
             v2  6x  2x2
e.g. (i) A particle moves in a straight line so that   3  2 x
                                                      x
         Find its velocity in terms of x given that v = 2 when x = 1.
       d 1 2 
           v   3  2x
       dx  2 
             1 2
               v  3x  x 2  c
             2
             when x  1, v  2
             1 2
         i.e. 2   31  12  c
             2
                  c0
             v2  6x  2x2

                 v   6x  2x2
e.g. (i) A particle moves in a straight line so that   3  2 x
                                                      x
         Find its velocity in terms of x given that v = 2 when x = 1.
       d 1 2 
           v   3  2x
       dx  2 
                                          NOTE:
             1 2
               v  3x  x 2  c
             2                                        v2  0
             when x  1, v  2
             1 2
         i.e. 2   31  12  c
             2
                  c0
             v2  6x  2x2

                 v   6x  2x2
e.g. (i) A particle moves in a straight line so that   3  2 x
                                                      x
         Find its velocity in terms of x given that v = 2 when x = 1.
       d 1 2 
           v   3  2x
       dx  2 
                                          NOTE:
             1 2
               v  3x  x 2  c
             2                                        v2  0
             when x  1, v  2                   6x  2x2  0
             1 2
         i.e. 2   31  12  c
             2
                  c0
             v2  6x  2x2

                 v   6x  2x2
e.g. (i) A particle moves in a straight line so that   3  2 x
                                                      x
         Find its velocity in terms of x given that v = 2 when x = 1.
       d 1 2 
           v   3  2x
       dx  2 
                                          NOTE:
             1 2
               v  3x  x 2  c
             2                                        v2  0
             when x  1, v  2                   6x  2x2  0
             1 2
         i.e. 2   31  12  c              2 x3  x   0
             2
                  c0
             v2  6x  2x2

                 v   6x  2x2
e.g. (i) A particle moves in a straight line so that   3  2 x
                                                      x
         Find its velocity in terms of x given that v = 2 when x = 1.
       d 1 2 
           v   3  2x
       dx  2 
                                          NOTE:
             1 2
               v  3x  x 2  c
             2                                        v2  0
             when x  1, v  2                   6x  2x2  0
             1 2
         i.e. 2   31  12  c              2 x3  x   0
             2
                                                    0 x3
                  c0
             v2  6x  2x2

                 v   6x  2x2
e.g. (i) A particle moves in a straight line so that   3  2 x
                                                      x
         Find its velocity in terms of x given that v = 2 when x = 1.
       d 1 2 
           v   3  2x
       dx  2 
                                          NOTE:
             1 2
               v  3x  x 2  c
             2                                        v2  0
             when x  1, v  2                   6x  2x2  0
             1 2
         i.e. 2   31  12  c              2 x3  x   0
             2
                                                    0 x3
                  c0
                                         Particle moves between x = 0
             v  6x  2x
                 2           2
                                          and x = 3 and nowhere else.
                 v   6x  2x2
(ii) A particle’s acceleration is given by   3x 2 Initially, the particle is
                                             x     .
     1 unit to the right of O, and is traveling with a velocity of 2m/s in
     the negative direction. Find x in terms of t.
(ii) A particle’s acceleration is given by   3x 2 Initially, the particle is
                                             x     .
     1 unit to the right of O, and is traveling with a velocity of 2m/s in
     the negative direction. Find x in terms of t.

      d 1 2 
           v   3x 2
      dx  2 
(ii) A particle’s acceleration is given by   3x 2 Initially, the particle is
                                             x     .
     1 unit to the right of O, and is traveling with a velocity of 2m/s in
     the negative direction. Find x in terms of t.

      d 1 2 
            v   3x 2
      dx  2 
           1 2
             v  x3  c
           2
(ii) A particle’s acceleration is given by   3x 2 Initially, the particle is
                                             x     .
     1 unit to the right of O, and is traveling with a velocity of 2m/s in
     the negative direction. Find x in terms of t.

     d 1 2 
           v   3x 2
     dx  2 
          1 2
            v  x3  c
          2
  when t  0, x  1, v   2

    i.e.
           1
              2 2  13  c
           2
               c0
(ii) A particle’s acceleration is given by   3x 2 Initially, the particle is
                                             x     .
     1 unit to the right of O, and is traveling with a velocity of 2m/s in
     the negative direction. Find x in terms of t.

     d 1 2 
           v   3x 2
     dx  2 
          1 2
            v  x3  c
          2
  when t  0, x  1, v   2

    i.e.
           1
              2 2  13  c
           2
               c0
            v 2  2 x3
           v   2 x3
(ii) A particle’s acceleration is given by   3x 2 Initially, the particle is
                                             x     .
     1 unit to the right of O, and is traveling with a velocity of 2m/s in
     the negative direction. Find x in terms of t.

     d 1 2 
           v   3x 2                   dx
                                              2x 3
     dx  2                             dt
          1 2
            v  x3  c
          2
  when t  0, x  1, v   2

   i.e.  2   13  c
       1        2

       2
            c0
          v 2  2 x3
         v   2 x3
(ii) A particle’s acceleration is given by   3x 2 Initially, the particle is
                                             x     .
     1 unit to the right of O, and is traveling with a velocity of 2m/s in
     the negative direction. Find x in terms of t.

     d 1 2                                        (Choose –ve to satisfy
           v   3x 2                   dx
                                              2x the initial conditions)
                                                  3
     dx  2                             dt
          1 2
            v  x3  c
          2
  when t  0, x  1, v   2

   i.e.  2   13  c
       1        2

       2
            c0
          v 2  2 x3
         v   2 x3
(ii) A particle’s acceleration is given by   3x 2 Initially, the particle is
                                             x     .
     1 unit to the right of O, and is traveling with a velocity of 2m/s in
     the negative direction. Find x in terms of t.

     d 1 2                                        (Choose –ve to satisfy
           v   3x 2                   dx
                                              2x the initial conditions)
                                                  3
     dx  2                             dt
          1 2
            v  x3  c
                                                      3

          2                                    2x   2

  when t  0, x  1, v   2

   i.e.  2   13  c
       1        2

       2
            c0
          v 2  2 x3
         v   2 x3
(ii) A particle’s acceleration is given by   3x 2 Initially, the particle is
                                             x     .
     1 unit to the right of O, and is traveling with a velocity of 2m/s in
     the negative direction. Find x in terms of t.

     d 1 2                                        (Choose –ve to satisfy
           v   3x 2                   dx
                                              2x the initial conditions)
                                                  3
     dx  2                             dt
          1 2
            v  x3  c
                                                      3

          2                                    2x   2

  when t  0, x  1, v   2                              3
                                         dt    1 2
                                            
    i.e.
           1
              2 2  13  c            dx     2
                                                  x
           2
               c0
            v 2  2 x3
           v   2 x3
3
dt    1 2
       x
dx     2
3
                         dt    1 2
                                x
                         dx     2
                     1
    1        
t     2 x 2  c
     2
            1
        
  2x       2
                c
     2
      c
     x
3
                          dt    1 2
                                 x
                          dx     2
                      1
    1        
t     2 x 2  c
     2
             1
         
   2x       2
                 c
     2
      c
     x
when t = 0, x = 1
3
                          dt    1 2
                                 x
                          dx     2
                      1
    1        
t     2 x 2  c
     2
             1
         
   2x       2
                 c
     2
      c
     x
when t = 0, x = 1
 i.e. 0  2  c
      c 2
3
                          dt    1 2
                                 x
                          dx     2
                      1
    1        
t     2 x 2  c
     2
             1
         
   2x       2
                 c
     2
      c
     x
when t = 0, x = 1
 i.e. 0  2  c
   c 2
   2
t    2
   x
3
                          dt    1 2
                                 x
                          dx     2
                      1
    1        
t     2 x 2  c          OR
     2
             1
         
   2x       2
                 c
     2
      c
     x
when t = 0, x = 1
 i.e. 0  2  c
   c 2
   2
t    2
   x
3
                          dt    1 2
                                 x
                          dx     2
                      1                       x   3
    1                                     1    

                                            2
t     2 x 2  c          OR        t     x 2 dx
     2                                       1
             1
         
   2x       2
                 c
     2
      c
     x
when t = 0, x = 1
 i.e. 0  2  c
   c 2
   2
t    2
   x
3
                          dt    1 2
                                 x
                          dx     2
                      1                       x   3
    1                                     1    

                                            2
t     2 x 2  c          OR        t     x 2 dx
     2                                       1
             1                                              x
         
   2x       2
                 c                        1        
                                                        1
                                            2 x 
                                                        2

     2                                      2      1
      c
     x
when t = 0, x = 1
 i.e. 0  2  c
   c 2
   2
t    2
   x
3
                          dt    1 2
                                 x
                          dx     2
                      1                       x   3
    1                                     1    

                                            2
t     2 x 2  c          OR        t     x 2 dx
     2                                       1
             1                                              x
         
   2x       2
                 c                        1        
                                                        1
                                            2 x 
                                                        2

     2                                      2      1
      c
     x                                      1  1
when t = 0, x = 1                        2      
                                             x 
 i.e. 0  2  c
   c 2
   2
t    2
   x
3
                          dt    1 2
                                 x
                          dx     2
                      1                       x   3
    1                                     1    

                                            2
t     2 x 2  c          OR        t     x 2 dx
     2                                       1
             1                                              x
         
   2x       2
                 c                        1        
                                                        1
                                            2 x 
                                                        2

     2                                      2      1
      c
     x                                      1  1
when t = 0, x = 1                        2      
                                             x 
                                2
 i.e. 0  2  c           t 2
                                x
   c 2
   2
t    2
   x
3
                          dt    1 2
                                 x
                          dx     2
                      1                          x   3
    1                                        1    

                                               2
t     2 x 2  c          OR           t     x 2 dx
     2                                          1
             1                                                 x
         
   2x       2
                 c                           1        
                                                           1
                                               2 x 
                                                           2

     2                                         2      1
      c
     x                                         1  1
when t = 0, x = 1                           2      
                                                x 
                                2
 i.e. 0  2  c           t 2
                                x
   c 2
                             t  2 
                          2           2
   2
t    2                  x
   x
3
                          dt    1 2
                                 x
                          dx     2
                      1                           x   3
    1                                         1    

                                                2
t     2 x 2  c          OR            t     x 2 dx
     2                                           1
             1                                                  x
         
   2x       2
                 c                            1        
                                                            1
                                                2 x 
                                                            2

     2                                          2      1
      c
     x                                          1  1
when t = 0, x = 1                            2      
                                                 x 
                                2
 i.e. 0  2  c           t 2
                                x
   c 2
                             t  2 
                          2            2
   2
t    2                  x
   x
                                  2
                          x
                              t  2 2
2004 Extension 1 HSC Q5a)
A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by   2 x 3  2 x
                                          x
(i) Show that x  x 2  1
              
2004 Extension 1 HSC Q5a)
A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by   2 x 3  2 x
                                          x
(i) Show that x  x 2  1
              
                d 1 2 
                    v   2x  2x
                             3

                dx  2 
2004 Extension 1 HSC Q5a)
A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by   2 x 3  2 x
                                          x
(i) Show that x  x 2  1
              
                d 1 2 
                    v   2x  2x
                             3

                dx  2 
                      1 2 1 4
                        v  x  x2  c
                      2    2
2004 Extension 1 HSC Q5a)
A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by   2 x 3  2 x
                                          x
(i) Show that x  x 2  1
              
                d 1 2 
                    v   2x  2x
                             3

                dx  2 
                      1 2 1 4
                        v  x  x2  c
                      2    2
  When x = 2, v = 5
2004 Extension 1 HSC Q5a)
A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by   2 x 3  2 x
                                          x
(i) Show that x  x 2  1
              
                d 1 2 
                    v   2x  2x
                             3

                dx  2 
                      1 2 1 4
                        v  x  x2  c
                      2    2
  When x = 2, v = 5
                  1        1
                     25  16    4   c
                  2        2
                           1
                        c
                           2
2004 Extension 1 HSC Q5a)
A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by   2 x 3  2 x
                                          x
(i) Show that x  x 2  1
              
                d 1 2 
                    v   2x  2x
                             3

                dx  2 
                      1 2 1 4
                        v  x  x2  c
                      2    2
  When x = 2, v = 5
                  1        1
                     25  16    4   c
                  2        2
                           1
                        c
                           2
                       v2  x4  2x2 1
2004 Extension 1 HSC Q5a)
A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by   2 x 3  2 x
                                          x
(i) Show that x  x 2  1
              
                d 1 2 
                    v   2x  2x
                             3

                dx  2 
                      1 2 1 4
                        v  x  x2  c
                      2    2
  When x = 2, v = 5

                                                      v  x  1
                  1        1
                     25  16    4   c           2     2    2

                  2        2
                           1
                        c
                           2
                       v2  x4  2x2 1
2004 Extension 1 HSC Q5a)
A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by   2 x 3  2 x
                                          x
(i) Show that x  x 2  1
              
                d 1 2 
                    v   2x  2x
                             3

                dx  2 
                      1 2 1 4
                        v  x  x2  c
                      2    2
  When x = 2, v = 5

                                                      v  x  1
                  1        1
                     25  16    4   c           2     2     2

                  2        2
                           1                            v  x2 1
                        c
                           2
                       v2  x4  2x2 1
2004 Extension 1 HSC Q5a)
A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by   2 x 3  2 x
                                          x
(i) Show that x  x 2  1
              
                d 1 2 
                    v   2x  2x
                             3

                dx  2 
                      1 2 1 4
                        v  x  x2  c
                      2    2
  When x = 2, v = 5

                                                      v  x  1
                  1        1
                     25  16    4   c           2     2     2

                  2        2
                           1                            v  x2 1
                        c
                           2                      Note: v > 0, in order
                       v2  x4  2x2 1             to satisfy initial
                                                       conditions
(ii) Hence find an expression for x in terms of t
(ii) Hence find an expression for x in terms of t
     dx
         x2 1
     dt
(ii) Hence find an expression for x in terms of t
      dx
          x2 1
      dt
    t      x
               dx
     dt   x 2  1
    0      2
(ii) Hence find an expression for x in terms of t
      dx
          x2 1
      dt
    t      x
               dx
     dt   x 2  1
    0      2

     t  tan x 2
             1   x
(ii) Hence find an expression for x in terms of t
      dx
          x2 1
      dt
    t      x
               dx
     dt   x 2  1
    0      2

     t  tan x 2
             1   x



     t  tan 1 x  tan 1 2
(ii) Hence find an expression for x in terms of t
      dx
          x2 1
      dt
    t      x
               dx
     dt   x 2  1
    0      2

     t  tan x 2
             1   x



     t  tan 1 x  tan 1 2

     tan 1 x  t  tan 1 2
(ii) Hence find an expression for x in terms of t
      dx
          x2 1
      dt
    t      x
               dx
     dt   x 2  1
    0      2

     t  tan x 2
              1   x



     t  tan 1 x  tan 1 2

     tan 1 x  t  tan 1 2
      x  tan t  tan 1 2 
(ii) Hence find an expression for x in terms of t
      dx
          x2 1
      dt
    t      x
               dx
     dt   x 2  1
    0      2

     t  tan x 2
              1   x



     t  tan 1 x  tan 1 2

     tan 1 x  t  tan 1 2
      x  tan t  tan 1 2 
          tan t  2
      x
         1  2 tan t
(ii) Hence find an expression for x in terms of t
      dx
          x2 1
      dt
    t      x
               dx
     dt   x 2  1
    0      2

     t  tan x 2
              1   x

                                           Exercise 3E; 1 to 3 acfh,
     t  tan 1 x  tan 1 2                7 , 9, 11, 13, 15, 17, 18,
                                                    20, 21, 24*
     tan 1 x  t  tan 1 2
      x  tan t  tan 1 2 
          tan t  2
      x
         1  2 tan t

More Related Content

PPTX
(SUCESIONES) progresiones
PPTX
Integración por método de sustitución
PDF
Game Programming 11 - Game Physics
PPT
12 X1 T07 01 V And A In Terms Of X
PDF
12 x1 t07 02 v and a in terms of x (2013)
PPTX
Differential equations
PPTX
Antiderivatives nako sa calculus official
PDF
Torsion of circular shafts
(SUCESIONES) progresiones
Integración por método de sustitución
Game Programming 11 - Game Physics
12 X1 T07 01 V And A In Terms Of X
12 x1 t07 02 v and a in terms of x (2013)
Differential equations
Antiderivatives nako sa calculus official
Torsion of circular shafts

Similar to 12 x1 t07 02 v and a in terms of x (2012) (20)

PDF
Sect1 6
PPT
11X1 T09 03 second derivative
PDF
Calculus Final Exam
PDF
PDF
Maths assignment
PDF
PDF
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
PDF
Cross product
DOC
Differential Equation Tutorial 1
DOC
Chapter 4(differentiation)
PDF
Lesson 6 Nov 23 24 09
PDF
Sect1 4
PDF
X2 T08 03 inequalities & graphs (2011)
PDF
X2 t08 03 inequalities & graphs (2012)
PDF
X2 T08 01 inequalities and graphs (2010)
PDF
Coordinate system transformation
PDF
Coordinate transformations
DOCX
1 d wave equation
DOCX
Answer to selected_miscellaneous_exercises
PDF
Week 2
Sect1 6
11X1 T09 03 second derivative
Calculus Final Exam
Maths assignment
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Cross product
Differential Equation Tutorial 1
Chapter 4(differentiation)
Lesson 6 Nov 23 24 09
Sect1 4
X2 T08 03 inequalities & graphs (2011)
X2 t08 03 inequalities & graphs (2012)
X2 T08 01 inequalities and graphs (2010)
Coordinate system transformation
Coordinate transformations
1 d wave equation
Answer to selected_miscellaneous_exercises
Week 2
Ad

More from Nigel Simmons (20)

PPT
Goodbye slideshare UPDATE
PPT
Goodbye slideshare
PDF
12 x1 t02 02 integrating exponentials (2014)
PDF
11 x1 t01 03 factorising (2014)
PDF
11 x1 t01 02 binomial products (2014)
PDF
12 x1 t02 01 differentiating exponentials (2014)
PDF
11 x1 t01 01 algebra & indices (2014)
PDF
12 x1 t01 03 integrating derivative on function (2013)
PDF
12 x1 t01 02 differentiating logs (2013)
PDF
12 x1 t01 01 log laws (2013)
PDF
X2 t02 04 forming polynomials (2013)
PDF
X2 t02 03 roots & coefficients (2013)
PDF
X2 t02 02 multiple roots (2013)
PDF
X2 t02 01 factorising complex expressions (2013)
PDF
11 x1 t16 07 approximations (2013)
PDF
11 x1 t16 06 derivative times function (2013)
PDF
11 x1 t16 05 volumes (2013)
PDF
11 x1 t16 04 areas (2013)
PDF
11 x1 t16 03 indefinite integral (2013)
PDF
11 x1 t16 02 definite integral (2013)
Goodbye slideshare UPDATE
Goodbye slideshare
12 x1 t02 02 integrating exponentials (2014)
11 x1 t01 03 factorising (2014)
11 x1 t01 02 binomial products (2014)
12 x1 t02 01 differentiating exponentials (2014)
11 x1 t01 01 algebra & indices (2014)
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 01 log laws (2013)
X2 t02 04 forming polynomials (2013)
X2 t02 03 roots & coefficients (2013)
X2 t02 02 multiple roots (2013)
X2 t02 01 factorising complex expressions (2013)
11 x1 t16 07 approximations (2013)
11 x1 t16 06 derivative times function (2013)
11 x1 t16 05 volumes (2013)
11 x1 t16 04 areas (2013)
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 02 definite integral (2013)
Ad

Recently uploaded (20)

PPTX
Education and Perspectives of Education.pptx
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PDF
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 2).pdf
PPTX
Share_Module_2_Power_conflict_and_negotiation.pptx
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PDF
semiconductor packaging in vlsi design fab
PDF
International_Financial_Reporting_Standa.pdf
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PPTX
Computer Architecture Input Output Memory.pptx
PDF
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
PDF
Complications of Minimal Access-Surgery.pdf
PDF
HVAC Specification 2024 according to central public works department
PDF
LIFE & LIVING TRILOGY- PART (1) WHO ARE WE.pdf
PDF
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 1).pdf
PDF
My India Quiz Book_20210205121199924.pdf
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
Journal of Dental Science - UDMY (2021).pdf
Education and Perspectives of Education.pptx
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 2).pdf
Share_Module_2_Power_conflict_and_negotiation.pptx
Cambridge-Practice-Tests-for-IELTS-12.docx
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
semiconductor packaging in vlsi design fab
International_Financial_Reporting_Standa.pdf
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
Computer Architecture Input Output Memory.pptx
Skin Care and Cosmetic Ingredients Dictionary ( PDFDrive ).pdf
Complications of Minimal Access-Surgery.pdf
HVAC Specification 2024 according to central public works department
LIFE & LIVING TRILOGY- PART (1) WHO ARE WE.pdf
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 1).pdf
My India Quiz Book_20210205121199924.pdf
B.Sc. DS Unit 2 Software Engineering.pptx
What if we spent less time fighting change, and more time building what’s rig...
Journal of Dental Science - UDMY (2021).pdf

12 x1 t07 02 v and a in terms of x (2012)

  • 1. Velocity & Acceleration in Terms of x
  • 2. Velocity & Acceleration in Terms of x If v = f(x);
  • 3. Velocity & Acceleration in Terms of x If v = f(x); d 2x d  1 2    v  dt 2 dx  2 
  • 4. Velocity & Acceleration in Terms of x If v = f(x); d 2x d  1 2    v  dt 2 dx  2  Proof: d 2 x dv 2  dt dt
  • 5. Velocity & Acceleration in Terms of x If v = f(x); d 2x d  1 2    v  dt 2 dx  2  Proof: d 2 x dv 2  dt dt dv dx   dx dt
  • 6. Velocity & Acceleration in Terms of x If v = f(x); d 2x d  1 2    v  dt 2 dx  2  Proof: d 2 x dv 2  dt dt dv dx   dx dt dv  v dx
  • 7. Velocity & Acceleration in Terms of x If v = f(x); d 2x d  1 2    v  dt 2 dx  2  Proof: d 2 x dv 2  dt dt dv dx   dx dt dv  v dx dv d  1 2     v  dx dv  2 
  • 8. Velocity & Acceleration in Terms of x If v = f(x); d 2x d  1 2    v  dt 2 dx  2  Proof: d 2 x dv 2  dt dt dv dx   dx dt dv  v dx dv d  1 2     v  dx dv  2    v2  d 1   dx  2 
  • 9. e.g. (i) A particle moves in a straight line so that   3  2 x x Find its velocity in terms of x given that v = 2 when x = 1.
  • 10. e.g. (i) A particle moves in a straight line so that   3  2 x x Find its velocity in terms of x given that v = 2 when x = 1. d 1 2   v   3  2x dx  2 
  • 11. e.g. (i) A particle moves in a straight line so that   3  2 x x Find its velocity in terms of x given that v = 2 when x = 1. d 1 2   v   3  2x dx  2  1 2 v  3x  x 2  c 2
  • 12. e.g. (i) A particle moves in a straight line so that   3  2 x x Find its velocity in terms of x given that v = 2 when x = 1. d 1 2   v   3  2x dx  2  1 2 v  3x  x 2  c 2 when x  1, v  2 1 2 i.e. 2   31  12  c 2 c0
  • 13. e.g. (i) A particle moves in a straight line so that   3  2 x x Find its velocity in terms of x given that v = 2 when x = 1. d 1 2   v   3  2x dx  2  1 2 v  3x  x 2  c 2 when x  1, v  2 1 2 i.e. 2   31  12  c 2 c0 v2  6x  2x2
  • 14. e.g. (i) A particle moves in a straight line so that   3  2 x x Find its velocity in terms of x given that v = 2 when x = 1. d 1 2   v   3  2x dx  2  1 2 v  3x  x 2  c 2 when x  1, v  2 1 2 i.e. 2   31  12  c 2 c0 v2  6x  2x2 v   6x  2x2
  • 15. e.g. (i) A particle moves in a straight line so that   3  2 x x Find its velocity in terms of x given that v = 2 when x = 1. d 1 2   v   3  2x dx  2  NOTE: 1 2 v  3x  x 2  c 2 v2  0 when x  1, v  2 1 2 i.e. 2   31  12  c 2 c0 v2  6x  2x2 v   6x  2x2
  • 16. e.g. (i) A particle moves in a straight line so that   3  2 x x Find its velocity in terms of x given that v = 2 when x = 1. d 1 2   v   3  2x dx  2  NOTE: 1 2 v  3x  x 2  c 2 v2  0 when x  1, v  2 6x  2x2  0 1 2 i.e. 2   31  12  c 2 c0 v2  6x  2x2 v   6x  2x2
  • 17. e.g. (i) A particle moves in a straight line so that   3  2 x x Find its velocity in terms of x given that v = 2 when x = 1. d 1 2   v   3  2x dx  2  NOTE: 1 2 v  3x  x 2  c 2 v2  0 when x  1, v  2 6x  2x2  0 1 2 i.e. 2   31  12  c 2 x3  x   0 2 c0 v2  6x  2x2 v   6x  2x2
  • 18. e.g. (i) A particle moves in a straight line so that   3  2 x x Find its velocity in terms of x given that v = 2 when x = 1. d 1 2   v   3  2x dx  2  NOTE: 1 2 v  3x  x 2  c 2 v2  0 when x  1, v  2 6x  2x2  0 1 2 i.e. 2   31  12  c 2 x3  x   0 2 0 x3 c0 v2  6x  2x2 v   6x  2x2
  • 19. e.g. (i) A particle moves in a straight line so that   3  2 x x Find its velocity in terms of x given that v = 2 when x = 1. d 1 2   v   3  2x dx  2  NOTE: 1 2 v  3x  x 2  c 2 v2  0 when x  1, v  2 6x  2x2  0 1 2 i.e. 2   31  12  c 2 x3  x   0 2 0 x3 c0 Particle moves between x = 0 v  6x  2x 2 2 and x = 3 and nowhere else. v   6x  2x2
  • 20. (ii) A particle’s acceleration is given by   3x 2 Initially, the particle is x . 1 unit to the right of O, and is traveling with a velocity of 2m/s in the negative direction. Find x in terms of t.
  • 21. (ii) A particle’s acceleration is given by   3x 2 Initially, the particle is x . 1 unit to the right of O, and is traveling with a velocity of 2m/s in the negative direction. Find x in terms of t. d 1 2   v   3x 2 dx  2 
  • 22. (ii) A particle’s acceleration is given by   3x 2 Initially, the particle is x . 1 unit to the right of O, and is traveling with a velocity of 2m/s in the negative direction. Find x in terms of t. d 1 2   v   3x 2 dx  2  1 2 v  x3  c 2
  • 23. (ii) A particle’s acceleration is given by   3x 2 Initially, the particle is x . 1 unit to the right of O, and is traveling with a velocity of 2m/s in the negative direction. Find x in terms of t. d 1 2   v   3x 2 dx  2  1 2 v  x3  c 2 when t  0, x  1, v   2 i.e. 1  2 2  13  c 2 c0
  • 24. (ii) A particle’s acceleration is given by   3x 2 Initially, the particle is x . 1 unit to the right of O, and is traveling with a velocity of 2m/s in the negative direction. Find x in terms of t. d 1 2   v   3x 2 dx  2  1 2 v  x3  c 2 when t  0, x  1, v   2 i.e. 1  2 2  13  c 2 c0  v 2  2 x3 v   2 x3
  • 25. (ii) A particle’s acceleration is given by   3x 2 Initially, the particle is x . 1 unit to the right of O, and is traveling with a velocity of 2m/s in the negative direction. Find x in terms of t. d 1 2   v   3x 2 dx   2x 3 dx  2  dt 1 2 v  x3  c 2 when t  0, x  1, v   2 i.e.  2   13  c 1 2 2 c0  v 2  2 x3 v   2 x3
  • 26. (ii) A particle’s acceleration is given by   3x 2 Initially, the particle is x . 1 unit to the right of O, and is traveling with a velocity of 2m/s in the negative direction. Find x in terms of t. d 1 2  (Choose –ve to satisfy  v   3x 2 dx   2x the initial conditions) 3 dx  2  dt 1 2 v  x3  c 2 when t  0, x  1, v   2 i.e.  2   13  c 1 2 2 c0  v 2  2 x3 v   2 x3
  • 27. (ii) A particle’s acceleration is given by   3x 2 Initially, the particle is x . 1 unit to the right of O, and is traveling with a velocity of 2m/s in the negative direction. Find x in terms of t. d 1 2  (Choose –ve to satisfy  v   3x 2 dx   2x the initial conditions) 3 dx  2  dt 1 2 v  x3  c 3 2   2x 2 when t  0, x  1, v   2 i.e.  2   13  c 1 2 2 c0  v 2  2 x3 v   2 x3
  • 28. (ii) A particle’s acceleration is given by   3x 2 Initially, the particle is x . 1 unit to the right of O, and is traveling with a velocity of 2m/s in the negative direction. Find x in terms of t. d 1 2  (Choose –ve to satisfy  v   3x 2 dx   2x the initial conditions) 3 dx  2  dt 1 2 v  x3  c 3 2   2x 2 when t  0, x  1, v   2 3 dt 1 2  i.e. 1  2 2  13  c dx 2 x 2 c0  v 2  2 x3 v   2 x3
  • 29. 3 dt 1 2  x dx 2
  • 30. 3 dt 1 2  x dx 2 1 1  t  2 x 2  c 2 1   2x 2 c 2  c x
  • 31. 3 dt 1 2  x dx 2 1 1  t  2 x 2  c 2 1   2x 2 c 2  c x when t = 0, x = 1
  • 32. 3 dt 1 2  x dx 2 1 1  t  2 x 2  c 2 1   2x 2 c 2  c x when t = 0, x = 1 i.e. 0  2  c c 2
  • 33. 3 dt 1 2  x dx 2 1 1  t  2 x 2  c 2 1   2x 2 c 2  c x when t = 0, x = 1 i.e. 0  2  c c 2 2 t  2 x
  • 34. 3 dt 1 2  x dx 2 1 1  t  2 x 2  c OR 2 1   2x 2 c 2  c x when t = 0, x = 1 i.e. 0  2  c c 2 2 t  2 x
  • 35. 3 dt 1 2  x dx 2 1 x 3 1  1  2 t  2 x 2  c OR t x 2 dx 2 1 1   2x 2 c 2  c x when t = 0, x = 1 i.e. 0  2  c c 2 2 t  2 x
  • 36. 3 dt 1 2  x dx 2 1 x 3 1  1  2 t  2 x 2  c OR t x 2 dx 2 1 1 x   2x 2 c 1    1   2 x  2 2 2 1  c x when t = 0, x = 1 i.e. 0  2  c c 2 2 t  2 x
  • 37. 3 dt 1 2  x dx 2 1 x 3 1  1  2 t  2 x 2  c OR t x 2 dx 2 1 1 x   2x 2 c 1    1   2 x  2 2 2 1  c x  1  1 when t = 0, x = 1  2   x  i.e. 0  2  c c 2 2 t  2 x
  • 38. 3 dt 1 2  x dx 2 1 x 3 1  1  2 t  2 x 2  c OR t x 2 dx 2 1 1 x   2x 2 c 1    1   2 x  2 2 2 1  c x  1  1 when t = 0, x = 1  2   x  2 i.e. 0  2  c t 2 x c 2 2 t  2 x
  • 39. 3 dt 1 2  x dx 2 1 x 3 1  1  2 t  2 x 2  c OR t x 2 dx 2 1 1 x   2x 2 c 1    1   2 x  2 2 2 1  c x  1  1 when t = 0, x = 1  2   x  2 i.e. 0  2  c t 2 x c 2  t  2  2 2 2 t  2 x x
  • 40. 3 dt 1 2  x dx 2 1 x 3 1  1  2 t  2 x 2  c OR t x 2 dx 2 1 1 x   2x 2 c 1    1   2 x  2 2 2 1  c x  1  1 when t = 0, x = 1  2   x  2 i.e. 0  2  c t 2 x c 2  t  2  2 2 2 t  2 x x 2 x t  2 2
  • 41. 2004 Extension 1 HSC Q5a) A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by   2 x 3  2 x x (i) Show that x  x 2  1 
  • 42. 2004 Extension 1 HSC Q5a) A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by   2 x 3  2 x x (i) Show that x  x 2  1  d 1 2   v   2x  2x 3 dx  2 
  • 43. 2004 Extension 1 HSC Q5a) A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by   2 x 3  2 x x (i) Show that x  x 2  1  d 1 2   v   2x  2x 3 dx  2  1 2 1 4 v  x  x2  c 2 2
  • 44. 2004 Extension 1 HSC Q5a) A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by   2 x 3  2 x x (i) Show that x  x 2  1  d 1 2   v   2x  2x 3 dx  2  1 2 1 4 v  x  x2  c 2 2 When x = 2, v = 5
  • 45. 2004 Extension 1 HSC Q5a) A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by   2 x 3  2 x x (i) Show that x  x 2  1  d 1 2   v   2x  2x 3 dx  2  1 2 1 4 v  x  x2  c 2 2 When x = 2, v = 5 1 1  25  16    4   c 2 2 1 c 2
  • 46. 2004 Extension 1 HSC Q5a) A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by   2 x 3  2 x x (i) Show that x  x 2  1  d 1 2   v   2x  2x 3 dx  2  1 2 1 4 v  x  x2  c 2 2 When x = 2, v = 5 1 1  25  16    4   c 2 2 1 c 2 v2  x4  2x2 1
  • 47. 2004 Extension 1 HSC Q5a) A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by   2 x 3  2 x x (i) Show that x  x 2  1  d 1 2   v   2x  2x 3 dx  2  1 2 1 4 v  x  x2  c 2 2 When x = 2, v = 5 v  x  1 1 1  25  16    4   c 2 2 2 2 2 1 c 2 v2  x4  2x2 1
  • 48. 2004 Extension 1 HSC Q5a) A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by   2 x 3  2 x x (i) Show that x  x 2  1  d 1 2   v   2x  2x 3 dx  2  1 2 1 4 v  x  x2  c 2 2 When x = 2, v = 5 v  x  1 1 1  25  16    4   c 2 2 2 2 2 1 v  x2 1 c 2 v2  x4  2x2 1
  • 49. 2004 Extension 1 HSC Q5a) A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by   2 x 3  2 x x (i) Show that x  x 2  1  d 1 2   v   2x  2x 3 dx  2  1 2 1 4 v  x  x2  c 2 2 When x = 2, v = 5 v  x  1 1 1  25  16    4   c 2 2 2 2 2 1 v  x2 1 c 2 Note: v > 0, in order v2  x4  2x2 1 to satisfy initial conditions
  • 50. (ii) Hence find an expression for x in terms of t
  • 51. (ii) Hence find an expression for x in terms of t dx  x2 1 dt
  • 52. (ii) Hence find an expression for x in terms of t dx  x2 1 dt t x dx  dt   x 2  1 0 2
  • 53. (ii) Hence find an expression for x in terms of t dx  x2 1 dt t x dx  dt   x 2  1 0 2 t  tan x 2 1 x
  • 54. (ii) Hence find an expression for x in terms of t dx  x2 1 dt t x dx  dt   x 2  1 0 2 t  tan x 2 1 x t  tan 1 x  tan 1 2
  • 55. (ii) Hence find an expression for x in terms of t dx  x2 1 dt t x dx  dt   x 2  1 0 2 t  tan x 2 1 x t  tan 1 x  tan 1 2 tan 1 x  t  tan 1 2
  • 56. (ii) Hence find an expression for x in terms of t dx  x2 1 dt t x dx  dt   x 2  1 0 2 t  tan x 2 1 x t  tan 1 x  tan 1 2 tan 1 x  t  tan 1 2 x  tan t  tan 1 2 
  • 57. (ii) Hence find an expression for x in terms of t dx  x2 1 dt t x dx  dt   x 2  1 0 2 t  tan x 2 1 x t  tan 1 x  tan 1 2 tan 1 x  t  tan 1 2 x  tan t  tan 1 2  tan t  2 x 1  2 tan t
  • 58. (ii) Hence find an expression for x in terms of t dx  x2 1 dt t x dx  dt   x 2  1 0 2 t  tan x 2 1 x Exercise 3E; 1 to 3 acfh, t  tan 1 x  tan 1 2 7 , 9, 11, 13, 15, 17, 18, 20, 21, 24* tan 1 x  t  tan 1 2 x  tan t  tan 1 2  tan t  2 x 1  2 tan t