SlideShare a Scribd company logo
Distance and
Midpoint Formula
A B
The distance from point A
to point B
is 4 units.
Count spaces
not lines.
E
D
The distance from point D
to point E
can be found
with
a2 + b2 = c2 3 c
4
32 + 42 = c2
5 = c
5
You can also use the
distance
formula.
(-3,2)
(1,-1)
Use ordered
pairs.
E
D
The distance between
two points (x1,y1) and
(x2,y2) is
d = x2 - x1
( )
2
+ y2 - y1
( )
2
y1
y2
x1 x2
(x1,y1)
(x2,y2)
lx2-x1l
ly2-y1l
a2
b2
d
c2
d = x2 - x1
( )
2
+ y2 - y1
( )
2
a 2 + b2
c = √
Distance formula is based
on Pythagorean Theorem.
Find distance between
(-3,2) and ( 1, -1 )
(x1, y1) (x2, y2)
_______________
d = √( 1++3)2 + ( - 1- 2 )2
d = x2 - x1
( )
2
+ y2 - y1
( )
2
1 -3 -1 2
Find distance between
(-3,2) and ( 1, -1 )
d = √( 1++ 3)2 + ( - 1-2 )2
d = √( 4 )2 + ( - 3 )2
d = √ 16 + 9
d = √25
Find distance between
(5, 1) and ( 2, -6 )
(x1, y1) (x2, y2)
d = x2 - x1
( )
2
+ y2 - y1
( )
2
( 2 - 5)2 + ( -6 - 1 )2
d = x2 - x1
( )
2
+ y2 - y1
( )
2
d = x2 - x1
( )
2
+ y2 - y1
( )
2
d = x2 - x1
( )
2
+ y2 - y1
( )
2
( 2 - 5)2 + ( -6 - 1 )2
d =√
d =√
d =√
(- 3) 2 + ( - 7 )2
9 + 49
58 = 7.6
careful !
this is not
- 32
A B
The distance from point A
to point B
is 4 units.
The
MIDPOINT
is 1/2 way.
For any 2 points (x1, y1)
and (x2, y2) the midpoint is
x1 + x2
2
,
y1 + y2
2
æ
è
ç
ö
ø
÷
(x1,y1)
(x2,y2)
Find midpoint
(7, 2) and ( -3, 6 )
x1 + x2
2
,
y1 + y2
2
æ
è
ç
ö
ø
÷
(x1, y1) (x2, y2)
x1 + x2
2
,
y1 + y2
2
æ
è
ç
ö
ø
÷
x1 + x2
2
,
y1 + y2
2
æ
è
ç
ö
ø
÷
-3 + 7 , 6 + 2
2 2
x1 + x2
2
,
y1 + y2
2
æ
è
ç
ö
ø
÷
4 , 8
2 2 ( 2, 4)
(7, 2) and ( -3, 6 )
Segment AB, has one
endpoint A (-1,5). The
midpoint is C( 7,3). Find the
other endpoint B.
A
C B
Endpoint A (-1,5). (x1,y1)
Midpoint C( 7,3). Find endpoint B.
x1 + x2
2
,
y1 + y2
2
æ
è
ç
ö
ø
÷ = (7,3)
x1 + x2
2
= 7
y1 + y2
2
= 3
-1 5
x2= 15 y2= 1
(15,1)
What kind of triangle is this?
Find the lengths of the sides.
A B
C
3 = sides is
equilateral.
2 = sides is
isosceles.
no = sides
scalene. d = x2 - x1
( )
2
+ y2 - y1
( )
2
The pessimist sees difficulty
in every opportunity.
The optimist sees
the opportunity in
every difficulty.

More Related Content

PPT
PPTX
Midpoint & distance
PPTX
DIASTANCE AND MIDPOINT
PPTX
11.5 distance & midpoint formulas day 1
PPT
The distance formula
PPT
dist- midpt - pythag PP111111111111.ppt
PPT
Distance and midpoint notes
PPT
dist- midpt - pythag PP.ppt
Midpoint & distance
DIASTANCE AND MIDPOINT
11.5 distance & midpoint formulas day 1
The distance formula
dist- midpt - pythag PP111111111111.ppt
Distance and midpoint notes
dist- midpt - pythag PP.ppt

Similar to 1-3-Mdpt--Distance.ppt (20)

PPTX
distance_and_midpoint_formulas_powerpoint.pptx
PPTX
distance_and_midpoint_formulas_powerpoint.pptx
PPTX
Distance & midpoint formulas 11.5
PPT
3. apply distance and midpoint
PDF
Obj. 7 Midpoint and Distance Formulas
PPSX
5c. Pedagogy of Mathematics (Part II) - Coordinate Geometry (ex 5.3)
PDF
2.1 Rectangular Coordinates
PPTX
6-Distance-and-Midpoint-bxnxFormula (1).pptx
PPT
CST 504 Distance in the Cartesian Plane
PPTX
4-Midpoint-Distance-Formula.pptx ,mathmath
PDF
Obj. 5 Midpoint and Distance Formulas
PPT
Distance and midpoint notes
PPT
10.1 Distance and Midpoint Formulas
PPT
11 X1 T05 01 Division Of An Interval
PDF
1.3 Distance and Midpoint Formulas
PPT
Distance in the cartesian plane
PDF
Geometry Section 1-3 1112
PPT
11.3 Distance Midpoint Formulas
PPT
Geometry unit 1.7
PDF
6-Distance-and-Mifvtyuvgyuugdpoint-Formula (1).pdf
distance_and_midpoint_formulas_powerpoint.pptx
distance_and_midpoint_formulas_powerpoint.pptx
Distance & midpoint formulas 11.5
3. apply distance and midpoint
Obj. 7 Midpoint and Distance Formulas
5c. Pedagogy of Mathematics (Part II) - Coordinate Geometry (ex 5.3)
2.1 Rectangular Coordinates
6-Distance-and-Midpoint-bxnxFormula (1).pptx
CST 504 Distance in the Cartesian Plane
4-Midpoint-Distance-Formula.pptx ,mathmath
Obj. 5 Midpoint and Distance Formulas
Distance and midpoint notes
10.1 Distance and Midpoint Formulas
11 X1 T05 01 Division Of An Interval
1.3 Distance and Midpoint Formulas
Distance in the cartesian plane
Geometry Section 1-3 1112
11.3 Distance Midpoint Formulas
Geometry unit 1.7
6-Distance-and-Mifvtyuvgyuugdpoint-Formula (1).pdf
Ad

Recently uploaded (20)

PDF
My India Quiz Book_20210205121199924.pdf
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
1_English_Language_Set_2.pdf probationary
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
Trump Administration's workforce development strategy
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
IGGE1 Understanding the Self1234567891011
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PDF
Hazard Identification & Risk Assessment .pdf
PDF
Computing-Curriculum for Schools in Ghana
PDF
HVAC Specification 2024 according to central public works department
PPTX
History, Philosophy and sociology of education (1).pptx
PPTX
Computer Architecture Input Output Memory.pptx
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PPTX
20th Century Theater, Methods, History.pptx
My India Quiz Book_20210205121199924.pdf
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
What if we spent less time fighting change, and more time building what’s rig...
1_English_Language_Set_2.pdf probationary
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
Paper A Mock Exam 9_ Attempt review.pdf.
Unit 4 Computer Architecture Multicore Processor.pptx
A powerpoint presentation on the Revised K-10 Science Shaping Paper
Chinmaya Tiranga quiz Grand Finale.pdf
Trump Administration's workforce development strategy
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
IGGE1 Understanding the Self1234567891011
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
Hazard Identification & Risk Assessment .pdf
Computing-Curriculum for Schools in Ghana
HVAC Specification 2024 according to central public works department
History, Philosophy and sociology of education (1).pptx
Computer Architecture Input Output Memory.pptx
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
20th Century Theater, Methods, History.pptx
Ad

1-3-Mdpt--Distance.ppt

  • 2. A B The distance from point A to point B is 4 units. Count spaces not lines.
  • 3. E D The distance from point D to point E can be found with a2 + b2 = c2 3 c 4 32 + 42 = c2 5 = c 5
  • 4. You can also use the distance formula. (-3,2) (1,-1) Use ordered pairs. E D
  • 5. The distance between two points (x1,y1) and (x2,y2) is d = x2 - x1 ( ) 2 + y2 - y1 ( ) 2
  • 7. d = x2 - x1 ( ) 2 + y2 - y1 ( ) 2 a 2 + b2 c = √ Distance formula is based on Pythagorean Theorem.
  • 8. Find distance between (-3,2) and ( 1, -1 ) (x1, y1) (x2, y2) _______________ d = √( 1++3)2 + ( - 1- 2 )2 d = x2 - x1 ( ) 2 + y2 - y1 ( ) 2 1 -3 -1 2
  • 9. Find distance between (-3,2) and ( 1, -1 ) d = √( 1++ 3)2 + ( - 1-2 )2 d = √( 4 )2 + ( - 3 )2 d = √ 16 + 9 d = √25
  • 10. Find distance between (5, 1) and ( 2, -6 ) (x1, y1) (x2, y2) d = x2 - x1 ( ) 2 + y2 - y1 ( ) 2 ( 2 - 5)2 + ( -6 - 1 )2 d = x2 - x1 ( ) 2 + y2 - y1 ( ) 2
  • 11. d = x2 - x1 ( ) 2 + y2 - y1 ( ) 2 d = x2 - x1 ( ) 2 + y2 - y1 ( ) 2 ( 2 - 5)2 + ( -6 - 1 )2 d =√ d =√ d =√ (- 3) 2 + ( - 7 )2 9 + 49 58 = 7.6 careful ! this is not - 32
  • 12. A B The distance from point A to point B is 4 units. The MIDPOINT is 1/2 way.
  • 13. For any 2 points (x1, y1) and (x2, y2) the midpoint is x1 + x2 2 , y1 + y2 2 æ è ç ö ø ÷ (x1,y1) (x2,y2)
  • 14. Find midpoint (7, 2) and ( -3, 6 ) x1 + x2 2 , y1 + y2 2 æ è ç ö ø ÷ (x1, y1) (x2, y2)
  • 15. x1 + x2 2 , y1 + y2 2 æ è ç ö ø ÷ x1 + x2 2 , y1 + y2 2 æ è ç ö ø ÷ -3 + 7 , 6 + 2 2 2 x1 + x2 2 , y1 + y2 2 æ è ç ö ø ÷ 4 , 8 2 2 ( 2, 4) (7, 2) and ( -3, 6 )
  • 16. Segment AB, has one endpoint A (-1,5). The midpoint is C( 7,3). Find the other endpoint B. A C B
  • 17. Endpoint A (-1,5). (x1,y1) Midpoint C( 7,3). Find endpoint B. x1 + x2 2 , y1 + y2 2 æ è ç ö ø ÷ = (7,3) x1 + x2 2 = 7 y1 + y2 2 = 3 -1 5 x2= 15 y2= 1 (15,1)
  • 18. What kind of triangle is this? Find the lengths of the sides. A B C 3 = sides is equilateral. 2 = sides is isosceles. no = sides scalene. d = x2 - x1 ( ) 2 + y2 - y1 ( ) 2
  • 19. The pessimist sees difficulty in every opportunity. The optimist sees the opportunity in every difficulty.