Section 1-3
Distance and Midpoints
Essential Questions
How do you find the distance between two points?
How do you find the midpoint of a segment?
Vocabulary
1. Pythagorean Theorem:
2. Distance:
Vocabulary
1. Pythagorean Theorem: a2
+ b2
= c2
, where a and
b are legs of a right triangle, and c is the
hypotenuse
2. Distance:
Vocabulary
1. Pythagorean Theorem: a2
+ b2
= c2
, where a and
b are legs of a right triangle, and c is the
hypotenuse
2. Distance: The length of the segment formed
between two points
Vocabulary
1. Pythagorean Theorem: a2
+ b2
= c2
, where a and
b are legs of a right triangle, and c is the
hypotenuse
2. Distance: The length of the segment formed
between two points
d = (x2
− x1
)2
+ (y2
− y1
)2
for (x1
, y1
) and (x2
, y2
)
Vocabulary
3. Midpoint:
4. Segment Bisector:
Vocabulary
3. Midpoint: The point on a segment that is halfway
between the endpoints
4. Segment Bisector:
Vocabulary
3. Midpoint: The point on a segment that is halfway
between the endpoints
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟ for (x1
, y1
) and (x2
, y2
)
4. Segment Bisector:
Vocabulary
3. Midpoint: The point on a segment that is halfway
between the endpoints
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟ for (x1
, y1
) and (x2
, y2
)
4. Segment Bisector: Any segment, line, or plane
that intersects another segment at its midpoint
Example 1
Use the number line to find DJ.
−4 −3 −2 −1 0 1 2 3 4
J D
Example 1
Use the number line to find DJ.
−4 −3 −2 −1 0 1 2 3 4
J D
x2
− x1
Example 1
Use the number line to find DJ.
−4 −3 −2 −1 0 1 2 3 4
J D
x2
− x1
4 − (−4)
Example 1
Use the number line to find DJ.
−4 −3 −2 −1 0 1 2 3 4
J D
x2
− x1
4 − (−4) 4 + 4
Example 1
Use the number line to find DJ.
−4 −3 −2 −1 0 1 2 3 4
J D
x2
− x1
4 − (−4) 4 + 4 8
Example 1
Use the number line to find DJ.
−4 −3 −2 −1 0 1 2 3 4
J D
x2
− x1
4 − (−4) 4 + 4 8 8
Example 1
Use the number line to find DJ.
−4 −3 −2 −1 0 1 2 3 4
J D
x2
− x1
4 − (−4) 4 + 4 8 8
8 units
Example 2
Graph A(3, 2) and B(6, 8). Then use the
Pythagorean Theorem to find AB.
Example 2
Graph A(3, 2) and B(6, 8). Then use the
Pythagorean Theorem to find AB.
x
y
Example 2
Graph A(3, 2) and B(6, 8). Then use the
Pythagorean Theorem to find AB.
x
y
A
Example 2
Graph A(3, 2) and B(6, 8). Then use the
Pythagorean Theorem to find AB.
x
y
A
B
Example 2
Graph A(3, 2) and B(6, 8). Then use the
Pythagorean Theorem to find AB.
x
y
A
B
Example 2
Graph A(3, 2) and B(6, 8). Then use the
Pythagorean Theorem to find AB.
x
y
A
B
3
6
Example 2
Graph A(3, 2) and B(6, 8). Then use the
Pythagorean Theorem to find AB.
x
y
A
B
3
6
a2
+ b2
= c2
Example 2
Graph A(3, 2) and B(6, 8). Then use the
Pythagorean Theorem to find AB.
x
y
A
B
3
6
a2
+ b2
= c2
32
+ 62
= c2
Example 2
Graph A(3, 2) and B(6, 8). Then use the
Pythagorean Theorem to find AB.
x
y
A
B
3
6
a2
+ b2
= c2
32
+ 62
= c2
9 + 36 = c2
Example 2
Graph A(3, 2) and B(6, 8). Then use the
Pythagorean Theorem to find AB.
x
y
A
B
3
6
a2
+ b2
= c2
32
+ 62
= c2
9 + 36 = c2
45 = c2
Example 2
Graph A(3, 2) and B(6, 8). Then use the
Pythagorean Theorem to find AB.
x
y
A
B
3
6
a2
+ b2
= c2
32
+ 62
= c2
9 + 36 = c2
45 = c2
45 = c2
Example 2
Graph A(3, 2) and B(6, 8). Then use the
Pythagorean Theorem to find AB.
x
y
A
B
3
6
a2
+ b2
= c2
32
+ 62
= c2
9 + 36 = c2
45 = c2
45 = c2
c ≈ 6.708203933 units
Example 3
Use the distance formula to find the distance
between A(3, 2) and B(6, 8).
Example 3
Use the distance formula to find the distance
between A(3, 2) and B(6, 8).
d = (x2
− x1
)2
+ (y2
− y1
)2
Example 3
Use the distance formula to find the distance
between A(3, 2) and B(6, 8).
d = (x2
− x1
)2
+ (y2
− y1
)2
= (6 − 3)2
+ (8 − 2)2
Example 3
Use the distance formula to find the distance
between A(3, 2) and B(6, 8).
d = (x2
− x1
)2
+ (y2
− y1
)2
= (6 − 3)2
+ (8 − 2)2
= 32
+ 62
Example 3
Use the distance formula to find the distance
between A(3, 2) and B(6, 8).
d = (x2
− x1
)2
+ (y2
− y1
)2
= (6 − 3)2
+ (8 − 2)2
= 32
+ 62
= 9 + 36
Example 3
Use the distance formula to find the distance
between A(3, 2) and B(6, 8).
d = (x2
− x1
)2
+ (y2
− y1
)2
= (6 − 3)2
+ (8 − 2)2
= 32
+ 62
= 9 + 36
= 45
Example 3
Use the distance formula to find the distance
between A(3, 2) and B(6, 8).
d = (x2
− x1
)2
+ (y2
− y1
)2
= (6 − 3)2
+ (8 − 2)2
= 32
+ 62
= 9 + 36
= 45
≈ 6.708203933 units
Example 4
Find the midpoint of AB for points A(3, 2) and
B(6, 8).
Example 4
Find the midpoint of AB for points A(3, 2) and
B(6, 8).
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟
Example 4
Find the midpoint of AB for points A(3, 2) and
B(6, 8).
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟ =
3 + 6
2
,
2 + 8
2
⎛
⎝
⎜
⎞
⎠
⎟
Example 4
Find the midpoint of AB for points A(3, 2) and
B(6, 8).
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟ =
3 + 6
2
,
2 + 8
2
⎛
⎝
⎜
⎞
⎠
⎟
=
9
2
,
10
2
⎛
⎝
⎜
⎞
⎠
⎟
Example 4
Find the midpoint of AB for points A(3, 2) and
B(6, 8).
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟ =
3 + 6
2
,
2 + 8
2
⎛
⎝
⎜
⎞
⎠
⎟
=
9
2
,
10
2
⎛
⎝
⎜
⎞
⎠
⎟ =
9
2
,5
⎛
⎝
⎜
⎞
⎠
⎟
Example 4
Find the midpoint of AB for points A(3, 2) and
B(6, 8).
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟ =
3 + 6
2
,
2 + 8
2
⎛
⎝
⎜
⎞
⎠
⎟
=
9
2
,
10
2
⎛
⎝
⎜
⎞
⎠
⎟ =
9
2
,5
⎛
⎝
⎜
⎞
⎠
⎟ or 4.5,5( )
Example 5
Find the coordinates of U if F(−2, 3) is the
midpoint of UO and O has coordinates of (8, 6).
Example 5
Find the coordinates of U if F(−2, 3) is the
midpoint of UO and O has coordinates of (8, 6).
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟
Example 5
Find the coordinates of U if F(−2, 3) is the
midpoint of UO and O has coordinates of (8, 6).
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟ (−2,3) =
x + 8
2
,
y + 6
2
⎛
⎝
⎜
⎞
⎠
⎟
Example 5
Find the coordinates of U if F(−2, 3) is the
midpoint of UO and O has coordinates of (8, 6).
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟ (−2,3) =
x + 8
2
,
y + 6
2
⎛
⎝
⎜
⎞
⎠
⎟
−2 =
x + 8
2
Example 5
Find the coordinates of U if F(−2, 3) is the
midpoint of UO and O has coordinates of (8, 6).
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟ (−2,3) =
x + 8
2
,
y + 6
2
⎛
⎝
⎜
⎞
⎠
⎟
−2 =
x + 8
2
i2
Example 5
Find the coordinates of U if F(−2, 3) is the
midpoint of UO and O has coordinates of (8, 6).
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟ (−2,3) =
x + 8
2
,
y + 6
2
⎛
⎝
⎜
⎞
⎠
⎟
−2 =
x + 8
2
i2(2)i( )
Example 5
Find the coordinates of U if F(−2, 3) is the
midpoint of UO and O has coordinates of (8, 6).
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟ (−2,3) =
x + 8
2
,
y + 6
2
⎛
⎝
⎜
⎞
⎠
⎟
−2 =
x + 8
2
i2(2)i( )
−4 = x + 8
Example 5
Find the coordinates of U if F(−2, 3) is the
midpoint of UO and O has coordinates of (8, 6).
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟ (−2,3) =
x + 8
2
,
y + 6
2
⎛
⎝
⎜
⎞
⎠
⎟
−2 =
x + 8
2
i2(2)i( )
−4 = x + 8
x = −12
Example 5
Find the coordinates of U if F(−2, 3) is the
midpoint of UO and O has coordinates of (8, 6).
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟ (−2,3) =
x + 8
2
,
y + 6
2
⎛
⎝
⎜
⎞
⎠
⎟
−2 =
x + 8
2
i2(2)i( )
−4 = x + 8
x = −12
3 =
y + 6
2
Example 5
Find the coordinates of U if F(−2, 3) is the
midpoint of UO and O has coordinates of (8, 6).
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟ (−2,3) =
x + 8
2
,
y + 6
2
⎛
⎝
⎜
⎞
⎠
⎟
−2 =
x + 8
2
i2(2)i( )
−4 = x + 8
x = −12
3 =
y + 6
2
i2
Example 5
Find the coordinates of U if F(−2, 3) is the
midpoint of UO and O has coordinates of (8, 6).
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟ (−2,3) =
x + 8
2
,
y + 6
2
⎛
⎝
⎜
⎞
⎠
⎟
−2 =
x + 8
2
i2(2)i( )
−4 = x + 8
x = −12
3 =
y + 6
2
i22i
Example 5
Find the coordinates of U if F(−2, 3) is the
midpoint of UO and O has coordinates of (8, 6).
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟ (−2,3) =
x + 8
2
,
y + 6
2
⎛
⎝
⎜
⎞
⎠
⎟
−2 =
x + 8
2
i2(2)i( )
−4 = x + 8
x = −12
3 =
y + 6
2
i22i
6 = y + 6
Example 5
Find the coordinates of U if F(−2, 3) is the
midpoint of UO and O has coordinates of (8, 6).
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟ (−2,3) =
x + 8
2
,
y + 6
2
⎛
⎝
⎜
⎞
⎠
⎟
−2 =
x + 8
2
i2(2)i( )
−4 = x + 8
x = −12
3 =
y + 6
2
i22i
6 = y + 6
y = 0
Example 5
Find the coordinates of U if F(−2, 3) is the
midpoint of UO and O has coordinates of (8, 6).
M =
x1
+ x2
2
,
y1
+ y2
2
⎛
⎝
⎜
⎞
⎠
⎟ (−2,3) =
x + 8
2
,
y + 6
2
⎛
⎝
⎜
⎞
⎠
⎟
−2 =
x + 8
2
i2(2)i( )
−4 = x + 8
x = −12
3 =
y + 6
2
i22i
6 = y + 6
y = 0
U(−12,0)
Example 6
Find PQ if Q is the midpoint of PR.
2x + 3 4x − 1
P Q R
Example 6
Find PQ if Q is the midpoint of PR.
2x + 3 4x − 1
P Q R
2x + 3 = 4x − 1
Example 6
Find PQ if Q is the midpoint of PR.
2x + 3 4x − 1
P Q R
2x + 3 = 4x − 1
4 = 2x
Example 6
Find PQ if Q is the midpoint of PR.
2x + 3 4x − 1
P Q R
2x + 3 = 4x − 1
4 = 2x
x = 2
Example 6
Find PQ if Q is the midpoint of PR.
2x + 3 4x − 1
P Q R
2x + 3 = 4x − 1
4 = 2x
x = 2
PQ = 2x + 3
Example 6
Find PQ if Q is the midpoint of PR.
2x + 3 4x − 1
P Q R
2x + 3 = 4x − 1
4 = 2x
x = 2
PQ = 2x + 3
PQ = 2(2) + 3
Example 6
Find PQ if Q is the midpoint of PR.
2x + 3 4x − 1
P Q R
2x + 3 = 4x − 1
4 = 2x
x = 2
PQ = 2x + 3
PQ = 2(2) + 3
PQ = 4 + 3
Example 6
Find PQ if Q is the midpoint of PR.
2x + 3 4x − 1
P Q R
2x + 3 = 4x − 1
4 = 2x
x = 2
PQ = 2x + 3
PQ = 2(2) + 3
PQ = 4 + 3
PQ = 7 units
Problem Set
Problem Set
p. 30 #1-11, 19-31, 47, 49, 53 (odds only)
“Learn from yesterday, live for today, hope for
tomorrow. The important thing is not to stop
questioning.” - Albert Einstein

More Related Content

PDF
Geometry Section 4-6 1112
PDF
Geometry Section 4-2
PDF
Geometry Section 4-4 1112
PDF
Geometry Section 11-1/11-2
PDF
Geometry Section 6-3 1112
PDF
Geometry Section 6-4 1112
PDF
Geometry Section 6-6 1112
PDF
Geometry Section 6-5 1112
Geometry Section 4-6 1112
Geometry Section 4-2
Geometry Section 4-4 1112
Geometry Section 11-1/11-2
Geometry Section 6-3 1112
Geometry Section 6-4 1112
Geometry Section 6-6 1112
Geometry Section 6-5 1112

What's hot (20)

PDF
Geometry Section 1-5
PDF
Geometry Section 1-2
PDF
Geometry Section 6-1 1112
PPT
PDF
Geometry Section 6-2 1112
PDF
Equationofcircle 110828153356-phpapp02 5
PDF
Geometry Section 1-4
PPTX
Equation of a Circle
PDF
Geometry Section 4-3
PDF
Geometry Section 5-6 1112
PDF
Module functions
PDF
Geometry Section 4-5 1112
PDF
Geometry Section 6-5
PDF
Class 10 Cbse Maths Sample Paper Term 2 2012
PPTX
3D Geometry Theory 3
PPTX
(8) Lesson 8.6
PDF
F4 Add Maths - Coordinate Geometry
PDF
Chapter 6 coordinate geometry
PDF
12 cbse-maths-2014-solution set 1
PPT
Coordinategeometry1 1
Geometry Section 1-5
Geometry Section 1-2
Geometry Section 6-1 1112
Geometry Section 6-2 1112
Equationofcircle 110828153356-phpapp02 5
Geometry Section 1-4
Equation of a Circle
Geometry Section 4-3
Geometry Section 5-6 1112
Module functions
Geometry Section 4-5 1112
Geometry Section 6-5
Class 10 Cbse Maths Sample Paper Term 2 2012
3D Geometry Theory 3
(8) Lesson 8.6
F4 Add Maths - Coordinate Geometry
Chapter 6 coordinate geometry
12 cbse-maths-2014-solution set 1
Coordinategeometry1 1
Ad

Viewers also liked (15)

PDF
Geometry Section 1-7 1112
PDF
Geometry Section 1-1 1112
PDF
Geometry Section 1-6 1112
PDF
Geometry Section 1-2 1112
PDF
Geometry Section 1-4 1112
PDF
Geometry Section 1-5 1112
PDF
Geometry Section 12-6
PDF
Geometry Section 2-3 1112
PDF
Geometry Section 2-2 1112
PDF
Geometry Section 2-5 1112
PDF
Geometry Section 2-8 1112
PDF
Geometry Section 2-1 1112
PDF
Geometry Section 2-4 1112
PDF
Geometry Section 2-7 1112
PDF
Geometry Section 2-6
Geometry Section 1-7 1112
Geometry Section 1-1 1112
Geometry Section 1-6 1112
Geometry Section 1-2 1112
Geometry Section 1-4 1112
Geometry Section 1-5 1112
Geometry Section 12-6
Geometry Section 2-3 1112
Geometry Section 2-2 1112
Geometry Section 2-5 1112
Geometry Section 2-8 1112
Geometry Section 2-1 1112
Geometry Section 2-4 1112
Geometry Section 2-7 1112
Geometry Section 2-6
Ad

Similar to Geometry Section 1-3 1112 (20)

PDF
Obj. 7 Midpoint and Distance Formulas
PDF
Obj. 5 Midpoint and Distance Formulas
PDF
Geometry Section 1-2
PDF
College Algebra 10th edition Lial Hornsby
PDF
1.1.1C Midpoint and Distance Formulas
PPTX
DIASTANCE AND MIDPOINT
PDF
2.1 Rectangular Coordinate Systems
PPSX
5c. Pedagogy of Mathematics (Part II) - Coordinate Geometry (ex 5.3)
PPTX
Math Analysis I
PPTX
Lesson 13: Midpoint and Distance Formulas
PPT
Distance and midpoint notes
PDF
1.3 Distance and Midpoint Formulas
PPT
3. apply distance and midpoint
PDF
2.1 Rectangular Coordinates
PPTX
Midpoint & distance
PDF
UNIT 3 MAth 10 Lesson 1 and 2 Distance and midpoint formula.pdf
PPT
PPTX
Distance & midpoint formulas 11.5
PPT
dist- midpt - pythag PP.ppt
PPT
dist- midpt - pythag PP111111111111.ppt
Obj. 7 Midpoint and Distance Formulas
Obj. 5 Midpoint and Distance Formulas
Geometry Section 1-2
College Algebra 10th edition Lial Hornsby
1.1.1C Midpoint and Distance Formulas
DIASTANCE AND MIDPOINT
2.1 Rectangular Coordinate Systems
5c. Pedagogy of Mathematics (Part II) - Coordinate Geometry (ex 5.3)
Math Analysis I
Lesson 13: Midpoint and Distance Formulas
Distance and midpoint notes
1.3 Distance and Midpoint Formulas
3. apply distance and midpoint
2.1 Rectangular Coordinates
Midpoint & distance
UNIT 3 MAth 10 Lesson 1 and 2 Distance and midpoint formula.pdf
Distance & midpoint formulas 11.5
dist- midpt - pythag PP.ppt
dist- midpt - pythag PP111111111111.ppt

More from Jimbo Lamb (20)

PDF
Geometry Section 1-3
PDF
Geometry Section 1-1
PDF
Algebra 2 Section 5-3
PDF
Algebra 2 Section 5-2
PDF
Algebra 2 Section 5-1
PDF
Algebra 2 Section 4-9
PDF
Algebra 2 Section 4-8
PDF
Algebra 2 Section 4-6
PDF
Geometry Section 6-6
PDF
Geometry Section 6-4
PDF
Geometry Section 6-3
PDF
Geometry Section 6-2
PDF
Geometry Section 6-1
PDF
Algebra 2 Section 4-5
PDF
Algebra 2 Section 4-4
PDF
Algebra 2 Section 4-2
PDF
Algebra 2 Section 4-3
PDF
Geometry Section 4-5
PDF
Algebra 2 Section 4-1
PDF
Geometry Section 4-3
Geometry Section 1-3
Geometry Section 1-1
Algebra 2 Section 5-3
Algebra 2 Section 5-2
Algebra 2 Section 5-1
Algebra 2 Section 4-9
Algebra 2 Section 4-8
Algebra 2 Section 4-6
Geometry Section 6-6
Geometry Section 6-4
Geometry Section 6-3
Geometry Section 6-2
Geometry Section 6-1
Algebra 2 Section 4-5
Algebra 2 Section 4-4
Algebra 2 Section 4-2
Algebra 2 Section 4-3
Geometry Section 4-5
Algebra 2 Section 4-1
Geometry Section 4-3

Recently uploaded (20)

PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PDF
Empowerment Technology for Senior High School Guide
PDF
AI-driven educational solutions for real-life interventions in the Philippine...
PPTX
DRUGS USED FOR HORMONAL DISORDER, SUPPLIMENTATION, CONTRACEPTION, & MEDICAL T...
PPTX
Climate Change and Its Global Impact.pptx
PDF
International_Financial_Reporting_Standa.pdf
PDF
Journal of Dental Science - UDMY (2021).pdf
PDF
Complications of Minimal Access-Surgery.pdf
PPTX
Core Concepts of Personalized Learning and Virtual Learning Environments
PPTX
Share_Module_2_Power_conflict_and_negotiation.pptx
PPTX
Module on health assessment of CHN. pptx
PDF
Climate and Adaptation MCQs class 7 from chatgpt
PDF
My India Quiz Book_20210205121199924.pdf
PDF
Hazard Identification & Risk Assessment .pdf
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
PDF
IP : I ; Unit I : Preformulation Studies
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
Unit 4 Computer Architecture Multicore Processor.pptx
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
Empowerment Technology for Senior High School Guide
AI-driven educational solutions for real-life interventions in the Philippine...
DRUGS USED FOR HORMONAL DISORDER, SUPPLIMENTATION, CONTRACEPTION, & MEDICAL T...
Climate Change and Its Global Impact.pptx
International_Financial_Reporting_Standa.pdf
Journal of Dental Science - UDMY (2021).pdf
Complications of Minimal Access-Surgery.pdf
Core Concepts of Personalized Learning and Virtual Learning Environments
Share_Module_2_Power_conflict_and_negotiation.pptx
Module on health assessment of CHN. pptx
Climate and Adaptation MCQs class 7 from chatgpt
My India Quiz Book_20210205121199924.pdf
Hazard Identification & Risk Assessment .pdf
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
Cambridge-Practice-Tests-for-IELTS-12.docx
IP : I ; Unit I : Preformulation Studies
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf

Geometry Section 1-3 1112

  • 2. Essential Questions How do you find the distance between two points? How do you find the midpoint of a segment?
  • 4. Vocabulary 1. Pythagorean Theorem: a2 + b2 = c2 , where a and b are legs of a right triangle, and c is the hypotenuse 2. Distance:
  • 5. Vocabulary 1. Pythagorean Theorem: a2 + b2 = c2 , where a and b are legs of a right triangle, and c is the hypotenuse 2. Distance: The length of the segment formed between two points
  • 6. Vocabulary 1. Pythagorean Theorem: a2 + b2 = c2 , where a and b are legs of a right triangle, and c is the hypotenuse 2. Distance: The length of the segment formed between two points d = (x2 − x1 )2 + (y2 − y1 )2 for (x1 , y1 ) and (x2 , y2 )
  • 8. Vocabulary 3. Midpoint: The point on a segment that is halfway between the endpoints 4. Segment Bisector:
  • 9. Vocabulary 3. Midpoint: The point on a segment that is halfway between the endpoints M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ for (x1 , y1 ) and (x2 , y2 ) 4. Segment Bisector:
  • 10. Vocabulary 3. Midpoint: The point on a segment that is halfway between the endpoints M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ for (x1 , y1 ) and (x2 , y2 ) 4. Segment Bisector: Any segment, line, or plane that intersects another segment at its midpoint
  • 11. Example 1 Use the number line to find DJ. −4 −3 −2 −1 0 1 2 3 4 J D
  • 12. Example 1 Use the number line to find DJ. −4 −3 −2 −1 0 1 2 3 4 J D x2 − x1
  • 13. Example 1 Use the number line to find DJ. −4 −3 −2 −1 0 1 2 3 4 J D x2 − x1 4 − (−4)
  • 14. Example 1 Use the number line to find DJ. −4 −3 −2 −1 0 1 2 3 4 J D x2 − x1 4 − (−4) 4 + 4
  • 15. Example 1 Use the number line to find DJ. −4 −3 −2 −1 0 1 2 3 4 J D x2 − x1 4 − (−4) 4 + 4 8
  • 16. Example 1 Use the number line to find DJ. −4 −3 −2 −1 0 1 2 3 4 J D x2 − x1 4 − (−4) 4 + 4 8 8
  • 17. Example 1 Use the number line to find DJ. −4 −3 −2 −1 0 1 2 3 4 J D x2 − x1 4 − (−4) 4 + 4 8 8 8 units
  • 18. Example 2 Graph A(3, 2) and B(6, 8). Then use the Pythagorean Theorem to find AB.
  • 19. Example 2 Graph A(3, 2) and B(6, 8). Then use the Pythagorean Theorem to find AB. x y
  • 20. Example 2 Graph A(3, 2) and B(6, 8). Then use the Pythagorean Theorem to find AB. x y A
  • 21. Example 2 Graph A(3, 2) and B(6, 8). Then use the Pythagorean Theorem to find AB. x y A B
  • 22. Example 2 Graph A(3, 2) and B(6, 8). Then use the Pythagorean Theorem to find AB. x y A B
  • 23. Example 2 Graph A(3, 2) and B(6, 8). Then use the Pythagorean Theorem to find AB. x y A B 3 6
  • 24. Example 2 Graph A(3, 2) and B(6, 8). Then use the Pythagorean Theorem to find AB. x y A B 3 6 a2 + b2 = c2
  • 25. Example 2 Graph A(3, 2) and B(6, 8). Then use the Pythagorean Theorem to find AB. x y A B 3 6 a2 + b2 = c2 32 + 62 = c2
  • 26. Example 2 Graph A(3, 2) and B(6, 8). Then use the Pythagorean Theorem to find AB. x y A B 3 6 a2 + b2 = c2 32 + 62 = c2 9 + 36 = c2
  • 27. Example 2 Graph A(3, 2) and B(6, 8). Then use the Pythagorean Theorem to find AB. x y A B 3 6 a2 + b2 = c2 32 + 62 = c2 9 + 36 = c2 45 = c2
  • 28. Example 2 Graph A(3, 2) and B(6, 8). Then use the Pythagorean Theorem to find AB. x y A B 3 6 a2 + b2 = c2 32 + 62 = c2 9 + 36 = c2 45 = c2 45 = c2
  • 29. Example 2 Graph A(3, 2) and B(6, 8). Then use the Pythagorean Theorem to find AB. x y A B 3 6 a2 + b2 = c2 32 + 62 = c2 9 + 36 = c2 45 = c2 45 = c2 c ≈ 6.708203933 units
  • 30. Example 3 Use the distance formula to find the distance between A(3, 2) and B(6, 8).
  • 31. Example 3 Use the distance formula to find the distance between A(3, 2) and B(6, 8). d = (x2 − x1 )2 + (y2 − y1 )2
  • 32. Example 3 Use the distance formula to find the distance between A(3, 2) and B(6, 8). d = (x2 − x1 )2 + (y2 − y1 )2 = (6 − 3)2 + (8 − 2)2
  • 33. Example 3 Use the distance formula to find the distance between A(3, 2) and B(6, 8). d = (x2 − x1 )2 + (y2 − y1 )2 = (6 − 3)2 + (8 − 2)2 = 32 + 62
  • 34. Example 3 Use the distance formula to find the distance between A(3, 2) and B(6, 8). d = (x2 − x1 )2 + (y2 − y1 )2 = (6 − 3)2 + (8 − 2)2 = 32 + 62 = 9 + 36
  • 35. Example 3 Use the distance formula to find the distance between A(3, 2) and B(6, 8). d = (x2 − x1 )2 + (y2 − y1 )2 = (6 − 3)2 + (8 − 2)2 = 32 + 62 = 9 + 36 = 45
  • 36. Example 3 Use the distance formula to find the distance between A(3, 2) and B(6, 8). d = (x2 − x1 )2 + (y2 − y1 )2 = (6 − 3)2 + (8 − 2)2 = 32 + 62 = 9 + 36 = 45 ≈ 6.708203933 units
  • 37. Example 4 Find the midpoint of AB for points A(3, 2) and B(6, 8).
  • 38. Example 4 Find the midpoint of AB for points A(3, 2) and B(6, 8). M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟
  • 39. Example 4 Find the midpoint of AB for points A(3, 2) and B(6, 8). M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ = 3 + 6 2 , 2 + 8 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟
  • 40. Example 4 Find the midpoint of AB for points A(3, 2) and B(6, 8). M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ = 3 + 6 2 , 2 + 8 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ = 9 2 , 10 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟
  • 41. Example 4 Find the midpoint of AB for points A(3, 2) and B(6, 8). M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ = 3 + 6 2 , 2 + 8 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ = 9 2 , 10 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ = 9 2 ,5 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟
  • 42. Example 4 Find the midpoint of AB for points A(3, 2) and B(6, 8). M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ = 3 + 6 2 , 2 + 8 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ = 9 2 , 10 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ = 9 2 ,5 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ or 4.5,5( )
  • 43. Example 5 Find the coordinates of U if F(−2, 3) is the midpoint of UO and O has coordinates of (8, 6).
  • 44. Example 5 Find the coordinates of U if F(−2, 3) is the midpoint of UO and O has coordinates of (8, 6). M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟
  • 45. Example 5 Find the coordinates of U if F(−2, 3) is the midpoint of UO and O has coordinates of (8, 6). M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ (−2,3) = x + 8 2 , y + 6 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟
  • 46. Example 5 Find the coordinates of U if F(−2, 3) is the midpoint of UO and O has coordinates of (8, 6). M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ (−2,3) = x + 8 2 , y + 6 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ −2 = x + 8 2
  • 47. Example 5 Find the coordinates of U if F(−2, 3) is the midpoint of UO and O has coordinates of (8, 6). M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ (−2,3) = x + 8 2 , y + 6 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ −2 = x + 8 2 i2
  • 48. Example 5 Find the coordinates of U if F(−2, 3) is the midpoint of UO and O has coordinates of (8, 6). M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ (−2,3) = x + 8 2 , y + 6 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ −2 = x + 8 2 i2(2)i( )
  • 49. Example 5 Find the coordinates of U if F(−2, 3) is the midpoint of UO and O has coordinates of (8, 6). M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ (−2,3) = x + 8 2 , y + 6 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ −2 = x + 8 2 i2(2)i( ) −4 = x + 8
  • 50. Example 5 Find the coordinates of U if F(−2, 3) is the midpoint of UO and O has coordinates of (8, 6). M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ (−2,3) = x + 8 2 , y + 6 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ −2 = x + 8 2 i2(2)i( ) −4 = x + 8 x = −12
  • 51. Example 5 Find the coordinates of U if F(−2, 3) is the midpoint of UO and O has coordinates of (8, 6). M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ (−2,3) = x + 8 2 , y + 6 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ −2 = x + 8 2 i2(2)i( ) −4 = x + 8 x = −12 3 = y + 6 2
  • 52. Example 5 Find the coordinates of U if F(−2, 3) is the midpoint of UO and O has coordinates of (8, 6). M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ (−2,3) = x + 8 2 , y + 6 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ −2 = x + 8 2 i2(2)i( ) −4 = x + 8 x = −12 3 = y + 6 2 i2
  • 53. Example 5 Find the coordinates of U if F(−2, 3) is the midpoint of UO and O has coordinates of (8, 6). M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ (−2,3) = x + 8 2 , y + 6 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ −2 = x + 8 2 i2(2)i( ) −4 = x + 8 x = −12 3 = y + 6 2 i22i
  • 54. Example 5 Find the coordinates of U if F(−2, 3) is the midpoint of UO and O has coordinates of (8, 6). M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ (−2,3) = x + 8 2 , y + 6 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ −2 = x + 8 2 i2(2)i( ) −4 = x + 8 x = −12 3 = y + 6 2 i22i 6 = y + 6
  • 55. Example 5 Find the coordinates of U if F(−2, 3) is the midpoint of UO and O has coordinates of (8, 6). M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ (−2,3) = x + 8 2 , y + 6 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ −2 = x + 8 2 i2(2)i( ) −4 = x + 8 x = −12 3 = y + 6 2 i22i 6 = y + 6 y = 0
  • 56. Example 5 Find the coordinates of U if F(−2, 3) is the midpoint of UO and O has coordinates of (8, 6). M = x1 + x2 2 , y1 + y2 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ (−2,3) = x + 8 2 , y + 6 2 ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ −2 = x + 8 2 i2(2)i( ) −4 = x + 8 x = −12 3 = y + 6 2 i22i 6 = y + 6 y = 0 U(−12,0)
  • 57. Example 6 Find PQ if Q is the midpoint of PR. 2x + 3 4x − 1 P Q R
  • 58. Example 6 Find PQ if Q is the midpoint of PR. 2x + 3 4x − 1 P Q R 2x + 3 = 4x − 1
  • 59. Example 6 Find PQ if Q is the midpoint of PR. 2x + 3 4x − 1 P Q R 2x + 3 = 4x − 1 4 = 2x
  • 60. Example 6 Find PQ if Q is the midpoint of PR. 2x + 3 4x − 1 P Q R 2x + 3 = 4x − 1 4 = 2x x = 2
  • 61. Example 6 Find PQ if Q is the midpoint of PR. 2x + 3 4x − 1 P Q R 2x + 3 = 4x − 1 4 = 2x x = 2 PQ = 2x + 3
  • 62. Example 6 Find PQ if Q is the midpoint of PR. 2x + 3 4x − 1 P Q R 2x + 3 = 4x − 1 4 = 2x x = 2 PQ = 2x + 3 PQ = 2(2) + 3
  • 63. Example 6 Find PQ if Q is the midpoint of PR. 2x + 3 4x − 1 P Q R 2x + 3 = 4x − 1 4 = 2x x = 2 PQ = 2x + 3 PQ = 2(2) + 3 PQ = 4 + 3
  • 64. Example 6 Find PQ if Q is the midpoint of PR. 2x + 3 4x − 1 P Q R 2x + 3 = 4x − 1 4 = 2x x = 2 PQ = 2x + 3 PQ = 2(2) + 3 PQ = 4 + 3 PQ = 7 units
  • 66. Problem Set p. 30 #1-11, 19-31, 47, 49, 53 (odds only) “Learn from yesterday, live for today, hope for tomorrow. The important thing is not to stop questioning.” - Albert Einstein