SlideShare a Scribd company logo
Application Development Series
Back to Basics
Reporting & Analytics
Daniel Roberts
@dmroberts
#MongoDBBasics
2
• Recap from last session
• Reporting / Analytics options
• Map Reduce
• Aggregation Framework introduction
– Aggregation explain
• mycms application reports
• Geospatial with Aggregation Framework
• Text Search with Aggregation Framework
Agenda
3
• Virtual Genius Bar
– Use the chat to post
questions
– EMEA Solution
Architecture / Support
team are on hand
– Make use of them
during the sessions!!!
Q & A
Recap from last time….
5
Indexing
• Indexes
• Multikey, compound,
„dot.notation‟
• Covered, sorting
• Text, GeoSpatial
• Btrees
>db.articles.ensureIndex( { author
: 1, tags : 1 } )
>db.user.find({user:"danr"}, {_id:0,
password:1})
>db.articles.ensureIndex( {
location: “2dsphere” } )
>>db.articles.ensureIndex(
{ "$**" : “text”,
name : “TextIndex”} )
options db.col.ensureIndex({ key : type})
6
Index performance / efficiency
• Examine index plans
• Identity slow queries
• n / nscanned ratio
• Which index used.
operators .explain() , db profiler
> db.articles.find(
{author:'Dan Roberts‟})
.sort({date:-1}
).explain()
> db.setProfilingLevel(1,
100)
{ "was" : 0, "slowms" : 100,
"ok" : 1 }
> db.system.profile.find()
.pretty()
Reporting / Analytics options
8
• Query Language
– Leverage pre aggregated documents
• Aggregation Framework
– Calculate new values from the data that we have
– For instance : Average views, comments count
• MapReduce
– Internal Javascript based implementation
– External Hadoop, using the MongoDB connector
• A combination of the above
Access data for reporting, options
9
• Immediate results
– Simple from a query
perspective.
– Interactions collection
Pre Aggregated Reports
{
„_id‟ : ObjectId(..),
„article_id‟ : ObjectId(..),
„section‟ : „schema‟,
„date‟ : ISODate(..),
„daily‟: { „views‟ : 45,
„comments‟ : 150 }
„hours‟ : {
0 : { „views‟ : 10 },
1 : { „views‟ : 2 },
…
23 : { „views‟ : 14,
„comments‟ : 10 }
}
}
> db.interactions.find(
{"article_id" : ObjectId(”…..")},
{_id:0, hourly:1}
)
10
• Use query result to display directly in application
– Create new REST API
– D3.js library or similar in UI
Pre Aggregated Reports
{
"hourly" : {
"0" : {
"view" : 1
},
"1" : {
"view" : 1
},
……
"22" : {
"view" : 5
},
"23" : {
"view" : 3
}
}
}
Map Reduce
12
• Map Reduce
– MongoDB – JavaScript
• Incremental Map Reduce
Map Reduce
//Map Reduce Example
> db.articles.mapReduce(
function() { emit(this.author, this.comment_count); },
function(key, values) { return Array.sum (values) },
{
query : {},
out: { merge: "comment_count" }
}
)
Output
{ "_id" : "Dan Roberts", "value" : 6 }
{ "_id" : "Jim Duffy", "value" : 1 }
{ "_id" : "Kunal Taneja", "value" : 2 }
{ "_id" : "Paul Done", "value" : 2 }
13
MongoDB – Hadoop Connector
Hadoop Integration
Primary
Secondary
Secondary
HDFS
Primary
Secondary
Secondary
Primary
Secondary
Secondary
Primary
Secondary
Secondary
HDFS HDFS HDFS
MapReduce MapReduce MapReduce MapReduce
MongoS MongoSMongoS
Application ApplicationApplication
Application
Dash Boards /
Reporting
1) Data Flow,
Input /
Output via
Application
Tier
Aggregation Framework
15
• Multi-stage pipeline
– Like a unix pipe –
• “ps -ef | grep mongod”
– Aggregate data, Transform
documents
– Implemented in the core server
Aggregation Framework
//Find out which are the most popular tags…
db.articles.aggregate([
{ $unwind : "$tags" },
{ $group : { _id : "$tags" , number : { $sum : 1 } } },
{ $sort : { number : -1 } }
])
Output
{ "_id" : "mongodb", "number" : 6 }
{ "_id" : "nosql", "number" : 3 }
{ "_id" : "database", "number" : 1 }
{ "_id" : "aggregation", "number" : 1 }
{ "_id" : "node", "number" : 1 }
16
In our mycms application..
//Our new python example
@app.route('/cms/api/v1.0/tag_counts', methods=['GET'])
def tag_counts():
pipeline = [ { "$unwind" : "$tags" },
{ "$group" : { "_id" : "$tags" , "number" : { "$sum" : 1 } }
},
{ "$sort" : { "number" : -1 } }]
cur = db['articles'].aggregate(pipeline, cursor={})
# Check everything ok
if not cur:
abort(400)
# iterate the cursor and add docs to a dict
tags = [tag for tag in cur]
return jsonify({'tags' : json.dumps(tags, default=json_util.default)})
17
• Pipeline and Expression operators
Aggregation operators
Pipeline
$match
$sort
$limit
$skip
$project
$unwind
$group
$geoNear
$text
$search
Tip: Other operators for date, time, boolean and string manipulation
Expression
$addToSet
$first
$last
$max
$min
$avg
$push
$sum
Arithmetic
$add
$divide
$mod
$multiply
$subtract
Conditional
$cond
$ifNull
Variables
$let
$map
18
• What reports and analytics do we need in our
application?
– Popular Tags
– Popular Articles
– Popular Locations – integration with Geo Spatial
– Average views per hour or day
Application Reports
19
• Unwind each „tags‟ array
• Group and count each one, then Sort
• Output to new collection
– Query from new collection so don‟t need to compute for
every request.
Popular Tags
db.articles.aggregate([
{ $unwind : "$tags" },
{ $group : { _id : "$tags" , number : { $sum : 1 } } },
{ $sort : { number : -1 } },
{ $out : "tags"}
])
20
• Top 5 articles by average daily views
– Use the $avg operator
– Use use $match to constrain data range
• Utilise with $gt and $lt operators
Popular Articles
db.interactions.aggregate([
{
{$match : { date :
{ $gt : ISODate("2014-02-20T00:00:00.000Z")}}},
{$group : {_id: "$article_id", a : { $avg : "$daily.view"}}},
{$sort : { a : -1}},
{$limit : 5}
]);
21
• Use Explain plan to ensure the efficient use of the
index when querying.
Aggregation Framework Explain
db.interactions.aggregate([
{$group : {_id: "$article_id", a : { $avg : "$daily.view"}}},
{$sort : { a : -1}},
{$limit : 5}
],
{explain : true}
);
22
Explain output…
{
"stages" : [
{
"$cursor" : { "query" : … }, "fields" : { … },
"plan" : {
"cursor" : "BasicCursor",
"isMultiKey" : false,
"scanAndOrder" : false,
"allPlans" : [
{
"cursor" : "BasicCursor",
"isMultiKey" : false,
"scanAndOrder" : false
}
]
}
}
},
…
"ok" : 1
}
Geo Spatial & Text Search
Aggregation
24
• $text operator with aggregation framework
– All articles with MongoDB
– Group by author, sort by comments count
Text Search
db.articles.aggregate([
{ $match: { $text: { $search: "mongodb" } } },
{ $group: { _id: "$author", comments:
{ $sum: "$comment_count" } } }
{$sort : {comments: -1}},
])
25
• $geoNear operator with aggregation framework
– Again use geo operator in the $match statement.
– Group by author, and article count.
Utilise with Geo spatial
db.articles.aggregate([
{ $match: { location: { $geoNear :
{ $geometry :
{ type: "Point" ,coordinates : [-0.128, 51.507] } },
$maxDistance :5000}
}
},
{ $group: { _id: "$author", articleCount: { $sum: 1 } } }
])
Summary
27
• Aggregating Data…
– Map Reduce
– Hadoop
– Pre-Aggregated Reports
– Aggregation Framework
• Tune with Explain plan
• Compute on the fly or Compute and store
• Geospatial
• Text Search
Summary
28
– Operations for you application
– Scale out
– Availability
– How do we prepare of production
– Sizing
Next Session – 3th April
1403   app dev series - session 5 - analytics

More Related Content

PPTX
Webinar: Applikationsentwicklung mit MongoDB : Teil 5: Reporting & Aggregation
PPTX
MongoDB Aggregation
PDF
MongoDB Aggregation Framework
PPTX
MongoDB - Aggregation Pipeline
PPTX
Aggregation in MongoDB
PPTX
Query for json databases
PDF
Hadoop - MongoDB Webinar June 2014
PDF
Aggregation Framework MongoDB Days Munich
Webinar: Applikationsentwicklung mit MongoDB : Teil 5: Reporting & Aggregation
MongoDB Aggregation
MongoDB Aggregation Framework
MongoDB - Aggregation Pipeline
Aggregation in MongoDB
Query for json databases
Hadoop - MongoDB Webinar June 2014
Aggregation Framework MongoDB Days Munich

What's hot (20)

ODP
Aggregation Framework in MongoDB Overview Part-1
PDF
MongoDB .local Paris 2020: La puissance du Pipeline d'Agrégation de MongoDB
KEY
MongoDB Aggregation Framework
PPTX
Aggregation Framework
PPTX
Joins and Other Aggregation Enhancements Coming in MongoDB 3.2
PPTX
2014 bigdatacamp asya_kamsky
PPTX
Webinarserie: Einführung in MongoDB: “Back to Basics” - Teil 3 - Interaktion ...
PDF
NoSQL meets Microservices - Michael Hackstein
PPTX
The Aggregation Framework
PPTX
Webinar: Exploring the Aggregation Framework
PDF
Michael Hackstein - NoSQL meets Microservices - NoSQL matters Dublin 2015
PPTX
Agg framework selectgroup feb2015 v2
PDF
Mongodb Aggregation Pipeline
PDF
MongoDB .local Toronto 2019: Using Change Streams to Keep Up with Your Data
PPTX
MongoDB World 2016 : Advanced Aggregation
PDF
MongoDB With Style
PPTX
Reducing Development Time with MongoDB vs. SQL
KEY
Cubes - Lightweight Python OLAP (EuroPython 2012 talk)
KEY
CouchDB on Android
Aggregation Framework in MongoDB Overview Part-1
MongoDB .local Paris 2020: La puissance du Pipeline d'Agrégation de MongoDB
MongoDB Aggregation Framework
Aggregation Framework
Joins and Other Aggregation Enhancements Coming in MongoDB 3.2
2014 bigdatacamp asya_kamsky
Webinarserie: Einführung in MongoDB: “Back to Basics” - Teil 3 - Interaktion ...
NoSQL meets Microservices - Michael Hackstein
The Aggregation Framework
Webinar: Exploring the Aggregation Framework
Michael Hackstein - NoSQL meets Microservices - NoSQL matters Dublin 2015
Agg framework selectgroup feb2015 v2
Mongodb Aggregation Pipeline
MongoDB .local Toronto 2019: Using Change Streams to Keep Up with Your Data
MongoDB World 2016 : Advanced Aggregation
MongoDB With Style
Reducing Development Time with MongoDB vs. SQL
Cubes - Lightweight Python OLAP (EuroPython 2012 talk)
CouchDB on Android
Ad

Similar to 1403 app dev series - session 5 - analytics (20)

PDF
MongoDB Meetup
PPTX
Back to Basics Webinar 4: Advanced Indexing, Text and Geospatial Indexes
PDF
Social Data and Log Analysis Using MongoDB
PPTX
Joins and Other MongoDB 3.2 Aggregation Enhancements
PPT
Schema Design by Chad Tindel, Solution Architect, 10gen
PPTX
MongoDB World 2018: Keynote
PDF
Elasticsearch first-steps
PDF
CouchDB on Rails
PDF
CouchDB on Rails - RailsWayCon 2010
PDF
10gen Presents Schema Design and Data Modeling
PDF
CouchDB on Rails - FrozenRails 2010
PPT
9b. Document-Oriented Databases lab
PDF
2012 mongo db_bangalore_roadmap_new
PDF
Whats new in mongoDB 2.4 at Copenhagen user group 2013-06-19
PDF
Using MongoDB and Python
PDF
2016 feb-23 pyugre-py_mongo
PPTX
How to leverage what's new in MongoDB 3.6
PDF
Indexing and Query Optimizer (Richard Kreuter)
PPTX
Conceptos básicos. Seminario web 4: Indexación avanzada, índices de texto y g...
PPTX
Indexing Strategies to Help You Scale
MongoDB Meetup
Back to Basics Webinar 4: Advanced Indexing, Text and Geospatial Indexes
Social Data and Log Analysis Using MongoDB
Joins and Other MongoDB 3.2 Aggregation Enhancements
Schema Design by Chad Tindel, Solution Architect, 10gen
MongoDB World 2018: Keynote
Elasticsearch first-steps
CouchDB on Rails
CouchDB on Rails - RailsWayCon 2010
10gen Presents Schema Design and Data Modeling
CouchDB on Rails - FrozenRails 2010
9b. Document-Oriented Databases lab
2012 mongo db_bangalore_roadmap_new
Whats new in mongoDB 2.4 at Copenhagen user group 2013-06-19
Using MongoDB and Python
2016 feb-23 pyugre-py_mongo
How to leverage what's new in MongoDB 3.6
Indexing and Query Optimizer (Richard Kreuter)
Conceptos básicos. Seminario web 4: Indexación avanzada, índices de texto y g...
Indexing Strategies to Help You Scale
Ad

More from MongoDB (20)

PDF
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
PDF
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
PDF
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
PDF
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
PDF
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
PDF
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
PDF
MongoDB SoCal 2020: MongoDB Atlas Jump Start
PDF
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
PDF
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
PDF
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
PDF
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
PDF
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
PDF
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
PDF
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
PDF
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
PDF
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
PDF
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
PDF
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
PDF
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
PDF
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...

1403 app dev series - session 5 - analytics

  • 1. Application Development Series Back to Basics Reporting & Analytics Daniel Roberts @dmroberts #MongoDBBasics
  • 2. 2 • Recap from last session • Reporting / Analytics options • Map Reduce • Aggregation Framework introduction – Aggregation explain • mycms application reports • Geospatial with Aggregation Framework • Text Search with Aggregation Framework Agenda
  • 3. 3 • Virtual Genius Bar – Use the chat to post questions – EMEA Solution Architecture / Support team are on hand – Make use of them during the sessions!!! Q & A
  • 4. Recap from last time….
  • 5. 5 Indexing • Indexes • Multikey, compound, „dot.notation‟ • Covered, sorting • Text, GeoSpatial • Btrees >db.articles.ensureIndex( { author : 1, tags : 1 } ) >db.user.find({user:"danr"}, {_id:0, password:1}) >db.articles.ensureIndex( { location: “2dsphere” } ) >>db.articles.ensureIndex( { "$**" : “text”, name : “TextIndex”} ) options db.col.ensureIndex({ key : type})
  • 6. 6 Index performance / efficiency • Examine index plans • Identity slow queries • n / nscanned ratio • Which index used. operators .explain() , db profiler > db.articles.find( {author:'Dan Roberts‟}) .sort({date:-1} ).explain() > db.setProfilingLevel(1, 100) { "was" : 0, "slowms" : 100, "ok" : 1 } > db.system.profile.find() .pretty()
  • 8. 8 • Query Language – Leverage pre aggregated documents • Aggregation Framework – Calculate new values from the data that we have – For instance : Average views, comments count • MapReduce – Internal Javascript based implementation – External Hadoop, using the MongoDB connector • A combination of the above Access data for reporting, options
  • 9. 9 • Immediate results – Simple from a query perspective. – Interactions collection Pre Aggregated Reports { „_id‟ : ObjectId(..), „article_id‟ : ObjectId(..), „section‟ : „schema‟, „date‟ : ISODate(..), „daily‟: { „views‟ : 45, „comments‟ : 150 } „hours‟ : { 0 : { „views‟ : 10 }, 1 : { „views‟ : 2 }, … 23 : { „views‟ : 14, „comments‟ : 10 } } } > db.interactions.find( {"article_id" : ObjectId(”…..")}, {_id:0, hourly:1} )
  • 10. 10 • Use query result to display directly in application – Create new REST API – D3.js library or similar in UI Pre Aggregated Reports { "hourly" : { "0" : { "view" : 1 }, "1" : { "view" : 1 }, …… "22" : { "view" : 5 }, "23" : { "view" : 3 } } }
  • 12. 12 • Map Reduce – MongoDB – JavaScript • Incremental Map Reduce Map Reduce //Map Reduce Example > db.articles.mapReduce( function() { emit(this.author, this.comment_count); }, function(key, values) { return Array.sum (values) }, { query : {}, out: { merge: "comment_count" } } ) Output { "_id" : "Dan Roberts", "value" : 6 } { "_id" : "Jim Duffy", "value" : 1 } { "_id" : "Kunal Taneja", "value" : 2 } { "_id" : "Paul Done", "value" : 2 }
  • 13. 13 MongoDB – Hadoop Connector Hadoop Integration Primary Secondary Secondary HDFS Primary Secondary Secondary Primary Secondary Secondary Primary Secondary Secondary HDFS HDFS HDFS MapReduce MapReduce MapReduce MapReduce MongoS MongoSMongoS Application ApplicationApplication Application Dash Boards / Reporting 1) Data Flow, Input / Output via Application Tier
  • 15. 15 • Multi-stage pipeline – Like a unix pipe – • “ps -ef | grep mongod” – Aggregate data, Transform documents – Implemented in the core server Aggregation Framework //Find out which are the most popular tags… db.articles.aggregate([ { $unwind : "$tags" }, { $group : { _id : "$tags" , number : { $sum : 1 } } }, { $sort : { number : -1 } } ]) Output { "_id" : "mongodb", "number" : 6 } { "_id" : "nosql", "number" : 3 } { "_id" : "database", "number" : 1 } { "_id" : "aggregation", "number" : 1 } { "_id" : "node", "number" : 1 }
  • 16. 16 In our mycms application.. //Our new python example @app.route('/cms/api/v1.0/tag_counts', methods=['GET']) def tag_counts(): pipeline = [ { "$unwind" : "$tags" }, { "$group" : { "_id" : "$tags" , "number" : { "$sum" : 1 } } }, { "$sort" : { "number" : -1 } }] cur = db['articles'].aggregate(pipeline, cursor={}) # Check everything ok if not cur: abort(400) # iterate the cursor and add docs to a dict tags = [tag for tag in cur] return jsonify({'tags' : json.dumps(tags, default=json_util.default)})
  • 17. 17 • Pipeline and Expression operators Aggregation operators Pipeline $match $sort $limit $skip $project $unwind $group $geoNear $text $search Tip: Other operators for date, time, boolean and string manipulation Expression $addToSet $first $last $max $min $avg $push $sum Arithmetic $add $divide $mod $multiply $subtract Conditional $cond $ifNull Variables $let $map
  • 18. 18 • What reports and analytics do we need in our application? – Popular Tags – Popular Articles – Popular Locations – integration with Geo Spatial – Average views per hour or day Application Reports
  • 19. 19 • Unwind each „tags‟ array • Group and count each one, then Sort • Output to new collection – Query from new collection so don‟t need to compute for every request. Popular Tags db.articles.aggregate([ { $unwind : "$tags" }, { $group : { _id : "$tags" , number : { $sum : 1 } } }, { $sort : { number : -1 } }, { $out : "tags"} ])
  • 20. 20 • Top 5 articles by average daily views – Use the $avg operator – Use use $match to constrain data range • Utilise with $gt and $lt operators Popular Articles db.interactions.aggregate([ { {$match : { date : { $gt : ISODate("2014-02-20T00:00:00.000Z")}}}, {$group : {_id: "$article_id", a : { $avg : "$daily.view"}}}, {$sort : { a : -1}}, {$limit : 5} ]);
  • 21. 21 • Use Explain plan to ensure the efficient use of the index when querying. Aggregation Framework Explain db.interactions.aggregate([ {$group : {_id: "$article_id", a : { $avg : "$daily.view"}}}, {$sort : { a : -1}}, {$limit : 5} ], {explain : true} );
  • 22. 22 Explain output… { "stages" : [ { "$cursor" : { "query" : … }, "fields" : { … }, "plan" : { "cursor" : "BasicCursor", "isMultiKey" : false, "scanAndOrder" : false, "allPlans" : [ { "cursor" : "BasicCursor", "isMultiKey" : false, "scanAndOrder" : false } ] } } }, … "ok" : 1 }
  • 23. Geo Spatial & Text Search Aggregation
  • 24. 24 • $text operator with aggregation framework – All articles with MongoDB – Group by author, sort by comments count Text Search db.articles.aggregate([ { $match: { $text: { $search: "mongodb" } } }, { $group: { _id: "$author", comments: { $sum: "$comment_count" } } } {$sort : {comments: -1}}, ])
  • 25. 25 • $geoNear operator with aggregation framework – Again use geo operator in the $match statement. – Group by author, and article count. Utilise with Geo spatial db.articles.aggregate([ { $match: { location: { $geoNear : { $geometry : { type: "Point" ,coordinates : [-0.128, 51.507] } }, $maxDistance :5000} } }, { $group: { _id: "$author", articleCount: { $sum: 1 } } } ])
  • 27. 27 • Aggregating Data… – Map Reduce – Hadoop – Pre-Aggregated Reports – Aggregation Framework • Tune with Explain plan • Compute on the fly or Compute and store • Geospatial • Text Search Summary
  • 28. 28 – Operations for you application – Scale out – Availability – How do we prepare of production – Sizing Next Session – 3th April

Editor's Notes

  • #10: db.interactions.find({"article_id" : ObjectId("532198379fb5ba99a6bd4063")})db.interactions.find({"article_id" : ObjectId("532198379fb5ba99a6bd4063")},{_id:0,hourly:1})