SlideShare a Scribd company logo
First Degree Functions
First Degree Functions
Most mathematical functions used in the real world are
“composed” with members from the following three
groups of formulas.
Most mathematical functions used in the real world are
“composed” with members from the following three
groups of formulas.
* The algebraic family – these are polynomials,
rational expressions and roots, etc..
First Degree Functions
Most mathematical functions used in the real world are
“composed” with members from the following three
groups of formulas.
* The algebraic family – these are polynomials,
rational expressions and roots, etc..
* The trigonometric family – these are sin(x),
cos(x), .. etc that come from line measurements.
First Degree Functions
Most mathematical functions used in the real world are
“composed” with members from the following three
groups of formulas.
* The algebraic family – these are polynomials,
rational expressions and roots, etc..
* The trigonometric family – these are sin(x),
cos(x), .. etc that come from line measurements.
* The exponential–log family – these are ex and ln(x)
that come from exponential contexts.
First Degree Functions
Most mathematical functions used in the real world are
“composed” with members from the following three
groups of formulas.
* The algebraic family – these are polynomials,
rational expressions and roots, etc..
* The trigonometric family – these are sin(x),
cos(x), .. etc that come from line measurements.
* The exponential–log family – these are ex and ln(x)
that come from exponential contexts.
Degree 1 or linear functions: f(x) = mx + b and
degree 2 or quadratic functions: f(x) = ax2 + bx + c
are especially important.
First Degree Functions
Most mathematical functions used in the real world are
“composed” with members from the following three
groups of formulas.
* The algebraic family – these are polynomials,
rational expressions and roots, etc..
* The trigonometric family – these are sin(x),
cos(x), .. etc that come from line measurements.
* The exponential–log family – these are ex and ln(x)
that come from exponential contexts.
Degree 1 or linear functions: f(x) = mx + b and
degree 2 or quadratic functions: f(x) = ax2 + bx + c
are especially important.
First Degree Functions
We review below the basics of linear equations and
linear functions.
First Degree Functions
The algebraic family
The exponential–log familyThe trigonometric family
Below is the MS Win-10 desktop scientific calculator,
a typical scientific calculator input panel:
The graphs of the equations Ax + By = C are straight
lines.
First Degree Functions
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts,
First Degree Functions
a.2x – 3y = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts,
First Degree Functions
a.2x – 3y = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept,
(0,–4)
First Degree Functions
a.2x – 3y = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept.
(6,0)
(0,–4)
First Degree Functions
a.2x – 3y = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept.
(6,0)
(0,–4)
First Degree Functions
a.2x – 3y = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept. If there is only one variable
in the equation, we get a vertical or a horizontal line.
(6,0)
(0,–4)
First Degree Functions
a.2x – 3y = 12 b. –3y = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept. If there is only one variable
in the equation, we get a vertical or a horizontal line.
(6,0)
(0,–4)
First Degree Functions
a.2x – 3y = 12 b. –3y = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept. If there is only one variable
in the equation, we get a vertical or a horizontal line.
(6,0)
(0,–4) y = –4
First Degree Functions
a.2x – 3y = 12 b. –3y = 12 c. 2x = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept. If there is only one variable
in the equation, we get a vertical or a horizontal line.
(6,0)
(0,–4) y = –4
First Degree Functions
a.2x – 3y = 12 b. –3y = 12 c. 2x = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept. If there is only one variable
in the equation, we get a vertical or a horizontal line.
(6,0)
(0,–4) y = –4
x = 6
First Degree Functions
a.2x – 3y = 12 b. –3y = 12 c. 2x = 12
If both x and y are
present, we get a
tilted line.
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept. If there is only one variable
in the equation, we get a vertical or a horizontal line.
(6,0)
(0,–4) y = –4
x = 6
First Degree Functions
a.2x – 3y = 12 b. –3y = 12 c. 2x = 12
If both x and y are
present, we get a
tilted line.
If the equation is
y = c, we get a
horizontal line.
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept. If there is only one variable
in the equation, we get a vertical or a horizontal line.
(6,0)
(0,–4) y = –4
x = 6
First Degree Functions
a.2x – 3y = 12 b. –3y = 12 c. 2x = 12
If both x and y are
present, we get a
tilted line.
If the equation is
y = c, we get a
horizontal line.
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept. If there is only one variable
in the equation, we get a vertical or a horizontal line.
(6,0)
(0,–4) y = –4
x = 6
If the equation is
x = c, we get a
vertical line.
First Degree Functions
First Degree Functions
Given Ax + By = C with B = 0,
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept,
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
From the examples above,
a. 2x – 3y = 12 
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
2
3
2
3
From the examples above,
a. 2x – 3y = 12  y = x – 4, so the slope =
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
2
3
2
3
From the examples above,
a. 2x – 3y = 12  y = x – 4, so the slope =
b. –3y = 12
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
2
3
2
3
From the examples above,
a. 2x – 3y = 12  y = x – 4, so the slope =
b. –3y = 12  y = 0x – 4, so the slope = 0
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
2
3
2
3
From the examples above,
a. 2x – 3y = 12  y = x – 4, so the slope =
b. –3y = 12  y = 0x – 4, so the slope = 0
c. 2x = 12,
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
2
3
2
3
From the examples above,
a. 2x – 3y = 12  y = x – 4, so the slope =
b. –3y = 12  y = 0x – 4, so the slope = 0
c. 2x = 12, the slope is undefined since we can't
solve for y.
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
The slope m is also the ratio of the change in the
output vs. the change in the input.
2
3
2
3
From the examples above,
a. 2x – 3y = 12  y = x – 4, so the slope =
b. –3y = 12  y = 0x – 4, so the slope = 0
c. 2x = 12, the slope is undefined since we can't
solve for y.
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
The slope m is also the ratio of the change in the
output vs. the change in the input.
If two points on the line are given,
the slope is defined via the following formula.
2
3
2
3
From the examples above,
a. 2x – 3y = 12  y = x – 4, so the slope =
b. –3y = 12  y = 0x – 4, so the slope = 0
c. 2x = 12, the slope is undefined since we can't
solve for y.
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line,
First Degree Functions
(x1, y1)
(x2, y2)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δxm =
First Degree Functions
(x1, y1)
(x2, y2)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δxm =
First Degree Functions
(The Greek letter Δ means "the difference".)
(x1, y1)
(x2, y2)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
y2 – y1
x2 – x1
m = =
First Degree Functions
(The Greek letter Δ means "the difference".)
(x1, y1)
(x2, y2)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
y2 – y1
x2 – x1
m =
rise
run
=
=
First Degree Functions
(The Greek letter Δ means "the difference".)
(x1, y1)
(x2, y2)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
y2 – y1
x2 – x1
m =
rise
run
=
= (x1, y1)
(x2, y2)
First Degree Functions
(The Greek letter Δ means "the difference".)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
y2 – y1
x2 – x1
m =
rise
run
=
= (x1, y1)
(x2, y2)
Δy=y2–y1=rise
First Degree Functions
(The Greek letter Δ means "the difference".)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
y2 – y1
x2 – x1
m =
rise
run
=
= (x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
First Degree Functions
(The Greek letter Δ means "the difference".)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
y2 – y1
x2 – x1
m =
rise
run
=
= (x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
The Point Slope Formula: Let y = f(x) be a first
degree equation with slope m, and (x1, y1) is a point
on the line, then y = f(x) = m(x – x1) + y1
First Degree Functions
(The Greek letter Δ means "the difference".)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
y2 – y1
x2 – x1
m =
rise
run
=
= (x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
The Point Slope Formula: Let y = f(x) be a first
degree equation with slope m, and (x1, y1) is a point
on the line, then y = f(x) = m(x – x1) + y1
First degree functions are also called linear functions
because their graphs are straight lines.
First Degree Functions
(The Greek letter Δ means "the difference".)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
y2 – y1
x2 – x1
m =
rise
run
=
= (x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
The Point Slope Formula: Let y = f(x) be a first
degree equation with slope m, and (x1, y1) is a point
on the line, then y = f(x) = m(x – x1) + y1
First degree functions are also called linear functions
because their graphs are straight lines. We will use
linear functions to approximate other functions just like
we use line segments to approximate a curve.
First Degree Functions
(The Greek letter Δ means "the difference".)
Linear Equations and Lines
Example A. A river floods regularly, and on a rock by
the river there is a mark indicating the highest point
the water level ever recorded.
At 12 pm July 11, the water level is 28 inches below
this mark. At 8 am July 12 the water is 18 inches
below this mark.
Linear Equations and Lines
Example A. A river floods regularly, and on a rock by
the river there is a mark indicating the highest point
the water level ever recorded.
At 12 pm July 11, the water level is 28 inches below
this mark. At 8 am July 12 the water is 18 inches
below this mark. Let x = time,
y = distance between the water level and the mark.
Find the linear function y = f(x) = mx + b
of the distance y in terms of time x.
Linear Equations and Lines
Example A. A river floods regularly, and on a rock by
the river there is a mark indicating the highest point
the water level ever recorded.
At 12 pm July 11, the water level is 28 inches below
this mark. At 8 am July 12 the water is 18 inches
below this mark. Let x = time,
y = distance between the water level and the mark.
Find the linear function y = f(x) = mx + b
of the distance y in terms of time x.
Since how the time was measured is not specified,
we may select the stating time 0 to be time of the
first observation.
Linear Equations and Lines
Example A. A river floods regularly, and on a rock by
the river there is a mark indicating the highest point
the water level ever recorded.
At 12 pm July 11, the water level is 28 inches below
this mark. At 8 am July 12 the water is 18 inches
below this mark. Let x = time,
y = distance between the water level and the mark.
Find the linear function y = f(x) = mx + b
of the distance y in terms of time x.
Since how the time was measured is not specified,
we may select the stating time 0 to be time of the
first observation.
By setting x = 0 (hr) at 12 pm July 11,
then x = 20 at 8 am of July 12.
Equations of Lines
In particular, we are given that at x = 0 →y = 28,
and at x = 20 → y = 18
Equations of Lines
In particular, we are given that at x = 0 →y = 28,
and at x = 20 → y = 18 and that we want the
equation y = m(x – x1) + y1 of the line that contains
the points (0, 28) and (20, 18).
Δy
Δx
28 – 18
0 – 20
Equations of Lines
In particular, we are given that at x = 0 →y = 28,
and at x = 20 → y = 18 and that we want the
equation y = m(x – x1) + y1 of the line that contains
the points (0, 28) and (20, 18).
=The slope m = = –1/2
Using the point (0, 28) and the point–slope formula,
y = – ½ (x – 0) + 28 or that
Δy
Δx
28 – 18
0 – 20
Equations of Lines
In particular, we are given that at x = 0 →y = 28,
and at x = 20 → y = 18 and that we want the
equation y = m(x – x1) + y1 of the line that contains
the points (0, 28) and (20, 18).
=The slope m = = –1/2
– xy = + 28
2
Using the point (0, 28) and the point–slope formula,
y = – ½ (x – 0) + 28 or
Δy
Δx
28 – 18
0 – 20
Equations of Lines
In particular, we are given that at x = 0 →y = 28,
and at x = 20 → y = 18 and that we want the
equation y = m(x – x1) + y1 of the line that contains
the points (0, 28) and (20, 18).
=The slope m = = –1/2
– xy = + 28
2
The linear equation that we found is also called the
trend line.
Using the point (0, 28) and the point–slope formula,
y = – ½ (x – 0) + 28 or
Δy
Δx
28 – 18
0 – 20
Equations of Lines
In particular, we are given that at x = 0 →y = 28,
and at x = 20 → y = 18 and that we want the
equation y = m(x – x1) + y1 of the line that contains
the points (0, 28) and (20, 18).
=The slope m = = –1/2
– xy = + 28
2
The linear equation that we found is also called the
trend line. So if at 4 pm July 12, i.e. when x = 28,
we measured that y = 12”
Using the point (0, 28) and the point–slope formula,
y = – ½ (x – 0) + 28 or
Δy
Δx
28 – 18
0 – 20
Equations of Lines
In particular, we are given that at x = 0 →y = 28,
and at x = 20 → y = 18 and that we want the
equation y = m(x – x1) + y1 of the line that contains
the points (0, 28) and (20, 18).
=The slope m = = –1/2
– xy = + 28
2
The linear equation that we found is also called the
trend line. So if at 4 pm July 12, i.e. when x = 28,
we measured that y = 12” but based on the formula
prediction that y should be – 28/2 + 28 = 14”,
Using the point (0, 28) and the point–slope formula,
y = – ½ (x – 0) + 28 or
Δy
Δx
28 – 18
0 – 20
Equations of Lines
In particular, we are given that at x = 0 →y = 28,
and at x = 20 → y = 18 and that we want the
equation y = m(x – x1) + y1 of the line that contains
the points (0, 28) and (20, 18).
=The slope m = = –1/2
– xy = + 28
2
The linear equation that we found is also called the
trend line. So if at 4 pm July 12, i.e. when x = 28,
we measured that y = 12” but based on the formula
prediction that y should be – 28/2 + 28 = 14”, we may
conclude that the flood is intensifying.
More Facts on Slopes:
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
• Slopes of perpendicular lines are the negative
reciprocal of each other.
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
• Slopes of perpendicular lines are the negative
reciprocal of each other.
Example B. Find the equation of the line L that
passes through (2, –4) and is perpendicular to
4x – 3y = 5.
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
• Slopes of perpendicular lines are the negative
reciprocal of each other.
Example B. Find the equation of the line L that
passes through (2, –4) and is perpendicular to
4x – 3y = 5.
Solve for y to find the slope of 4x – 3y = 5
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
• Slopes of perpendicular lines are the negative
reciprocal of each other.
Example B. Find the equation of the line L that
passes through (2, –4) and is perpendicular to
4x – 3y = 5.
Solve for y to find the slope of 4x – 3y = 5
4x – 5 = 3y
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
• Slopes of perpendicular lines are the negative
reciprocal of each other.
Example B. Find the equation of the line L that
passes through (2, –4) and is perpendicular to
4x – 3y = 5.
Solve for y to find the slope of 4x – 3y = 5
4x – 5 = 3y
4x/3 – 5/3 = y
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
• Slopes of perpendicular lines are the negative
reciprocal of each other.
Example B. Find the equation of the line L that
passes through (2, –4) and is perpendicular to
4x – 3y = 5.
Solve for y to find the slope of 4x – 3y = 5
4x – 5 = 3y
4x/3 – 5/3 = y
Hence the slope of 4x – 2y = 5 is 4/3.
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
• Slopes of perpendicular lines are the negative
reciprocal of each other.
Example B. Find the equation of the line L that
passes through (2, –4) and is perpendicular to
4x – 3y = 5.
Solve for y to find the slope of 4x – 3y = 5
4x – 5 = 3y
4x/3 – 5/3 = y
Hence the slope of 4x – 2y = 5 is 4/3.
Therefore L has slope –3/4.
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
• Slopes of perpendicular lines are the negative
reciprocal of each other.
Example B. Find the equation of the line L that
passes through (2, –4) and is perpendicular to
4x – 3y = 5.
Solve for y to find the slope of 4x – 3y = 5
4x – 5 = 3y
4x/3 – 5/3 = y
Hence the slope of 4x – 2y = 5 is 4/3.
Therefore L has slope –3/4. So the equation of L is
First Degree Functions
y = (–3/4)(x – 2) + (–4) or y = –3x/4 – 5/2.
Linear Equations and Lines
Exercise A. Estimate the slope by eyeballing two points,
then find an equation of each line below.
1. 2. 3. 4.
5. 6. 7. 8.
Linear Equations and Lines
B. Draw each line that passes through the given two points.
Find the slope and an equation of the line.
Again Identify the vertical lines and the horizontal lines by
inspection and solve for them first.
(Fraction Review: slide 99 of 1.2)
1. (0, –1), (–2, 1) 2. (3, –1), (3, 1)
4. (1, –2), (–2, 3)
3. (2, –1), (3, –1)
6. (4, –2), (4, 0)5. (7, –2), (–2, –6)
7. (3/2, –1), (3/2, 1) 8. (3/4, –1/3), (1/3, 3/2)
9. (–1/4, –3/2), (2/3, –3/2) 10. (–1/3, –1/6), (–3/4, 1/2)
11. (2/5, –3/10), (–1/2, –3/5) 12. (–3/4, 5/6), (–3/4, –4/3)
Linear Equations and Lines
2. It’s perpendicular to 2x – 4y = 1 and passes through (–2, 1)
6. It’s perpendicular to 3y = x with x–intercept at x = –3.
12. It has y–intercept at y = 3 and is parallel to 3y + 4x = 1.
8. It’s perpendicular to the y–axis with y–intercept at 4.
9. It has y–intercept at y = 3 and is parallel to the x axis.
10. It’s perpendicular to the x– axis containing the point (4, –3).
11. It is parallel to the y axis has x–intercept at x = –7.
5. It is parallel to the x axis and has y–intercept at y = 7.
C. Find the equations of the following lines.
1. The line that passes through (0, 1) and has slope 3.
7. The line that passes through (–2 ,1) and has slope –1/2.
3. The line that passes through (5, 2) and is parallel to y = x.
4. The line that passes through (–3, 2) and is perpendicular
to –x = 2y.
Linear Equations and Lines
The cost y of renting a tour boat consists of a base–cost plus
the number of tourists x. With 4 tourists the total cost is $65,
with 11 tourists the total is $86.
1. What is the base cost and what is the charge per tourist?
2. Find the equation of y in terms of x.
3. What is the total cost if there are 28 tourists?
The temperature y of water in a glass is rising slowly.
After 4 min. the temperature is 30 Co, and after 11 min. the
temperature is up to 65 Co. Answer 4–6 assuming the
temperature is rising linearly.
4. What is the temperature at time 0 and what is the rate of
the temperature rise?
5. Find the equation of y in terms of time.
6. How long will it take to bring the water to a boil at 100 Co?
D. Find the equations of the following lines.
Linear Equations and Lines
The cost of gas y on May 3 is $3.58 and on May 9 is $4.00.
Answer 7–9 assuming the price is rising linearly.
7. Let x be the date in May, what is the rate of increase in
price in terms of x?
8. Find the equation of the price in term of the date x in May.
9. What is the projected price on May 20?
(Answers to odd problems) Exercise A.
1. 𝑚 = 1/3, 𝑦 = 1/3𝑥 3. 𝑚 = 1, 𝑦 = 𝑥 + 3
5. 𝑚 = 0, 𝑦 = 4 7. 𝑚 = −
3
2
, 𝑦 = −
3
2
𝑥 + 3
1. 𝑚 = −1, 𝑦 = −𝑥 − 1 3. 𝑚 = 0, 𝑦 = −1
Exercise B.
Linear Equations and Lines
5. 𝑚 =
4
9
, 𝑦 =
4
9
𝑥 − 46/9 7. 𝑚 = 0, 𝑥 = 3/2
9. 𝑚 = 0, 𝑦 = −3/2 11. 𝑚 = 1/3, 𝑦 = 𝑥/3 − 13/30
Linear Equations and Lines
9. 𝑦 = 3 11. 𝑥 =– 7
5. 𝑦 = 7
Exercise C.
1. 𝑦 = 3𝑥 + 1
7. 𝑦 =– 1/2𝑥
3. 𝑦 = 𝑥 − 3
1. The base cost is $53 and the charge per tourist is $3.
3. $137
Exercise D.
5. 𝑦 = 5𝑥 + 10
9. $4.777. The rate of increase is 0.07
Linear Equations and Lines

More Related Content

PPTX
2.2 graphs of first degree functions t
PPTX
12 graphs of second degree functions x
PPTX
11 graphs of first degree functions x
PPTX
13 graphs of factorable polynomials x
PPTX
19 more parabolas a& hyperbolas (optional) x
PPTX
2.2 Graphs of First Degree Functions
PPTX
10 rectangular coordinate system x
PPTX
8 sign charts of factorable formulas y
2.2 graphs of first degree functions t
12 graphs of second degree functions x
11 graphs of first degree functions x
13 graphs of factorable polynomials x
19 more parabolas a& hyperbolas (optional) x
2.2 Graphs of First Degree Functions
10 rectangular coordinate system x
8 sign charts of factorable formulas y

What's hot (20)

PPTX
5 2 solving 2nd degree equations
PPTX
5 3 the graphs of quadratic equations
PPTX
2.4 grapgs of second degree functions
PPT
4.2 stem parabolas revisited
PPTX
1.1 review solving 2nd degree equations
PPTX
8 inequalities and sign charts x
DOCX
Linear ineqns. and statistics
PPT
11 equations of planes
PPTX
Tema Numeros Reales
PPT
1.2 the graphs of quadratic equations
PPTX
59 constructing linea equations of lines
PPT
M8AL- IIf-2
PPT
21 solutions of 2nd degree equations
DOCX
Class xii practice questions
PPT
CST 504 Linear Equations
PDF
Module 4 quadratic functions
PPT
M8 al if-1
PDF
Module 1 linear functions
PPTX
16 slopes and difference quotient x
PPTX
2.9 graphs of factorable polynomials
5 2 solving 2nd degree equations
5 3 the graphs of quadratic equations
2.4 grapgs of second degree functions
4.2 stem parabolas revisited
1.1 review solving 2nd degree equations
8 inequalities and sign charts x
Linear ineqns. and statistics
11 equations of planes
Tema Numeros Reales
1.2 the graphs of quadratic equations
59 constructing linea equations of lines
M8AL- IIf-2
21 solutions of 2nd degree equations
Class xii practice questions
CST 504 Linear Equations
Module 4 quadratic functions
M8 al if-1
Module 1 linear functions
16 slopes and difference quotient x
2.9 graphs of factorable polynomials
Ad

Similar to 2 graphs of first degree functions x (20)

PPTX
11 graphs of first degree functions x
PPTX
5 3 the graphs of quadratic equations-x
PPTX
17 conic sections circles-x
DOC
Mathematics 8 Linear Functions
PPT
Solving and Graphing Quadratic functions.ppt
PPTX
Straight-Line-Graphs-Final.pptxpptpptppt
PDF
SP_2_Maths.pdf for thent class jee @neet
PPTX
persamaan trigonometri A COS X + B SIN X
PPT
02.21.2020 Algebra I Quadraic Functions.ppt
PPTX
POLYNOMIALS and different types of polynomial.pptx
PPTX
Graphing y = ax^2 + bx + c
PPTX
February 11 2016
PPT
2.5 conic sections circles-x
PPT
2.5 conic sections circles-x
PPT
Grph quad fncts
PPTX
Graphs Of Equations
PPT
2 3 Bzca5e
PPTX
20200830230859_PPT4-Lines, Parabolas and Systems.pptx
PDF
Module 2 linear functions
PPT
Math project
11 graphs of first degree functions x
5 3 the graphs of quadratic equations-x
17 conic sections circles-x
Mathematics 8 Linear Functions
Solving and Graphing Quadratic functions.ppt
Straight-Line-Graphs-Final.pptxpptpptppt
SP_2_Maths.pdf for thent class jee @neet
persamaan trigonometri A COS X + B SIN X
02.21.2020 Algebra I Quadraic Functions.ppt
POLYNOMIALS and different types of polynomial.pptx
Graphing y = ax^2 + bx + c
February 11 2016
2.5 conic sections circles-x
2.5 conic sections circles-x
Grph quad fncts
Graphs Of Equations
2 3 Bzca5e
20200830230859_PPT4-Lines, Parabolas and Systems.pptx
Module 2 linear functions
Math project
Ad

More from Tzenma (20)

PPTX
6 slopes and difference quotient x
PPTX
5 algebra of functions
PPTX
4 graphs of equations conic sections-circles
PPTX
3 graphs of second degree functions x
PPTX
1 functions
PPTX
9 rational equations word problems-x
PPTX
9 rational equations word problems-x
PPTX
7 proportions x
PPTX
10 complex fractions x
PPTX
6 addition and subtraction ii x
PPTX
5 addition and subtraction i x
PPTX
4 the lcm and clearing denominators x
PPTX
3 multiplication and division of rational expressions x
PPTX
2 cancellation x
PPTX
1 rational expressions x
PPTX
8 linear word problems in x&y x
PPTX
7 system of linear equations ii x
PPTX
6 system of linear equations i x
PPTX
5 equations of lines x
PPTX
4 more on slopes x
6 slopes and difference quotient x
5 algebra of functions
4 graphs of equations conic sections-circles
3 graphs of second degree functions x
1 functions
9 rational equations word problems-x
9 rational equations word problems-x
7 proportions x
10 complex fractions x
6 addition and subtraction ii x
5 addition and subtraction i x
4 the lcm and clearing denominators x
3 multiplication and division of rational expressions x
2 cancellation x
1 rational expressions x
8 linear word problems in x&y x
7 system of linear equations ii x
6 system of linear equations i x
5 equations of lines x
4 more on slopes x

Recently uploaded (20)

PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PPTX
Cell Types and Its function , kingdom of life
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
TR - Agricultural Crops Production NC III.pdf
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
Insiders guide to clinical Medicine.pdf
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
Computing-Curriculum for Schools in Ghana
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
Sports Quiz easy sports quiz sports quiz
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
01-Introduction-to-Information-Management.pdf
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
Final Presentation General Medicine 03-08-2024.pptx
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
Cell Types and Its function , kingdom of life
Renaissance Architecture: A Journey from Faith to Humanism
O7-L3 Supply Chain Operations - ICLT Program
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
TR - Agricultural Crops Production NC III.pdf
Microbial diseases, their pathogenesis and prophylaxis
Supply Chain Operations Speaking Notes -ICLT Program
Insiders guide to clinical Medicine.pdf
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Computing-Curriculum for Schools in Ghana
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Sports Quiz easy sports quiz sports quiz
VCE English Exam - Section C Student Revision Booklet
01-Introduction-to-Information-Management.pdf
Module 4: Burden of Disease Tutorial Slides S2 2025
Microbial disease of the cardiovascular and lymphatic systems
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Abdominal Access Techniques with Prof. Dr. R K Mishra

2 graphs of first degree functions x

  • 2. First Degree Functions Most mathematical functions used in the real world are “composed” with members from the following three groups of formulas.
  • 3. Most mathematical functions used in the real world are “composed” with members from the following three groups of formulas. * The algebraic family – these are polynomials, rational expressions and roots, etc.. First Degree Functions
  • 4. Most mathematical functions used in the real world are “composed” with members from the following three groups of formulas. * The algebraic family – these are polynomials, rational expressions and roots, etc.. * The trigonometric family – these are sin(x), cos(x), .. etc that come from line measurements. First Degree Functions
  • 5. Most mathematical functions used in the real world are “composed” with members from the following three groups of formulas. * The algebraic family – these are polynomials, rational expressions and roots, etc.. * The trigonometric family – these are sin(x), cos(x), .. etc that come from line measurements. * The exponential–log family – these are ex and ln(x) that come from exponential contexts. First Degree Functions
  • 6. Most mathematical functions used in the real world are “composed” with members from the following three groups of formulas. * The algebraic family – these are polynomials, rational expressions and roots, etc.. * The trigonometric family – these are sin(x), cos(x), .. etc that come from line measurements. * The exponential–log family – these are ex and ln(x) that come from exponential contexts. Degree 1 or linear functions: f(x) = mx + b and degree 2 or quadratic functions: f(x) = ax2 + bx + c are especially important. First Degree Functions
  • 7. Most mathematical functions used in the real world are “composed” with members from the following three groups of formulas. * The algebraic family – these are polynomials, rational expressions and roots, etc.. * The trigonometric family – these are sin(x), cos(x), .. etc that come from line measurements. * The exponential–log family – these are ex and ln(x) that come from exponential contexts. Degree 1 or linear functions: f(x) = mx + b and degree 2 or quadratic functions: f(x) = ax2 + bx + c are especially important. First Degree Functions We review below the basics of linear equations and linear functions.
  • 8. First Degree Functions The algebraic family The exponential–log familyThe trigonometric family Below is the MS Win-10 desktop scientific calculator, a typical scientific calculator input panel:
  • 9. The graphs of the equations Ax + By = C are straight lines. First Degree Functions
  • 10. The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, First Degree Functions
  • 11. a.2x – 3y = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, First Degree Functions
  • 12. a.2x – 3y = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, (0,–4) First Degree Functions
  • 13. a.2x – 3y = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. (6,0) (0,–4) First Degree Functions
  • 14. a.2x – 3y = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. (6,0) (0,–4) First Degree Functions
  • 15. a.2x – 3y = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. If there is only one variable in the equation, we get a vertical or a horizontal line. (6,0) (0,–4) First Degree Functions
  • 16. a.2x – 3y = 12 b. –3y = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. If there is only one variable in the equation, we get a vertical or a horizontal line. (6,0) (0,–4) First Degree Functions
  • 17. a.2x – 3y = 12 b. –3y = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. If there is only one variable in the equation, we get a vertical or a horizontal line. (6,0) (0,–4) y = –4 First Degree Functions
  • 18. a.2x – 3y = 12 b. –3y = 12 c. 2x = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. If there is only one variable in the equation, we get a vertical or a horizontal line. (6,0) (0,–4) y = –4 First Degree Functions
  • 19. a.2x – 3y = 12 b. –3y = 12 c. 2x = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. If there is only one variable in the equation, we get a vertical or a horizontal line. (6,0) (0,–4) y = –4 x = 6 First Degree Functions
  • 20. a.2x – 3y = 12 b. –3y = 12 c. 2x = 12 If both x and y are present, we get a tilted line. The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. If there is only one variable in the equation, we get a vertical or a horizontal line. (6,0) (0,–4) y = –4 x = 6 First Degree Functions
  • 21. a.2x – 3y = 12 b. –3y = 12 c. 2x = 12 If both x and y are present, we get a tilted line. If the equation is y = c, we get a horizontal line. The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. If there is only one variable in the equation, we get a vertical or a horizontal line. (6,0) (0,–4) y = –4 x = 6 First Degree Functions
  • 22. a.2x – 3y = 12 b. –3y = 12 c. 2x = 12 If both x and y are present, we get a tilted line. If the equation is y = c, we get a horizontal line. The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. If there is only one variable in the equation, we get a vertical or a horizontal line. (6,0) (0,–4) y = –4 x = 6 If the equation is x = c, we get a vertical line. First Degree Functions
  • 23. First Degree Functions Given Ax + By = C with B = 0,
  • 24. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b,
  • 25. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept,
  • 26. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form.
  • 27. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form. From the examples above, a. 2x – 3y = 12 
  • 28. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form. 2 3 2 3 From the examples above, a. 2x – 3y = 12  y = x – 4, so the slope =
  • 29. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form. 2 3 2 3 From the examples above, a. 2x – 3y = 12  y = x – 4, so the slope = b. –3y = 12
  • 30. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form. 2 3 2 3 From the examples above, a. 2x – 3y = 12  y = x – 4, so the slope = b. –3y = 12  y = 0x – 4, so the slope = 0
  • 31. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form. 2 3 2 3 From the examples above, a. 2x – 3y = 12  y = x – 4, so the slope = b. –3y = 12  y = 0x – 4, so the slope = 0 c. 2x = 12,
  • 32. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form. 2 3 2 3 From the examples above, a. 2x – 3y = 12  y = x – 4, so the slope = b. –3y = 12  y = 0x – 4, so the slope = 0 c. 2x = 12, the slope is undefined since we can't solve for y.
  • 33. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form. The slope m is also the ratio of the change in the output vs. the change in the input. 2 3 2 3 From the examples above, a. 2x – 3y = 12  y = x – 4, so the slope = b. –3y = 12  y = 0x – 4, so the slope = 0 c. 2x = 12, the slope is undefined since we can't solve for y.
  • 34. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form. The slope m is also the ratio of the change in the output vs. the change in the input. If two points on the line are given, the slope is defined via the following formula. 2 3 2 3 From the examples above, a. 2x – 3y = 12  y = x – 4, so the slope = b. –3y = 12  y = 0x – 4, so the slope = 0 c. 2x = 12, the slope is undefined since we can't solve for y.
  • 35. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, First Degree Functions (x1, y1) (x2, y2)
  • 36. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δxm = First Degree Functions (x1, y1) (x2, y2)
  • 37. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δxm = First Degree Functions (The Greek letter Δ means "the difference".) (x1, y1) (x2, y2)
  • 38. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx y2 – y1 x2 – x1 m = = First Degree Functions (The Greek letter Δ means "the difference".) (x1, y1) (x2, y2)
  • 39. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx y2 – y1 x2 – x1 m = rise run = = First Degree Functions (The Greek letter Δ means "the difference".) (x1, y1) (x2, y2)
  • 40. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx y2 – y1 x2 – x1 m = rise run = = (x1, y1) (x2, y2) First Degree Functions (The Greek letter Δ means "the difference".)
  • 41. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx y2 – y1 x2 – x1 m = rise run = = (x1, y1) (x2, y2) Δy=y2–y1=rise First Degree Functions (The Greek letter Δ means "the difference".)
  • 42. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx y2 – y1 x2 – x1 m = rise run = = (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run First Degree Functions (The Greek letter Δ means "the difference".)
  • 43. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx y2 – y1 x2 – x1 m = rise run = = (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run The Point Slope Formula: Let y = f(x) be a first degree equation with slope m, and (x1, y1) is a point on the line, then y = f(x) = m(x – x1) + y1 First Degree Functions (The Greek letter Δ means "the difference".)
  • 44. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx y2 – y1 x2 – x1 m = rise run = = (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run The Point Slope Formula: Let y = f(x) be a first degree equation with slope m, and (x1, y1) is a point on the line, then y = f(x) = m(x – x1) + y1 First degree functions are also called linear functions because their graphs are straight lines. First Degree Functions (The Greek letter Δ means "the difference".)
  • 45. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx y2 – y1 x2 – x1 m = rise run = = (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run The Point Slope Formula: Let y = f(x) be a first degree equation with slope m, and (x1, y1) is a point on the line, then y = f(x) = m(x – x1) + y1 First degree functions are also called linear functions because their graphs are straight lines. We will use linear functions to approximate other functions just like we use line segments to approximate a curve. First Degree Functions (The Greek letter Δ means "the difference".)
  • 46. Linear Equations and Lines Example A. A river floods regularly, and on a rock by the river there is a mark indicating the highest point the water level ever recorded. At 12 pm July 11, the water level is 28 inches below this mark. At 8 am July 12 the water is 18 inches below this mark.
  • 47. Linear Equations and Lines Example A. A river floods regularly, and on a rock by the river there is a mark indicating the highest point the water level ever recorded. At 12 pm July 11, the water level is 28 inches below this mark. At 8 am July 12 the water is 18 inches below this mark. Let x = time, y = distance between the water level and the mark. Find the linear function y = f(x) = mx + b of the distance y in terms of time x.
  • 48. Linear Equations and Lines Example A. A river floods regularly, and on a rock by the river there is a mark indicating the highest point the water level ever recorded. At 12 pm July 11, the water level is 28 inches below this mark. At 8 am July 12 the water is 18 inches below this mark. Let x = time, y = distance between the water level and the mark. Find the linear function y = f(x) = mx + b of the distance y in terms of time x. Since how the time was measured is not specified, we may select the stating time 0 to be time of the first observation.
  • 49. Linear Equations and Lines Example A. A river floods regularly, and on a rock by the river there is a mark indicating the highest point the water level ever recorded. At 12 pm July 11, the water level is 28 inches below this mark. At 8 am July 12 the water is 18 inches below this mark. Let x = time, y = distance between the water level and the mark. Find the linear function y = f(x) = mx + b of the distance y in terms of time x. Since how the time was measured is not specified, we may select the stating time 0 to be time of the first observation. By setting x = 0 (hr) at 12 pm July 11, then x = 20 at 8 am of July 12.
  • 50. Equations of Lines In particular, we are given that at x = 0 →y = 28, and at x = 20 → y = 18
  • 51. Equations of Lines In particular, we are given that at x = 0 →y = 28, and at x = 20 → y = 18 and that we want the equation y = m(x – x1) + y1 of the line that contains the points (0, 28) and (20, 18).
  • 52. Δy Δx 28 – 18 0 – 20 Equations of Lines In particular, we are given that at x = 0 →y = 28, and at x = 20 → y = 18 and that we want the equation y = m(x – x1) + y1 of the line that contains the points (0, 28) and (20, 18). =The slope m = = –1/2
  • 53. Using the point (0, 28) and the point–slope formula, y = – ½ (x – 0) + 28 or that Δy Δx 28 – 18 0 – 20 Equations of Lines In particular, we are given that at x = 0 →y = 28, and at x = 20 → y = 18 and that we want the equation y = m(x – x1) + y1 of the line that contains the points (0, 28) and (20, 18). =The slope m = = –1/2 – xy = + 28 2
  • 54. Using the point (0, 28) and the point–slope formula, y = – ½ (x – 0) + 28 or Δy Δx 28 – 18 0 – 20 Equations of Lines In particular, we are given that at x = 0 →y = 28, and at x = 20 → y = 18 and that we want the equation y = m(x – x1) + y1 of the line that contains the points (0, 28) and (20, 18). =The slope m = = –1/2 – xy = + 28 2 The linear equation that we found is also called the trend line.
  • 55. Using the point (0, 28) and the point–slope formula, y = – ½ (x – 0) + 28 or Δy Δx 28 – 18 0 – 20 Equations of Lines In particular, we are given that at x = 0 →y = 28, and at x = 20 → y = 18 and that we want the equation y = m(x – x1) + y1 of the line that contains the points (0, 28) and (20, 18). =The slope m = = –1/2 – xy = + 28 2 The linear equation that we found is also called the trend line. So if at 4 pm July 12, i.e. when x = 28, we measured that y = 12”
  • 56. Using the point (0, 28) and the point–slope formula, y = – ½ (x – 0) + 28 or Δy Δx 28 – 18 0 – 20 Equations of Lines In particular, we are given that at x = 0 →y = 28, and at x = 20 → y = 18 and that we want the equation y = m(x – x1) + y1 of the line that contains the points (0, 28) and (20, 18). =The slope m = = –1/2 – xy = + 28 2 The linear equation that we found is also called the trend line. So if at 4 pm July 12, i.e. when x = 28, we measured that y = 12” but based on the formula prediction that y should be – 28/2 + 28 = 14”,
  • 57. Using the point (0, 28) and the point–slope formula, y = – ½ (x – 0) + 28 or Δy Δx 28 – 18 0 – 20 Equations of Lines In particular, we are given that at x = 0 →y = 28, and at x = 20 → y = 18 and that we want the equation y = m(x – x1) + y1 of the line that contains the points (0, 28) and (20, 18). =The slope m = = –1/2 – xy = + 28 2 The linear equation that we found is also called the trend line. So if at 4 pm July 12, i.e. when x = 28, we measured that y = 12” but based on the formula prediction that y should be – 28/2 + 28 = 14”, we may conclude that the flood is intensifying.
  • 58. More Facts on Slopes: First Degree Functions
  • 59. More Facts on Slopes: • Parallel lines have the same slope. First Degree Functions
  • 60. More Facts on Slopes: • Parallel lines have the same slope. • Slopes of perpendicular lines are the negative reciprocal of each other. First Degree Functions
  • 61. More Facts on Slopes: • Parallel lines have the same slope. • Slopes of perpendicular lines are the negative reciprocal of each other. Example B. Find the equation of the line L that passes through (2, –4) and is perpendicular to 4x – 3y = 5. First Degree Functions
  • 62. More Facts on Slopes: • Parallel lines have the same slope. • Slopes of perpendicular lines are the negative reciprocal of each other. Example B. Find the equation of the line L that passes through (2, –4) and is perpendicular to 4x – 3y = 5. Solve for y to find the slope of 4x – 3y = 5 First Degree Functions
  • 63. More Facts on Slopes: • Parallel lines have the same slope. • Slopes of perpendicular lines are the negative reciprocal of each other. Example B. Find the equation of the line L that passes through (2, –4) and is perpendicular to 4x – 3y = 5. Solve for y to find the slope of 4x – 3y = 5 4x – 5 = 3y First Degree Functions
  • 64. More Facts on Slopes: • Parallel lines have the same slope. • Slopes of perpendicular lines are the negative reciprocal of each other. Example B. Find the equation of the line L that passes through (2, –4) and is perpendicular to 4x – 3y = 5. Solve for y to find the slope of 4x – 3y = 5 4x – 5 = 3y 4x/3 – 5/3 = y First Degree Functions
  • 65. More Facts on Slopes: • Parallel lines have the same slope. • Slopes of perpendicular lines are the negative reciprocal of each other. Example B. Find the equation of the line L that passes through (2, –4) and is perpendicular to 4x – 3y = 5. Solve for y to find the slope of 4x – 3y = 5 4x – 5 = 3y 4x/3 – 5/3 = y Hence the slope of 4x – 2y = 5 is 4/3. First Degree Functions
  • 66. More Facts on Slopes: • Parallel lines have the same slope. • Slopes of perpendicular lines are the negative reciprocal of each other. Example B. Find the equation of the line L that passes through (2, –4) and is perpendicular to 4x – 3y = 5. Solve for y to find the slope of 4x – 3y = 5 4x – 5 = 3y 4x/3 – 5/3 = y Hence the slope of 4x – 2y = 5 is 4/3. Therefore L has slope –3/4. First Degree Functions
  • 67. More Facts on Slopes: • Parallel lines have the same slope. • Slopes of perpendicular lines are the negative reciprocal of each other. Example B. Find the equation of the line L that passes through (2, –4) and is perpendicular to 4x – 3y = 5. Solve for y to find the slope of 4x – 3y = 5 4x – 5 = 3y 4x/3 – 5/3 = y Hence the slope of 4x – 2y = 5 is 4/3. Therefore L has slope –3/4. So the equation of L is First Degree Functions y = (–3/4)(x – 2) + (–4) or y = –3x/4 – 5/2.
  • 68. Linear Equations and Lines Exercise A. Estimate the slope by eyeballing two points, then find an equation of each line below. 1. 2. 3. 4. 5. 6. 7. 8.
  • 69. Linear Equations and Lines B. Draw each line that passes through the given two points. Find the slope and an equation of the line. Again Identify the vertical lines and the horizontal lines by inspection and solve for them first. (Fraction Review: slide 99 of 1.2) 1. (0, –1), (–2, 1) 2. (3, –1), (3, 1) 4. (1, –2), (–2, 3) 3. (2, –1), (3, –1) 6. (4, –2), (4, 0)5. (7, –2), (–2, –6) 7. (3/2, –1), (3/2, 1) 8. (3/4, –1/3), (1/3, 3/2) 9. (–1/4, –3/2), (2/3, –3/2) 10. (–1/3, –1/6), (–3/4, 1/2) 11. (2/5, –3/10), (–1/2, –3/5) 12. (–3/4, 5/6), (–3/4, –4/3)
  • 70. Linear Equations and Lines 2. It’s perpendicular to 2x – 4y = 1 and passes through (–2, 1) 6. It’s perpendicular to 3y = x with x–intercept at x = –3. 12. It has y–intercept at y = 3 and is parallel to 3y + 4x = 1. 8. It’s perpendicular to the y–axis with y–intercept at 4. 9. It has y–intercept at y = 3 and is parallel to the x axis. 10. It’s perpendicular to the x– axis containing the point (4, –3). 11. It is parallel to the y axis has x–intercept at x = –7. 5. It is parallel to the x axis and has y–intercept at y = 7. C. Find the equations of the following lines. 1. The line that passes through (0, 1) and has slope 3. 7. The line that passes through (–2 ,1) and has slope –1/2. 3. The line that passes through (5, 2) and is parallel to y = x. 4. The line that passes through (–3, 2) and is perpendicular to –x = 2y.
  • 71. Linear Equations and Lines The cost y of renting a tour boat consists of a base–cost plus the number of tourists x. With 4 tourists the total cost is $65, with 11 tourists the total is $86. 1. What is the base cost and what is the charge per tourist? 2. Find the equation of y in terms of x. 3. What is the total cost if there are 28 tourists? The temperature y of water in a glass is rising slowly. After 4 min. the temperature is 30 Co, and after 11 min. the temperature is up to 65 Co. Answer 4–6 assuming the temperature is rising linearly. 4. What is the temperature at time 0 and what is the rate of the temperature rise? 5. Find the equation of y in terms of time. 6. How long will it take to bring the water to a boil at 100 Co? D. Find the equations of the following lines.
  • 72. Linear Equations and Lines The cost of gas y on May 3 is $3.58 and on May 9 is $4.00. Answer 7–9 assuming the price is rising linearly. 7. Let x be the date in May, what is the rate of increase in price in terms of x? 8. Find the equation of the price in term of the date x in May. 9. What is the projected price on May 20?
  • 73. (Answers to odd problems) Exercise A. 1. 𝑚 = 1/3, 𝑦 = 1/3𝑥 3. 𝑚 = 1, 𝑦 = 𝑥 + 3 5. 𝑚 = 0, 𝑦 = 4 7. 𝑚 = − 3 2 , 𝑦 = − 3 2 𝑥 + 3 1. 𝑚 = −1, 𝑦 = −𝑥 − 1 3. 𝑚 = 0, 𝑦 = −1 Exercise B. Linear Equations and Lines
  • 74. 5. 𝑚 = 4 9 , 𝑦 = 4 9 𝑥 − 46/9 7. 𝑚 = 0, 𝑥 = 3/2 9. 𝑚 = 0, 𝑦 = −3/2 11. 𝑚 = 1/3, 𝑦 = 𝑥/3 − 13/30 Linear Equations and Lines
  • 75. 9. 𝑦 = 3 11. 𝑥 =– 7 5. 𝑦 = 7 Exercise C. 1. 𝑦 = 3𝑥 + 1 7. 𝑦 =– 1/2𝑥 3. 𝑦 = 𝑥 − 3 1. The base cost is $53 and the charge per tourist is $3. 3. $137 Exercise D. 5. 𝑦 = 5𝑥 + 10 9. $4.777. The rate of increase is 0.07 Linear Equations and Lines