SlideShare a Scribd company logo
First Degree Functions
http://www.lahc.edu/math/precalculus/math_260a.html
First Degree Functions
Most mathematical functions used in the real world are
“composed” with members from the following three
groups of formulas.
Most mathematical functions used in the real world are
“composed” with members from the following three
groups of formulas.
* The algebraic family – these are polynomials,
rational expressions and roots, etc..
First Degree Functions
Most mathematical functions used in the real world are
“composed” with members from the following three
groups of formulas.
* The algebraic family – these are polynomials,
rational expressions and roots, etc..
* The trigonometric family – these are sin(x),
cos(x), .. etc that come from line measurements.
First Degree Functions
Most mathematical functions used in the real world are
“composed” with members from the following three
groups of formulas.
* The algebraic family – these are polynomials,
rational expressions and roots, etc..
* The trigonometric family – these are sin(x),
cos(x), .. etc that come from line measurements.
* The exponential–log family – these are ex and ln(x)
that come from exponential contexts.
First Degree Functions
Most mathematical functions used in the real world are
“composed” with members from the following three
groups of formulas.
* The algebraic family – these are polynomials,
rational expressions and roots, etc..
* The trigonometric family – these are sin(x),
cos(x), .. etc that come from line measurements.
* The exponential–log family – these are ex and ln(x)
that come from exponential contexts.
Degree 1 or linear functions: f(x) = mx + b and
degree 2 or quadratic functions: f(x) = ax2 + bx + c
are especially important.
First Degree Functions
Most mathematical functions used in the real world are
“composed” with members from the following three
groups of formulas.
* The algebraic family – these are polynomials,
rational expressions and roots, etc..
* The trigonometric family – these are sin(x),
cos(x), .. etc that come from line measurements.
* The exponential–log family – these are ex and ln(x)
that come from exponential contexts.
Degree 1 or linear functions: f(x) = mx + b and
degree 2 or quadratic functions: f(x) = ax2 + bx + c
are especially important.
First Degree Functions
We review below the basics of linear equations and
linear functions.
First Degree Functions
The algebraic family
The exponential–log familyThe trigonometric family
Below is the MS Win-10 desktop scientific calculator,
a typical scientific calculator input panel:
The graphs of the equations Ax + By = C are straight
lines.
First Degree Functions
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts,
First Degree Functions
a.2x – 3y = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts,
First Degree Functions
a.2x – 3y = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept,
(0,–4)
First Degree Functions
a.2x – 3y = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept.
(6,0)
(0,–4)
First Degree Functions
a.2x – 3y = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept.
(6,0)
(0,–4)
First Degree Functions
a.2x – 3y = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept. If there is only one variable
in the equation, we get a vertical or a horizontal line.
(6,0)
(0,–4)
First Degree Functions
a.2x – 3y = 12 b. –3y = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept. If there is only one variable
in the equation, we get a vertical or a horizontal line.
(6,0)
(0,–4)
First Degree Functions
a.2x – 3y = 12 b. –3y = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept. If there is only one variable
in the equation, we get a vertical or a horizontal line.
(6,0)
(0,–4) y = –4
First Degree Functions
a.2x – 3y = 12 b. –3y = 12 c. 2x = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept. If there is only one variable
in the equation, we get a vertical or a horizontal line.
(6,0)
(0,–4) y = –4
First Degree Functions
a.2x – 3y = 12 b. –3y = 12 c. 2x = 12
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept. If there is only one variable
in the equation, we get a vertical or a horizontal line.
(6,0)
(0,–4) y = –4
x = 6
First Degree Functions
a.2x – 3y = 12 b. –3y = 12 c. 2x = 12
If both x and y are
present, we get a
tilted line.
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept. If there is only one variable
in the equation, we get a vertical or a horizontal line.
(6,0)
(0,–4) y = –4
x = 6
First Degree Functions
a.2x – 3y = 12 b. –3y = 12 c. 2x = 12
If both x and y are
present, we get a
tilted line.
If the equation is
y = c, we get a
horizontal line.
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept. If there is only one variable
in the equation, we get a vertical or a horizontal line.
(6,0)
(0,–4) y = –4
x = 6
First Degree Functions
a.2x – 3y = 12 b. –3y = 12 c. 2x = 12
If both x and y are
present, we get a
tilted line.
If the equation is
y = c, we get a
horizontal line.
The graphs of the equations Ax + By = C are straight
lines. It's easy to graph lines by graphing the x and y
intercepts, i.e. set x = 0 to get the y–intercept, and set
y = 0 for the x–intercept. If there is only one variable
in the equation, we get a vertical or a horizontal line.
(6,0)
(0,–4) y = –4
x = 6
If the equation is
x = c, we get a
vertical line.
First Degree Functions
First Degree Functions
Given Ax + By = C with B = 0,
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept,
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
From the examples above,
a. 2x – 3y = 12 
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
2
3
2
3
From the examples above,
a. 2x – 3y = 12  y = x – 4, so the slope =
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
2
3
2
3
From the examples above,
a. 2x – 3y = 12  y = x – 4, so the slope =
b. –3y = 12
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
2
3
2
3
From the examples above,
a. 2x – 3y = 12  y = x – 4, so the slope =
b. –3y = 12  y = 0x – 4, so the slope = 0
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
2
3
2
3
From the examples above,
a. 2x – 3y = 12  y = x – 4, so the slope =
b. –3y = 12  y = 0x – 4, so the slope = 0
c. 2x = 12,
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
2
3
2
3
From the examples above,
a. 2x – 3y = 12  y = x – 4, so the slope =
b. –3y = 12  y = 0x – 4, so the slope = 0
c. 2x = 12, the slope is undefined since we can't
solve for y.
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
The slope m is also the ratio of the change in the
output vs. the change in the input.
2
3
2
3
From the examples above,
a. 2x – 3y = 12  y = x – 4, so the slope =
b. –3y = 12  y = 0x – 4, so the slope = 0
c. 2x = 12, the slope is undefined since we can't
solve for y.
First Degree Functions
Given Ax + By = C with B = 0, treating x as the input
and y as the output, we may solve for y and put the
equation in a function form: y = f(x) = mx + b,
m is called the slope and b is the y intercept, and the
form is called the slope–intercept form.
The slope m is also the ratio of the change in the
output vs. the change in the input.
If two points on the line are given,
the slope is defined via the following formula.
2
3
2
3
From the examples above,
a. 2x – 3y = 12  y = x – 4, so the slope =
b. –3y = 12  y = 0x – 4, so the slope = 0
c. 2x = 12, the slope is undefined since we can't
solve for y.
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line,
First Degree Functions
(x1, y1)
(x2, y2)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δxm =
First Degree Functions
(x1, y1)
(x2, y2)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δxm =
First Degree Functions
(The Greek letter Δ means "the difference".)
(x1, y1)
(x2, y2)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
y2 – y1
x2 – x1
m = =
First Degree Functions
(The Greek letter Δ means "the difference".)
(x1, y1)
(x2, y2)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
y2 – y1
x2 – x1
m =
rise
run
=
=
First Degree Functions
(The Greek letter Δ means "the difference".)
(x1, y1)
(x2, y2)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
y2 – y1
x2 – x1
m =
rise
run
=
= (x1, y1)
(x2, y2)
First Degree Functions
(The Greek letter Δ means "the difference".)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
y2 – y1
x2 – x1
m =
rise
run
=
= (x1, y1)
(x2, y2)
Δy=y2–y1=rise
First Degree Functions
(The Greek letter Δ means "the difference".)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
y2 – y1
x2 – x1
m =
rise
run
=
= (x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
First Degree Functions
(The Greek letter Δ means "the difference".)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
y2 – y1
x2 – x1
m =
rise
run
=
= (x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
The Point Slope Formula: Let y = f(x) be a first
degree equation with slope m, and (x1, y1) is a point
on the line, then y = f(x) = m(x – x1) + y1
First Degree Functions
(The Greek letter Δ means "the difference".)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
y2 – y1
x2 – x1
m =
rise
run
=
= (x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
The Point Slope Formula: Let y = f(x) be a first
degree equation with slope m, and (x1, y1) is a point
on the line, then y = f(x) = m(x – x1) + y1
First degree functions are also called linear functions
because their graphs are straight lines.
First Degree Functions
(The Greek letter Δ means "the difference".)
Slope Formula: Let (x1, y1) and (x2, y2) be two points
on a line, then the slope
Δy
Δx
y2 – y1
x2 – x1
m =
rise
run
=
= (x1, y1)
(x2, y2)
Δy=y2–y1=rise
Δx=x2–x1=run
The Point Slope Formula: Let y = f(x) be a first
degree equation with slope m, and (x1, y1) is a point
on the line, then y = f(x) = m(x – x1) + y1
First degree functions are also called linear functions
because their graphs are straight lines. We will use
linear functions to approximate other functions just like
we use line segments to approximate a curve.
First Degree Functions
(The Greek letter Δ means "the difference".)
Linear Equations and Lines
Example A. A river floods regularly, and on a rock by
the river there is a mark indicating the highest point
the water level ever recorded.
At 12 pm July 11, the water level is 28 inches below
this mark. At 8 am July 12 the water is 18 inches
below this mark.
Linear Equations and Lines
Example A. A river floods regularly, and on a rock by
the river there is a mark indicating the highest point
the water level ever recorded.
At 12 pm July 11, the water level is 28 inches below
this mark. At 8 am July 12 the water is 18 inches
below this mark. Let x = time,
y = distance between the water level and the mark.
Find the linear function y = f(x) = mx + b
of the distance y in terms of time x.
Linear Equations and Lines
Example A. A river floods regularly, and on a rock by
the river there is a mark indicating the highest point
the water level ever recorded.
At 12 pm July 11, the water level is 28 inches below
this mark. At 8 am July 12 the water is 18 inches
below this mark. Let x = time,
y = distance between the water level and the mark.
Find the linear function y = f(x) = mx + b
of the distance y in terms of time x.
Since how the time was measured is not specified,
we may select the stating time 0 to be time of the
first observation.
Linear Equations and Lines
Example A. A river floods regularly, and on a rock by
the river there is a mark indicating the highest point
the water level ever recorded.
At 12 pm July 11, the water level is 28 inches below
this mark. At 8 am July 12 the water is 18 inches
below this mark. Let x = time,
y = distance between the water level and the mark.
Find the linear function y = f(x) = mx + b
of the distance y in terms of time x.
Since how the time was measured is not specified,
we may select the stating time 0 to be time of the
first observation.
By setting x = 0 (hr) at 12 pm July 11,
Equations of Lines
In particular, we are given that at x = 0 →y = 28,
and at x = 20 → y = 18
Equations of Lines
In particular, we are given that at x = 0 →y = 28,
and at x = 20 → y = 18 and that we want the
equation y = m(x – x1) + y1 of the line that contains
the points (0, 28) and (20, 18).
Δy
Δx
28 – 18
0 – 20
Equations of Lines
In particular, we are given that at x = 0 →y = 28,
and at x = 20 → y = 18 and that we want the
equation y = m(x – x1) + y1 of the line that contains
the points (0, 28) and (20, 18).
=The slope m = = –1/2
Using the point (0, 28) and the point–slope formula,
y = – ½ (x – 0) + 28 or that
Δy
Δx
28 – 18
0 – 20
Equations of Lines
In particular, we are given that at x = 0 →y = 28,
and at x = 20 → y = 18 and that we want the
equation y = m(x – x1) + y1 of the line that contains
the points (0, 28) and (20, 18).
=The slope m = = –1/2
– xy = + 28
2
Using the point (0, 28) and the point–slope formula,
y = – ½ (x – 0) + 28 or
Δy
Δx
28 – 18
0 – 20
Equations of Lines
In particular, we are given that at x = 0 →y = 28,
and at x = 20 → y = 18 and that we want the
equation y = m(x – x1) + y1 of the line that contains
the points (0, 28) and (20, 18).
=The slope m = = –1/2
– xy = + 28
2
The linear equation that we found is also called the
trend line.
Using the point (0, 28) and the point–slope formula,
y = – ½ (x – 0) + 28 or
Δy
Δx
28 – 18
0 – 20
Equations of Lines
In particular, we are given that at x = 0 →y = 28,
and at x = 20 → y = 18 and that we want the
equation y = m(x – x1) + y1 of the line that contains
the points (0, 28) and (20, 18).
=The slope m = = –1/2
– xy = + 28
2
The linear equation that we found is also called the
trend line. So if at 4 pm July 12, i.e. when x = 28,
we measured that y = 12”
Using the point (0, 28) and the point–slope formula,
y = – ½ (x – 0) + 28 or
Δy
Δx
28 – 18
0 – 20
Equations of Lines
In particular, we are given that at x = 0 →y = 28,
and at x = 20 → y = 18 and that we want the
equation y = m(x – x1) + y1 of the line that contains
the points (0, 28) and (20, 18).
=The slope m = = –1/2
– xy = + 28
2
The linear equation that we found is also called the
trend line. So if at 4 pm July 12, i.e. when x = 28,
we measured that y = 12” but based on the formula
prediction that y should be – 28/2 + 28 = 14”,
Using the point (0, 28) and the point–slope formula,
y = – ½ (x – 0) + 28 or
Δy
Δx
28 – 18
0 – 20
Equations of Lines
In particular, we are given that at x = 0 →y = 28,
and at x = 20 → y = 18 and that we want the
equation y = m(x – x1) + y1 of the line that contains
the points (0, 28) and (20, 18).
=The slope m = = –1/2
– xy = + 28
2
The linear equation that we found is also called the
trend line. So if at 4 pm July 12, i.e. when x = 28,
we measured that y = 12” but based on the formula
prediction that y should be – 28/2 + 28 = 14”, we may
conclude that the flood is intensifying.
More Facts on Slopes:
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
• Slopes of perpendicular lines are the negative
reciprocal of each other.
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
• Slopes of perpendicular lines are the negative
reciprocal of each other.
Example B. Find the equation of the line L that
passes through (2, –4) and is perpendicular to
4x – 3y = 5.
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
• Slopes of perpendicular lines are the negative
reciprocal of each other.
Example B. Find the equation of the line L that
passes through (2, –4) and is perpendicular to
4x – 3y = 5.
Solve for y to find the slope of 4x – 3y = 5
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
• Slopes of perpendicular lines are the negative
reciprocal of each other.
Example B. Find the equation of the line L that
passes through (2, –4) and is perpendicular to
4x – 3y = 5.
Solve for y to find the slope of 4x – 3y = 5
4x – 5 = 3y
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
• Slopes of perpendicular lines are the negative
reciprocal of each other.
Example B. Find the equation of the line L that
passes through (2, –4) and is perpendicular to
4x – 3y = 5.
Solve for y to find the slope of 4x – 3y = 5
4x – 5 = 3y
4x/3 – 5/3 = y
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
• Slopes of perpendicular lines are the negative
reciprocal of each other.
Example B. Find the equation of the line L that
passes through (2, –4) and is perpendicular to
4x – 3y = 5.
Solve for y to find the slope of 4x – 3y = 5
4x – 5 = 3y
4x/3 – 5/3 = y
Hence the slope of 4x – 2y = 5 is 4/3.
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
• Slopes of perpendicular lines are the negative
reciprocal of each other.
Example B. Find the equation of the line L that
passes through (2, –4) and is perpendicular to
4x – 3y = 5.
Solve for y to find the slope of 4x – 3y = 5
4x – 5 = 3y
4x/3 – 5/3 = y
Hence the slope of 4x – 2y = 5 is 4/3.
Therefore L has slope –3/4.
First Degree Functions
More Facts on Slopes:
• Parallel lines have the same slope.
• Slopes of perpendicular lines are the negative
reciprocal of each other.
Example B. Find the equation of the line L that
passes through (2, –4) and is perpendicular to
4x – 3y = 5.
Solve for y to find the slope of 4x – 3y = 5
4x – 5 = 3y
4x/3 – 5/3 = y
Hence the slope of 4x – 2y = 5 is 4/3.
Therefore L has slope –3/4. So the equation of L is
First Degree Functions
y = (–3/4)(x – 2) + (–4) or y = –3x/4 – 5/2.
Linear Equations and Lines
Exercise A. Estimate the slope by eyeballing two points then
find an equation of each line below.
1. 2. 3. 4.
5. 6. 7. 8.
Linear Equations and Lines
B. Draw each line that passes through the given two points.
Find the slope and an equation of the line.
Again Identify the vertical lines and the horizontal lines by
inspection and solve for them first.
(Fraction Review: slide 99 of 1.2)
1. (0, –1), (–2, 1) 2. (3, –1), (3, 1)
4. (1, –2), (–2, 3)
3. (2, –1), (3, –1)
6. (4, –2), (4, 0)5. (7, –2), (–2, –6)
7. (3/2, –1), (3/2, 1) 8. (3/4, –1/3), (1/3, 3/2)
9. (–1/4, –3/2), (2/3, –3/2) 10. (–1/3, –1/6), (–3/4, 1/2)
11. (2/5, –3/10), (–1/2, –3/5) 12. (–3/4, 5/6), (–3/4, –4/3)
Linear Equations and Lines
2. It’s perpendicular to 2x – 4y = 1 and passes through (–2, 1)
6. It’s perpendicular to 3y = x with x–intercept at x = –3.
12. It has y–intercept at y = 3 and is parallel to 3y + 4x = 1.
8. It’s perpendicular to the y–axis with y–intercept at 4.
9. It has y–intercept at y = 3 and is parallel to the x axis.
10. It’s perpendicular to the x– axis containing the point (4, –3).
11. It is parallel to the y axis has x–intercept at x = –7.
5. It is parallel to the x axis has y–intercept at y = 7.
C. Find the equations of the following lines.
1. The line that passes through (0, 1) and has slope 3.
7. The line that passes through (–2 ,1) and has slope –1/2.
3. The line that passes through (5, 2) and is parallel to y = x.
4. The line that passes through (–3, 2) and is perpendicular
to –x = 2y.
Linear Equations and Lines
The cost y of renting a tour boat consists of a base–cost plus
the number of tourists x. With 4 tourists the total cost is $65,
with 11 tourists the total is $86.
1. What is the base cost and what is the charge per tourist?
2. Find the equation of y in terms of x.
3. What is the total cost if there are 28 tourists?
The temperature y of water in a glass is rising slowly.
After 4 min. the temperature is 30 Co, and after 11 min. the
temperature is up to 65 Co. Answer 42–44 assuming the
temperature is rising linearly.
4. What is the temperature at time 0 and what is the rate of
the temperature rise?
5. Find the equation of y in terms of time.
6. How long will it take to bring the water to a boil at 100 Co?
D. Find the equations of the following lines.
Linear Equations and Lines
The cost of gas y on May 3 is $3.58 and on May 9 is $4.00.
Answer 45–47 assuming the price is rising linearly.
7. Let x be the date in May, what is the rate of increase in
price in terms of x?
8. Find the equation of the price in term of the date x in May.
9. What is the projected price on May 20?

More Related Content

PPTX
Lesson 1 - Introduction to Matrices
PDF
The New Theory of Economic Growth: Endogenous Growth Model
PPT
Recreational Math Puzzles
 
DOCX
Brinquedos e brincadeiras
PPTX
ಅಕ್ರಮಿಗಳು ಎಚ್ಚರಗೊಳ್ಳಲಿ 3
PPTX
Cesar virgues
DOCX
Makalah komnasham
PPTX
Tecnología 4 g
Lesson 1 - Introduction to Matrices
The New Theory of Economic Growth: Endogenous Growth Model
Recreational Math Puzzles
 
Brinquedos e brincadeiras
ಅಕ್ರಮಿಗಳು ಎಚ್ಚರಗೊಳ್ಳಲಿ 3
Cesar virgues
Makalah komnasham
Tecnología 4 g

Viewers also liked (7)

PPTX
Placas de Sonido
PDF
Aspectos relevantes de la selección de tecnología en una empresa
PDF
Integral por partes
PPTX
Elaboração de Trabalhos Escolar
DOCX
Entrevista professor de educação fisica
PPTX
Avances en la tecnología en el celular
PPT
ANTINEOPLASICOS
Placas de Sonido
Aspectos relevantes de la selección de tecnología en una empresa
Integral por partes
Elaboração de Trabalhos Escolar
Entrevista professor de educação fisica
Avances en la tecnología en el celular
ANTINEOPLASICOS
Ad

Similar to 2.2 Graphs of First Degree Functions (20)

PPTX
2 graphs of first degree functions x
PPTX
11 graphs of first degree functions x
PPTX
11 graphs of first degree functions x
PPTX
Alg2 lesson 2.2
DOC
Functions
PDF
Basic calculus (i)
DOC
Mathematics 8 Linear Functions
PPTX
Linear functions
PDF
2.4 Linear Functions
PPTX
Alg2 lesson 2.2 and 2.3
PDF
Module 1 linear functions
PPTX
Examples of Functions and Their Graphs.pptx
PDF
Chapter 1 asdawdawdawdwadawdaw sf sdaipkiof 0iuase f9iu80awehf úoaeh
PDF
Chapter 1 asdawdawdawdwadawdaw sf sdaipkiof 0iuase f9iu80awehf úoaeh
PPT
G8 Math Q2- Week 4- Graph Linear Function.ppt
PPT
Interactive classroom graphing_linear_equations (1)
PPTX
Linear Functions-Mathematics Grade 7.pptx
DOC
Functions
PDF
chapter1_part2.pdf
2 graphs of first degree functions x
11 graphs of first degree functions x
11 graphs of first degree functions x
Alg2 lesson 2.2
Functions
Basic calculus (i)
Mathematics 8 Linear Functions
Linear functions
2.4 Linear Functions
Alg2 lesson 2.2 and 2.3
Module 1 linear functions
Examples of Functions and Their Graphs.pptx
Chapter 1 asdawdawdawdwadawdaw sf sdaipkiof 0iuase f9iu80awehf úoaeh
Chapter 1 asdawdawdawdwadawdaw sf sdaipkiof 0iuase f9iu80awehf úoaeh
G8 Math Q2- Week 4- Graph Linear Function.ppt
Interactive classroom graphing_linear_equations (1)
Linear Functions-Mathematics Grade 7.pptx
Functions
chapter1_part2.pdf
Ad

More from math260 (20)

PPTX
36 Matrix Algebra-x.pptx
PPTX
35 Special Cases System of Linear Equations-x.pptx
PPTX
18Ellipses-x.pptx
PPTX
10.5 more on language of functions x
PPTX
1 exponents yz
PPTX
9 the basic language of functions x
PPTX
8 inequalities and sign charts x
PPTX
7 sign charts of factorable formulas y
PPTX
19 more parabolas a& hyperbolas (optional) x
PPTX
18 ellipses x
PPTX
17 conic sections circles-x
PPTX
16 slopes and difference quotient x
PPTX
15 translations of graphs x
PPTX
14 graphs of factorable rational functions x
PPTX
13 graphs of factorable polynomials x
PPTX
12 graphs of second degree functions x
PPTX
10 rectangular coordinate system x
PPTX
9 the basic language of functions x
PPTX
29 inverse functions x
PPTX
28 more on log and exponential equations x
36 Matrix Algebra-x.pptx
35 Special Cases System of Linear Equations-x.pptx
18Ellipses-x.pptx
10.5 more on language of functions x
1 exponents yz
9 the basic language of functions x
8 inequalities and sign charts x
7 sign charts of factorable formulas y
19 more parabolas a& hyperbolas (optional) x
18 ellipses x
17 conic sections circles-x
16 slopes and difference quotient x
15 translations of graphs x
14 graphs of factorable rational functions x
13 graphs of factorable polynomials x
12 graphs of second degree functions x
10 rectangular coordinate system x
9 the basic language of functions x
29 inverse functions x
28 more on log and exponential equations x

Recently uploaded (20)

PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PPTX
sap open course for s4hana steps from ECC to s4
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
Machine learning based COVID-19 study performance prediction
PDF
Encapsulation theory and applications.pdf
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
Network Security Unit 5.pdf for BCA BBA.
PPTX
Spectroscopy.pptx food analysis technology
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PPTX
Cloud computing and distributed systems.
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Programs and apps: productivity, graphics, security and other tools
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
sap open course for s4hana steps from ECC to s4
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Machine learning based COVID-19 study performance prediction
Encapsulation theory and applications.pdf
The AUB Centre for AI in Media Proposal.docx
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Network Security Unit 5.pdf for BCA BBA.
Spectroscopy.pptx food analysis technology
20250228 LYD VKU AI Blended-Learning.pptx
Diabetes mellitus diagnosis method based random forest with bat algorithm
Cloud computing and distributed systems.
NewMind AI Weekly Chronicles - August'25 Week I
Reach Out and Touch Someone: Haptics and Empathic Computing
Understanding_Digital_Forensics_Presentation.pptx
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx

2.2 Graphs of First Degree Functions

  • 2. First Degree Functions Most mathematical functions used in the real world are “composed” with members from the following three groups of formulas.
  • 3. Most mathematical functions used in the real world are “composed” with members from the following three groups of formulas. * The algebraic family – these are polynomials, rational expressions and roots, etc.. First Degree Functions
  • 4. Most mathematical functions used in the real world are “composed” with members from the following three groups of formulas. * The algebraic family – these are polynomials, rational expressions and roots, etc.. * The trigonometric family – these are sin(x), cos(x), .. etc that come from line measurements. First Degree Functions
  • 5. Most mathematical functions used in the real world are “composed” with members from the following three groups of formulas. * The algebraic family – these are polynomials, rational expressions and roots, etc.. * The trigonometric family – these are sin(x), cos(x), .. etc that come from line measurements. * The exponential–log family – these are ex and ln(x) that come from exponential contexts. First Degree Functions
  • 6. Most mathematical functions used in the real world are “composed” with members from the following three groups of formulas. * The algebraic family – these are polynomials, rational expressions and roots, etc.. * The trigonometric family – these are sin(x), cos(x), .. etc that come from line measurements. * The exponential–log family – these are ex and ln(x) that come from exponential contexts. Degree 1 or linear functions: f(x) = mx + b and degree 2 or quadratic functions: f(x) = ax2 + bx + c are especially important. First Degree Functions
  • 7. Most mathematical functions used in the real world are “composed” with members from the following three groups of formulas. * The algebraic family – these are polynomials, rational expressions and roots, etc.. * The trigonometric family – these are sin(x), cos(x), .. etc that come from line measurements. * The exponential–log family – these are ex and ln(x) that come from exponential contexts. Degree 1 or linear functions: f(x) = mx + b and degree 2 or quadratic functions: f(x) = ax2 + bx + c are especially important. First Degree Functions We review below the basics of linear equations and linear functions.
  • 8. First Degree Functions The algebraic family The exponential–log familyThe trigonometric family Below is the MS Win-10 desktop scientific calculator, a typical scientific calculator input panel:
  • 9. The graphs of the equations Ax + By = C are straight lines. First Degree Functions
  • 10. The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, First Degree Functions
  • 11. a.2x – 3y = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, First Degree Functions
  • 12. a.2x – 3y = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, (0,–4) First Degree Functions
  • 13. a.2x – 3y = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. (6,0) (0,–4) First Degree Functions
  • 14. a.2x – 3y = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. (6,0) (0,–4) First Degree Functions
  • 15. a.2x – 3y = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. If there is only one variable in the equation, we get a vertical or a horizontal line. (6,0) (0,–4) First Degree Functions
  • 16. a.2x – 3y = 12 b. –3y = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. If there is only one variable in the equation, we get a vertical or a horizontal line. (6,0) (0,–4) First Degree Functions
  • 17. a.2x – 3y = 12 b. –3y = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. If there is only one variable in the equation, we get a vertical or a horizontal line. (6,0) (0,–4) y = –4 First Degree Functions
  • 18. a.2x – 3y = 12 b. –3y = 12 c. 2x = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. If there is only one variable in the equation, we get a vertical or a horizontal line. (6,0) (0,–4) y = –4 First Degree Functions
  • 19. a.2x – 3y = 12 b. –3y = 12 c. 2x = 12 The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. If there is only one variable in the equation, we get a vertical or a horizontal line. (6,0) (0,–4) y = –4 x = 6 First Degree Functions
  • 20. a.2x – 3y = 12 b. –3y = 12 c. 2x = 12 If both x and y are present, we get a tilted line. The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. If there is only one variable in the equation, we get a vertical or a horizontal line. (6,0) (0,–4) y = –4 x = 6 First Degree Functions
  • 21. a.2x – 3y = 12 b. –3y = 12 c. 2x = 12 If both x and y are present, we get a tilted line. If the equation is y = c, we get a horizontal line. The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. If there is only one variable in the equation, we get a vertical or a horizontal line. (6,0) (0,–4) y = –4 x = 6 First Degree Functions
  • 22. a.2x – 3y = 12 b. –3y = 12 c. 2x = 12 If both x and y are present, we get a tilted line. If the equation is y = c, we get a horizontal line. The graphs of the equations Ax + By = C are straight lines. It's easy to graph lines by graphing the x and y intercepts, i.e. set x = 0 to get the y–intercept, and set y = 0 for the x–intercept. If there is only one variable in the equation, we get a vertical or a horizontal line. (6,0) (0,–4) y = –4 x = 6 If the equation is x = c, we get a vertical line. First Degree Functions
  • 23. First Degree Functions Given Ax + By = C with B = 0,
  • 24. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b,
  • 25. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept,
  • 26. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form.
  • 27. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form. From the examples above, a. 2x – 3y = 12 
  • 28. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form. 2 3 2 3 From the examples above, a. 2x – 3y = 12  y = x – 4, so the slope =
  • 29. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form. 2 3 2 3 From the examples above, a. 2x – 3y = 12  y = x – 4, so the slope = b. –3y = 12
  • 30. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form. 2 3 2 3 From the examples above, a. 2x – 3y = 12  y = x – 4, so the slope = b. –3y = 12  y = 0x – 4, so the slope = 0
  • 31. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form. 2 3 2 3 From the examples above, a. 2x – 3y = 12  y = x – 4, so the slope = b. –3y = 12  y = 0x – 4, so the slope = 0 c. 2x = 12,
  • 32. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form. 2 3 2 3 From the examples above, a. 2x – 3y = 12  y = x – 4, so the slope = b. –3y = 12  y = 0x – 4, so the slope = 0 c. 2x = 12, the slope is undefined since we can't solve for y.
  • 33. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form. The slope m is also the ratio of the change in the output vs. the change in the input. 2 3 2 3 From the examples above, a. 2x – 3y = 12  y = x – 4, so the slope = b. –3y = 12  y = 0x – 4, so the slope = 0 c. 2x = 12, the slope is undefined since we can't solve for y.
  • 34. First Degree Functions Given Ax + By = C with B = 0, treating x as the input and y as the output, we may solve for y and put the equation in a function form: y = f(x) = mx + b, m is called the slope and b is the y intercept, and the form is called the slope–intercept form. The slope m is also the ratio of the change in the output vs. the change in the input. If two points on the line are given, the slope is defined via the following formula. 2 3 2 3 From the examples above, a. 2x – 3y = 12  y = x – 4, so the slope = b. –3y = 12  y = 0x – 4, so the slope = 0 c. 2x = 12, the slope is undefined since we can't solve for y.
  • 35. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, First Degree Functions (x1, y1) (x2, y2)
  • 36. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δxm = First Degree Functions (x1, y1) (x2, y2)
  • 37. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δxm = First Degree Functions (The Greek letter Δ means "the difference".) (x1, y1) (x2, y2)
  • 38. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx y2 – y1 x2 – x1 m = = First Degree Functions (The Greek letter Δ means "the difference".) (x1, y1) (x2, y2)
  • 39. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx y2 – y1 x2 – x1 m = rise run = = First Degree Functions (The Greek letter Δ means "the difference".) (x1, y1) (x2, y2)
  • 40. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx y2 – y1 x2 – x1 m = rise run = = (x1, y1) (x2, y2) First Degree Functions (The Greek letter Δ means "the difference".)
  • 41. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx y2 – y1 x2 – x1 m = rise run = = (x1, y1) (x2, y2) Δy=y2–y1=rise First Degree Functions (The Greek letter Δ means "the difference".)
  • 42. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx y2 – y1 x2 – x1 m = rise run = = (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run First Degree Functions (The Greek letter Δ means "the difference".)
  • 43. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx y2 – y1 x2 – x1 m = rise run = = (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run The Point Slope Formula: Let y = f(x) be a first degree equation with slope m, and (x1, y1) is a point on the line, then y = f(x) = m(x – x1) + y1 First Degree Functions (The Greek letter Δ means "the difference".)
  • 44. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx y2 – y1 x2 – x1 m = rise run = = (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run The Point Slope Formula: Let y = f(x) be a first degree equation with slope m, and (x1, y1) is a point on the line, then y = f(x) = m(x – x1) + y1 First degree functions are also called linear functions because their graphs are straight lines. First Degree Functions (The Greek letter Δ means "the difference".)
  • 45. Slope Formula: Let (x1, y1) and (x2, y2) be two points on a line, then the slope Δy Δx y2 – y1 x2 – x1 m = rise run = = (x1, y1) (x2, y2) Δy=y2–y1=rise Δx=x2–x1=run The Point Slope Formula: Let y = f(x) be a first degree equation with slope m, and (x1, y1) is a point on the line, then y = f(x) = m(x – x1) + y1 First degree functions are also called linear functions because their graphs are straight lines. We will use linear functions to approximate other functions just like we use line segments to approximate a curve. First Degree Functions (The Greek letter Δ means "the difference".)
  • 46. Linear Equations and Lines Example A. A river floods regularly, and on a rock by the river there is a mark indicating the highest point the water level ever recorded. At 12 pm July 11, the water level is 28 inches below this mark. At 8 am July 12 the water is 18 inches below this mark.
  • 47. Linear Equations and Lines Example A. A river floods regularly, and on a rock by the river there is a mark indicating the highest point the water level ever recorded. At 12 pm July 11, the water level is 28 inches below this mark. At 8 am July 12 the water is 18 inches below this mark. Let x = time, y = distance between the water level and the mark. Find the linear function y = f(x) = mx + b of the distance y in terms of time x.
  • 48. Linear Equations and Lines Example A. A river floods regularly, and on a rock by the river there is a mark indicating the highest point the water level ever recorded. At 12 pm July 11, the water level is 28 inches below this mark. At 8 am July 12 the water is 18 inches below this mark. Let x = time, y = distance between the water level and the mark. Find the linear function y = f(x) = mx + b of the distance y in terms of time x. Since how the time was measured is not specified, we may select the stating time 0 to be time of the first observation.
  • 49. Linear Equations and Lines Example A. A river floods regularly, and on a rock by the river there is a mark indicating the highest point the water level ever recorded. At 12 pm July 11, the water level is 28 inches below this mark. At 8 am July 12 the water is 18 inches below this mark. Let x = time, y = distance between the water level and the mark. Find the linear function y = f(x) = mx + b of the distance y in terms of time x. Since how the time was measured is not specified, we may select the stating time 0 to be time of the first observation. By setting x = 0 (hr) at 12 pm July 11,
  • 50. Equations of Lines In particular, we are given that at x = 0 →y = 28, and at x = 20 → y = 18
  • 51. Equations of Lines In particular, we are given that at x = 0 →y = 28, and at x = 20 → y = 18 and that we want the equation y = m(x – x1) + y1 of the line that contains the points (0, 28) and (20, 18).
  • 52. Δy Δx 28 – 18 0 – 20 Equations of Lines In particular, we are given that at x = 0 →y = 28, and at x = 20 → y = 18 and that we want the equation y = m(x – x1) + y1 of the line that contains the points (0, 28) and (20, 18). =The slope m = = –1/2
  • 53. Using the point (0, 28) and the point–slope formula, y = – ½ (x – 0) + 28 or that Δy Δx 28 – 18 0 – 20 Equations of Lines In particular, we are given that at x = 0 →y = 28, and at x = 20 → y = 18 and that we want the equation y = m(x – x1) + y1 of the line that contains the points (0, 28) and (20, 18). =The slope m = = –1/2 – xy = + 28 2
  • 54. Using the point (0, 28) and the point–slope formula, y = – ½ (x – 0) + 28 or Δy Δx 28 – 18 0 – 20 Equations of Lines In particular, we are given that at x = 0 →y = 28, and at x = 20 → y = 18 and that we want the equation y = m(x – x1) + y1 of the line that contains the points (0, 28) and (20, 18). =The slope m = = –1/2 – xy = + 28 2 The linear equation that we found is also called the trend line.
  • 55. Using the point (0, 28) and the point–slope formula, y = – ½ (x – 0) + 28 or Δy Δx 28 – 18 0 – 20 Equations of Lines In particular, we are given that at x = 0 →y = 28, and at x = 20 → y = 18 and that we want the equation y = m(x – x1) + y1 of the line that contains the points (0, 28) and (20, 18). =The slope m = = –1/2 – xy = + 28 2 The linear equation that we found is also called the trend line. So if at 4 pm July 12, i.e. when x = 28, we measured that y = 12”
  • 56. Using the point (0, 28) and the point–slope formula, y = – ½ (x – 0) + 28 or Δy Δx 28 – 18 0 – 20 Equations of Lines In particular, we are given that at x = 0 →y = 28, and at x = 20 → y = 18 and that we want the equation y = m(x – x1) + y1 of the line that contains the points (0, 28) and (20, 18). =The slope m = = –1/2 – xy = + 28 2 The linear equation that we found is also called the trend line. So if at 4 pm July 12, i.e. when x = 28, we measured that y = 12” but based on the formula prediction that y should be – 28/2 + 28 = 14”,
  • 57. Using the point (0, 28) and the point–slope formula, y = – ½ (x – 0) + 28 or Δy Δx 28 – 18 0 – 20 Equations of Lines In particular, we are given that at x = 0 →y = 28, and at x = 20 → y = 18 and that we want the equation y = m(x – x1) + y1 of the line that contains the points (0, 28) and (20, 18). =The slope m = = –1/2 – xy = + 28 2 The linear equation that we found is also called the trend line. So if at 4 pm July 12, i.e. when x = 28, we measured that y = 12” but based on the formula prediction that y should be – 28/2 + 28 = 14”, we may conclude that the flood is intensifying.
  • 58. More Facts on Slopes: First Degree Functions
  • 59. More Facts on Slopes: • Parallel lines have the same slope. First Degree Functions
  • 60. More Facts on Slopes: • Parallel lines have the same slope. • Slopes of perpendicular lines are the negative reciprocal of each other. First Degree Functions
  • 61. More Facts on Slopes: • Parallel lines have the same slope. • Slopes of perpendicular lines are the negative reciprocal of each other. Example B. Find the equation of the line L that passes through (2, –4) and is perpendicular to 4x – 3y = 5. First Degree Functions
  • 62. More Facts on Slopes: • Parallel lines have the same slope. • Slopes of perpendicular lines are the negative reciprocal of each other. Example B. Find the equation of the line L that passes through (2, –4) and is perpendicular to 4x – 3y = 5. Solve for y to find the slope of 4x – 3y = 5 First Degree Functions
  • 63. More Facts on Slopes: • Parallel lines have the same slope. • Slopes of perpendicular lines are the negative reciprocal of each other. Example B. Find the equation of the line L that passes through (2, –4) and is perpendicular to 4x – 3y = 5. Solve for y to find the slope of 4x – 3y = 5 4x – 5 = 3y First Degree Functions
  • 64. More Facts on Slopes: • Parallel lines have the same slope. • Slopes of perpendicular lines are the negative reciprocal of each other. Example B. Find the equation of the line L that passes through (2, –4) and is perpendicular to 4x – 3y = 5. Solve for y to find the slope of 4x – 3y = 5 4x – 5 = 3y 4x/3 – 5/3 = y First Degree Functions
  • 65. More Facts on Slopes: • Parallel lines have the same slope. • Slopes of perpendicular lines are the negative reciprocal of each other. Example B. Find the equation of the line L that passes through (2, –4) and is perpendicular to 4x – 3y = 5. Solve for y to find the slope of 4x – 3y = 5 4x – 5 = 3y 4x/3 – 5/3 = y Hence the slope of 4x – 2y = 5 is 4/3. First Degree Functions
  • 66. More Facts on Slopes: • Parallel lines have the same slope. • Slopes of perpendicular lines are the negative reciprocal of each other. Example B. Find the equation of the line L that passes through (2, –4) and is perpendicular to 4x – 3y = 5. Solve for y to find the slope of 4x – 3y = 5 4x – 5 = 3y 4x/3 – 5/3 = y Hence the slope of 4x – 2y = 5 is 4/3. Therefore L has slope –3/4. First Degree Functions
  • 67. More Facts on Slopes: • Parallel lines have the same slope. • Slopes of perpendicular lines are the negative reciprocal of each other. Example B. Find the equation of the line L that passes through (2, –4) and is perpendicular to 4x – 3y = 5. Solve for y to find the slope of 4x – 3y = 5 4x – 5 = 3y 4x/3 – 5/3 = y Hence the slope of 4x – 2y = 5 is 4/3. Therefore L has slope –3/4. So the equation of L is First Degree Functions y = (–3/4)(x – 2) + (–4) or y = –3x/4 – 5/2.
  • 68. Linear Equations and Lines Exercise A. Estimate the slope by eyeballing two points then find an equation of each line below. 1. 2. 3. 4. 5. 6. 7. 8.
  • 69. Linear Equations and Lines B. Draw each line that passes through the given two points. Find the slope and an equation of the line. Again Identify the vertical lines and the horizontal lines by inspection and solve for them first. (Fraction Review: slide 99 of 1.2) 1. (0, –1), (–2, 1) 2. (3, –1), (3, 1) 4. (1, –2), (–2, 3) 3. (2, –1), (3, –1) 6. (4, –2), (4, 0)5. (7, –2), (–2, –6) 7. (3/2, –1), (3/2, 1) 8. (3/4, –1/3), (1/3, 3/2) 9. (–1/4, –3/2), (2/3, –3/2) 10. (–1/3, –1/6), (–3/4, 1/2) 11. (2/5, –3/10), (–1/2, –3/5) 12. (–3/4, 5/6), (–3/4, –4/3)
  • 70. Linear Equations and Lines 2. It’s perpendicular to 2x – 4y = 1 and passes through (–2, 1) 6. It’s perpendicular to 3y = x with x–intercept at x = –3. 12. It has y–intercept at y = 3 and is parallel to 3y + 4x = 1. 8. It’s perpendicular to the y–axis with y–intercept at 4. 9. It has y–intercept at y = 3 and is parallel to the x axis. 10. It’s perpendicular to the x– axis containing the point (4, –3). 11. It is parallel to the y axis has x–intercept at x = –7. 5. It is parallel to the x axis has y–intercept at y = 7. C. Find the equations of the following lines. 1. The line that passes through (0, 1) and has slope 3. 7. The line that passes through (–2 ,1) and has slope –1/2. 3. The line that passes through (5, 2) and is parallel to y = x. 4. The line that passes through (–3, 2) and is perpendicular to –x = 2y.
  • 71. Linear Equations and Lines The cost y of renting a tour boat consists of a base–cost plus the number of tourists x. With 4 tourists the total cost is $65, with 11 tourists the total is $86. 1. What is the base cost and what is the charge per tourist? 2. Find the equation of y in terms of x. 3. What is the total cost if there are 28 tourists? The temperature y of water in a glass is rising slowly. After 4 min. the temperature is 30 Co, and after 11 min. the temperature is up to 65 Co. Answer 42–44 assuming the temperature is rising linearly. 4. What is the temperature at time 0 and what is the rate of the temperature rise? 5. Find the equation of y in terms of time. 6. How long will it take to bring the water to a boil at 100 Co? D. Find the equations of the following lines.
  • 72. Linear Equations and Lines The cost of gas y on May 3 is $3.58 and on May 9 is $4.00. Answer 45–47 assuming the price is rising linearly. 7. Let x be the date in May, what is the rate of increase in price in terms of x? 8. Find the equation of the price in term of the date x in May. 9. What is the projected price on May 20?