DEPARTAMENTO DE INFORMATICA
INVESTIGACION Y POSTGRADO
Topological Data Analysis (TDA)
Simplicial Homology
Rodrigo Rojas Moraleda
May 29, 2013
Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 1/15
DEPARTAMENTO DE INFORMATICA
INVESTIGACION Y POSTGRADO
Outline
1 Last session
2 Simplicial Homology
Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 2/15
DEPARTAMENTO DE INFORMATICA
INVESTIGACION Y POSTGRADO
1 Last session
2 Simplicial Homology
Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 3/15
DEPARTAMENTO DE INFORMATICA
INVESTIGACION Y POSTGRADO
Topology: Geometry continuity.
Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 4/15
DEPARTAMENTO DE INFORMATICA
INVESTIGACION Y POSTGRADO
Homeomorphism.
Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 4/15
DEPARTAMENTO DE INFORMATICA
INVESTIGACION Y POSTGRADO
Topological properties or topological invariants
Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 5/15
DEPARTAMENTO DE INFORMATICA
INVESTIGACION Y POSTGRADO
Classify in sense of:
P = {P0, · · · , Pn}
Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 5/15
DEPARTAMENTO DE INFORMATICA
INVESTIGACION Y POSTGRADO
Classify in sense of:
P = {P0, · · · , Pn}
property preserved by homeomorphisms.
Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 5/15
DEPARTAMENTO DE INFORMATICA
INVESTIGACION Y POSTGRADO
Classify in sense of:
P = {P0, · · · , Pn}
property preserved by homeomorphisms.
Distinguishable
Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 5/15
DEPARTAMENTO DE INFORMATICA
INVESTIGACION Y POSTGRADO
Classify in sense of:
P = {P0, · · · , Pn}
property preserved by homeomorphisms.
Distinguishable
Completeness
Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 5/15
DEPARTAMENTO DE INFORMATICA
INVESTIGACION Y POSTGRADO
However general topological classification is unaffordable
Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 6/15
DEPARTAMENTO DE INFORMATICA
INVESTIGACION Y POSTGRADO
Polyhedral space
Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 6/15
DEPARTAMENTO DE INFORMATICA
INVESTIGACION Y POSTGRADO
1 Last session
2 Simplicial Homology
Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 7/15
DEPARTAMENTO DE INFORMATICA
INVESTIGACION Y POSTGRADO
Simplicial Homology
Convex Sets
Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 8/15
DEPARTAMENTO DE INFORMATICA
INVESTIGACION Y POSTGRADO
Simplicial Homology
Convex Sets
X,Y ∈ Rn
PXY = {(1 − λ)X + λY : λ ∈ [0, 1]}
Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 8/15
DEPARTAMENTO DE INFORMATICA
INVESTIGACION Y POSTGRADO
Simplicial Homology
Convex Sets
C ∈ Rn
, ∀X, Y ∈ C
{(1 − λ)X + λY : λ ∈ [0, 1]} ∈ C
Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 8/15
DEPARTAMENTO DE INFORMATICA
INVESTIGACION Y POSTGRADO
Simplicial Homology
Convex Hull
S a finite point set
xi ∈ S, i = 1, .. | S |
αi ∈ R
Conv(S) =



|S|
i=1
αi xi | (∀i : αi ≥ 0) ∧
|S|
i=1
αi = 1



xi ∈ Conv(S  {xi }), is a vertex of Conv(S)
Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 9/15
DEPARTAMENTO DE INFORMATICA
INVESTIGACION Y POSTGRADO
Simplicial Homology
Convex Hull
V1
V2
X1
X2
(1 − λ)V1 + λV2 V1, V2 ∈ R2
, 0 ≤ λ ≤ 1
Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 10/15
DEPARTAMENTO DE INFORMATICA
INVESTIGACION Y POSTGRADO
Simplicial Homology
Convex Hull
V1
V2
X3
X2
V3
λ1V1 + λ2V2 + λ3V3 V1, V2, V3 ∈ R2
, 3
i=1 λi = 1
Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 11/15
DEPARTAMENTO DE INFORMATICA
INVESTIGACION Y POSTGRADO
Simplicial Homology
Convex Hull
V1
V2
X1
X3
X3 V3
V4
λ1V1 + λ2V2 + λ3V3 + λ4V4 V1, V2, V3, V4 ∈ R3
, 4
i=1 λi = 1
Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 12/15
DEPARTAMENTO DE INFORMATICA
INVESTIGACION Y POSTGRADO
Simplicial Homology
p-simplex σ
given {x0, x1, · · · , xp} ∈ Rn
, p + 1 affinely independent points.
p-simplex σ = Conv({x0, · · · , xp})
dimension of σ is p
Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 13/15
DEPARTAMENTO DE INFORMATICA
INVESTIGACION Y POSTGRADO
Simplicial Homology
face of σ
V1
V3
V4
V2
V1
V2
V3
V1
V4
V2
V4
V2
V3
V4
V1
V3
V3
V4
V2
V2
V3
V4
V3
V2
V4
An l-simplex τ is called a face of a p-simplexσ if the vertices of τ are a sub-set
of the vertices of σ.
A k-simplex has exactly 2k+1
− 1 different faces.
A tetrahedron consists has one face in dimension 3 (itself),four triangular faces,
six edges, and four vertices which adds up to 15 = 24
− 1.
Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 14/15
DEPARTAMENTO DE INFORMATICA
INVESTIGACION Y POSTGRADO
Simplicial Homology
Simplicial complexes
A simplicial complex K is a finite collection of simplices such that σ ∈ K and τ
being a face of σ implies τ ∈ K, and σ, σ ∈ K implies σ σ is empty or a
face of both σ and σ .
Simplicial
complex
No simplicial
complex
Left: A simplicial complex of dimension 3, right: Not a simplicial complex.
Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 15/15
DEPARTAMENTO DE INFORMATICA
INVESTIGACION Y POSTGRADO
Topology
Simplicial complexes - chains
Definition 3. A p-chain is a subset of p-simplices in a simplicial complex K.
Despite the name “chain,” a p-chain does not have to be connected.
Left: a 3-simplex. Center: one of its 2-chain (triangles). Right one of its
1-chain (the blue edges)
Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 16/15
DEPARTAMENTO DE INFORMATICA
INVESTIGACION Y POSTGRADO
Topology
Simplicial complexes - chains group
Definition 4. The set of p-chains of a simplicial complex K form a p-chain
group Cp with the symmetric difference +2.
+ =
example of 1-chain addition:
Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 17/15

More Related Content

PPSX
Exponential_Logarithm Game
PPTX
Ricardo Valls explains How to effectively find your next deposit
PPTX
Ricardo Valls explains how to find your next deposit with embedded video
PPTX
Regression lines
DOCX
Funciones trigonometricas
PDF
2012/2013-TDA-intro-part1
PDF
Topological Data Analysis and Persistent Homology
PDF
Introduction to Topological Data Analysis
Exponential_Logarithm Game
Ricardo Valls explains How to effectively find your next deposit
Ricardo Valls explains how to find your next deposit with embedded video
Regression lines
Funciones trigonometricas
2012/2013-TDA-intro-part1
Topological Data Analysis and Persistent Homology
Introduction to Topological Data Analysis

Similar to 2012 -TDA-Intro-part_2 (20)

PDF
Tutorial of topological_data_analysis_part_1(basic)
PDF
013_20160328_Topological_Measurement_Of_Protein_Compressibility
PDF
Senior_Thesis_Evan_Oman
PDF
Topological Data Analysis
PDF
Topological Data Analysis With Applications Carlsson Gunnar Vejdemojohansson
PDF
Topological Data Analysis of Complex Spatial Systems
PDF
Tda presentation
PDF
Topological Data Analysis For Genomics And Evolution Topology In Biology Raul...
PDF
Tutorial of topological data analysis part 3(Mapper algorithm)
PDF
Topological Data Analysis of Complex Spatial Systems
PPTX
FIRSTPPTONTOPOLOGY (1).pptx
PDF
Geo1004 lecture 1_topology&topological_datamodels_final
PDF
Mesh Generation and Topological Data Analysis
PDF
Introduction to Topological Data Analysis
PDF
Tools for Modeling and Analysis of Non-manifold Shapes
PPTX
Topological Data Analysis What is it? What is it good for? How can it be use...
PPT
Topology.ppt
PPT
Topology.ppt
PPT
Topology.ppt
PPTX
DIGITAL TOPOLOGY OPERATING IN MEDICAL IMAGING WITH MRI TECHNOLOGY.pptx
Tutorial of topological_data_analysis_part_1(basic)
013_20160328_Topological_Measurement_Of_Protein_Compressibility
Senior_Thesis_Evan_Oman
Topological Data Analysis
Topological Data Analysis With Applications Carlsson Gunnar Vejdemojohansson
Topological Data Analysis of Complex Spatial Systems
Tda presentation
Topological Data Analysis For Genomics And Evolution Topology In Biology Raul...
Tutorial of topological data analysis part 3(Mapper algorithm)
Topological Data Analysis of Complex Spatial Systems
FIRSTPPTONTOPOLOGY (1).pptx
Geo1004 lecture 1_topology&topological_datamodels_final
Mesh Generation and Topological Data Analysis
Introduction to Topological Data Analysis
Tools for Modeling and Analysis of Non-manifold Shapes
Topological Data Analysis What is it? What is it good for? How can it be use...
Topology.ppt
Topology.ppt
Topology.ppt
DIGITAL TOPOLOGY OPERATING IN MEDICAL IMAGING WITH MRI TECHNOLOGY.pptx
Ad

Recently uploaded (20)

PPTX
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
PPTX
ai_satellite_crop_management_20250815030350.pptx
PPTX
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
DOC
T Pandian CV Madurai pandi kokkaf illaya
PDF
20250617 - IR - Global Guide for HR - 51 pages.pdf
PDF
Unit I -OPERATING SYSTEMS_SRM_KATTANKULATHUR.pptx.pdf
PPTX
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
PPTX
CyberSecurity Mobile and Wireless Devices
PPTX
CONTRACTS IN CONSTRUCTION PROJECTS: TYPES
PPTX
Measurement Uncertainty and Measurement System analysis
PDF
Exploratory_Data_Analysis_Fundamentals.pdf
PPTX
CN_Unite_1 AI&DS ENGGERING SPPU PUNE UNIVERSITY
PPTX
Management Information system : MIS-e-Business Systems.pptx
PDF
MLpara ingenieira CIVIL, meca Y AMBIENTAL
PPTX
"Array and Linked List in Data Structures with Types, Operations, Implementat...
PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
PDF
Soil Improvement Techniques Note - Rabbi
PDF
First part_B-Image Processing - 1 of 2).pdf
PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
PDF
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
ai_satellite_crop_management_20250815030350.pptx
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
T Pandian CV Madurai pandi kokkaf illaya
20250617 - IR - Global Guide for HR - 51 pages.pdf
Unit I -OPERATING SYSTEMS_SRM_KATTANKULATHUR.pptx.pdf
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
CyberSecurity Mobile and Wireless Devices
CONTRACTS IN CONSTRUCTION PROJECTS: TYPES
Measurement Uncertainty and Measurement System analysis
Exploratory_Data_Analysis_Fundamentals.pdf
CN_Unite_1 AI&DS ENGGERING SPPU PUNE UNIVERSITY
Management Information system : MIS-e-Business Systems.pptx
MLpara ingenieira CIVIL, meca Y AMBIENTAL
"Array and Linked List in Data Structures with Types, Operations, Implementat...
August 2025 - Top 10 Read Articles in Network Security & Its Applications
Soil Improvement Techniques Note - Rabbi
First part_B-Image Processing - 1 of 2).pdf
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
Ad

2012 -TDA-Intro-part_2

  • 1. DEPARTAMENTO DE INFORMATICA INVESTIGACION Y POSTGRADO Topological Data Analysis (TDA) Simplicial Homology Rodrigo Rojas Moraleda May 29, 2013 Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 1/15
  • 2. DEPARTAMENTO DE INFORMATICA INVESTIGACION Y POSTGRADO Outline 1 Last session 2 Simplicial Homology Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 2/15
  • 3. DEPARTAMENTO DE INFORMATICA INVESTIGACION Y POSTGRADO 1 Last session 2 Simplicial Homology Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 3/15
  • 4. DEPARTAMENTO DE INFORMATICA INVESTIGACION Y POSTGRADO Topology: Geometry continuity. Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 4/15
  • 5. DEPARTAMENTO DE INFORMATICA INVESTIGACION Y POSTGRADO Homeomorphism. Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 4/15
  • 6. DEPARTAMENTO DE INFORMATICA INVESTIGACION Y POSTGRADO Topological properties or topological invariants Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 5/15
  • 7. DEPARTAMENTO DE INFORMATICA INVESTIGACION Y POSTGRADO Classify in sense of: P = {P0, · · · , Pn} Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 5/15
  • 8. DEPARTAMENTO DE INFORMATICA INVESTIGACION Y POSTGRADO Classify in sense of: P = {P0, · · · , Pn} property preserved by homeomorphisms. Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 5/15
  • 9. DEPARTAMENTO DE INFORMATICA INVESTIGACION Y POSTGRADO Classify in sense of: P = {P0, · · · , Pn} property preserved by homeomorphisms. Distinguishable Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 5/15
  • 10. DEPARTAMENTO DE INFORMATICA INVESTIGACION Y POSTGRADO Classify in sense of: P = {P0, · · · , Pn} property preserved by homeomorphisms. Distinguishable Completeness Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 5/15
  • 11. DEPARTAMENTO DE INFORMATICA INVESTIGACION Y POSTGRADO However general topological classification is unaffordable Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 6/15
  • 12. DEPARTAMENTO DE INFORMATICA INVESTIGACION Y POSTGRADO Polyhedral space Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 6/15
  • 13. DEPARTAMENTO DE INFORMATICA INVESTIGACION Y POSTGRADO 1 Last session 2 Simplicial Homology Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 7/15
  • 14. DEPARTAMENTO DE INFORMATICA INVESTIGACION Y POSTGRADO Simplicial Homology Convex Sets Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 8/15
  • 15. DEPARTAMENTO DE INFORMATICA INVESTIGACION Y POSTGRADO Simplicial Homology Convex Sets X,Y ∈ Rn PXY = {(1 − λ)X + λY : λ ∈ [0, 1]} Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 8/15
  • 16. DEPARTAMENTO DE INFORMATICA INVESTIGACION Y POSTGRADO Simplicial Homology Convex Sets C ∈ Rn , ∀X, Y ∈ C {(1 − λ)X + λY : λ ∈ [0, 1]} ∈ C Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 8/15
  • 17. DEPARTAMENTO DE INFORMATICA INVESTIGACION Y POSTGRADO Simplicial Homology Convex Hull S a finite point set xi ∈ S, i = 1, .. | S | αi ∈ R Conv(S) =    |S| i=1 αi xi | (∀i : αi ≥ 0) ∧ |S| i=1 αi = 1    xi ∈ Conv(S {xi }), is a vertex of Conv(S) Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 9/15
  • 18. DEPARTAMENTO DE INFORMATICA INVESTIGACION Y POSTGRADO Simplicial Homology Convex Hull V1 V2 X1 X2 (1 − λ)V1 + λV2 V1, V2 ∈ R2 , 0 ≤ λ ≤ 1 Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 10/15
  • 19. DEPARTAMENTO DE INFORMATICA INVESTIGACION Y POSTGRADO Simplicial Homology Convex Hull V1 V2 X3 X2 V3 λ1V1 + λ2V2 + λ3V3 V1, V2, V3 ∈ R2 , 3 i=1 λi = 1 Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 11/15
  • 20. DEPARTAMENTO DE INFORMATICA INVESTIGACION Y POSTGRADO Simplicial Homology Convex Hull V1 V2 X1 X3 X3 V3 V4 λ1V1 + λ2V2 + λ3V3 + λ4V4 V1, V2, V3, V4 ∈ R3 , 4 i=1 λi = 1 Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 12/15
  • 21. DEPARTAMENTO DE INFORMATICA INVESTIGACION Y POSTGRADO Simplicial Homology p-simplex σ given {x0, x1, · · · , xp} ∈ Rn , p + 1 affinely independent points. p-simplex σ = Conv({x0, · · · , xp}) dimension of σ is p Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 13/15
  • 22. DEPARTAMENTO DE INFORMATICA INVESTIGACION Y POSTGRADO Simplicial Homology face of σ V1 V3 V4 V2 V1 V2 V3 V1 V4 V2 V4 V2 V3 V4 V1 V3 V3 V4 V2 V2 V3 V4 V3 V2 V4 An l-simplex τ is called a face of a p-simplexσ if the vertices of τ are a sub-set of the vertices of σ. A k-simplex has exactly 2k+1 − 1 different faces. A tetrahedron consists has one face in dimension 3 (itself),four triangular faces, six edges, and four vertices which adds up to 15 = 24 − 1. Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 14/15
  • 23. DEPARTAMENTO DE INFORMATICA INVESTIGACION Y POSTGRADO Simplicial Homology Simplicial complexes A simplicial complex K is a finite collection of simplices such that σ ∈ K and τ being a face of σ implies τ ∈ K, and σ, σ ∈ K implies σ σ is empty or a face of both σ and σ . Simplicial complex No simplicial complex Left: A simplicial complex of dimension 3, right: Not a simplicial complex. Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 15/15
  • 24. DEPARTAMENTO DE INFORMATICA INVESTIGACION Y POSTGRADO Topology Simplicial complexes - chains Definition 3. A p-chain is a subset of p-simplices in a simplicial complex K. Despite the name “chain,” a p-chain does not have to be connected. Left: a 3-simplex. Center: one of its 2-chain (triangles). Right one of its 1-chain (the blue edges) Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 16/15
  • 25. DEPARTAMENTO DE INFORMATICA INVESTIGACION Y POSTGRADO Topology Simplicial complexes - chains group Definition 4. The set of p-chains of a simplicial complex K form a p-chain group Cp with the symmetric difference +2. + = example of 1-chain addition: Rodrigo Rojas Moraleda — Topological Data Analysis (TDA) 17/15