SlideShare a Scribd company logo
[html5jロボット部 第7回勉強会] Microsoft Cognitive Toolkit (CNTK) Overview
[html5jロボット部 第7回勉強会] Microsoft Cognitive Toolkit (CNTK) Overview
The Microsoft Cognitive Toolkit (CNTK)
Microsoft’s open-source deep-learning toolkit
• ease of use: what, not how
• fast
• flexible
• 1st
-class on Linux and Windows
• internal=external version
deep learning at Microsoft
• Microsoft Cognitive Services
• Skype Translator
• Cortana
• Bing
• HoloLens
• Microsoft Research
ImageNet: Microsoft 2015 ResNet
28.2
25.8
16.4
11.7
7.3 6.7
3.5
ILSVRC
2010 NEC
America
ILSVRC
2011 Xerox
ILSVRC
2012
AlexNet
ILSVRC
2013 Clarifi
ILSVRC
2014 VGG
ILSVRC
2014
GoogleNet
ILSVRC
2015 ResNet
ImageNet Classification top-5 error (%)
Microsoft had all 5 entries being the 1-st places this year: ImageNet classification,
ImageNet localization, ImageNet detection, COCO detection, and COCO segmentation
deep learning at Microsoft
• Microsoft Cognitive Services
• Skype Translator
• Cortana
• Bing
• HoloLens
• Microsoft Research
[html5jロボット部 第7回勉強会] Microsoft Cognitive Toolkit (CNTK) Overview
24%
14%
[html5jロボット部 第7回勉強会] Microsoft Cognitive Toolkit (CNTK) Overview
[html5jロボット部 第7回勉強会] Microsoft Cognitive Toolkit (CNTK) Overview
Microsoft’s historic
speech breakthrough
• Microsoft 2016 research system for
conversational speech recognition
• 5.9% word-error rate
• enabled by CNTK’s multi-server scalability
[W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke,
D. Yu, G. Zweig: “Achieving Human Parity in Conversational
Speech Recognition,” https://arxiv.org/abs/1610.05256]
• CNTK is Microsoft’s open-source, cross-platform toolkit for learning and
evaluating deep neural networks.
• CNTK expresses (nearly) arbitrary neural networks by composing simple
building blocks into complex computational networks, supporting
relevant network types and applications.
• CNTK is production-ready: State-of-the-art accuracy, efficient, and scales
to multi-GPU/multi-server.
CNTK “Cognitive Toolkit”
• open-source model inside and outside the company
• created by Microsoft Speech researchers (Dong Yu et al.) in 2012, “Computational Network Toolkit”
• open-sourced (CodePlex) in early 2015
• on GitHub since Jan 2016 under permissive license
• Python support since Oct 2016 (beta), rebranded as “Cognitive Toolkit”
• used by Microsoft product groups; but virtually all code development is out in the open
• external contributions e.g. from MIT and Stanford
• Linux, Windows, docker, cudnn5, next: CUDA 8
• Python and C++ API (beta; C#/.Net on roadmap)
“CNTK is Microsoft’s open-source, cross-platform toolkit
for learning and evaluating deep neural networks.”
“CNTK expresses (nearly) arbitrary neural networks by
composing simple building blocks into complex computational
networks, supporting relevant network types and applications.”
“CNTK expresses (nearly) arbitrary neural networks by
composing simple building blocks into complex computational
networks, supporting relevant network types and applications.”
example: 2-hidden layer feed-forward NN
h1 = s(W1 x + b1) h1 = sigmoid (x @ W1 + b1)
h2 = s(W2 h1 + b2) h2 = sigmoid (h1 @ W2 + b2)
P = softmax(Wout h2 + bout) P = softmax (h2 @ Wout + bout)
with input x  RM
and one-hot label L  RM
and cross-entropy training criterion
ce = LT
log P ce = cross_entropy (L, P)
Scorpusce = max
“CNTK expresses (nearly) arbitrary neural networks by
composing simple building blocks into complex computational
networks, supporting relevant network types and applications.”
example: 2-hidden layer feed-forward NN
h1 = s(W1 x + b1) h1 = sigmoid (x @ W1 + b1)
h2 = s(W2 h1 + b2) h2 = sigmoid (h1 @ W2 + b2)
P = softmax(Wout h2 + bout) P = softmax (h2 @ Wout + bout)
with input x  RM
and one-hot label y  RJ
and cross-entropy training criterion
ce = yT
log P ce = cross_entropy (L, P)
Scorpusce = max
“CNTK expresses (nearly) arbitrary neural networks by
composing simple building blocks into complex computational
networks, supporting relevant network types and applications.”
example: 2-hidden layer feed-forward NN
h1 = s(W1 x + b1) h1 = sigmoid (x @ W1 + b1)
h2 = s(W2 h1 + b2) h2 = sigmoid (h1 @ W2 + b2)
P = softmax(Wout h2 + bout) P = softmax (h2 @ Wout + bout)
with input x  RM
and one-hot label y  RJ
and cross-entropy training criterion
ce = yT
log P ce = cross_entropy (P, y)
Scorpusce = max
“CNTK expresses (nearly) arbitrary neural networks by
composing simple building blocks into complex computational
networks, supporting relevant network types and applications.”
h1 = sigmoid (x @ W1 + b1)
h2 = sigmoid (h1 @ W2 + b2)
P = softmax (h2 @ Wout + bout)
ce = cross_entropy (P, y)
“CNTK expresses (nearly) arbitrary neural networks by
composing simple building blocks into complex computational
networks, supporting relevant network types and applications.”
•
+
s
•
+
s
•
+
softmax
W1
b1
W2
b2
Wout
bout
cross_entropy
h1
h2
P
x y
h1 = sigmoid (x @ W1 + b1)
h2 = sigmoid (h1 @ W2 + b2)
P = softmax (h2 @ Wout + bout)
ce = cross_entropy (P, y)
ce
“CNTK expresses (nearly) arbitrary neural networks by
composing simple building blocks into complex computational
networks, supporting relevant network types and applications.”
•
+
s
•
+
s
•
+
softmax
W1
b1
W2
b2
Wout
bout
cross_entropy
h1
h2
P
x y
ce
• nodes: functions (primitives)
• can be composed into reusable composites
• edges: values
• incl. tensors, sparse
• automatic differentiation
• ∂F / ∂in = ∂F / ∂out ∙ ∂out / ∂in
• deferred computation  execution engine
• editable, clonable
LEGO-like composability allows CNTK to support
wide range of networks & applications
Cognitive Toolkit Demo
MNIST Handwritten Digits Recognition
on Jupyter Notebook
https://notebooks.azure.com/library/cntkbeta2
[html5jロボット部 第7回勉強会] Microsoft Cognitive Toolkit (CNTK) Overview
[html5jロボット部 第7回勉強会] Microsoft Cognitive Toolkit (CNTK) Overview
Benchmarking on a single server by HKBU
“CNTK is production-ready: State-of-the-art accuracy, efficient,
and scales to multi-GPU/multi-server.”
FCN-8 AlexNet ResNet-50 LSTM-64
CNTK 0.037 0.040 (0.054) 0.207 (0.245) 0.122
Caffe 0.038 0.026 (0.033) 0.307 (-) -
TensorFlow 0.063 - (0.058) - (0.346) 0.144
Torch 0.048 0.033 (0.038) 0.188 (0.215) 0.194
G980
“CNTK is production-ready: State-of-the-art accuracy, efficient,
and scales to multi-GPU/multi-server.”
Theano only supports 1 GPU
Achieved with 1-bit gradient quantization
algorithm
0
10000
20000
30000
40000
50000
60000
70000
80000
CNTK Theano TensorFlow Torch 7 Caffe
speed comparison (samples/second), higher = better
[note: December 2015]
1 GPU 1 x 4 GPUs 2 x 4 GPUs (8 GPUs)
Azure NC-Instances
NC6 NC12 NC24 NC24r
Cores 6 12 24 24
GPU
1 K80 GPU (1/2
Physical Card)
2 K80 GPUs (1
Physical Card)
4 K80 GPUs (2
Physical Cards)
4 K80 GPUs (2
Physical Cards)
Memory 56 GB 112 GB 224 GB 224 GB
Disk ~380 GB SSD ~680 GB SSD ~1.5 TB SSD ~1.5 TB SSD
Network Azure Network Azure Network Azure Network InfiniBand
[html5jロボット部 第7回勉強会] Microsoft Cognitive Toolkit (CNTK) Overview
• ease of use
• what, not how
• powerful stock library
• fast
• optimized for NVidia GPUs & libraries
• best-in-class multi-GPU/multi-server algorithms
• flexible
• powerful & composable Python and C++ API
• 1st
-class on Linux and Windows
• internal=external version
CNTK: democratizing the AI tool chain
• Web site: https://cntk.ai/
• Github: https://github.com/Microsoft/CNTK
• Wiki: https://github.com/Microsoft/CNTK/wiki
• Issues: https://github.com/Microsoft/CNTK/issues
CNTK: democratizing the AI tool chain
Seeing AI
[html5jロボット部 第7回勉強会] Microsoft Cognitive Toolkit (CNTK) Overview
[html5jロボット部 第7回勉強会] Microsoft Cognitive Toolkit (CNTK) Overview

More Related Content

PDF
[Connect(); // Japan 2016] Microsoft の AI 開発最新アップデート ~ Cognitive Services からA...
PDF
[AI07] Revolutionizing Image Processing with Cognitive Toolkit
PDF
Metta Innovations - Introdução ao Deep Learning aplicado a vídeo analytics
PDF
Chainer OpenPOWER developer congress HandsON 20170522_ota
PDF
Introduction to SeqAn, an Open-source C++ Template Library
PDF
Applying your Convolutional Neural Networks
PDF
Raul sena - Apresentação Analiticsemtudo - Scientific Applications using GPU
PPTX
Deep Learning Jump Start
[Connect(); // Japan 2016] Microsoft の AI 開発最新アップデート ~ Cognitive Services からA...
[AI07] Revolutionizing Image Processing with Cognitive Toolkit
Metta Innovations - Introdução ao Deep Learning aplicado a vídeo analytics
Chainer OpenPOWER developer congress HandsON 20170522_ota
Introduction to SeqAn, an Open-source C++ Template Library
Applying your Convolutional Neural Networks
Raul sena - Apresentação Analiticsemtudo - Scientific Applications using GPU
Deep Learning Jump Start

What's hot (20)

PDF
Adapting to a Cambrian AI/SW/HW explosion with open co-design competitions an...
PDF
Using Deep Learning to do Real-Time Scoring in Practical Applications - 2015-...
PDF
Malmotutorial
PDF
Building Interpretable & Secure AI Systems using PyTorch
PDF
Azure Digital Twins.pdf
PDF
Transformer 動向調査 in 画像認識
PDF
Accelerating open science and AI with automated, portable, customizable and r...
PDF
Hire a Machine to Code - Michael Arthur Bucko & Aurélien Nicolas
PDF
Enabling Artificial Intelligence - Alison B. Lowndes
PDF
Koss Lab 세미나 오픈소스 인공지능(AI) 프레임웍파헤치기
PPTX
Diving into Deep Learning (Silicon Valley Code Camp 2017)
PDF
Using Deep Learning to do Real-Time Scoring in Practical Applications
PPTX
Dov Nimratz, Roman Chobik "Embedded artificial intelligence"
PDF
Deep Learning Cases: Text and Image Processing
PDF
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...
PDF
Language translation with Deep Learning (RNN) with TensorFlow
 
PPTX
Deep Learning with Apache Spark: an Introduction
PPTX
Deep Learning with Python (PyData Seattle 2015)
PPTX
Dell and NVIDIA for Your AI workloads in the Data Center
PDF
Beyond TensorBoard: AutoML을 위한 interactive visual analytics 서비스 개발 경험 공유
Adapting to a Cambrian AI/SW/HW explosion with open co-design competitions an...
Using Deep Learning to do Real-Time Scoring in Practical Applications - 2015-...
Malmotutorial
Building Interpretable & Secure AI Systems using PyTorch
Azure Digital Twins.pdf
Transformer 動向調査 in 画像認識
Accelerating open science and AI with automated, portable, customizable and r...
Hire a Machine to Code - Michael Arthur Bucko & Aurélien Nicolas
Enabling Artificial Intelligence - Alison B. Lowndes
Koss Lab 세미나 오픈소스 인공지능(AI) 프레임웍파헤치기
Diving into Deep Learning (Silicon Valley Code Camp 2017)
Using Deep Learning to do Real-Time Scoring in Practical Applications
Dov Nimratz, Roman Chobik "Embedded artificial intelligence"
Deep Learning Cases: Text and Image Processing
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...
Language translation with Deep Learning (RNN) with TensorFlow
 
Deep Learning with Apache Spark: an Introduction
Deep Learning with Python (PyData Seattle 2015)
Dell and NVIDIA for Your AI workloads in the Data Center
Beyond TensorBoard: AutoML을 위한 interactive visual analytics 서비스 개발 경험 공유
Ad

Viewers also liked (20)

PDF
Microsoft Azureの機械学習サービス (Azure Machine Learning/Microsoft Cognitive Services)
PDF
[teratail Study ~機械学習編#2~] Microsoft AzureのAI関連サービス
PDF
[ビッグデータオールスターズ] クラウドサービス最新情報 機械学習/AIでこんなことまでできるんです! (Microsoft編)
PDF
[Azure Deep Dive] APIエコノミーに向けて ~Azure API ManagementによるAPIの公開と管理~ (2016/12/16)
PDF
[Azure Council Experts (ACE) 第20回定例会] Microsoft Azureアップデート情報 (2016/10/14-201...
PDF
[Developers Festa Sapporo 2016] Microsoft Azureでのアプリ開発 ~コンテナー、マイクロサービス、サーバーレス...
PDF
[Azure Council Experts (ACE) 第21回定例会] Microsoft Azureアップデート情報 (2016/12/09-201...
PDF
[Developers Summit 2017] MicrosoftのAI開発機能/サービス
PPTX
簡単に試せるMicrosoft Cognitive Service! Face APIはヴィジュアル系メイクに勝てるのか???
PPTX
Electron を知る
PDF
全文検索サーバ Fess 〜 全文検索システム構築時の悩みどころ
PPTX
Developer Summit 2013 18-D-1
PPT
Hack For Japan Report as of 8th, June 2011
PPT
Hack for Japan as of 8th June, 2011
PPTX
第6回 Machine Learning 15minutes!
PDF
[Azure Council Experts (ACE) 第10回定例会] Microsoft Azureアップデート情報 (2015/02/19-201...
PDF
[Azure Council Experts (ACE) 第16回定例会] Microsoft Azureアップデート情報 (2016/02/19-201...
PPTX
[Java Festa in 札幌 2012] Windows Azure を活用した Windows 8 アプリケーション開発
PDF
[API Meetup Tokyo #7 ~PaaSとAPIスペシャル~] AzureでMobile / Webアプリのサーバー側をAPI化 (Azure...
PDF
[Azure Council Experts (ACE) 第12回定例会] Microsoft Azureアップデート情報 (2015/06/18-201...
Microsoft Azureの機械学習サービス (Azure Machine Learning/Microsoft Cognitive Services)
[teratail Study ~機械学習編#2~] Microsoft AzureのAI関連サービス
[ビッグデータオールスターズ] クラウドサービス最新情報 機械学習/AIでこんなことまでできるんです! (Microsoft編)
[Azure Deep Dive] APIエコノミーに向けて ~Azure API ManagementによるAPIの公開と管理~ (2016/12/16)
[Azure Council Experts (ACE) 第20回定例会] Microsoft Azureアップデート情報 (2016/10/14-201...
[Developers Festa Sapporo 2016] Microsoft Azureでのアプリ開発 ~コンテナー、マイクロサービス、サーバーレス...
[Azure Council Experts (ACE) 第21回定例会] Microsoft Azureアップデート情報 (2016/12/09-201...
[Developers Summit 2017] MicrosoftのAI開発機能/サービス
簡単に試せるMicrosoft Cognitive Service! Face APIはヴィジュアル系メイクに勝てるのか???
Electron を知る
全文検索サーバ Fess 〜 全文検索システム構築時の悩みどころ
Developer Summit 2013 18-D-1
Hack For Japan Report as of 8th, June 2011
Hack for Japan as of 8th June, 2011
第6回 Machine Learning 15minutes!
[Azure Council Experts (ACE) 第10回定例会] Microsoft Azureアップデート情報 (2015/02/19-201...
[Azure Council Experts (ACE) 第16回定例会] Microsoft Azureアップデート情報 (2016/02/19-201...
[Java Festa in 札幌 2012] Windows Azure を活用した Windows 8 アプリケーション開発
[API Meetup Tokyo #7 ~PaaSとAPIスペシャル~] AzureでMobile / Webアプリのサーバー側をAPI化 (Azure...
[Azure Council Experts (ACE) 第12回定例会] Microsoft Azureアップデート情報 (2015/06/18-201...
Ad

Similar to [html5jロボット部 第7回勉強会] Microsoft Cognitive Toolkit (CNTK) Overview (20)

PDF
Microsoft Cognitive Toolkit (Atlanta Code Camp 2017)
PPTX
Deep_Learning_Frameworks_CNTK_PyTorch
PDF
AI/ML/DL: Introduction to Deep Learning with Cognitive ToolKit
PDF
運用CNTK 實作深度學習物件辨識 Deep Learning based Object Detection with Microsoft Cogniti...
PDF
Deep Learning, Microsoft Cognitive Toolkit (CNTK) and Azure Machine Learning ...
PDF
Artificial Intelligence and Deep Learning in Azure, CNTK and Tensorflow
PPTX
Deep Learning with Microsoft Cognitive Toolkit
PDF
Natural Language Processing with CNTK and Apache Spark with Ali Zaidi
PPTX
Cognitive Toolkit - Deep Learning framework from Microsoft
PPTX
Deep Learning Frameworks 2019 | Which Deep Learning Framework To Use | Deep L...
PDF
Deep Learning for New User Interactions (Gestures, Speech and Emotions)
PPTX
Xuedong Huang - Deep Learning and Intelligent Applications
PDF
Deep Learning with CNTK
PDF
dl-unit-3 materialdl-unit-3 material.pdf
PDF
Convolutional neural network
PDF
AI&BigData Lab. Артем Чернодуб "Распознавание изображений методом Lazy Deep ...
PDF
Deep Learning with CNTK
PPT
Deep Learning Jeff-Shomaker_1-20-17_Final_
PDF
Open source ai_technical_trend
PDF
OWF14 - Big Data : The State of Machine Learning in 2014
Microsoft Cognitive Toolkit (Atlanta Code Camp 2017)
Deep_Learning_Frameworks_CNTK_PyTorch
AI/ML/DL: Introduction to Deep Learning with Cognitive ToolKit
運用CNTK 實作深度學習物件辨識 Deep Learning based Object Detection with Microsoft Cogniti...
Deep Learning, Microsoft Cognitive Toolkit (CNTK) and Azure Machine Learning ...
Artificial Intelligence and Deep Learning in Azure, CNTK and Tensorflow
Deep Learning with Microsoft Cognitive Toolkit
Natural Language Processing with CNTK and Apache Spark with Ali Zaidi
Cognitive Toolkit - Deep Learning framework from Microsoft
Deep Learning Frameworks 2019 | Which Deep Learning Framework To Use | Deep L...
Deep Learning for New User Interactions (Gestures, Speech and Emotions)
Xuedong Huang - Deep Learning and Intelligent Applications
Deep Learning with CNTK
dl-unit-3 materialdl-unit-3 material.pdf
Convolutional neural network
AI&BigData Lab. Артем Чернодуб "Распознавание изображений методом Lazy Deep ...
Deep Learning with CNTK
Deep Learning Jeff-Shomaker_1-20-17_Final_
Open source ai_technical_trend
OWF14 - Big Data : The State of Machine Learning in 2014

More from Naoki (Neo) SATO (20)

PDF
Build enterprise-grade AI agents with Azure AI Agent Service
PDF
Microsoft Build 2024 Updates
PDF
LLMOps with Azure Machine Learning prompt flow
PDF
Microsoft Copilot, your everyday AI companion (Machine Learning 15minutes! Br...
PDF
Microsoft Build 2023 Updates – Copilot Stack and Azure OpenAI Service (Machin...
PDF
Microsoft + OpenAI: Recent Updates (Machine Learning 15minutes! Broadcast #74)
PDF
30分でわかるマイクロサービスアーキテクチャ 第2版
PDF
[Machine Learning 15minutes! Broadcast #67] Azure AI - Build 2022 Updates and...
PDF
[Machine Learning 15minutes! #61] Azure OpenAI Service
PDF
[第50回 Machine Learning 15minutes! Broadcast] Azure Machine Learning - Ignite ...
PDF
[Developers Festa Sapporo 2020] Microsoft/GitHubが提供するDeveloper Cloud (Develop...
PDF
[第2回 Azure Cosmos DB 勉強会] Data modelling and partitioning in Azure Cosmos DB ...
PDF
[第45回 Machine Learning 15minutes! Broadcast] Azure AI - Build 2020 Updates
PDF
[第43回 Machine Learning 15minutes! × 2] Azure AI Updates
PDF
[Developers Festa Sapporo 2019] Azure Updates - Ignite 2019
PDF
[Serverless OpenHack Tokyo] Azure Serverless (Japanese)
PDF
[Serverless OpenHack Tokyo] Azure Serverless (English)
PDF
[Azure Council Experts (ACE) 第37回定例会] Microsoft Azureアップデート情報 (2019/08/22-201...
PDF
[db tech showcase Tokyo 2019] Azure Cosmos DB Deep Dive ~ Partitioning, Globa...
PDF
How to work with technology to survive as an engineer (エンジニアとして生き残るためのテクノロジーと...
Build enterprise-grade AI agents with Azure AI Agent Service
Microsoft Build 2024 Updates
LLMOps with Azure Machine Learning prompt flow
Microsoft Copilot, your everyday AI companion (Machine Learning 15minutes! Br...
Microsoft Build 2023 Updates – Copilot Stack and Azure OpenAI Service (Machin...
Microsoft + OpenAI: Recent Updates (Machine Learning 15minutes! Broadcast #74)
30分でわかるマイクロサービスアーキテクチャ 第2版
[Machine Learning 15minutes! Broadcast #67] Azure AI - Build 2022 Updates and...
[Machine Learning 15minutes! #61] Azure OpenAI Service
[第50回 Machine Learning 15minutes! Broadcast] Azure Machine Learning - Ignite ...
[Developers Festa Sapporo 2020] Microsoft/GitHubが提供するDeveloper Cloud (Develop...
[第2回 Azure Cosmos DB 勉強会] Data modelling and partitioning in Azure Cosmos DB ...
[第45回 Machine Learning 15minutes! Broadcast] Azure AI - Build 2020 Updates
[第43回 Machine Learning 15minutes! × 2] Azure AI Updates
[Developers Festa Sapporo 2019] Azure Updates - Ignite 2019
[Serverless OpenHack Tokyo] Azure Serverless (Japanese)
[Serverless OpenHack Tokyo] Azure Serverless (English)
[Azure Council Experts (ACE) 第37回定例会] Microsoft Azureアップデート情報 (2019/08/22-201...
[db tech showcase Tokyo 2019] Azure Cosmos DB Deep Dive ~ Partitioning, Globa...
How to work with technology to survive as an engineer (エンジニアとして生き残るためのテクノロジーと...

Recently uploaded (20)

PDF
Design an Analysis of Algorithms II-SECS-1021-03
PDF
How to Choose the Right IT Partner for Your Business in Malaysia
PDF
SAP S4 Hana Brochure 3 (PTS SYSTEMS AND SOLUTIONS)
PDF
Audit Checklist Design Aligning with ISO, IATF, and Industry Standards — Omne...
PPTX
Introduction to Artificial Intelligence
PDF
top salesforce developer skills in 2025.pdf
PDF
System and Network Administraation Chapter 3
PDF
Claude Code: Everyone is a 10x Developer - A Comprehensive AI-Powered CLI Tool
PDF
Navsoft: AI-Powered Business Solutions & Custom Software Development
PPTX
Operating system designcfffgfgggggggvggggggggg
PDF
System and Network Administration Chapter 2
PPTX
Online Work Permit System for Fast Permit Processing
PDF
How Creative Agencies Leverage Project Management Software.pdf
PDF
medical staffing services at VALiNTRY
PDF
T3DD25 TYPO3 Content Blocks - Deep Dive by André Kraus
PPTX
CHAPTER 2 - PM Management and IT Context
PDF
Nekopoi APK 2025 free lastest update
PDF
Adobe Illustrator 28.6 Crack My Vision of Vector Design
PDF
PTS Company Brochure 2025 (1).pdf.......
PPTX
CHAPTER 12 - CYBER SECURITY AND FUTURE SKILLS (1) (1).pptx
Design an Analysis of Algorithms II-SECS-1021-03
How to Choose the Right IT Partner for Your Business in Malaysia
SAP S4 Hana Brochure 3 (PTS SYSTEMS AND SOLUTIONS)
Audit Checklist Design Aligning with ISO, IATF, and Industry Standards — Omne...
Introduction to Artificial Intelligence
top salesforce developer skills in 2025.pdf
System and Network Administraation Chapter 3
Claude Code: Everyone is a 10x Developer - A Comprehensive AI-Powered CLI Tool
Navsoft: AI-Powered Business Solutions & Custom Software Development
Operating system designcfffgfgggggggvggggggggg
System and Network Administration Chapter 2
Online Work Permit System for Fast Permit Processing
How Creative Agencies Leverage Project Management Software.pdf
medical staffing services at VALiNTRY
T3DD25 TYPO3 Content Blocks - Deep Dive by André Kraus
CHAPTER 2 - PM Management and IT Context
Nekopoi APK 2025 free lastest update
Adobe Illustrator 28.6 Crack My Vision of Vector Design
PTS Company Brochure 2025 (1).pdf.......
CHAPTER 12 - CYBER SECURITY AND FUTURE SKILLS (1) (1).pptx

[html5jロボット部 第7回勉強会] Microsoft Cognitive Toolkit (CNTK) Overview

  • 3. The Microsoft Cognitive Toolkit (CNTK) Microsoft’s open-source deep-learning toolkit • ease of use: what, not how • fast • flexible • 1st -class on Linux and Windows • internal=external version
  • 4. deep learning at Microsoft • Microsoft Cognitive Services • Skype Translator • Cortana • Bing • HoloLens • Microsoft Research
  • 5. ImageNet: Microsoft 2015 ResNet 28.2 25.8 16.4 11.7 7.3 6.7 3.5 ILSVRC 2010 NEC America ILSVRC 2011 Xerox ILSVRC 2012 AlexNet ILSVRC 2013 Clarifi ILSVRC 2014 VGG ILSVRC 2014 GoogleNet ILSVRC 2015 ResNet ImageNet Classification top-5 error (%) Microsoft had all 5 entries being the 1-st places this year: ImageNet classification, ImageNet localization, ImageNet detection, COCO detection, and COCO segmentation
  • 6. deep learning at Microsoft • Microsoft Cognitive Services • Skype Translator • Cortana • Bing • HoloLens • Microsoft Research
  • 11. Microsoft’s historic speech breakthrough • Microsoft 2016 research system for conversational speech recognition • 5.9% word-error rate • enabled by CNTK’s multi-server scalability [W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, G. Zweig: “Achieving Human Parity in Conversational Speech Recognition,” https://arxiv.org/abs/1610.05256]
  • 12. • CNTK is Microsoft’s open-source, cross-platform toolkit for learning and evaluating deep neural networks. • CNTK expresses (nearly) arbitrary neural networks by composing simple building blocks into complex computational networks, supporting relevant network types and applications. • CNTK is production-ready: State-of-the-art accuracy, efficient, and scales to multi-GPU/multi-server. CNTK “Cognitive Toolkit”
  • 13. • open-source model inside and outside the company • created by Microsoft Speech researchers (Dong Yu et al.) in 2012, “Computational Network Toolkit” • open-sourced (CodePlex) in early 2015 • on GitHub since Jan 2016 under permissive license • Python support since Oct 2016 (beta), rebranded as “Cognitive Toolkit” • used by Microsoft product groups; but virtually all code development is out in the open • external contributions e.g. from MIT and Stanford • Linux, Windows, docker, cudnn5, next: CUDA 8 • Python and C++ API (beta; C#/.Net on roadmap) “CNTK is Microsoft’s open-source, cross-platform toolkit for learning and evaluating deep neural networks.”
  • 14. “CNTK expresses (nearly) arbitrary neural networks by composing simple building blocks into complex computational networks, supporting relevant network types and applications.”
  • 15. “CNTK expresses (nearly) arbitrary neural networks by composing simple building blocks into complex computational networks, supporting relevant network types and applications.” example: 2-hidden layer feed-forward NN h1 = s(W1 x + b1) h1 = sigmoid (x @ W1 + b1) h2 = s(W2 h1 + b2) h2 = sigmoid (h1 @ W2 + b2) P = softmax(Wout h2 + bout) P = softmax (h2 @ Wout + bout) with input x  RM and one-hot label L  RM and cross-entropy training criterion ce = LT log P ce = cross_entropy (L, P) Scorpusce = max
  • 16. “CNTK expresses (nearly) arbitrary neural networks by composing simple building blocks into complex computational networks, supporting relevant network types and applications.” example: 2-hidden layer feed-forward NN h1 = s(W1 x + b1) h1 = sigmoid (x @ W1 + b1) h2 = s(W2 h1 + b2) h2 = sigmoid (h1 @ W2 + b2) P = softmax(Wout h2 + bout) P = softmax (h2 @ Wout + bout) with input x  RM and one-hot label y  RJ and cross-entropy training criterion ce = yT log P ce = cross_entropy (L, P) Scorpusce = max
  • 17. “CNTK expresses (nearly) arbitrary neural networks by composing simple building blocks into complex computational networks, supporting relevant network types and applications.” example: 2-hidden layer feed-forward NN h1 = s(W1 x + b1) h1 = sigmoid (x @ W1 + b1) h2 = s(W2 h1 + b2) h2 = sigmoid (h1 @ W2 + b2) P = softmax(Wout h2 + bout) P = softmax (h2 @ Wout + bout) with input x  RM and one-hot label y  RJ and cross-entropy training criterion ce = yT log P ce = cross_entropy (P, y) Scorpusce = max
  • 18. “CNTK expresses (nearly) arbitrary neural networks by composing simple building blocks into complex computational networks, supporting relevant network types and applications.” h1 = sigmoid (x @ W1 + b1) h2 = sigmoid (h1 @ W2 + b2) P = softmax (h2 @ Wout + bout) ce = cross_entropy (P, y)
  • 19. “CNTK expresses (nearly) arbitrary neural networks by composing simple building blocks into complex computational networks, supporting relevant network types and applications.” • + s • + s • + softmax W1 b1 W2 b2 Wout bout cross_entropy h1 h2 P x y h1 = sigmoid (x @ W1 + b1) h2 = sigmoid (h1 @ W2 + b2) P = softmax (h2 @ Wout + bout) ce = cross_entropy (P, y) ce
  • 20. “CNTK expresses (nearly) arbitrary neural networks by composing simple building blocks into complex computational networks, supporting relevant network types and applications.” • + s • + s • + softmax W1 b1 W2 b2 Wout bout cross_entropy h1 h2 P x y ce • nodes: functions (primitives) • can be composed into reusable composites • edges: values • incl. tensors, sparse • automatic differentiation • ∂F / ∂in = ∂F / ∂out ∙ ∂out / ∂in • deferred computation  execution engine • editable, clonable LEGO-like composability allows CNTK to support wide range of networks & applications
  • 21. Cognitive Toolkit Demo MNIST Handwritten Digits Recognition on Jupyter Notebook
  • 25. Benchmarking on a single server by HKBU “CNTK is production-ready: State-of-the-art accuracy, efficient, and scales to multi-GPU/multi-server.” FCN-8 AlexNet ResNet-50 LSTM-64 CNTK 0.037 0.040 (0.054) 0.207 (0.245) 0.122 Caffe 0.038 0.026 (0.033) 0.307 (-) - TensorFlow 0.063 - (0.058) - (0.346) 0.144 Torch 0.048 0.033 (0.038) 0.188 (0.215) 0.194 G980
  • 26. “CNTK is production-ready: State-of-the-art accuracy, efficient, and scales to multi-GPU/multi-server.” Theano only supports 1 GPU Achieved with 1-bit gradient quantization algorithm 0 10000 20000 30000 40000 50000 60000 70000 80000 CNTK Theano TensorFlow Torch 7 Caffe speed comparison (samples/second), higher = better [note: December 2015] 1 GPU 1 x 4 GPUs 2 x 4 GPUs (8 GPUs)
  • 27. Azure NC-Instances NC6 NC12 NC24 NC24r Cores 6 12 24 24 GPU 1 K80 GPU (1/2 Physical Card) 2 K80 GPUs (1 Physical Card) 4 K80 GPUs (2 Physical Cards) 4 K80 GPUs (2 Physical Cards) Memory 56 GB 112 GB 224 GB 224 GB Disk ~380 GB SSD ~680 GB SSD ~1.5 TB SSD ~1.5 TB SSD Network Azure Network Azure Network Azure Network InfiniBand
  • 29. • ease of use • what, not how • powerful stock library • fast • optimized for NVidia GPUs & libraries • best-in-class multi-GPU/multi-server algorithms • flexible • powerful & composable Python and C++ API • 1st -class on Linux and Windows • internal=external version CNTK: democratizing the AI tool chain
  • 30. • Web site: https://cntk.ai/ • Github: https://github.com/Microsoft/CNTK • Wiki: https://github.com/Microsoft/CNTK/wiki • Issues: https://github.com/Microsoft/CNTK/issues CNTK: democratizing the AI tool chain