SlideShare a Scribd company logo
Confidential
1
Confidential
2
Embedded Artificial Intelligence
Dov Nimratz & Roman Chobik
Solution Architect
March 2019
Confidential
3
● 30+ years in R&D
● 17 years in Israel HighTech
● ECI, Telrad, RAD, Audiocodes companies
● HW, SW, Mechanical design engineer
● Project & Product Manager
● Business developer for EMEA & CIS
countries
● Solution Architect
● 22 publications, US patent
● Counseling & SW development teaching
About us
● Over 7 years of IT experience
● Embedded Linux programming
● IoT related project.
● C, Python, BLE, Mesh networking, IoT, Embedded, Linux,
ZeroMQ, nRF51, STM8, UART, SPI
● National Technical University of Ukraine Kiev Polytechnic
Institute
● MS in Electronics Engineering
Confidential
4
1. AI algorithms overview
2. Application examples and request for embedded installation
3. Intel Neural Compute Stick overview
4. NCS demonstration for Classification & Detection problems
5. Hardware for Embedded AI
Agenda
Confidential
5
AI algorithms overview
Confidential
6
Image collection
Confidential
7
(assume given set of discrete labels)
{dog, cat, truck, plane, ...}
Image classification - Core stack in ML vision
Cat
Confidential
8
Image classification
Confidential
9
Convolutional network - CNN
Confidential
10
Hardware for recognition
Confidential
11
● Dalal, Navneet, and Bill Triggs. "Histograms of oriented gradients for human detection." Computer Vision and Pattern Recognition,
2005. CVPR 2005. IEEE Computer Society Conference on. Vol. 1. IEEE, 2005. [PDF]
● Felzenszwalb, Pedro, David McAllester, and Deva Ramanan. "A discriminatively trained, multiscale, deformable part model."
Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE, 2008 [PDF]
● Everingham, Mark, et al. "The pascal visual object classes (VOC) challenge." International Journal of Computer Vision 88.2 (2010):
303-338. [PDF]
● Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on. IEEE, 2009. [PDF]
● Russakovsky, Olga, et al. "Imagenet Large Scale Visual Recognition Challenge." arXiv:1409.0575. [PDF]
● Lin, Yuanqing, et al. "Large-scale image classification: fast feature extraction and SVM training."
● Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011. [PDF]
● Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep
● convolutional neural networks." Advances in neural information processing systems. 2012. [PDF]
● Szegedy, Christian, et al. "Going deeper with convolutions." arXiv preprint arXiv:1409.4842 (2014).
● [PDF]
● Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint
arXiv:1409.1556 (2014). [PDF]
● He, Kaiming, et al. "Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition." arXiv preprint arXiv:1406.4729
(2014). [PDF]
● LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.
[PDF]
● Fei-Fei, Li, et al. "What do we perceive in a glance of a real-world scene?." Journal of vision 7.1 (2007): 10. [PDF]
Reference
Confidential
12
Classification examples on embedded device
Confidential
13
• Secure access control
• Actuators driving for different animal types
• Counting animals
Security camera in yard
Confidential
14
• Sorting garbage or waste
• Integrity control
• Completeness check
Industry or retail sorting
Confidential
15
• Intrusion detection
• Barrier integrity control
• Early warning alarm
Restricted area secure
Confidential
16
• Secure for employees
• Much chipper
• Detect and measure better than human
Construction inspection
Confidential
17
• Power consumption
• Dimensions and weight
• Real time operation
• No network connections
For such application we have challenges
• Optimized model
• Special hardware
Confidential
18
Limit the number of input
channels by adding an extra 1x1
convolution before the 3x3 and 5x5
convolutions
Factorize 5x5 convolution to two
3x3 convolution operations to
improve computational speed
Inception model - next level of engineering optimization
Confidential
19
1. Replace 3x3 filters with 1x1 filters - Fire layer
2. Decrease the number of input channels to 3x3 filters
3. Pooling layer in place of FC layer in the end.
SqueezeNet - 510× smaller than AlexNet
Major principle - use CNN
only where high input exist
Confidential
20
Intel Neural Computer Stick
Confidential
21
Ultra-Low Power with over 1 TOPS
Deep neural network processing unit
VPU architecture which minimizes power by
reducing data movement on-chip
Imaging and vision hardware accelerators
based on VLIW vector processors
16 Programmable 128-bit VLIW Vector
Processors
16 Configurable MIPI Lanes
On-chip memory architecture allows for up to
400 GB/sec of internal bandwidth
Movidius VPU - Vision Processing Unit
Confidential
22
Movidius Myriad X chip
Confidential
23
Implementation on Intel Stick
Confidential
24
Delivery limitations
Confidential
25
The Inference Engine deployment process assumes you used the Model
Optimizer to convert your trained model to an Intermediate Representation.
Deployment Workflow
Confidential
26
79 different topology models
https://github.com/opencv/open_model_zoo/tre
e/2018/model_downloader
Default configuration file is around 4.3 GB
List of Available topologies
densenet-121
densenet-161
densenet-169
densenet-201
squeezenet1.0
squeezenet1.1
mtcnn-p
mtcnn-r
mtcnn-o
mobilenet-ssd
vgg19
vgg16
ssd512
ssd300
inception-resnet-v2
dilation
googlenet-v1
googlenet-v2
googlenet-v4
alexnet
ssd_mobilenet_v2_
coco
resnet-50
resnet-101
resnet-152
googlenet-v3
age-gender-
recognitionemotions-
recognition
face-detection-adas
face-detection-retail
face-reidentification
facial-landmarks
human-pose-
estimationlandmarks-
regression
license-plate-recognition-
barrier
pedestrian-and-vehicle-
detector-adas-0001
pedestrian-and-vehicle-
detector-adas-0001-fp16
pedestrian-detection-adas-
0002
pedestrian-and-
vehicle-detector-
adas-0001-fp16
pedestrian-detection-
adas-0002
pedestrian-detection-
adas-0002-fp16
person-attributes-
recognition-
crossroad-0031
person-attributes-
recognition-
crossroad-0031-fp16
person-detection-
action-recognition-
0003
person-detection-
action-recognition-
0003-fp16
person-detection-
retail-0001
Confidential
27
A summary of the steps for optimizing and deploying a trained model:
• Configure the Model Optimizer for your framework.
- Caffe models
- TensorFlow models
- MXNet models
- ONNX models
- Kaldi models
• Convert a trained model to produce an optimized Intermediate Representation (IR)
- Produce a valid Intermediate Representation. (.xml and .bin)
- Produce an optimized Intermediate Representation. Dropout some layers
• Test the model in the Intermediate Representation format using the Inference Engine
• Integrate the Inference Engine into your application to deploy the model in the target environment.
Module Optimizer
Confidential
28
Caffe*:
● AlexNet
● CaffeNet
● GoogleNet (Inception) v1, v2, v4
● VGG family (VGG16, VGG19)
● SqueezeNet v1.0, v1.1
● ResNet v1 family (18** ***, 50, 101,
152)
● MobileNet
● Inception ResNet v2
● DenseNet family** (121,161,169,201)
● SSD-300, SSD-512, SSD-MobileNet,
SSD-GoogleNet, SSD-SqueezeNet
Supported networks:
MXNet*:
● AlexNet and CaffeNet
● DenseNet family**
(121,161,169,201)
● SqueezeNet v1.1
● MobileNet v1, v2
● NiN
● ResNet v1 (101, 152)
● SqueezeNet v1.1
● VGG family (VGG16,
VGG19)
● SSD-Inception-v3,
SSD-MobileNet, SSD-
ResNet-50, SSD-300
TensorFlow*:
● AlexNet
● Inception v1, v2, v3, v4
● Inception ResNet v2
● MobileNet v1, v2
● ResNet v1 family (50, 101,
152)
● SqueezeNet v1.0, v1.1
● VGG family (VGG16,
VGG19)
Confidential
29
Deployment NN using OpenVINO library
Confidential
31
Inference engine structure
Confidential
32
NCS demonstration
Confidential
33
Main board hardware - Intel Up
Confidential
34
Embedded Hardware
Confidential
36
Next Step
Road Map project - Object classificator:
Integrate few Sticks
Robot comes to the toy and plays relevant
sound:
● Cat
● Dog
● Car, etc
+
Confidential
37
Embedded Word - March 2019 Nuremberg
Google come to the arena - Coral
USB Accelerator
A USB accessory featuring the Edge TPU that
brings ML inferencing to existing systems.
● Supported OS: Debian Linux
● Compatible with Raspberry Pi boards
● Supported Framework: TensorFlow
Lite
Confidential
38
Google ←→ Intel
Confidential
39
• GCP AI based on Coral
• Only TensorFlow light framework
Coral project
• Three type of pre-trained models:
- Image classification
• MobileNet V1/V2
• Inception V1/V2/V3/V4
- Object detection
• MobileNet v1/v2
- Embedded extractor (Classification)
• MobileNet v1
• Possibility to retrain only lat layer or full network
• Two frequency modes
Confidential
40
Real time object detection with Coral Dev Board
Edge TPU Performance Demo
The video demonstrates the real time
processing power of the Edge TPU by running
a MovileNer SSD model that can identify and
classify multiple objects.
The footage of the cars is a recording, but the
MobileNet model is executing in realtime on
CoralDev Board to detect each car included
with a box (limited to 20 detected cars).
Confidential
41
With:
Desktop CPU: 64-bit Intel(R) Xeon(R)
E5–1650 v4 @ 3.60GHz
Embedded CPU: Quad-core Cortex-A53
@ 1.5GHz
Dev Board: Quad-core Cortex-A53 @
1.5GHz + Edge TPU
Google performance test
Confidential
42
Intel:
- Async & Sync calls
- May integrated many
sticks in HUB
- OpenVino library ML
framework independent
solution
- Required OpenVino
installation
- User friendly SDK
- No difference found USB
2/3 for image classification
Compare Intel - Google USB Accelerators
Google:
- 3 time less power
consumption in Standby
mode
- 4 time better
performance with USB 3
- Only TensorFlow light
framework
- Quick training mode with
pretrained model
- Two operation clock
modes
- Nothing to be installed
Confidential
43
Image detection video power consumption:
Intel Neural Network Stick 350 mA (1,75 Watt) with 140
ms detection time
Google Coral Stick 60 ma (300 mWatt) with 17 ms
detection time
Power consumption and performance comparison
Confidential
44
• Inference at the edge
• Offline Inference
• Minimal latency - Real Real-
Time
• Privacy and security
What it does mean
Confidential
45
Demonstration
Confidential
46
Terminator had born
Confidential
47
Thank you
Name
Title
Your.name@globallogic.com
+1-000-333-4444
Name
Title
Your.name@globallogic.com
+1-000-333-4444

More Related Content

PDF
LambdaFabric for Machine Learning Acceleration
PDF
Bergman Enabling Computation for neuro ML external
PPTX
The Pacific Research Platform Two Years In
PDF
Metta Innovations - Introdução ao Deep Learning aplicado a vídeo analytics
PDF
[OpenStack Day in Korea] Understanding OpenStack from SDN/NV Viewpoint
PDF
Breaking New Frontiers in Robotics and Edge Computing with AI
PDF
Xilinx Inference solution for DL using OpenPOWER systems
PDF
“Case Study: Facial Detection and Recognition for Always-On Applications,” a ...
LambdaFabric for Machine Learning Acceleration
Bergman Enabling Computation for neuro ML external
The Pacific Research Platform Two Years In
Metta Innovations - Introdução ao Deep Learning aplicado a vídeo analytics
[OpenStack Day in Korea] Understanding OpenStack from SDN/NV Viewpoint
Breaking New Frontiers in Robotics and Edge Computing with AI
Xilinx Inference solution for DL using OpenPOWER systems
“Case Study: Facial Detection and Recognition for Always-On Applications,” a ...

What's hot (19)

PDF
[html5jロボット部 第7回勉強会] Microsoft Cognitive Toolkit (CNTK) Overview
PDF
Deep learning: Hardware Landscape
PPTX
2. Cnnecst-Why the use of FPGA?
PDF
Meetup 18/10/2018 - Artificiële intelligentie en mobiliteit
PDF
MIMO Wireless based Cryptosystem using Electronic Key Generation Unit
PPTX
DATE 2020: Design, Automation and Test in Europe Conference
PDF
Deep Learning - A hands-on introduction to image classification
PDF
PLNOG 18 - Dr Marek Michalewicz - InfiniCortex: Superkomputer wielki jak świat
PDF
"Accelerating Deep Learning Using Altera FPGAs," a Presentation from Intel
PDF
M tech published paper
PPTX
Introduction to deep learning
PPTX
Convolutional Neural Networks for Computer vision Applications
PDF
Novi sad ai event 3-2018
PPTX
(Msc Thesis) Sparse Coral Classification Using Deep Convolutional Neural Netw...
PPTX
Deep Learning for Robotics
PDF
High Performance Reconfigurable Computing at NECSTLab
PDF
Using Deep Learning to do Real-Time Scoring in Practical Applications - 2015-...
PDF
Video Encryption and Decryption with Authentication using Artificial Neural N...
PDF
ECP Application Development
[html5jロボット部 第7回勉強会] Microsoft Cognitive Toolkit (CNTK) Overview
Deep learning: Hardware Landscape
2. Cnnecst-Why the use of FPGA?
Meetup 18/10/2018 - Artificiële intelligentie en mobiliteit
MIMO Wireless based Cryptosystem using Electronic Key Generation Unit
DATE 2020: Design, Automation and Test in Europe Conference
Deep Learning - A hands-on introduction to image classification
PLNOG 18 - Dr Marek Michalewicz - InfiniCortex: Superkomputer wielki jak świat
"Accelerating Deep Learning Using Altera FPGAs," a Presentation from Intel
M tech published paper
Introduction to deep learning
Convolutional Neural Networks for Computer vision Applications
Novi sad ai event 3-2018
(Msc Thesis) Sparse Coral Classification Using Deep Convolutional Neural Netw...
Deep Learning for Robotics
High Performance Reconfigurable Computing at NECSTLab
Using Deep Learning to do Real-Time Scoring in Practical Applications - 2015-...
Video Encryption and Decryption with Authentication using Artificial Neural N...
ECP Application Development
Ad

Similar to Dov Nimratz, Roman Chobik "Embedded artificial intelligence" (20)

PPTX
Anomaly Detection with Azure and .NET
PDF
Deep Learning Applications and Image Processing
PDF
DLD meetup 2017, Efficient Deep Learning
PPTX
Introduction to computer vision with Convoluted Neural Networks
PPTX
Introduction to computer vision
PDF
"Enabling Ubiquitous Visual Intelligence Through Deep Learning," a Keynote Pr...
PPTX
AlexNet(ImageNet Classification with Deep Convolutional Neural Networks)
PDF
Opening Keynote at GTC 2015: Leaps in Visual Computing
PDF
FPGA Hardware Accelerator for Machine Learning
PDF
Presentation - webinar embedded machine learning
PPTX
Anomaly Detection with Azure and .net
PDF
Discovering Your AI Super Powers - Tips and Tricks to Jumpstart your AI Projects
PPTX
AI on the Edge
PDF
IRJET- Python Libraries and Packages for Deep Learning-A Survey
PDF
AlexNet(ImageNet Classification with Deep Convolutional Neural Networks)
PDF
CNN Algorithm
PDF
Imaging automotive 2015 addfor v002
PDF
Imaging automotive 2015 addfor v002
PPTX
Computer Vision for Beginners
PDF
IBM Cloud Paris Meetup 20180517 - Deep Learning Challenges
Anomaly Detection with Azure and .NET
Deep Learning Applications and Image Processing
DLD meetup 2017, Efficient Deep Learning
Introduction to computer vision with Convoluted Neural Networks
Introduction to computer vision
"Enabling Ubiquitous Visual Intelligence Through Deep Learning," a Keynote Pr...
AlexNet(ImageNet Classification with Deep Convolutional Neural Networks)
Opening Keynote at GTC 2015: Leaps in Visual Computing
FPGA Hardware Accelerator for Machine Learning
Presentation - webinar embedded machine learning
Anomaly Detection with Azure and .net
Discovering Your AI Super Powers - Tips and Tricks to Jumpstart your AI Projects
AI on the Edge
IRJET- Python Libraries and Packages for Deep Learning-A Survey
AlexNet(ImageNet Classification with Deep Convolutional Neural Networks)
CNN Algorithm
Imaging automotive 2015 addfor v002
Imaging automotive 2015 addfor v002
Computer Vision for Beginners
IBM Cloud Paris Meetup 20180517 - Deep Learning Challenges
Ad

More from Lviv Startup Club (20)

PDF
Oleksandr Ivakhnenko: LinkedIn Marketing і Content Marketing: розширений підх...
PDF
Maksym Vyshnivetskyi: PMO Quality Management (UA)
PDF
Oleksandr Ivakhnenko: Вступ до генерації лідів для ІТ-аутсорсингу (UA)
PDF
Oleksandr Osypenko: Поради щодо іспиту та закриття курсу (UA)
PDF
Oleksandr Osypenko: Пробний іспит + аналіз (UA)
PDF
Oleksandr Osypenko: Agile / Hybrid Delivery (UA)
PDF
Oleksandr Osypenko: Стейкхолдери та їх вплив (UA)
PDF
Rostyslav Chayka: Prompt Engineering для проєктного менеджменту (Advanced) (UA)
PPTX
Dmytro Liesov: PMO Tools and Technologies (UA)
PDF
Rostyslav Chayka: Управління командою за допомогою AI (UA)
PDF
Oleksandr Osypenko: Tailoring + Change Management (UA)
PDF
Maksym Vyshnivetskyi: Управління закупівлями (UA)
PDF
Oleksandr Osypenko: Управління ризиками (UA)
PPTX
Dmytro Zubkov: PMO Resource Management (UA)
PPTX
Rostyslav Chayka: Комунікація за допомогою AI (UA)
PDF
Ihor Pavlenko: Комунікація за допомогою AI (UA)
PDF
Maksym Vyshnivetskyi: Управління якістю (UA)
PDF
Ihor Pavlenko: Робота зі стейкхолдерами за допомогою AI (UA)
PDF
Maksym Vyshnivetskyi: Управління вартістю (Cost) (UA)
PDF
Oleksandr Osypenko: Управління часом та ресурсами (UA)
Oleksandr Ivakhnenko: LinkedIn Marketing і Content Marketing: розширений підх...
Maksym Vyshnivetskyi: PMO Quality Management (UA)
Oleksandr Ivakhnenko: Вступ до генерації лідів для ІТ-аутсорсингу (UA)
Oleksandr Osypenko: Поради щодо іспиту та закриття курсу (UA)
Oleksandr Osypenko: Пробний іспит + аналіз (UA)
Oleksandr Osypenko: Agile / Hybrid Delivery (UA)
Oleksandr Osypenko: Стейкхолдери та їх вплив (UA)
Rostyslav Chayka: Prompt Engineering для проєктного менеджменту (Advanced) (UA)
Dmytro Liesov: PMO Tools and Technologies (UA)
Rostyslav Chayka: Управління командою за допомогою AI (UA)
Oleksandr Osypenko: Tailoring + Change Management (UA)
Maksym Vyshnivetskyi: Управління закупівлями (UA)
Oleksandr Osypenko: Управління ризиками (UA)
Dmytro Zubkov: PMO Resource Management (UA)
Rostyslav Chayka: Комунікація за допомогою AI (UA)
Ihor Pavlenko: Комунікація за допомогою AI (UA)
Maksym Vyshnivetskyi: Управління якістю (UA)
Ihor Pavlenko: Робота зі стейкхолдерами за допомогою AI (UA)
Maksym Vyshnivetskyi: Управління вартістю (Cost) (UA)
Oleksandr Osypenko: Управління часом та ресурсами (UA)

Recently uploaded (20)

PPTX
Business Ethics - An introduction and its overview.pptx
PDF
Roadmap Map-digital Banking feature MB,IB,AB
DOCX
unit 2 cost accounting- Tender and Quotation & Reconciliation Statement
PPTX
Belch_12e_PPT_Ch18_Accessible_university.pptx
PDF
COST SHEET- Tender and Quotation unit 2.pdf
PDF
MSPs in 10 Words - Created by US MSP Network
PPTX
CkgxkgxydkydyldylydlydyldlyddolydyoyyU2.pptx
PPTX
Probability Distribution, binomial distribution, poisson distribution
PPT
340036916-American-Literature-Literary-Period-Overview.ppt
PDF
Unit 1 Cost Accounting - Cost sheet
PPT
Chapter four Project-Preparation material
PDF
Types of control:Qualitative vs Quantitative
PDF
SIMNET Inc – 2023’s Most Trusted IT Services & Solution Provider
PDF
Power and position in leadershipDOC-20250808-WA0011..pdf
PDF
Reconciliation AND MEMORANDUM RECONCILATION
PDF
Traveri Digital Marketing Seminar 2025 by Corey and Jessica Perlman
PPTX
The Marketing Journey - Tracey Phillips - Marketing Matters 7-2025.pptx
PPT
Data mining for business intelligence ch04 sharda
PDF
How to Get Funding for Your Trucking Business
PPTX
Dragon_Fruit_Cultivation_in Nepal ppt.pptx
Business Ethics - An introduction and its overview.pptx
Roadmap Map-digital Banking feature MB,IB,AB
unit 2 cost accounting- Tender and Quotation & Reconciliation Statement
Belch_12e_PPT_Ch18_Accessible_university.pptx
COST SHEET- Tender and Quotation unit 2.pdf
MSPs in 10 Words - Created by US MSP Network
CkgxkgxydkydyldylydlydyldlyddolydyoyyU2.pptx
Probability Distribution, binomial distribution, poisson distribution
340036916-American-Literature-Literary-Period-Overview.ppt
Unit 1 Cost Accounting - Cost sheet
Chapter four Project-Preparation material
Types of control:Qualitative vs Quantitative
SIMNET Inc – 2023’s Most Trusted IT Services & Solution Provider
Power and position in leadershipDOC-20250808-WA0011..pdf
Reconciliation AND MEMORANDUM RECONCILATION
Traveri Digital Marketing Seminar 2025 by Corey and Jessica Perlman
The Marketing Journey - Tracey Phillips - Marketing Matters 7-2025.pptx
Data mining for business intelligence ch04 sharda
How to Get Funding for Your Trucking Business
Dragon_Fruit_Cultivation_in Nepal ppt.pptx

Dov Nimratz, Roman Chobik "Embedded artificial intelligence"

  • 2. Confidential 2 Embedded Artificial Intelligence Dov Nimratz & Roman Chobik Solution Architect March 2019
  • 3. Confidential 3 ● 30+ years in R&D ● 17 years in Israel HighTech ● ECI, Telrad, RAD, Audiocodes companies ● HW, SW, Mechanical design engineer ● Project & Product Manager ● Business developer for EMEA & CIS countries ● Solution Architect ● 22 publications, US patent ● Counseling & SW development teaching About us ● Over 7 years of IT experience ● Embedded Linux programming ● IoT related project. ● C, Python, BLE, Mesh networking, IoT, Embedded, Linux, ZeroMQ, nRF51, STM8, UART, SPI ● National Technical University of Ukraine Kiev Polytechnic Institute ● MS in Electronics Engineering
  • 4. Confidential 4 1. AI algorithms overview 2. Application examples and request for embedded installation 3. Intel Neural Compute Stick overview 4. NCS demonstration for Classification & Detection problems 5. Hardware for Embedded AI Agenda
  • 7. Confidential 7 (assume given set of discrete labels) {dog, cat, truck, plane, ...} Image classification - Core stack in ML vision Cat
  • 11. Confidential 11 ● Dalal, Navneet, and Bill Triggs. "Histograms of oriented gradients for human detection." Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. Vol. 1. IEEE, 2005. [PDF] ● Felzenszwalb, Pedro, David McAllester, and Deva Ramanan. "A discriminatively trained, multiscale, deformable part model." Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE, 2008 [PDF] ● Everingham, Mark, et al. "The pascal visual object classes (VOC) challenge." International Journal of Computer Vision 88.2 (2010): 303-338. [PDF] ● Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009. [PDF] ● Russakovsky, Olga, et al. "Imagenet Large Scale Visual Recognition Challenge." arXiv:1409.0575. [PDF] ● Lin, Yuanqing, et al. "Large-scale image classification: fast feature extraction and SVM training." ● Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011. [PDF] ● Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep ● convolutional neural networks." Advances in neural information processing systems. 2012. [PDF] ● Szegedy, Christian, et al. "Going deeper with convolutions." arXiv preprint arXiv:1409.4842 (2014). ● [PDF] ● Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014). [PDF] ● He, Kaiming, et al. "Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition." arXiv preprint arXiv:1406.4729 (2014). [PDF] ● LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324. [PDF] ● Fei-Fei, Li, et al. "What do we perceive in a glance of a real-world scene?." Journal of vision 7.1 (2007): 10. [PDF] Reference
  • 13. Confidential 13 • Secure access control • Actuators driving for different animal types • Counting animals Security camera in yard
  • 14. Confidential 14 • Sorting garbage or waste • Integrity control • Completeness check Industry or retail sorting
  • 15. Confidential 15 • Intrusion detection • Barrier integrity control • Early warning alarm Restricted area secure
  • 16. Confidential 16 • Secure for employees • Much chipper • Detect and measure better than human Construction inspection
  • 17. Confidential 17 • Power consumption • Dimensions and weight • Real time operation • No network connections For such application we have challenges • Optimized model • Special hardware
  • 18. Confidential 18 Limit the number of input channels by adding an extra 1x1 convolution before the 3x3 and 5x5 convolutions Factorize 5x5 convolution to two 3x3 convolution operations to improve computational speed Inception model - next level of engineering optimization
  • 19. Confidential 19 1. Replace 3x3 filters with 1x1 filters - Fire layer 2. Decrease the number of input channels to 3x3 filters 3. Pooling layer in place of FC layer in the end. SqueezeNet - 510× smaller than AlexNet Major principle - use CNN only where high input exist
  • 21. Confidential 21 Ultra-Low Power with over 1 TOPS Deep neural network processing unit VPU architecture which minimizes power by reducing data movement on-chip Imaging and vision hardware accelerators based on VLIW vector processors 16 Programmable 128-bit VLIW Vector Processors 16 Configurable MIPI Lanes On-chip memory architecture allows for up to 400 GB/sec of internal bandwidth Movidius VPU - Vision Processing Unit
  • 25. Confidential 25 The Inference Engine deployment process assumes you used the Model Optimizer to convert your trained model to an Intermediate Representation. Deployment Workflow
  • 26. Confidential 26 79 different topology models https://github.com/opencv/open_model_zoo/tre e/2018/model_downloader Default configuration file is around 4.3 GB List of Available topologies densenet-121 densenet-161 densenet-169 densenet-201 squeezenet1.0 squeezenet1.1 mtcnn-p mtcnn-r mtcnn-o mobilenet-ssd vgg19 vgg16 ssd512 ssd300 inception-resnet-v2 dilation googlenet-v1 googlenet-v2 googlenet-v4 alexnet ssd_mobilenet_v2_ coco resnet-50 resnet-101 resnet-152 googlenet-v3 age-gender- recognitionemotions- recognition face-detection-adas face-detection-retail face-reidentification facial-landmarks human-pose- estimationlandmarks- regression license-plate-recognition- barrier pedestrian-and-vehicle- detector-adas-0001 pedestrian-and-vehicle- detector-adas-0001-fp16 pedestrian-detection-adas- 0002 pedestrian-and- vehicle-detector- adas-0001-fp16 pedestrian-detection- adas-0002 pedestrian-detection- adas-0002-fp16 person-attributes- recognition- crossroad-0031 person-attributes- recognition- crossroad-0031-fp16 person-detection- action-recognition- 0003 person-detection- action-recognition- 0003-fp16 person-detection- retail-0001
  • 27. Confidential 27 A summary of the steps for optimizing and deploying a trained model: • Configure the Model Optimizer for your framework. - Caffe models - TensorFlow models - MXNet models - ONNX models - Kaldi models • Convert a trained model to produce an optimized Intermediate Representation (IR) - Produce a valid Intermediate Representation. (.xml and .bin) - Produce an optimized Intermediate Representation. Dropout some layers • Test the model in the Intermediate Representation format using the Inference Engine • Integrate the Inference Engine into your application to deploy the model in the target environment. Module Optimizer
  • 28. Confidential 28 Caffe*: ● AlexNet ● CaffeNet ● GoogleNet (Inception) v1, v2, v4 ● VGG family (VGG16, VGG19) ● SqueezeNet v1.0, v1.1 ● ResNet v1 family (18** ***, 50, 101, 152) ● MobileNet ● Inception ResNet v2 ● DenseNet family** (121,161,169,201) ● SSD-300, SSD-512, SSD-MobileNet, SSD-GoogleNet, SSD-SqueezeNet Supported networks: MXNet*: ● AlexNet and CaffeNet ● DenseNet family** (121,161,169,201) ● SqueezeNet v1.1 ● MobileNet v1, v2 ● NiN ● ResNet v1 (101, 152) ● SqueezeNet v1.1 ● VGG family (VGG16, VGG19) ● SSD-Inception-v3, SSD-MobileNet, SSD- ResNet-50, SSD-300 TensorFlow*: ● AlexNet ● Inception v1, v2, v3, v4 ● Inception ResNet v2 ● MobileNet v1, v2 ● ResNet v1 family (50, 101, 152) ● SqueezeNet v1.0, v1.1 ● VGG family (VGG16, VGG19)
  • 34. Confidential 36 Next Step Road Map project - Object classificator: Integrate few Sticks Robot comes to the toy and plays relevant sound: ● Cat ● Dog ● Car, etc +
  • 35. Confidential 37 Embedded Word - March 2019 Nuremberg Google come to the arena - Coral USB Accelerator A USB accessory featuring the Edge TPU that brings ML inferencing to existing systems. ● Supported OS: Debian Linux ● Compatible with Raspberry Pi boards ● Supported Framework: TensorFlow Lite
  • 37. Confidential 39 • GCP AI based on Coral • Only TensorFlow light framework Coral project • Three type of pre-trained models: - Image classification • MobileNet V1/V2 • Inception V1/V2/V3/V4 - Object detection • MobileNet v1/v2 - Embedded extractor (Classification) • MobileNet v1 • Possibility to retrain only lat layer or full network • Two frequency modes
  • 38. Confidential 40 Real time object detection with Coral Dev Board Edge TPU Performance Demo The video demonstrates the real time processing power of the Edge TPU by running a MovileNer SSD model that can identify and classify multiple objects. The footage of the cars is a recording, but the MobileNet model is executing in realtime on CoralDev Board to detect each car included with a box (limited to 20 detected cars).
  • 39. Confidential 41 With: Desktop CPU: 64-bit Intel(R) Xeon(R) E5–1650 v4 @ 3.60GHz Embedded CPU: Quad-core Cortex-A53 @ 1.5GHz Dev Board: Quad-core Cortex-A53 @ 1.5GHz + Edge TPU Google performance test
  • 40. Confidential 42 Intel: - Async & Sync calls - May integrated many sticks in HUB - OpenVino library ML framework independent solution - Required OpenVino installation - User friendly SDK - No difference found USB 2/3 for image classification Compare Intel - Google USB Accelerators Google: - 3 time less power consumption in Standby mode - 4 time better performance with USB 3 - Only TensorFlow light framework - Quick training mode with pretrained model - Two operation clock modes - Nothing to be installed
  • 41. Confidential 43 Image detection video power consumption: Intel Neural Network Stick 350 mA (1,75 Watt) with 140 ms detection time Google Coral Stick 60 ma (300 mWatt) with 17 ms detection time Power consumption and performance comparison
  • 42. Confidential 44 • Inference at the edge • Offline Inference • Minimal latency - Real Real- Time • Privacy and security What it does mean

Editor's Notes

  • #22: https://newsroom.intel.com/wp-content/uploads/sites/11/2017/08/movidius-myriad-xvpu-product-brief.pdf
  • #42: All tested models were trained using the ImageNet dataset with 1,000 classes and an input size of 224x224, except for Inception v4 which has an input size of 299x299.