SlideShare a Scribd company logo
Beyond TensorBoard
AutoML을 위한 interactive visual analytics 서비스 개발 경험 공유
Clova AI
박 흥 석
1
Contents
Introduction
Introduction to Visual Analytics & AutoML
Problem in Context
Design Goals
HyperTendril: Visual Analytics for AutoML
Discussion & Conclusion
2
Visual Analytics?
Introduction
What is visual analytics?
3
Visual Analytics?
Introduction
4
Data Visualization
Interpretation
Human
Typical (interactive) visualization
- focuses on visualizing given data as it is.
- but, big data cannot be typically visualized due to the limited screen space and human perception
(for large number of data items and features with lots of noise, …).
Interaction
Visual Analytics?
Introduction
5
Data
Model
Visualization
Human
Computer
interpretation
feedback
Visual Analytics
- focuses on real-world data analysis tasks.
- machine learning/data supportingmining techniques are employed to extract meaningful information from data.
- “Computers are incredibly fast, accurate, and stupid, Human beings are incredibly slow, inaccurate, and brilliant.
Together they are powerful beyond imagination”, Albert Einstein.
Visual Analytics for Deep Learning
Introduction
Visual analytics for deep learning?
6
Visual Analytics for Deep Learning
Introduction
Many visual analytics for Deep learning
7
https://medium.com/multiple-views-visualization-research-explained/visualization-in-deep-learning-b29f0ec4f136
Visual Analytics in DL: for interpretability, diagnosis, refinement of models
Introduction
8
GAN LabTensorBoard CNNVis
RNNVis LSTMVis ActiVis
데이터
전처리
Feature
엔지니어링
모델 아키텍처
선택
모델 파라미터
선택
모델 평가 서비스 배포
Properly handling:
§ Imbalanced data
§ Outliers
§ Missing values
§ High cardinality
features
§ Highly correlated
features
§ Target leakage
§ Inconsistent feature
definition
§ Data that doesn’t fit
local memory
Selecting right
preprocessing for:
§ Numbers
§ Classes
§ Dates
§ Lists
§ Nested fields
Multiple options per
column, 100s of
columns in table
Selecting the best
model architecture
from dozens
available
§ Linear
§ Feed forward
§ Decision tree
§ Residual nets
Keeping up with the
onslaught of newest
state of the art
For each
architecture,
selecting the right
values for each
hyperparameter
§ Learning rate
§ Regularization
§ Layers
§ Hidden nodes
§ Activation fxn
Potentially more than
a dozen values to set
Evaluating model at
§ Dataset-level
§ Feature-level
§ Prediction-level
Ensuring behavior is
fully understood before
deployment
Formalized workflow of deep learning model development
Introduction
Deploying service
9
Problems in developing deep learning model
Introduction
데이터
전처리
Feature
엔지니어링
모델 아키텍처
선택
모델 파라미터
선택
모델 평가 서비스 배포
10
Tedious episodes of trial and error!
Problems in developing deep learning model => AutoML as a solution
Introduction
Black-box optimization
Number of hyperparameter combination is infinite!
A number of computation, time, and human resources are needed :(
11
데이터
전처리
Feature
엔지니어링
모델 아키텍처
선택
모델 파라미터
선택
모델 평가 서비스 배포
Þ AutoML: Automatic & Systematic approach
Problems in developing deep learning model => AutoML as a solution
Introduction
12
NSML AutoML
Black-box optimization
데이터
전처리
Feature
엔지니어링
모델 아키텍처
선택
모델 파라미터
선택
모델 평가 서비스 배포
Visual Analytics for AutoML
Problem in context
어쨌건 visual analytics를 이용해서 모델 분석도 하고,
해석도 어느 정도 가능한 것 같긴한데..
AutoML은 보통 수백, 수천 개의 모델을 만드는데
이를 어떻게 표현하고, 분석할 수 있지?
13
Visual Analytics for AutoML
Problem in context
No visual analytics system for AutoML
14
Challenges
- Too many models to be shown (n > 100, 1000, 10000, ...)
- High dimensionality and complexity of hyperparameter space
15
DL models Batch_size Learning_rate Num_epoch Layer_depth Activation
_function
… Test/acc.
Model 0 100 0.001 74 3 relu … 0.9231
Model 1 100 0.001231 68 6 sigmoid … 0.8951
Model 2 1000 0.00125 48 9 tanh … 0.5789
Model 3 500 0.00534 24 128 relu … 0.9483
Model 4 500 0.01541 24 128 sigmoid … 0.832
Model 5 500 0.05929 24 32 Tanh … 0.748
… … … … … … … …
Example results of hyperparameter optimization
Problem in context
Hyperparameter configuration space
- 수만 개의 모델을 만들어도 최적의 모델이라는 보장은 없음 (infinite search space)
- 매번 수만, 수십만 개의 모델을 만들 수 없음
=> 모든 space를 탐색할 시간이 한정적이고, GPU도 한정적
=> 몇백 개의 탐색 결과를 보고, 결과를 기반으로 또 다시 몇백 개의 탐색을 반복
- AutoML algorithm에 대한 configuration도 정답이 없음
=> 실행 결과를 보고 진단하고 바로 잡는 등의 과정
Þ 최적화는 한 번의 trial로 끝나지 않음 (Open-ended task)
More Challenges
Problem in context
16
Design Goals
- Show an overview of results with effective visual interfaces
- Enable switching to detail analysis view from the overview
by coordinated visual components
- Steer the open-ended tuning task with human-in-the-loop
approach
Hyperparameter optimization process
through visual analytics
17
Design Goals
- How to effectively visualize the result of hyper-
parameter optimization?
- How can visual analytics support the open-ended
hyperparameter optimization task?
Design Challenges Design Goals
Interaction flow design
- Overview 보여주고, 여러 관점에서의 분석 환경을 제공해서 결과 분석 할 수 있는 환경 제공
- 결과 분석으로 얻은 insight를 바탕으로 모델의 refinement도 도와주는 환경 제공
18
Design Goals
A
Visual exploration of
overall optimization results
Switch overview
to details
B
Hyperparameter-level
Model-level
Method-level
analysis
Action
C
User-driven
model refinement
- Parallel coordinates plot
- effective visualization for high
dimensional data
- Hyperparameter-level:
- to find effective hyperparameter
- to find effective range of hyperparameter
- Model-level:
- to validate model generalizability
- to analyze the value of loss function by time/iteration
- Method-level:
- to validate/diagnose the algorithm configurations
- to compare the performance of algorithm
- Support interactive tuning process
- easy to access autoML system
with the gained insights
D3.js
HyperTendril
19
- Domain specific language for data vis.
- More flexible to make own visual
component than higher-level libraries
- A number of examples, documents, tutorials
https://d3js.org/
HyperTendril: Visual Analytics for User-Driven hyperparameter Tuning of Deep Neural Networks
HyperTendril
20
Interaction flow of HyperTendril Visual Analytics
HyperTendril
22
A
Visual exploration of
overall optimization results
Switch overview
to details
B
Hyperparameter-level
Model-level
Method-level
analysis
Action
C
User-driven
model refinement
- To understand usage behaviors of visual analytics
- Log collection w/ Google analytics
- User feedback w/ UX interview
- Findings: the usage behaviors and
volume of interactions are various by
their tasks and purposes.
User study
HyperTendril
Click-stream analysis with
representative users and their sessions
23
Interaction patterns are
quite different!
- Behaviors of each user are various, but can be categorized
- Fine-tuner
- Service-oriented tuner
- Research-oriented tuner
Þ Should consider an extendable
design of visual analytics to satisfy
various types of users.
Lessons learned
Discussion & Conclusion
24
Knowledge generation loop w/ HyperTendril
Complexity & volume
of interactions
Conclusion & Future work
- Interactive hyperparameter optimization in real-time
- Visual analytics for multi-metric based model comparison
- including latency, classification performance (e.q., confusion matrix), and etc.
- Visual analytics for Neural Architecture Search (NAS)
- for automating the design of artificial neural network.
25
Discussion & Conclusion
- Defining problem to solve (which task can be supported by visual analytics) is important.
- Extendable design should be considered in developing visual analytics.
Future work
Conclusion
Thank you :)
26
Issues in development
HyperTendril
- Performance Issues
- Browser down in drawling line chart with numerous data points => reservoir sampling
27
References
HyperTendril
- Knowledge Generation Models for Visual Analytics [1]
- Visual Analytics in Deep Learning [2]
- Tensorboard graph visualizer [3]
- CNNVis [4]
- GanLab [5]
- RNNVis [6]
- LSTMVis [7]
- ActiVis [8]
- D3.js [9]
- Reservoir sampling [10]
28
[1] Sacha, Dominik, et al. "Knowledge generation model for visual analytics." IEEE transactions on visualization and computer graphics 20.12 (2014): 1604-1613.
[2] Hohman, Fred Matthew, et al. "Visual analytics in deep learning: An interrogative survey for the next frontiers."
IEEE transactions on visualization and computer graphics (2018).
[3] Girija, Sanjay Surendranath. "Tensorflow: Large-scale machine learning on heterogeneous distributed systems." Software available from tensorflow. org (2016).
[4] Liu, Mengchen, et al. "Towards better analysis of deep convolutional neural networks." IEEE transactions on visualization and computer graphics 23.1 (2017): 91-100.
[5] Kahng, Minsuk, et al. "GAN Lab: Understanding Complex Deep Generative Models using Interactive Visual Experimentation.”
IEEE transactions on visualization and computer graphics 25.1 (2019): 310-320.
[6] Karpathy, Andrej, Justin Johnson, and Li Fei-Fei. "Visualizing and understanding recurrent networks." arXiv preprint arXiv:1506.02078 (2015).
[7] Strobelt, Hendrik, et al. "Lstmvis: A tool for visual analysis of hidden state dynamics in recurrent neural networks."
IEEE transactions on visualization and computer graphics 24.1 (2018): 667-676.
[8] Kahng, Minsuk, et al. "Activis: Visual exploration of industry-scale deep neural network models."
IEEE transactions on visualization and computer graphics 24.1 (2018): 88-97.
[9] D3.js https://d3js.org/
[10] J. S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software (TOMS), 11(1):37–57, 1985.

More Related Content

PDF
Machine Learning Use Cases with Azure
PPTX
Deep learning at nmc devin jones
PDF
Metta Innovations - Introdução ao Deep Learning aplicado a vídeo analytics
PDF
Computational decision making
PDF
How Artificial Intelligence & Machine Learning Are Transforming Modern Market...
PDF
How Artificial Intelligence & Machine Learning Are Transforming Modern Marketing
PDF
[AI07] Revolutionizing Image Processing with Cognitive Toolkit
PDF
Applying your Convolutional Neural Networks
Machine Learning Use Cases with Azure
Deep learning at nmc devin jones
Metta Innovations - Introdução ao Deep Learning aplicado a vídeo analytics
Computational decision making
How Artificial Intelligence & Machine Learning Are Transforming Modern Market...
How Artificial Intelligence & Machine Learning Are Transforming Modern Marketing
[AI07] Revolutionizing Image Processing with Cognitive Toolkit
Applying your Convolutional Neural Networks

What's hot (19)

PDF
Factorization Meets the Item Embedding: Regularizing Matrix Factorization wit...
PPTX
Introduction to Auto ML
PDF
[html5jロボット部 第7回勉強会] Microsoft Cognitive Toolkit (CNTK) Overview
PPTX
Deep learning on mobile
PPTX
Ai use cases
PPTX
Deep learning on mobile - 2019 Practitioner's Guide
PDF
Jun 2017 HUG: Large-Scale Machine Learning: Use Cases and Technologies
PDF
AI and Machine Learning for .net developers
PDF
Recent Trends in Deep Learning
PDF
QCon Rio - Machine Learning for Everyone
PDF
Deep Learning: Application Landscape - March 2018
PDF
Zühlke Meetup - Mai 2017
PDF
Human uncertainty makes classification more robust, ICCV 2019 Review
PDF
Deep Learning with CNTK
PPTX
Jay Yagnik at AI Frontiers : A History Lesson on AI
PPTX
Diving into Deep Learning (Silicon Valley Code Camp 2017)
PDF
Deep Learning Primer: A First-Principles Approach
PPTX
Deep Learning with Python (PyData Seattle 2015)
PDF
On-device machine learning: TensorFlow on Android
Factorization Meets the Item Embedding: Regularizing Matrix Factorization wit...
Introduction to Auto ML
[html5jロボット部 第7回勉強会] Microsoft Cognitive Toolkit (CNTK) Overview
Deep learning on mobile
Ai use cases
Deep learning on mobile - 2019 Practitioner's Guide
Jun 2017 HUG: Large-Scale Machine Learning: Use Cases and Technologies
AI and Machine Learning for .net developers
Recent Trends in Deep Learning
QCon Rio - Machine Learning for Everyone
Deep Learning: Application Landscape - March 2018
Zühlke Meetup - Mai 2017
Human uncertainty makes classification more robust, ICCV 2019 Review
Deep Learning with CNTK
Jay Yagnik at AI Frontiers : A History Lesson on AI
Diving into Deep Learning (Silicon Valley Code Camp 2017)
Deep Learning Primer: A First-Principles Approach
Deep Learning with Python (PyData Seattle 2015)
On-device machine learning: TensorFlow on Android
Ad

Similar to Beyond TensorBoard: AutoML을 위한 interactive visual analytics 서비스 개발 경험 공유 (20)

PDF
Visualizing Model Selection with Scikit-Yellowbrick: An Introduction to Devel...
PDF
C19013010 the tutorial to build shared ai services session 1
PPTX
Serverless machine learning architectures at Helixa
PDF
M.Sc. Thesis Topics and Proposals @ Polimi Data Science Lab - 2024 - prof. Br...
PDF
Considerations for Abstracting Complexities of a Real-Time ML Platform, Zhenz...
PDF
Requirements-Collector: Automating Requirements Specification from Elicitatio...
PDF
TechEvent 2019: Artificial Intelligence in Dev & Ops; Martin Luckow - Trivadis
PPTX
CNCF-Istanbul-MLOps for Devops Engineers.pptx
PDF
MongoDB World 2018: Building Intelligent Apps with MongoDB & Google Cloud
PDF
Using Algorithmia to leverage AI and Machine Learning APIs
PPTX
ODSC APAC 2022 - Explainable AI
PDF
DevOps for DataScience
PDF
Introduction to ML.NET
PDF
From Model-based to Model and Simulation-based Systems Architectures
PPTX
Agile architecture upload
PPTX
Machine Learning AND Deep Learning for OpenPOWER
PPTX
Webinar GLUGNet - Machine Learning.Net and Windows Machine Learning
PDF
What are the Unique Challenges and Opportunities in Systems for ML?
PPTX
2018 12 18 Tech Valley UserGroup Machine Learning.Net
PDF
Un puente enre MLops y Devops con Openshift AI
Visualizing Model Selection with Scikit-Yellowbrick: An Introduction to Devel...
C19013010 the tutorial to build shared ai services session 1
Serverless machine learning architectures at Helixa
M.Sc. Thesis Topics and Proposals @ Polimi Data Science Lab - 2024 - prof. Br...
Considerations for Abstracting Complexities of a Real-Time ML Platform, Zhenz...
Requirements-Collector: Automating Requirements Specification from Elicitatio...
TechEvent 2019: Artificial Intelligence in Dev & Ops; Martin Luckow - Trivadis
CNCF-Istanbul-MLOps for Devops Engineers.pptx
MongoDB World 2018: Building Intelligent Apps with MongoDB & Google Cloud
Using Algorithmia to leverage AI and Machine Learning APIs
ODSC APAC 2022 - Explainable AI
DevOps for DataScience
Introduction to ML.NET
From Model-based to Model and Simulation-based Systems Architectures
Agile architecture upload
Machine Learning AND Deep Learning for OpenPOWER
Webinar GLUGNet - Machine Learning.Net and Windows Machine Learning
What are the Unique Challenges and Opportunities in Systems for ML?
2018 12 18 Tech Valley UserGroup Machine Learning.Net
Un puente enre MLops y Devops con Openshift AI
Ad

More from NAVER Engineering (20)

PDF
React vac pattern
PDF
디자인 시스템에 직방 ZUIX
PDF
진화하는 디자인 시스템(걸음마 편)
PDF
서비스 운영을 위한 디자인시스템 프로젝트
PDF
BPL(Banksalad Product Language) 무야호
PDF
이번 생에 디자인 시스템은 처음이라
PDF
날고 있는 여러 비행기 넘나 들며 정비하기
PDF
쏘카프레임 구축 배경과 과정
PDF
플랫폼 디자이너 없이 디자인 시스템을 구축하는 프로덕트 디자이너의 우당탕탕 고통 연대기
PDF
200820 NAVER TECH CONCERT 15_Code Review is Horse(코드리뷰는 말이야)(feat.Latte)
PDF
200819 NAVER TECH CONCERT 03_화려한 코루틴이 내 앱을 감싸네! 코루틴으로 작성해보는 깔끔한 비동기 코드
PDF
200819 NAVER TECH CONCERT 10_맥북에서도 아이맥프로에서 빌드하는 것처럼 빌드 속도 빠르게 하기
PDF
200819 NAVER TECH CONCERT 08_성능을 고민하는 슬기로운 개발자 생활
PDF
200819 NAVER TECH CONCERT 05_모르면 손해보는 Android 디버깅/분석 꿀팁 대방출
PDF
200819 NAVER TECH CONCERT 09_Case.xcodeproj - 좋은 동료로 거듭나기 위한 노하우
PDF
200820 NAVER TECH CONCERT 14_야 너두 할 수 있어. 비전공자, COBOL 개발자를 거쳐 네이버에서 FE 개발하게 된...
PDF
200820 NAVER TECH CONCERT 13_네이버에서 오픈 소스 개발을 통해 성장하는 방법
PDF
200820 NAVER TECH CONCERT 12_상반기 네이버 인턴을 돌아보며
PDF
200820 NAVER TECH CONCERT 11_빠르게 성장하는 슈퍼루키로 거듭나기
PDF
200819 NAVER TECH CONCERT 07_신입 iOS 개발자 개발업무 적응기
React vac pattern
디자인 시스템에 직방 ZUIX
진화하는 디자인 시스템(걸음마 편)
서비스 운영을 위한 디자인시스템 프로젝트
BPL(Banksalad Product Language) 무야호
이번 생에 디자인 시스템은 처음이라
날고 있는 여러 비행기 넘나 들며 정비하기
쏘카프레임 구축 배경과 과정
플랫폼 디자이너 없이 디자인 시스템을 구축하는 프로덕트 디자이너의 우당탕탕 고통 연대기
200820 NAVER TECH CONCERT 15_Code Review is Horse(코드리뷰는 말이야)(feat.Latte)
200819 NAVER TECH CONCERT 03_화려한 코루틴이 내 앱을 감싸네! 코루틴으로 작성해보는 깔끔한 비동기 코드
200819 NAVER TECH CONCERT 10_맥북에서도 아이맥프로에서 빌드하는 것처럼 빌드 속도 빠르게 하기
200819 NAVER TECH CONCERT 08_성능을 고민하는 슬기로운 개발자 생활
200819 NAVER TECH CONCERT 05_모르면 손해보는 Android 디버깅/분석 꿀팁 대방출
200819 NAVER TECH CONCERT 09_Case.xcodeproj - 좋은 동료로 거듭나기 위한 노하우
200820 NAVER TECH CONCERT 14_야 너두 할 수 있어. 비전공자, COBOL 개발자를 거쳐 네이버에서 FE 개발하게 된...
200820 NAVER TECH CONCERT 13_네이버에서 오픈 소스 개발을 통해 성장하는 방법
200820 NAVER TECH CONCERT 12_상반기 네이버 인턴을 돌아보며
200820 NAVER TECH CONCERT 11_빠르게 성장하는 슈퍼루키로 거듭나기
200819 NAVER TECH CONCERT 07_신입 iOS 개발자 개발업무 적응기

Recently uploaded (20)

PPT
Teaching material agriculture food technology
PDF
Electronic commerce courselecture one. Pdf
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
Modernizing your data center with Dell and AMD
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PPTX
MYSQL Presentation for SQL database connectivity
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PDF
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
PDF
KodekX | Application Modernization Development
PDF
Approach and Philosophy of On baking technology
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Teaching material agriculture food technology
Electronic commerce courselecture one. Pdf
Review of recent advances in non-invasive hemoglobin estimation
Chapter 3 Spatial Domain Image Processing.pdf
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Modernizing your data center with Dell and AMD
Unlocking AI with Model Context Protocol (MCP)
Agricultural_Statistics_at_a_Glance_2022_0.pdf
MYSQL Presentation for SQL database connectivity
20250228 LYD VKU AI Blended-Learning.pptx
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Mobile App Security Testing_ A Comprehensive Guide.pdf
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
KodekX | Application Modernization Development
Approach and Philosophy of On baking technology
The Rise and Fall of 3GPP – Time for a Sabbatical?
Spectral efficient network and resource selection model in 5G networks
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf

Beyond TensorBoard: AutoML을 위한 interactive visual analytics 서비스 개발 경험 공유

  • 1. Beyond TensorBoard AutoML을 위한 interactive visual analytics 서비스 개발 경험 공유 Clova AI 박 흥 석 1
  • 2. Contents Introduction Introduction to Visual Analytics & AutoML Problem in Context Design Goals HyperTendril: Visual Analytics for AutoML Discussion & Conclusion 2
  • 4. Visual Analytics? Introduction 4 Data Visualization Interpretation Human Typical (interactive) visualization - focuses on visualizing given data as it is. - but, big data cannot be typically visualized due to the limited screen space and human perception (for large number of data items and features with lots of noise, …). Interaction
  • 5. Visual Analytics? Introduction 5 Data Model Visualization Human Computer interpretation feedback Visual Analytics - focuses on real-world data analysis tasks. - machine learning/data supportingmining techniques are employed to extract meaningful information from data. - “Computers are incredibly fast, accurate, and stupid, Human beings are incredibly slow, inaccurate, and brilliant. Together they are powerful beyond imagination”, Albert Einstein.
  • 6. Visual Analytics for Deep Learning Introduction Visual analytics for deep learning? 6
  • 7. Visual Analytics for Deep Learning Introduction Many visual analytics for Deep learning 7 https://medium.com/multiple-views-visualization-research-explained/visualization-in-deep-learning-b29f0ec4f136
  • 8. Visual Analytics in DL: for interpretability, diagnosis, refinement of models Introduction 8 GAN LabTensorBoard CNNVis RNNVis LSTMVis ActiVis
  • 9. 데이터 전처리 Feature 엔지니어링 모델 아키텍처 선택 모델 파라미터 선택 모델 평가 서비스 배포 Properly handling: § Imbalanced data § Outliers § Missing values § High cardinality features § Highly correlated features § Target leakage § Inconsistent feature definition § Data that doesn’t fit local memory Selecting right preprocessing for: § Numbers § Classes § Dates § Lists § Nested fields Multiple options per column, 100s of columns in table Selecting the best model architecture from dozens available § Linear § Feed forward § Decision tree § Residual nets Keeping up with the onslaught of newest state of the art For each architecture, selecting the right values for each hyperparameter § Learning rate § Regularization § Layers § Hidden nodes § Activation fxn Potentially more than a dozen values to set Evaluating model at § Dataset-level § Feature-level § Prediction-level Ensuring behavior is fully understood before deployment Formalized workflow of deep learning model development Introduction Deploying service 9
  • 10. Problems in developing deep learning model Introduction 데이터 전처리 Feature 엔지니어링 모델 아키텍처 선택 모델 파라미터 선택 모델 평가 서비스 배포 10 Tedious episodes of trial and error!
  • 11. Problems in developing deep learning model => AutoML as a solution Introduction Black-box optimization Number of hyperparameter combination is infinite! A number of computation, time, and human resources are needed :( 11 데이터 전처리 Feature 엔지니어링 모델 아키텍처 선택 모델 파라미터 선택 모델 평가 서비스 배포 Þ AutoML: Automatic & Systematic approach
  • 12. Problems in developing deep learning model => AutoML as a solution Introduction 12 NSML AutoML Black-box optimization 데이터 전처리 Feature 엔지니어링 모델 아키텍처 선택 모델 파라미터 선택 모델 평가 서비스 배포
  • 13. Visual Analytics for AutoML Problem in context 어쨌건 visual analytics를 이용해서 모델 분석도 하고, 해석도 어느 정도 가능한 것 같긴한데.. AutoML은 보통 수백, 수천 개의 모델을 만드는데 이를 어떻게 표현하고, 분석할 수 있지? 13
  • 14. Visual Analytics for AutoML Problem in context No visual analytics system for AutoML 14
  • 15. Challenges - Too many models to be shown (n > 100, 1000, 10000, ...) - High dimensionality and complexity of hyperparameter space 15 DL models Batch_size Learning_rate Num_epoch Layer_depth Activation _function … Test/acc. Model 0 100 0.001 74 3 relu … 0.9231 Model 1 100 0.001231 68 6 sigmoid … 0.8951 Model 2 1000 0.00125 48 9 tanh … 0.5789 Model 3 500 0.00534 24 128 relu … 0.9483 Model 4 500 0.01541 24 128 sigmoid … 0.832 Model 5 500 0.05929 24 32 Tanh … 0.748 … … … … … … … … Example results of hyperparameter optimization Problem in context Hyperparameter configuration space
  • 16. - 수만 개의 모델을 만들어도 최적의 모델이라는 보장은 없음 (infinite search space) - 매번 수만, 수십만 개의 모델을 만들 수 없음 => 모든 space를 탐색할 시간이 한정적이고, GPU도 한정적 => 몇백 개의 탐색 결과를 보고, 결과를 기반으로 또 다시 몇백 개의 탐색을 반복 - AutoML algorithm에 대한 configuration도 정답이 없음 => 실행 결과를 보고 진단하고 바로 잡는 등의 과정 Þ 최적화는 한 번의 trial로 끝나지 않음 (Open-ended task) More Challenges Problem in context 16
  • 17. Design Goals - Show an overview of results with effective visual interfaces - Enable switching to detail analysis view from the overview by coordinated visual components - Steer the open-ended tuning task with human-in-the-loop approach Hyperparameter optimization process through visual analytics 17 Design Goals - How to effectively visualize the result of hyper- parameter optimization? - How can visual analytics support the open-ended hyperparameter optimization task? Design Challenges Design Goals
  • 18. Interaction flow design - Overview 보여주고, 여러 관점에서의 분석 환경을 제공해서 결과 분석 할 수 있는 환경 제공 - 결과 분석으로 얻은 insight를 바탕으로 모델의 refinement도 도와주는 환경 제공 18 Design Goals A Visual exploration of overall optimization results Switch overview to details B Hyperparameter-level Model-level Method-level analysis Action C User-driven model refinement - Parallel coordinates plot - effective visualization for high dimensional data - Hyperparameter-level: - to find effective hyperparameter - to find effective range of hyperparameter - Model-level: - to validate model generalizability - to analyze the value of loss function by time/iteration - Method-level: - to validate/diagnose the algorithm configurations - to compare the performance of algorithm - Support interactive tuning process - easy to access autoML system with the gained insights
  • 19. D3.js HyperTendril 19 - Domain specific language for data vis. - More flexible to make own visual component than higher-level libraries - A number of examples, documents, tutorials https://d3js.org/
  • 20. HyperTendril: Visual Analytics for User-Driven hyperparameter Tuning of Deep Neural Networks HyperTendril 20
  • 21. Interaction flow of HyperTendril Visual Analytics HyperTendril 22 A Visual exploration of overall optimization results Switch overview to details B Hyperparameter-level Model-level Method-level analysis Action C User-driven model refinement
  • 22. - To understand usage behaviors of visual analytics - Log collection w/ Google analytics - User feedback w/ UX interview - Findings: the usage behaviors and volume of interactions are various by their tasks and purposes. User study HyperTendril Click-stream analysis with representative users and their sessions 23 Interaction patterns are quite different!
  • 23. - Behaviors of each user are various, but can be categorized - Fine-tuner - Service-oriented tuner - Research-oriented tuner Þ Should consider an extendable design of visual analytics to satisfy various types of users. Lessons learned Discussion & Conclusion 24 Knowledge generation loop w/ HyperTendril Complexity & volume of interactions
  • 24. Conclusion & Future work - Interactive hyperparameter optimization in real-time - Visual analytics for multi-metric based model comparison - including latency, classification performance (e.q., confusion matrix), and etc. - Visual analytics for Neural Architecture Search (NAS) - for automating the design of artificial neural network. 25 Discussion & Conclusion - Defining problem to solve (which task can be supported by visual analytics) is important. - Extendable design should be considered in developing visual analytics. Future work Conclusion
  • 26. Issues in development HyperTendril - Performance Issues - Browser down in drawling line chart with numerous data points => reservoir sampling 27
  • 27. References HyperTendril - Knowledge Generation Models for Visual Analytics [1] - Visual Analytics in Deep Learning [2] - Tensorboard graph visualizer [3] - CNNVis [4] - GanLab [5] - RNNVis [6] - LSTMVis [7] - ActiVis [8] - D3.js [9] - Reservoir sampling [10] 28 [1] Sacha, Dominik, et al. "Knowledge generation model for visual analytics." IEEE transactions on visualization and computer graphics 20.12 (2014): 1604-1613. [2] Hohman, Fred Matthew, et al. "Visual analytics in deep learning: An interrogative survey for the next frontiers." IEEE transactions on visualization and computer graphics (2018). [3] Girija, Sanjay Surendranath. "Tensorflow: Large-scale machine learning on heterogeneous distributed systems." Software available from tensorflow. org (2016). [4] Liu, Mengchen, et al. "Towards better analysis of deep convolutional neural networks." IEEE transactions on visualization and computer graphics 23.1 (2017): 91-100. [5] Kahng, Minsuk, et al. "GAN Lab: Understanding Complex Deep Generative Models using Interactive Visual Experimentation.” IEEE transactions on visualization and computer graphics 25.1 (2019): 310-320. [6] Karpathy, Andrej, Justin Johnson, and Li Fei-Fei. "Visualizing and understanding recurrent networks." arXiv preprint arXiv:1506.02078 (2015). [7] Strobelt, Hendrik, et al. "Lstmvis: A tool for visual analysis of hidden state dynamics in recurrent neural networks." IEEE transactions on visualization and computer graphics 24.1 (2018): 667-676. [8] Kahng, Minsuk, et al. "Activis: Visual exploration of industry-scale deep neural network models." IEEE transactions on visualization and computer graphics 24.1 (2018): 88-97. [9] D3.js https://d3js.org/ [10] J. S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software (TOMS), 11(1):37–57, 1985.