MAT225 TEST4A Name:
Show all work algebraically if possible.
(1) Double Integrals (Cartesian Coordinates)
0
1
∫
𝑦
2
1
2
∫ 𝑒
−𝑥
2
𝑑𝑥𝑑𝑦
(1a) Describe the region R over which we are integrating.
(1b) Rewrite the given integral such that the area element 𝑑𝐴 = 𝑑𝑦𝑑𝑥.
(1b) Evaluate the new integral over said region R.
TEST4A page: 1
MAT225 TEST4A Name:
Show all work algebraically if possible.
TEST4A page: 2
MAT225 TEST4A Name:
Show all work algebraically if possible.
(2) Double Integrals (Polar Coordinates)
0
3
∫
0
9−𝑥
2
∫ 𝑥 𝑑𝑦𝑑𝑥
(2a) Describe the region R over which we are integrating.
(2b) Rewrite the given integral such that the area element 𝑑𝐴 = 𝑟𝑑𝑟𝑑θ.
(2b) Evaluate the new integral over said region R.
TEST4A page: 3
MAT225 TEST4A Name:
Show all work algebraically if possible.
TEST4A page: 4
MAT225 TEST4A Name:
Show all work algebraically if possible.
(3) Double Integrals (Polar Coordinates)
𝑆 = ∫
𝑅
∫ 1 + 𝑓𝑥
2
+ 𝑓𝑦
2
𝑑𝐴
(3) Find the surface area of in the first octant.
𝑧 = 16 − 𝑥
2
− 𝑦
2
(3a) Write the integral such that the area element 𝑑𝐴 = 𝑑𝑦𝑑𝑥.
(3b) Rewrite this integral such that the area element 𝑑𝐴 = 𝑟𝑑𝑟𝑑θ.
(3c) Evaluate the new integral to find S.
TEST4A page: 5
MAT225 TEST4A Name:
Show all work algebraically if possible.
TEST4A page: 6
MAT225 TEST4A Name:
Show all work algebraically if possible.
(4) Triple Integrals (Cylindrical Coordinates)
(4) Find the volume of the solid bounded by and z=0.
𝑧 = 16 − 𝑥
2
− 𝑦
2
(4a) Write the integral such that the volume element 𝑑𝑉 = 𝑑𝑧𝑑𝑦𝑑𝑥.
(4b) Rewrite this integral such that the volume element 𝑑𝑉 = 𝑟𝑑𝑧𝑑𝑟𝑑θ.
(4c) Evaluate the new integral to find V.
TEST4A page: 7
MAT225 TEST4A Name:
Show all work algebraically if possible.
TEST4A page: 8
MAT225 TEST4A Name:
Show all work algebraically if possible.
(5) Triple Integrals (Spherical Coordinates)
𝑥 = 𝑟 𝑐𝑜𝑠(θ) = ρ 𝑠𝑖𝑛(ϕ) 𝑐𝑜𝑠(θ)
𝑦 = 𝑟 𝑠𝑖𝑛(θ) = ρ 𝑠𝑖𝑛(ϕ) 𝑠𝑖𝑛(θ)
𝑧 = ρ 𝑐𝑜𝑠(ϕ)
ρ
2
= 𝑟
2
+ 𝑧
2
= 𝑥
2
+ 𝑦
2
+ 𝑧
2
(5) Find the coordinates of the center of mass ( ) for the solid bounded by the
𝑥, 𝑦, 𝑧
upper half of the sphere and z=0 with variable density
ρ = 6 δ(ρ, ϕ, θ) = 1 +
ρ
4
(5a) Find the total mass, m=∫∫
𝑄
∫ δ(ρ, ϕ, θ) 𝑑𝑉
(5b) Find 𝑥 =
1
𝑚
∫∫
𝑄
∫ 𝑥 δ(ρ, ϕ, θ) 𝑑𝑉
(5c) Find 𝑦 =
1
𝑚
∫∫
𝑄
∫ 𝑦 δ(ρ, ϕ, θ) 𝑑𝑉
TEST4A page: 9
MAT225 TEST4A Name:
Show all work algebraically if possible.
TEST4A page: 10
MAT225 TEST4A Name:
Show all work algebraically if possible.
(5) Triple Integrals (Spherical Coordinates)
𝑥 = 𝑟 𝑐𝑜𝑠(θ) = ρ 𝑠𝑖𝑛(ϕ) 𝑐𝑜𝑠(θ)
𝑦 = 𝑟 𝑠𝑖𝑛(θ) = ρ 𝑠𝑖𝑛(ϕ) 𝑠𝑖𝑛(θ)
𝑧 = ρ 𝑐𝑜𝑠(ϕ)
ρ
2
= 𝑟
2
+ 𝑧
2
= 𝑥
2
+ 𝑦
2
+ 𝑧
2
(5) Find the coordinates of the center of mass ( ) for the solid bounded by the
𝑥, 𝑦, 𝑧
upper half of the sphere and z=0 with variable density
ρ = 6 δ(ρ, ϕ, θ) = 1 +
ρ
4
(5d) Find 𝑧 =
1
𝑚
∫∫
𝑄
∫ 𝑧 δ(ρ, ϕ, θ) 𝑑𝑉
TEST4A page: 11
MAT225 TEST4A Name:
Show all work algebraically if possible.
TEST4A page: 12
MAT225 TEST4A Name:
Show all work algebraically if possible.
(6) Line Integrals
Find the work done by the force field F(x,y) = <x,2y> done on a particle
moving along the path C: y = from the point (0,0) to the point (2,8).
𝑥
3
F = <M,N>
<M,N><dx,dy> =
𝑊 =
𝐶
∫ 𝐹𝑑𝑟 =
𝐶
∫
𝐶
∫ 𝑀𝑑𝑥 + 𝑁𝑑𝑦
(6a) Parametrize the path C in terms of a single parameter t.
(6b) Write the Line Integral for Work in terms of t.
(6c) Evaluate your integral from t = 0 to t = 2.
TEST4A page: 13
MAT225 TEST4A Name:
Show all work algebraically if possible.
TEST4A page: 14
MAT225 TEST4A Name:
Show all work algebraically if possible.
(7) Fundamental Theorem of Line Integrals
F = <M,N> = <2xy, 𝑥
2
+ 𝑦
2
>
(7a) Show that F is a Conservative Vector Field.
(7b) Find the Potential Function f(x,y) for the Vector Field F.
(7c) Evaluate W = using f(x,y) from (5,0) to (0,4) over the path C:
𝐶
∫ 𝑀𝑑𝑥 + 𝑁𝑑𝑦
𝑥
2
25
+
𝑦
2
16
= 1
TEST4A page: 15
MAT225 TEST4A Name:
Show all work algebraically if possible.
TEST4A page: 16
MAT225 TEST4A Name:
Show all work algebraically if possible.
(8) Green’s Theorem for Work in the Plane
𝐹(𝑥, 𝑦) =< 𝑀, 𝑁 >=< 𝑦
2
, 𝑥
2
>
C: CCW once about 𝑦 = 𝑥
2
𝑎𝑛𝑑 𝑦 = 𝑥
(8a) Parametrize the path C1: along the curve from (0,0) to (1,1) in terms of t.
𝑦 = 𝑥
2
(8b) Use this parametrization to find the work done:
<M,N><dx,dy> =
𝑊 =
𝐶1
∫
𝐶1
∫ 𝑀𝑑𝑥 + 𝑁𝑑𝑦
TEST4A page: 17
MAT225 TEST4A Name:
Show all work algebraically if possible.
TEST4A page: 18
MAT225 TEST4A Name:
Show all work algebraically if possible.
(8) Green’s Theorem for Work in the Plane
𝐹(𝑥, 𝑦) =< 𝑀, 𝑁 >=< 𝑦
2
, 𝑥
2
>
C: CCW once about 𝑦 = 𝑥
2
𝑎𝑛𝑑 𝑦 = 𝑥
(8c) Parametrize the path C2: along the curve from (1,1) to (0,0) in terms of t.
𝑦 = 𝑥
(8d) Use this parametrization to find the work done:
<M,N><dx,dy> =
𝑊 =
𝐶2
∫
𝐶2
∫ 𝑀𝑑𝑥 + 𝑁𝑑𝑦
TEST4A page: 19
MAT225 TEST4A Name:
Show all work algebraically if possible.
TEST4A page: 20
MAT225 TEST4A Name:
Show all work algebraically if possible.
(8) Green’s Theorem for Work in the Plane
𝐹(𝑥, 𝑦) =< 𝑀, 𝑁 >=< 𝑦
2
, 𝑥
2
>
C: CCW once about 𝑦 = 𝑥
2
𝑎𝑛𝑑 𝑦 = 𝑥
(8e) Verify Green’s Theorem for Work in the Plane.
TEST4A page: 21
MAT225 TEST4A Name:
Show all work algebraically if possible.
TEST4A page: 22
MAT225 TEST4A Name:
Show all work algebraically if possible.
(9) Surface Integrals
Given the density function ρ
ρ(𝑥, 𝑦, 𝑧) = 𝑥 − 2𝑦 + 𝑧
find the mass of the planar region S
𝑧 = 4 − 𝑥, 0 ≤ 𝑥 ≤ 4, 0 ≤ 𝑦 ≤ 3
(9a) State the surface area element such that dA = dydx.
𝑑𝑆 = 1 + 𝑓𝑥
2
+ 𝑓𝑦
2
𝑑𝐴
(9b) Evaluate the surface integral
𝑆 = ∫
𝑅
∫ ρ(𝑥, 𝑦, 𝑧)𝑑𝑆
TEST4A page: 23
MAT225 TEST4A Name:
Show all work algebraically if possible.
TEST4A page: 24
MAT225 TEST4A Name:
Show all work algebraically if possible.
Reference Sheet: Derivatives You Should Know Cold!
Power Functions:
𝑑
𝑑𝑥
𝑥
𝑛
= 𝑛𝑥
𝑛−1
Trig Functions:
𝑑
𝑑𝑥
𝑠𝑖𝑛(𝑥) = 𝑐𝑜𝑠(𝑥)
𝑑
𝑑𝑥
𝑐𝑜𝑠(𝑥) = − 𝑠𝑖𝑛(𝑥)
𝑑
𝑑𝑥
𝑡𝑎𝑛(𝑥) = 𝑠𝑒𝑐
2
(𝑥)
𝑑
𝑑𝑥
𝑐𝑜𝑡(𝑥) = − 𝑐𝑠𝑐
2
(𝑥)
𝑑
𝑑𝑥
𝑠𝑒𝑐(𝑥) = 𝑠𝑒𝑐(𝑥) 𝑡𝑎𝑛(𝑥)
𝑑
𝑑𝑥
𝑐𝑠𝑐(𝑥) = − 𝑐𝑠𝑐(𝑥) 𝑐𝑜𝑡(𝑥)
Transcendental Functions:
𝑑
𝑑𝑥
𝑒
𝑥
= 𝑒
𝑥 𝑑
𝑑𝑥
𝑎
𝑥
= 𝑙𝑛(𝑎) 𝑎
𝑥
𝑑
𝑑𝑥
𝑙𝑛(𝑥) =
1
𝑥
𝑑
𝑑𝑥
𝑙𝑜𝑔𝑎
(𝑥) =
1
𝑙𝑛(𝑎)
1
𝑥
Inverse Trig Functions:
𝑑
𝑑𝑥
𝑠𝑖𝑛
−1
(𝑥) =
1
1−𝑥
2
𝑑
𝑑𝑥
𝑐𝑜𝑠
−1
(𝑥) =
−1
1−𝑥
2
𝑑
𝑑𝑥
𝑡𝑎𝑛
−1
(𝑥) =
1
1+𝑥
2
𝑑
𝑑𝑥
𝑐𝑜𝑡
−1
(𝑥) =
−1
1+𝑥
2
Product Rule:
𝑑
𝑑𝑥
𝑓(𝑥) 𝑔(𝑥) = 𝑓(𝑥) 𝑔'(𝑥) + 𝑔(𝑥) 𝑓'(𝑥)
Quotient Rule:
𝑑
𝑑𝑥
𝑓(𝑥)
𝑔(𝑥)
=
𝑔(𝑥) 𝑓'(𝑥) − 𝑓(𝑥) 𝑔'(𝑥)
𝑔
2
(𝑥)
Chain Rule:
𝑑
𝑑𝑥
𝑓(𝑔(𝑥)) = 𝑓'(𝑔(𝑥)) 𝑔'(𝑥)
Difference Quotient:
f’(x) =
ℎ 0
lim
→
𝑓(𝑥+ℎ) − 𝑓(𝑥)
ℎ
TEST4A page: 25
MAT225 TEST4A Name:
Show all work algebraically if possible.
Reference Sheet: Anti-Derivatives You Should Know Cold!
Power Functions:
∫ 𝑥
𝑛
𝑑𝑥 = 𝑛𝑥
𝑛−1
Trig Functions:
∫ 𝑐𝑜𝑠(𝑥)𝑑𝑥 = 𝑠𝑖𝑛(𝑥) + 𝐶 ∫ 𝑠𝑖𝑛(𝑥)𝑑𝑥 = − 𝑐𝑜𝑠(𝑥) + 𝐶
∫ 𝑠𝑒𝑐
2
(𝑥)𝑑𝑥 = 𝑡𝑎𝑛(𝑥) + 𝐶 ∫ 𝑐𝑠𝑐
2
(𝑥)𝑑𝑥 = − 𝑐𝑜𝑡(𝑥) + 𝐶
∫ 𝑠𝑒𝑐(𝑥)𝑡𝑎𝑛(𝑥)𝑑𝑥 = 𝑠𝑒𝑐(𝑥) + 𝐶 ∫ 𝑐𝑠𝑐(𝑥)𝑐𝑜𝑠(𝑥)𝑑𝑥 = − 𝑐𝑠𝑐(𝑥) + 𝐶
Transcendental Functions:
∫ 𝑒
𝑥
𝑑𝑥 = 𝑒
𝑥
+ 𝐶 ∫ 𝑎
𝑥
𝑑𝑥 =
𝑎
𝑥
𝑙𝑛(𝑎)
+ 𝐶
∫
1
𝑥
𝑑𝑥 = 𝑙𝑛(𝑥) + 𝐶 ∫
1
𝑙𝑛(𝑎)
1
𝑥
𝑑𝑥 = 𝑙𝑜𝑔𝑎
(𝑥) + 𝐶
Inverse Trig Functions:
∫
1
1−𝑥
2
𝑑𝑥 = 𝑠𝑖𝑛
−1
(𝑥) + 𝐶 ∫
−1
1−𝑥
2
𝑑𝑥 = 𝑐𝑜𝑠(𝑥) + 𝐶
∫
1
1+𝑥
2 𝑑𝑥 = 𝑡𝑎𝑛
−1
(𝑥) + 𝐶 ∫
−1
1+𝑥
2 𝑑𝑥 = 𝑐𝑜𝑡
−1
(𝑥) + 𝐶
Integration By Parts (Product Rule):
∫ 𝑢𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢 + 𝐶
Integration By Partial Fractions Example (Quotient Rule):
∫
𝑑𝑥
𝑥(𝑥+1)
= ∫
𝐴𝑑𝑥
𝑥
+ ∫
𝐵𝑑𝑥
𝑥+1
TEST4A page: 26

More Related Content

PDF
We're All Wonders
PDF
2021 preTEST4A Vector Calculus Solved
PDF
preTEST3A Double Integrals Solved
PDF
2021 preTEST5A Final Review Packet Solved!
PDF
Zagor vc 144 - Plamen nad Merivelom
PDF
workbook
PDF
063 - Teks Viler - COVJEK IZ FLAGSTAFFA.PDF
PDF
Zagor sd 042 helingen je ziv (big guy&amp;batab &amp; emeri)(5 mb)
We're All Wonders
2021 preTEST4A Vector Calculus Solved
preTEST3A Double Integrals Solved
2021 preTEST5A Final Review Packet Solved!
Zagor vc 144 - Plamen nad Merivelom
workbook
063 - Teks Viler - COVJEK IZ FLAGSTAFFA.PDF
Zagor sd 042 helingen je ziv (big guy&amp;batab &amp; emeri)(5 mb)

What's hot (20)

PDF
Khazina e-ruhaniyaat (nov'16)
PDF
Biblioteka Ara Tarzan 01 - Dragulji Opara(MickRC)(pdf cero75).pdf
PDF
Khazina e-ruhaniyaat (june'2020)
PDF
Khazina e-ruhaniyaat (october'2019)
PDF
新加坡閩南話詞典
PDF
Mister NO LIB 086 - Povratak u Manaus
PDF
Zagor Extra 304 - Izmedju dvije vatre
PDF
Zagor vc 155 - Povratak samuraja
PDF
Round up starter
PDF
南安方言志
PDF
972 oteti decak
PDF
Monthly Khazina-e-Ruhaniyaat November'23 (Vol.14, Issue 7)
PDF
Singapore Math 4B Answer Key
PDF
Monthly Khazina-e-Ruhaniyaat May'21 (Vol.12, Issue 1)
PDF
Tex vc 038 - Kolorado Bel
PDF
TTF.MTMTE.39
PDF
مصحف التجويد الملون - برواية حفص عن عاصم - بالرسم العثماني - وثلاثة ألوان رئي...
PDF
Tex LIB 084 - Vatreno koplje
PDF
Monthly Khazina-e-Ruhaniyaat Oct'21 (Vol.12, Issue 6)
DOCX
LUKANZA11
Khazina e-ruhaniyaat (nov'16)
Biblioteka Ara Tarzan 01 - Dragulji Opara(MickRC)(pdf cero75).pdf
Khazina e-ruhaniyaat (june'2020)
Khazina e-ruhaniyaat (october'2019)
新加坡閩南話詞典
Mister NO LIB 086 - Povratak u Manaus
Zagor Extra 304 - Izmedju dvije vatre
Zagor vc 155 - Povratak samuraja
Round up starter
南安方言志
972 oteti decak
Monthly Khazina-e-Ruhaniyaat November'23 (Vol.14, Issue 7)
Singapore Math 4B Answer Key
Monthly Khazina-e-Ruhaniyaat May'21 (Vol.12, Issue 1)
Tex vc 038 - Kolorado Bel
TTF.MTMTE.39
مصحف التجويد الملون - برواية حفص عن عاصم - بالرسم العثماني - وثلاثة ألوان رئي...
Tex LIB 084 - Vatreno koplje
Monthly Khazina-e-Ruhaniyaat Oct'21 (Vol.12, Issue 6)
LUKANZA11
Ad

Similar to 2021 preTEST4A Vector Calculus (20)

PDF
2020 preTEST4A
PDF
2020 preTEST5A
PDF
preTEST3A Double Integrals
PDF
2020 preTEST3A
PDF
2021 preTEST5A Final Review Packet!
PDF
preTEST1A Solved Multivariable Calculus
PDF
2020 preTEST1A
PDF
preTEST1A Multivariable Calculus
PDF
preTEST2A Solution MAT225 Multivariable Calculus
PDF
preTEST2A MAT225 Multivariable Calculus
PDF
2020 preTEST2A
PDF
Assignment For Matlab Report Subject Calculus 2
DOCX
Maths 301 key_sem_1_2009_2010
DOCX
Math 223 Disclaimer It is not a good idea.docx
DOCX
Question 1 1. Evaluate the integral. .docx
PPTX
MATRICES AND CALCULUS.pptx
PDF
Formula m2
PDF
ابلايد كامل .pdfgxhjdjdhdhdjdjjxhddjdndjjd
PPTX
Numerical Analysis Assignment Help
PPT
Line integral.ppt
2020 preTEST4A
2020 preTEST5A
preTEST3A Double Integrals
2020 preTEST3A
2021 preTEST5A Final Review Packet!
preTEST1A Solved Multivariable Calculus
2020 preTEST1A
preTEST1A Multivariable Calculus
preTEST2A Solution MAT225 Multivariable Calculus
preTEST2A MAT225 Multivariable Calculus
2020 preTEST2A
Assignment For Matlab Report Subject Calculus 2
Maths 301 key_sem_1_2009_2010
Math 223 Disclaimer It is not a good idea.docx
Question 1 1. Evaluate the integral. .docx
MATRICES AND CALCULUS.pptx
Formula m2
ابلايد كامل .pdfgxhjdjdhdhdjdjjxhddjdndjjd
Numerical Analysis Assignment Help
Line integral.ppt
Ad

More from A Jorge Garcia (20)

PDF
LIMACON 2023 Brochure
PDF
2022-RESUME-NEW
PDF
MAT122 DAY508 MEETING 44 of 45 2021.1217 FRIDAY
PDF
MAT122 DAY507 MEETING 43 of 45 2021.1216 THURSDAY
PDF
MAT122 DAY506 MEETING 42 of 45 2021.1215 WEDNESDAY
PDF
MAT122 DAY308 Lesson 26 of 45
PDF
MAT122 DAY307 Lesson 25 of 45
PDF
MAT122 DAY306 Lesson 24 of 45
PDF
MAT122 DAY305 Lesson 23 of 45
PDF
MAT122 DAY304 Lesson 22 of 45
PDF
MAT122 DAY303 Lesson 21 of 45
PDF
MAT122 DAY302 Lesson 20 of 45
PDF
MAT122 DAY301 Lesson 19 of 45
PDF
MAT122 DAY205
PDF
MAT122 DAY204
PDF
MAT122 DAY203
PDF
MAT122 DAY202
PDF
MAT122 DAY201
PDF
MAT122 DAY06
PDF
MAT122 DAY05
LIMACON 2023 Brochure
2022-RESUME-NEW
MAT122 DAY508 MEETING 44 of 45 2021.1217 FRIDAY
MAT122 DAY507 MEETING 43 of 45 2021.1216 THURSDAY
MAT122 DAY506 MEETING 42 of 45 2021.1215 WEDNESDAY
MAT122 DAY308 Lesson 26 of 45
MAT122 DAY307 Lesson 25 of 45
MAT122 DAY306 Lesson 24 of 45
MAT122 DAY305 Lesson 23 of 45
MAT122 DAY304 Lesson 22 of 45
MAT122 DAY303 Lesson 21 of 45
MAT122 DAY302 Lesson 20 of 45
MAT122 DAY301 Lesson 19 of 45
MAT122 DAY205
MAT122 DAY204
MAT122 DAY203
MAT122 DAY202
MAT122 DAY201
MAT122 DAY06
MAT122 DAY05

Recently uploaded (20)

PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PDF
LIFE & LIVING TRILOGY - PART (3) REALITY & MYSTERY.pdf
PDF
LIFE & LIVING TRILOGY- PART (1) WHO ARE WE.pdf
PDF
International_Financial_Reporting_Standa.pdf
PDF
AI-driven educational solutions for real-life interventions in the Philippine...
PDF
Journal of Dental Science - UDMY (2021).pdf
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PDF
LIFE & LIVING TRILOGY - PART - (2) THE PURPOSE OF LIFE.pdf
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
PDF
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 1).pdf
PDF
semiconductor packaging in vlsi design fab
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
Uderstanding digital marketing and marketing stratergie for engaging the digi...
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
LIFE & LIVING TRILOGY - PART (3) REALITY & MYSTERY.pdf
LIFE & LIVING TRILOGY- PART (1) WHO ARE WE.pdf
International_Financial_Reporting_Standa.pdf
AI-driven educational solutions for real-life interventions in the Philippine...
Journal of Dental Science - UDMY (2021).pdf
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
LIFE & LIVING TRILOGY - PART - (2) THE PURPOSE OF LIFE.pdf
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
FORM 1 BIOLOGY MIND MAPS and their schemes
Paper A Mock Exam 9_ Attempt review.pdf.
LEARNERS WITH ADDITIONAL NEEDS ProfEd Topic
What if we spent less time fighting change, and more time building what’s rig...
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 1).pdf
semiconductor packaging in vlsi design fab
Cambridge-Practice-Tests-for-IELTS-12.docx
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
Uderstanding digital marketing and marketing stratergie for engaging the digi...

2021 preTEST4A Vector Calculus

  • 1. MAT225 TEST4A Name: Show all work algebraically if possible. (1) Double Integrals (Cartesian Coordinates) 0 1 ∫ 𝑦 2 1 2 ∫ 𝑒 −𝑥 2 𝑑𝑥𝑑𝑦 (1a) Describe the region R over which we are integrating. (1b) Rewrite the given integral such that the area element 𝑑𝐴 = 𝑑𝑦𝑑𝑥. (1b) Evaluate the new integral over said region R. TEST4A page: 1
  • 2. MAT225 TEST4A Name: Show all work algebraically if possible. TEST4A page: 2
  • 3. MAT225 TEST4A Name: Show all work algebraically if possible. (2) Double Integrals (Polar Coordinates) 0 3 ∫ 0 9−𝑥 2 ∫ 𝑥 𝑑𝑦𝑑𝑥 (2a) Describe the region R over which we are integrating. (2b) Rewrite the given integral such that the area element 𝑑𝐴 = 𝑟𝑑𝑟𝑑θ. (2b) Evaluate the new integral over said region R. TEST4A page: 3
  • 4. MAT225 TEST4A Name: Show all work algebraically if possible. TEST4A page: 4
  • 5. MAT225 TEST4A Name: Show all work algebraically if possible. (3) Double Integrals (Polar Coordinates) 𝑆 = ∫ 𝑅 ∫ 1 + 𝑓𝑥 2 + 𝑓𝑦 2 𝑑𝐴 (3) Find the surface area of in the first octant. 𝑧 = 16 − 𝑥 2 − 𝑦 2 (3a) Write the integral such that the area element 𝑑𝐴 = 𝑑𝑦𝑑𝑥. (3b) Rewrite this integral such that the area element 𝑑𝐴 = 𝑟𝑑𝑟𝑑θ. (3c) Evaluate the new integral to find S. TEST4A page: 5
  • 6. MAT225 TEST4A Name: Show all work algebraically if possible. TEST4A page: 6
  • 7. MAT225 TEST4A Name: Show all work algebraically if possible. (4) Triple Integrals (Cylindrical Coordinates) (4) Find the volume of the solid bounded by and z=0. 𝑧 = 16 − 𝑥 2 − 𝑦 2 (4a) Write the integral such that the volume element 𝑑𝑉 = 𝑑𝑧𝑑𝑦𝑑𝑥. (4b) Rewrite this integral such that the volume element 𝑑𝑉 = 𝑟𝑑𝑧𝑑𝑟𝑑θ. (4c) Evaluate the new integral to find V. TEST4A page: 7
  • 8. MAT225 TEST4A Name: Show all work algebraically if possible. TEST4A page: 8
  • 9. MAT225 TEST4A Name: Show all work algebraically if possible. (5) Triple Integrals (Spherical Coordinates) 𝑥 = 𝑟 𝑐𝑜𝑠(θ) = ρ 𝑠𝑖𝑛(ϕ) 𝑐𝑜𝑠(θ) 𝑦 = 𝑟 𝑠𝑖𝑛(θ) = ρ 𝑠𝑖𝑛(ϕ) 𝑠𝑖𝑛(θ) 𝑧 = ρ 𝑐𝑜𝑠(ϕ) ρ 2 = 𝑟 2 + 𝑧 2 = 𝑥 2 + 𝑦 2 + 𝑧 2 (5) Find the coordinates of the center of mass ( ) for the solid bounded by the 𝑥, 𝑦, 𝑧 upper half of the sphere and z=0 with variable density ρ = 6 δ(ρ, ϕ, θ) = 1 + ρ 4 (5a) Find the total mass, m=∫∫ 𝑄 ∫ δ(ρ, ϕ, θ) 𝑑𝑉 (5b) Find 𝑥 = 1 𝑚 ∫∫ 𝑄 ∫ 𝑥 δ(ρ, ϕ, θ) 𝑑𝑉 (5c) Find 𝑦 = 1 𝑚 ∫∫ 𝑄 ∫ 𝑦 δ(ρ, ϕ, θ) 𝑑𝑉 TEST4A page: 9
  • 10. MAT225 TEST4A Name: Show all work algebraically if possible. TEST4A page: 10
  • 11. MAT225 TEST4A Name: Show all work algebraically if possible. (5) Triple Integrals (Spherical Coordinates) 𝑥 = 𝑟 𝑐𝑜𝑠(θ) = ρ 𝑠𝑖𝑛(ϕ) 𝑐𝑜𝑠(θ) 𝑦 = 𝑟 𝑠𝑖𝑛(θ) = ρ 𝑠𝑖𝑛(ϕ) 𝑠𝑖𝑛(θ) 𝑧 = ρ 𝑐𝑜𝑠(ϕ) ρ 2 = 𝑟 2 + 𝑧 2 = 𝑥 2 + 𝑦 2 + 𝑧 2 (5) Find the coordinates of the center of mass ( ) for the solid bounded by the 𝑥, 𝑦, 𝑧 upper half of the sphere and z=0 with variable density ρ = 6 δ(ρ, ϕ, θ) = 1 + ρ 4 (5d) Find 𝑧 = 1 𝑚 ∫∫ 𝑄 ∫ 𝑧 δ(ρ, ϕ, θ) 𝑑𝑉 TEST4A page: 11
  • 12. MAT225 TEST4A Name: Show all work algebraically if possible. TEST4A page: 12
  • 13. MAT225 TEST4A Name: Show all work algebraically if possible. (6) Line Integrals Find the work done by the force field F(x,y) = <x,2y> done on a particle moving along the path C: y = from the point (0,0) to the point (2,8). 𝑥 3 F = <M,N> <M,N><dx,dy> = 𝑊 = 𝐶 ∫ 𝐹𝑑𝑟 = 𝐶 ∫ 𝐶 ∫ 𝑀𝑑𝑥 + 𝑁𝑑𝑦 (6a) Parametrize the path C in terms of a single parameter t. (6b) Write the Line Integral for Work in terms of t. (6c) Evaluate your integral from t = 0 to t = 2. TEST4A page: 13
  • 14. MAT225 TEST4A Name: Show all work algebraically if possible. TEST4A page: 14
  • 15. MAT225 TEST4A Name: Show all work algebraically if possible. (7) Fundamental Theorem of Line Integrals F = <M,N> = <2xy, 𝑥 2 + 𝑦 2 > (7a) Show that F is a Conservative Vector Field. (7b) Find the Potential Function f(x,y) for the Vector Field F. (7c) Evaluate W = using f(x,y) from (5,0) to (0,4) over the path C: 𝐶 ∫ 𝑀𝑑𝑥 + 𝑁𝑑𝑦 𝑥 2 25 + 𝑦 2 16 = 1 TEST4A page: 15
  • 16. MAT225 TEST4A Name: Show all work algebraically if possible. TEST4A page: 16
  • 17. MAT225 TEST4A Name: Show all work algebraically if possible. (8) Green’s Theorem for Work in the Plane 𝐹(𝑥, 𝑦) =< 𝑀, 𝑁 >=< 𝑦 2 , 𝑥 2 > C: CCW once about 𝑦 = 𝑥 2 𝑎𝑛𝑑 𝑦 = 𝑥 (8a) Parametrize the path C1: along the curve from (0,0) to (1,1) in terms of t. 𝑦 = 𝑥 2 (8b) Use this parametrization to find the work done: <M,N><dx,dy> = 𝑊 = 𝐶1 ∫ 𝐶1 ∫ 𝑀𝑑𝑥 + 𝑁𝑑𝑦 TEST4A page: 17
  • 18. MAT225 TEST4A Name: Show all work algebraically if possible. TEST4A page: 18
  • 19. MAT225 TEST4A Name: Show all work algebraically if possible. (8) Green’s Theorem for Work in the Plane 𝐹(𝑥, 𝑦) =< 𝑀, 𝑁 >=< 𝑦 2 , 𝑥 2 > C: CCW once about 𝑦 = 𝑥 2 𝑎𝑛𝑑 𝑦 = 𝑥 (8c) Parametrize the path C2: along the curve from (1,1) to (0,0) in terms of t. 𝑦 = 𝑥 (8d) Use this parametrization to find the work done: <M,N><dx,dy> = 𝑊 = 𝐶2 ∫ 𝐶2 ∫ 𝑀𝑑𝑥 + 𝑁𝑑𝑦 TEST4A page: 19
  • 20. MAT225 TEST4A Name: Show all work algebraically if possible. TEST4A page: 20
  • 21. MAT225 TEST4A Name: Show all work algebraically if possible. (8) Green’s Theorem for Work in the Plane 𝐹(𝑥, 𝑦) =< 𝑀, 𝑁 >=< 𝑦 2 , 𝑥 2 > C: CCW once about 𝑦 = 𝑥 2 𝑎𝑛𝑑 𝑦 = 𝑥 (8e) Verify Green’s Theorem for Work in the Plane. TEST4A page: 21
  • 22. MAT225 TEST4A Name: Show all work algebraically if possible. TEST4A page: 22
  • 23. MAT225 TEST4A Name: Show all work algebraically if possible. (9) Surface Integrals Given the density function ρ ρ(𝑥, 𝑦, 𝑧) = 𝑥 − 2𝑦 + 𝑧 find the mass of the planar region S 𝑧 = 4 − 𝑥, 0 ≤ 𝑥 ≤ 4, 0 ≤ 𝑦 ≤ 3 (9a) State the surface area element such that dA = dydx. 𝑑𝑆 = 1 + 𝑓𝑥 2 + 𝑓𝑦 2 𝑑𝐴 (9b) Evaluate the surface integral 𝑆 = ∫ 𝑅 ∫ ρ(𝑥, 𝑦, 𝑧)𝑑𝑆 TEST4A page: 23
  • 24. MAT225 TEST4A Name: Show all work algebraically if possible. TEST4A page: 24
  • 25. MAT225 TEST4A Name: Show all work algebraically if possible. Reference Sheet: Derivatives You Should Know Cold! Power Functions: 𝑑 𝑑𝑥 𝑥 𝑛 = 𝑛𝑥 𝑛−1 Trig Functions: 𝑑 𝑑𝑥 𝑠𝑖𝑛(𝑥) = 𝑐𝑜𝑠(𝑥) 𝑑 𝑑𝑥 𝑐𝑜𝑠(𝑥) = − 𝑠𝑖𝑛(𝑥) 𝑑 𝑑𝑥 𝑡𝑎𝑛(𝑥) = 𝑠𝑒𝑐 2 (𝑥) 𝑑 𝑑𝑥 𝑐𝑜𝑡(𝑥) = − 𝑐𝑠𝑐 2 (𝑥) 𝑑 𝑑𝑥 𝑠𝑒𝑐(𝑥) = 𝑠𝑒𝑐(𝑥) 𝑡𝑎𝑛(𝑥) 𝑑 𝑑𝑥 𝑐𝑠𝑐(𝑥) = − 𝑐𝑠𝑐(𝑥) 𝑐𝑜𝑡(𝑥) Transcendental Functions: 𝑑 𝑑𝑥 𝑒 𝑥 = 𝑒 𝑥 𝑑 𝑑𝑥 𝑎 𝑥 = 𝑙𝑛(𝑎) 𝑎 𝑥 𝑑 𝑑𝑥 𝑙𝑛(𝑥) = 1 𝑥 𝑑 𝑑𝑥 𝑙𝑜𝑔𝑎 (𝑥) = 1 𝑙𝑛(𝑎) 1 𝑥 Inverse Trig Functions: 𝑑 𝑑𝑥 𝑠𝑖𝑛 −1 (𝑥) = 1 1−𝑥 2 𝑑 𝑑𝑥 𝑐𝑜𝑠 −1 (𝑥) = −1 1−𝑥 2 𝑑 𝑑𝑥 𝑡𝑎𝑛 −1 (𝑥) = 1 1+𝑥 2 𝑑 𝑑𝑥 𝑐𝑜𝑡 −1 (𝑥) = −1 1+𝑥 2 Product Rule: 𝑑 𝑑𝑥 𝑓(𝑥) 𝑔(𝑥) = 𝑓(𝑥) 𝑔'(𝑥) + 𝑔(𝑥) 𝑓'(𝑥) Quotient Rule: 𝑑 𝑑𝑥 𝑓(𝑥) 𝑔(𝑥) = 𝑔(𝑥) 𝑓'(𝑥) − 𝑓(𝑥) 𝑔'(𝑥) 𝑔 2 (𝑥) Chain Rule: 𝑑 𝑑𝑥 𝑓(𝑔(𝑥)) = 𝑓'(𝑔(𝑥)) 𝑔'(𝑥) Difference Quotient: f’(x) = ℎ 0 lim → 𝑓(𝑥+ℎ) − 𝑓(𝑥) ℎ TEST4A page: 25
  • 26. MAT225 TEST4A Name: Show all work algebraically if possible. Reference Sheet: Anti-Derivatives You Should Know Cold! Power Functions: ∫ 𝑥 𝑛 𝑑𝑥 = 𝑛𝑥 𝑛−1 Trig Functions: ∫ 𝑐𝑜𝑠(𝑥)𝑑𝑥 = 𝑠𝑖𝑛(𝑥) + 𝐶 ∫ 𝑠𝑖𝑛(𝑥)𝑑𝑥 = − 𝑐𝑜𝑠(𝑥) + 𝐶 ∫ 𝑠𝑒𝑐 2 (𝑥)𝑑𝑥 = 𝑡𝑎𝑛(𝑥) + 𝐶 ∫ 𝑐𝑠𝑐 2 (𝑥)𝑑𝑥 = − 𝑐𝑜𝑡(𝑥) + 𝐶 ∫ 𝑠𝑒𝑐(𝑥)𝑡𝑎𝑛(𝑥)𝑑𝑥 = 𝑠𝑒𝑐(𝑥) + 𝐶 ∫ 𝑐𝑠𝑐(𝑥)𝑐𝑜𝑠(𝑥)𝑑𝑥 = − 𝑐𝑠𝑐(𝑥) + 𝐶 Transcendental Functions: ∫ 𝑒 𝑥 𝑑𝑥 = 𝑒 𝑥 + 𝐶 ∫ 𝑎 𝑥 𝑑𝑥 = 𝑎 𝑥 𝑙𝑛(𝑎) + 𝐶 ∫ 1 𝑥 𝑑𝑥 = 𝑙𝑛(𝑥) + 𝐶 ∫ 1 𝑙𝑛(𝑎) 1 𝑥 𝑑𝑥 = 𝑙𝑜𝑔𝑎 (𝑥) + 𝐶 Inverse Trig Functions: ∫ 1 1−𝑥 2 𝑑𝑥 = 𝑠𝑖𝑛 −1 (𝑥) + 𝐶 ∫ −1 1−𝑥 2 𝑑𝑥 = 𝑐𝑜𝑠(𝑥) + 𝐶 ∫ 1 1+𝑥 2 𝑑𝑥 = 𝑡𝑎𝑛 −1 (𝑥) + 𝐶 ∫ −1 1+𝑥 2 𝑑𝑥 = 𝑐𝑜𝑡 −1 (𝑥) + 𝐶 Integration By Parts (Product Rule): ∫ 𝑢𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢 + 𝐶 Integration By Partial Fractions Example (Quotient Rule): ∫ 𝑑𝑥 𝑥(𝑥+1) = ∫ 𝐴𝑑𝑥 𝑥 + ∫ 𝐵𝑑𝑥 𝑥+1 TEST4A page: 26