SlideShare a Scribd company logo
MAT225 TEST3A Name:
Show all work algebraically if possible.
RVF (Question 1) s(t), v(t), a(t) 
 
(1) A bullet is shot upward from the surface of the Moon such that 
(t) 60t .8t
y = 1 − 0 2
 
[y] = meters, [t] = seconds, t≥0. 
 
(1a) Find y‘(t) 
(1b) Calculate y‘(0) 
(1c) Solve for t when y’(t) = 0. 
(1d) What is the maximum height? 
(1e) How fast is the bullet moving when it hits the ground? 
 
 
   
TEST3A page: 1
MAT225 TEST3A Name:
Show all work algebraically if possible.
 
   
TEST3A page: 2
MAT225 TEST3A Name:
Show all work algebraically if possible.
RVG (Question 2) a(t), v(t), s(t) 
 
(2) Find f(x) such that f(x) is a function defined for all with these properties:
−
x > 5  
 
(i) f ”(x) =​
1
3√x+5
 
(ii) tangent line to the graph of f at (4,2) makes a 45° angle with the x-axis. 
 
   
TEST3A page: 3
MAT225 TEST3A Name:
Show all work algebraically if possible.
   
TEST3A page: 4
MAT225 TEST3A Name:
Show all work algebraically if possible.
(1) Dot Products 
 
Given the triangle ABC, A(1,1), B(4,1) and C(4,4): 
 
(1a) Find the components of the vectors ​AB​ and ​AC​. 
(1b) Calculate the magnitudes of the vectors ​AB​ and ​AC​. 
(1c) Use the Dot Product of ​AB​ and ​AC​ to find the measure of angle A. 
(1d) What is the area of ABC?
Δ  
(1e) Let​ , does​ equal the triangle area?
s = 2
a+b+c
√s(s )(s )(s )
− a − b − c  
 
   
TEST3A page: 5
MAT225 TEST3A Name:
Show all work algebraically if possible.
TEST3A page: 6
MAT225 TEST3A Name:
Show all work algebraically if possible.
(2) Cross Products 
 
Given the triangle ABC, A(1,1), B(4,1) and C(4,4): 
 
(2a) Find the following Cross Products: ​OB​ x ​OC​, ​OC​ x ​OA​, ​OA​ x ​OB​. 
(2b) Sum the following Cross Products: ​OB​ x ​OC​, ​OC​ x ​OA​, ​OA​ x ​OB​. 
(2c) What is the magnitude of the sum of these Cross Products? 
(2d) Is there a relationship between this magnitude and the triangle area? 
 
   
TEST3A page: 7
MAT225 TEST3A Name:
Show all work algebraically if possible.
   
TEST3A page: 8
MAT225 TEST3A Name:
Show all work algebraically if possible.
(3) Determinants 
 
Let the vectors ​u​ = <1,2,3>, ​v​=<1,0,1> and ​w​=<2,3,4>: 
 
(3a) Find ​u​ • (​v​ x ​w​). 
(3b) What does this value measure? 
   
TEST3A page: 9
MAT225 TEST3A Name:
Show all work algebraically if possible.
   
TEST3A page: 10
MAT225 TEST3A Name:
Show all work algebraically if possible.
(4) Determinants 
 
Let the vectors ​u​ = <1,2,3>, ​v​=<1,0,1> and ​w​=<2,3,4>: 
 
(4a) Find det(​u​,​v​,​w​). 
(4b) What does this value measure? 
   
TEST3A page: 11
MAT225 TEST3A Name:
Show all work algebraically if possible.
   
TEST3A page: 12
MAT225 TEST3A Name:
Show all work algebraically if possible.
(5) Iterated Integrals 
 
Consider the area in the xy-plane bounded by: ,
− √4 − y2 ≤ x ≤ √4 − y2 .
0 ≤ y ≤ 2  
 
ydx
A = ∫
2
−2
∫
√4−y2
0
d  
 
(5a) Draw this region labeling a vertical Riemann Rectangle with thickness dx. 
(5b) Explain how to setup this integral in terms of dydx to calculate the area. 
(5c) Evaluate your integral in terms of dydx. 
   
TEST3A page: 13
MAT225 TEST3A Name:
Show all work algebraically if possible.
   
TEST3A page: 14
MAT225 TEST3A Name:
Show all work algebraically if possible.
(5) Iterated Integrals 
 
Consider the area in the xy-plane bounded by: ,
− √4 − y2 ≤ x ≤ √4 − y2 .
0 ≤ y ≤ 2  
 
ydx
A = ∫
2
−2
∫
√4−y2
0
d  
 
(5d) ReWrite this integral in terms of dxdy to calculate the area. 
(5e) ReEvaluate your integral in terms of dxdy. 
 
(5f) ReWrite this integral in terms of to calculate th area.
drdθ
r  
(5g) ReEvaluate your integral in terms of​ drdθ.
r    
TEST3A page: 15
MAT225 TEST3A Name:
Show all work algebraically if possible.
   
TEST3A page: 16
MAT225 TEST3A Name:
Show all work algebraically if possible.
(6) Iterated Integrals 
 
Find the volume of the solid bounded by the surface f(x,y)=1-xy above the triangle 
bounded by y=x, y=1 and x=0. 
 
(1 y) dxdy
V = ∫
1
0
∫
y
0
− x  
 
(6a) Explain how to set up an integral to calculate this volume in terms of dxdy. 
(6b) Evaluate your double integral. 
 
(6c) ReWrite the integral terms of dydx. 
(6d) Evaluate your double integral. 
    
TEST3A page: 17
MAT225 TEST3A Name:
Show all work algebraically if possible.
   
TEST3A page: 18
MAT225 TEST3A Name:
Show all work algebraically if possible.
(7) Line Integrals 
 
Calculate a line integral to find the mass of a wire given density and the path C:
ρ   
 
Density Function (x, ) y
ρ = F y = x  
Along the path C: r(t)=<4t, 3t> such that 0 ≤ t ≤ 1  
 
(7a) Find ds=|r’(t)|dt 
(7b) Write the line integral in terms of t.
ds
∫
C
F  
(7c) Evaluate your integral. 
 
 
   
TEST3A page: 19
MAT225 TEST3A Name:
Show all work algebraically if possible.
   
TEST3A page: 20
MAT225 TEST3A Name:
Show all work algebraically if possible.
(8) Work Done By A Conservative Field 
 
Given the Vector Field​ (x, ) < x y , 2x xy
F y = a 2
+ y3
+ 1 3
+ b 2
+ 2 >  
 
(8a) Find the values of and b for which F is conservative. 
(8b) Using these values of a and b, find f(x,y) such that F = gradient(f). 
(8c) Find the work done through F along the curve C:  
 
(t) cos(t), y(t) sin(t), 0
x = et
= et
≤ t ≤ π  
   
TEST3A page: 21
MAT225 TEST3A Name:
Show all work algebraically if possible.
 
   
TEST3A page: 22
MAT225 TEST3A Name:
Show all work algebraically if possible.
Reference Sheet: Derivatives You Should Know Cold! 
 
Power Functions: 
x nx
d
dx
n
= n−1
 
 
Trig Functions: 
sin(x) os(x)
d
dx = c cos(x) in(x)
d
dx = − s  
tan(x) (x)
d
dx = sec2
cot(x) (x)
d
dx = − csc2
 
sec(x) ec(x) tan(x)
d
dx = s csc(x) sc(x) cot(x)
d
dx = − c  
 
Transcendental Functions: 
e
d
dx
x
= ex a n(a) a
d
dx
x
= l x
 
ln(x)
d
dx = x
1
log (x)
d
dx a = 1
ln(a) x
1
 
 
Inverse Trig Functions: 
sin (x)
d
dx
−1
= 1
√1−x2
cos (x)
d
dx
−1
= −1
√1−x2
 
tan (x)
d
dx
−1
= 1
1+x2 cot (x)
d
dx
−1
= −1
1+x2  
 
Product Rule: 
f(x) g(x) (x) g (x) (x) f (x)
d
dx = f ′ + g ′  
 
Quotient Rule: 
d
dx
f(x)
g(x) = g (x)
2
g(x) f (x) − f(x) g (x)
′ ′
 
 
Chain Rule: 
f(g(x)) (g(x)) g (x)
d
dx = f′ ′  
 
Difference Quotient: 
f’(x) =​ lim
h→0
h
f(x+h) − f(x)
   
TEST3A page: 23
MAT225 TEST3A Name:
Show all work algebraically if possible.
Reference Sheet: Anti-Derivatives You Should Know Cold! 
 
Power Functions: 
dx x
∫xn
= n n−1
 
 
Trig Functions: 
os(x)dx in(x)
∫c = s + C in(x)dx os(x)
∫s = − c + C  
ec (x)dx an(x)
∫s 2
= t + C sc (x)dx ot(x)
∫c 2
= − c + C  
ec(x)tan(x)dx ec(x)
∫s = s + C sc(x)cos(x)dx sc(x)
∫c = − c + C  
 
 
Transcendental Functions: 
dx e
∫ex
= x
+ C dx
∫ax
= ax
ln(a)
+ C  
dx n(x)
∫ x
1
= l + C dx log (x)
∫ 1
ln(a) x
1
= a + C  
 
Inverse Trig Functions: 
dx sin (x)
∫ 1
√1−x2
= −1
+ C dx cos(x)
∫ −1
√1−x2
= + C  
dx tan (x)
∫ 1
1+x2 = −1
+ C dx cot (x)
∫ −1
1+x2 = −1
+ C  
 
Integration By Parts (Product Rule): 
dv uv du
∫u = −∫v + C  
 
Integration By Partial Fractions Example (Quotient Rule): 
∫ dx
x(x+1) = ∫ x
Adx
+∫ x+1
Bdx
TEST3A page: 24

More Related Content

PDF
2021 preTEST5A Final Review Packet Solved!
PDF
2021 preTEST4A Vector Calculus Solved
PDF
2021 preTEST4A Vector Calculus
PDF
Test4 book1
PDF
Monthly Khazina-e-Ruhaniyaat Dec’2024 (Vol.15, Issue 8)
PDF
0968 zs ledeni ambis (komandant mark) @
PDF
Vc dampyr 32. nezasiti (sale)
PDF
pharmacy assistant NTS Papers (Past papers).pdf
2021 preTEST5A Final Review Packet Solved!
2021 preTEST4A Vector Calculus Solved
2021 preTEST4A Vector Calculus
Test4 book1
Monthly Khazina-e-Ruhaniyaat Dec’2024 (Vol.15, Issue 8)
0968 zs ledeni ambis (komandant mark) @
Vc dampyr 32. nezasiti (sale)
pharmacy assistant NTS Papers (Past papers).pdf

What's hot (13)

PDF
0305. Zakon Viteštva
PDF
Kr M G - ZG - LUD 106
PDF
Dok holidej 018 ustani i bori se
PDF
Hizb 6
PPTX
1920s Economy and Entertainment (USHC 6.1)
PDF
Masters Degree Certificate
PDF
Dragon magazine 335
PPTX
Material Demotivation
PDF
ZS - 0389 - Zagor - LOV IZNENADJENJA
DOCX
Pinap Nro 5 revista completa agosto 1968
PDF
Vajat erp 048
PDF
Mind-Blowing Facts About National Parks
PDF
Revista Bimby Março 2015
0305. Zakon Viteštva
Kr M G - ZG - LUD 106
Dok holidej 018 ustani i bori se
Hizb 6
1920s Economy and Entertainment (USHC 6.1)
Masters Degree Certificate
Dragon magazine 335
Material Demotivation
ZS - 0389 - Zagor - LOV IZNENADJENJA
Pinap Nro 5 revista completa agosto 1968
Vajat erp 048
Mind-Blowing Facts About National Parks
Revista Bimby Março 2015
Ad

Similar to preTEST3A Double Integrals Solved (20)

PDF
2020 preTEST4A
PDF
2020 preTEST5A
PDF
preTEST2A MAT225 Multivariable Calculus
PDF
2020 preTEST2A
PDF
2020 preTEST1A
PDF
preTEST1A Solved Multivariable Calculus
PDF
preTEST1A Multivariable Calculus
PDF
preTEST2A Solution MAT225 Multivariable Calculus
DOCX
Banco de preguntas para el ap
DOCX
Review for the Third Midterm of Math 150 B 11242014Probl.docx
PDF
Additional mathematics
PDF
2021 preTEST5A Final Review Packet!
PDF
Funções 1
DOCX
Assignments for class XII
PDF
F.Y.B.Sc(2013 pattern) Old Question Papers:Dr.Kshirsagar
PDF
Math paper class 12 maths paper class 12
PDF
Funções 3
PDF
Class XII CBSE Mathematics Sample question paper with solution
PDF
linear_algebra part 2. Including various topics of linear algebra.
PDF
Escola naval 2016
2020 preTEST4A
2020 preTEST5A
preTEST2A MAT225 Multivariable Calculus
2020 preTEST2A
2020 preTEST1A
preTEST1A Solved Multivariable Calculus
preTEST1A Multivariable Calculus
preTEST2A Solution MAT225 Multivariable Calculus
Banco de preguntas para el ap
Review for the Third Midterm of Math 150 B 11242014Probl.docx
Additional mathematics
2021 preTEST5A Final Review Packet!
Funções 1
Assignments for class XII
F.Y.B.Sc(2013 pattern) Old Question Papers:Dr.Kshirsagar
Math paper class 12 maths paper class 12
Funções 3
Class XII CBSE Mathematics Sample question paper with solution
linear_algebra part 2. Including various topics of linear algebra.
Escola naval 2016
Ad

More from A Jorge Garcia (20)

PDF
LIMACON 2023 Brochure
PDF
2022-RESUME-NEW
PDF
MAT122 DAY508 MEETING 44 of 45 2021.1217 FRIDAY
PDF
MAT122 DAY507 MEETING 43 of 45 2021.1216 THURSDAY
PDF
MAT122 DAY506 MEETING 42 of 45 2021.1215 WEDNESDAY
PDF
MAT122 DAY308 Lesson 26 of 45
PDF
MAT122 DAY307 Lesson 25 of 45
PDF
MAT122 DAY306 Lesson 24 of 45
PDF
MAT122 DAY305 Lesson 23 of 45
PDF
MAT122 DAY304 Lesson 22 of 45
PDF
MAT122 DAY303 Lesson 21 of 45
PDF
MAT122 DAY302 Lesson 20 of 45
PDF
MAT122 DAY301 Lesson 19 of 45
PDF
MAT122 DAY205
PDF
MAT122 DAY204
PDF
MAT122 DAY203
PDF
MAT122 DAY202
PDF
MAT122 DAY201
PDF
MAT122 DAY06
PDF
MAT122 DAY05
LIMACON 2023 Brochure
2022-RESUME-NEW
MAT122 DAY508 MEETING 44 of 45 2021.1217 FRIDAY
MAT122 DAY507 MEETING 43 of 45 2021.1216 THURSDAY
MAT122 DAY506 MEETING 42 of 45 2021.1215 WEDNESDAY
MAT122 DAY308 Lesson 26 of 45
MAT122 DAY307 Lesson 25 of 45
MAT122 DAY306 Lesson 24 of 45
MAT122 DAY305 Lesson 23 of 45
MAT122 DAY304 Lesson 22 of 45
MAT122 DAY303 Lesson 21 of 45
MAT122 DAY302 Lesson 20 of 45
MAT122 DAY301 Lesson 19 of 45
MAT122 DAY205
MAT122 DAY204
MAT122 DAY203
MAT122 DAY202
MAT122 DAY201
MAT122 DAY06
MAT122 DAY05

Recently uploaded (20)

PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
Yogi Goddess Pres Conference Studio Updates
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PPTX
Lesson notes of climatology university.
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
A systematic review of self-coping strategies used by university students to ...
PDF
Trump Administration's workforce development strategy
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
01-Introduction-to-Information-Management.pdf
PPTX
GDM (1) (1).pptx small presentation for students
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
VCE English Exam - Section C Student Revision Booklet
PPTX
Orientation - ARALprogram of Deped to the Parents.pptx
PPTX
Pharma ospi slides which help in ospi learning
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Microbial disease of the cardiovascular and lymphatic systems
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Yogi Goddess Pres Conference Studio Updates
Abdominal Access Techniques with Prof. Dr. R K Mishra
Lesson notes of climatology university.
human mycosis Human fungal infections are called human mycosis..pptx
A systematic review of self-coping strategies used by university students to ...
Trump Administration's workforce development strategy
Final Presentation General Medicine 03-08-2024.pptx
01-Introduction-to-Information-Management.pdf
GDM (1) (1).pptx small presentation for students
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Module 4: Burden of Disease Tutorial Slides S2 2025
VCE English Exam - Section C Student Revision Booklet
Orientation - ARALprogram of Deped to the Parents.pptx
Pharma ospi slides which help in ospi learning
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx

preTEST3A Double Integrals Solved

  • 1. MAT225 TEST3A Name: Show all work algebraically if possible. RVF (Question 1) s(t), v(t), a(t)    (1) A bullet is shot upward from the surface of the Moon such that  (t) 60t .8t y = 1 − 0 2   [y] = meters, [t] = seconds, t≥0.    (1a) Find y‘(t)  (1b) Calculate y‘(0)  (1c) Solve for t when y’(t) = 0.  (1d) What is the maximum height?  (1e) How fast is the bullet moving when it hits the ground?          TEST3A page: 1
  • 2. MAT225 TEST3A Name: Show all work algebraically if possible.       TEST3A page: 2
  • 3. MAT225 TEST3A Name: Show all work algebraically if possible. RVG (Question 2) a(t), v(t), s(t)    (2) Find f(x) such that f(x) is a function defined for all with these properties: − x > 5     (i) f ”(x) =​ 1 3√x+5   (ii) tangent line to the graph of f at (4,2) makes a 45° angle with the x-axis.        TEST3A page: 3
  • 4. MAT225 TEST3A Name: Show all work algebraically if possible.     TEST3A page: 4
  • 5. MAT225 TEST3A Name: Show all work algebraically if possible. (1) Dot Products    Given the triangle ABC, A(1,1), B(4,1) and C(4,4):    (1a) Find the components of the vectors ​AB​ and ​AC​.  (1b) Calculate the magnitudes of the vectors ​AB​ and ​AC​.  (1c) Use the Dot Product of ​AB​ and ​AC​ to find the measure of angle A.  (1d) What is the area of ABC? Δ   (1e) Let​ , does​ equal the triangle area? s = 2 a+b+c √s(s )(s )(s ) − a − b − c         TEST3A page: 5
  • 6. MAT225 TEST3A Name: Show all work algebraically if possible. TEST3A page: 6
  • 7. MAT225 TEST3A Name: Show all work algebraically if possible. (2) Cross Products    Given the triangle ABC, A(1,1), B(4,1) and C(4,4):    (2a) Find the following Cross Products: ​OB​ x ​OC​, ​OC​ x ​OA​, ​OA​ x ​OB​.  (2b) Sum the following Cross Products: ​OB​ x ​OC​, ​OC​ x ​OA​, ​OA​ x ​OB​.  (2c) What is the magnitude of the sum of these Cross Products?  (2d) Is there a relationship between this magnitude and the triangle area?        TEST3A page: 7
  • 8. MAT225 TEST3A Name: Show all work algebraically if possible.     TEST3A page: 8
  • 9. MAT225 TEST3A Name: Show all work algebraically if possible. (3) Determinants    Let the vectors ​u​ = <1,2,3>, ​v​=<1,0,1> and ​w​=<2,3,4>:    (3a) Find ​u​ • (​v​ x ​w​).  (3b) What does this value measure?      TEST3A page: 9
  • 10. MAT225 TEST3A Name: Show all work algebraically if possible.     TEST3A page: 10
  • 11. MAT225 TEST3A Name: Show all work algebraically if possible. (4) Determinants    Let the vectors ​u​ = <1,2,3>, ​v​=<1,0,1> and ​w​=<2,3,4>:    (4a) Find det(​u​,​v​,​w​).  (4b) What does this value measure?      TEST3A page: 11
  • 12. MAT225 TEST3A Name: Show all work algebraically if possible.     TEST3A page: 12
  • 13. MAT225 TEST3A Name: Show all work algebraically if possible. (5) Iterated Integrals    Consider the area in the xy-plane bounded by: , − √4 − y2 ≤ x ≤ √4 − y2 . 0 ≤ y ≤ 2     ydx A = ∫ 2 −2 ∫ √4−y2 0 d     (5a) Draw this region labeling a vertical Riemann Rectangle with thickness dx.  (5b) Explain how to setup this integral in terms of dydx to calculate the area.  (5c) Evaluate your integral in terms of dydx.      TEST3A page: 13
  • 14. MAT225 TEST3A Name: Show all work algebraically if possible.     TEST3A page: 14
  • 15. MAT225 TEST3A Name: Show all work algebraically if possible. (5) Iterated Integrals    Consider the area in the xy-plane bounded by: , − √4 − y2 ≤ x ≤ √4 − y2 . 0 ≤ y ≤ 2     ydx A = ∫ 2 −2 ∫ √4−y2 0 d     (5d) ReWrite this integral in terms of dxdy to calculate the area.  (5e) ReEvaluate your integral in terms of dxdy.    (5f) ReWrite this integral in terms of to calculate th area. drdθ r   (5g) ReEvaluate your integral in terms of​ drdθ. r     TEST3A page: 15
  • 16. MAT225 TEST3A Name: Show all work algebraically if possible.     TEST3A page: 16
  • 17. MAT225 TEST3A Name: Show all work algebraically if possible. (6) Iterated Integrals    Find the volume of the solid bounded by the surface f(x,y)=1-xy above the triangle  bounded by y=x, y=1 and x=0.    (1 y) dxdy V = ∫ 1 0 ∫ y 0 − x     (6a) Explain how to set up an integral to calculate this volume in terms of dxdy.  (6b) Evaluate your double integral.    (6c) ReWrite the integral terms of dydx.  (6d) Evaluate your double integral.       TEST3A page: 17
  • 18. MAT225 TEST3A Name: Show all work algebraically if possible.     TEST3A page: 18
  • 19. MAT225 TEST3A Name: Show all work algebraically if possible. (7) Line Integrals    Calculate a line integral to find the mass of a wire given density and the path C: ρ      Density Function (x, ) y ρ = F y = x   Along the path C: r(t)=<4t, 3t> such that 0 ≤ t ≤ 1     (7a) Find ds=|r’(t)|dt  (7b) Write the line integral in terms of t. ds ∫ C F   (7c) Evaluate your integral.          TEST3A page: 19
  • 20. MAT225 TEST3A Name: Show all work algebraically if possible.     TEST3A page: 20
  • 21. MAT225 TEST3A Name: Show all work algebraically if possible. (8) Work Done By A Conservative Field    Given the Vector Field​ (x, ) < x y , 2x xy F y = a 2 + y3 + 1 3 + b 2 + 2 >     (8a) Find the values of and b for which F is conservative.  (8b) Using these values of a and b, find f(x,y) such that F = gradient(f).  (8c) Find the work done through F along the curve C:     (t) cos(t), y(t) sin(t), 0 x = et = et ≤ t ≤ π       TEST3A page: 21
  • 22. MAT225 TEST3A Name: Show all work algebraically if possible.       TEST3A page: 22
  • 23. MAT225 TEST3A Name: Show all work algebraically if possible. Reference Sheet: Derivatives You Should Know Cold!    Power Functions:  x nx d dx n = n−1     Trig Functions:  sin(x) os(x) d dx = c cos(x) in(x) d dx = − s   tan(x) (x) d dx = sec2 cot(x) (x) d dx = − csc2   sec(x) ec(x) tan(x) d dx = s csc(x) sc(x) cot(x) d dx = − c     Transcendental Functions:  e d dx x = ex a n(a) a d dx x = l x   ln(x) d dx = x 1 log (x) d dx a = 1 ln(a) x 1     Inverse Trig Functions:  sin (x) d dx −1 = 1 √1−x2 cos (x) d dx −1 = −1 √1−x2   tan (x) d dx −1 = 1 1+x2 cot (x) d dx −1 = −1 1+x2     Product Rule:  f(x) g(x) (x) g (x) (x) f (x) d dx = f ′ + g ′     Quotient Rule:  d dx f(x) g(x) = g (x) 2 g(x) f (x) − f(x) g (x) ′ ′     Chain Rule:  f(g(x)) (g(x)) g (x) d dx = f′ ′     Difference Quotient:  f’(x) =​ lim h→0 h f(x+h) − f(x)     TEST3A page: 23
  • 24. MAT225 TEST3A Name: Show all work algebraically if possible. Reference Sheet: Anti-Derivatives You Should Know Cold!    Power Functions:  dx x ∫xn = n n−1     Trig Functions:  os(x)dx in(x) ∫c = s + C in(x)dx os(x) ∫s = − c + C   ec (x)dx an(x) ∫s 2 = t + C sc (x)dx ot(x) ∫c 2 = − c + C   ec(x)tan(x)dx ec(x) ∫s = s + C sc(x)cos(x)dx sc(x) ∫c = − c + C       Transcendental Functions:  dx e ∫ex = x + C dx ∫ax = ax ln(a) + C   dx n(x) ∫ x 1 = l + C dx log (x) ∫ 1 ln(a) x 1 = a + C     Inverse Trig Functions:  dx sin (x) ∫ 1 √1−x2 = −1 + C dx cos(x) ∫ −1 √1−x2 = + C   dx tan (x) ∫ 1 1+x2 = −1 + C dx cot (x) ∫ −1 1+x2 = −1 + C     Integration By Parts (Product Rule):  dv uv du ∫u = −∫v + C     Integration By Partial Fractions Example (Quotient Rule):  ∫ dx x(x+1) = ∫ x Adx +∫ x+1 Bdx TEST3A page: 24