SlideShare a Scribd company logo
MAT225 TEST1A Name:
Show all work algebraically if possible.
RVA/RVB (Question 1) Rational Functions 
 
Let f(x)=
x − 4
2
2x − 16
3
 
 
(1a) (x) ?
lim
x→−∞
f =  
(1b) (x) ?
lim
x→∞
f =  
(1c) (x) ?
lim
x→−2−
f =  
(1d) (x) ?
lim
x→−2+
f =  
(1e) (x) ?
lim
x→2−
f =  
(1f) (x) ?
lim
x→2+
f =    
TEST1A page: 1
MAT225 TEST1A Name:
Show all work algebraically if possible.
 
   
TEST1A page: 2
MAT225 TEST1A Name:
Show all work algebraically if possible.
RVA/RVB (Question 2) Difference Quotients 
 
Let g(x) = x​2​
- x 
 
(2a) Find g’(x) using the Difference Quotient. 
(2b) Calculate g(x) and g’(x) when x= .
2
1
 
(2c) State the equation of the tangent line to g(x) at x= .
2
1
   
TEST1A page: 3
MAT225 TEST1A Name:
Show all work algebraically if possible.
   
TEST1A page: 4
MAT225 TEST1A Name:
Show all work algebraically if possible.
RVA/RVB (Question 3) Difference Quotients 
 
(1a) = ?
lim
h→0
h
(x+h) − x
2 2
 
(1b) = ?
lim
h→0
h
(5+h) − 25
2
 
(1c) = ?
lim
h→0
h
sin(x+h) − sin(x)
 
(1d) = ?
lim
h→0
h
sin( +h) − 1
2
π
 
(1e) = ?
lim
h→0
h
e − e
x+h x
 
(1f) = ?
lim
h→0
h
e − 1
h
 
TEST1A page: 5
MAT225 TEST1A Name:
Show all work algebraically if possible.
   
TEST1A page: 6
MAT225 TEST1A Name:
Show all work algebraically if possible.
(1)  Vector Arithmetic 
 
Let ​u​ = <1,2,3>, ​v​ = <3,–2,1>, ​w​ = <4,0,6> 
 
(1a) Find ​u​ – ​v 
(1b) Find –2(​u​ – ​v​) 
(1c) Find ​u​ + ​w 
(1d) Find 3(​u​ + ​w​) 
(1e) Find 3(​u​ + ​v​) – 2(​u​ – ​v​)   
TEST1A page: 7
MAT225 TEST1A Name:
Show all work algebraically if possible.
TEST1A page: 8
MAT225 TEST1A Name:
Show all work algebraically if possible.
(2) Circuit Analysis: 
The currents I​1​ , I​2​ , I​3​ in a circuit with resistors R​1​, R​2​ and voltages E​1​ , E​2 
are described by the following system of equations: 
 
R​1​I​1​ + R​3​I​3​ = E​1 
R​2​I​2​ + R​3​I​3​ = E​2 
I​1​ + I​2​ - I​3​ = 0 
 
Let R1 = 2 Ohms, R​2​ = 1 Ohm, R​3​ = 4 Ohms, E​1​ = 14 Volts and E​2​ = 28 Volts. 
 
A​ = X​ = B​ =  
 
(2a) If ​AX = B​, list the Minors of Matrix ​A​. 
(2b) If ​AX = B​, state the CoFactors of the Minors of Matrix ​A​. 
(2c) If ​AX = B​, find the Transpose of the CoFactors of the Minors of Matrix ​A​.   
TEST1A page: 9
MAT225 TEST1A Name:
Show all work algebraically if possible.
   
TEST1A page: 10
MAT225 TEST1A Name:
Show all work algebraically if possible.
(2) Circuit Analysis: 
The currents I​1​ , I​2​ , I​3​ in a circuit with resistors R​1​, R​2​ and voltages E​1​ , E​2 
are described by the following system of equations: 
 
R​1​I​1​ + R​3​I​3​ = E​1 
R​2​I​2​ + R​3​I​3​ = E​2 
I​1​ + I​2​ - I​3​ = 0 
 
Let R1 = 2 Ohms, R​2​ = 1 Ohm, R​3​ = 4 Ohms, E​1​ = 14 Volts and E​2​ = 28 Volts. 
 
A​ = X​ = B​ =  
 
(2d) If ​AX = B​, calculate det(​A​)​ = |A|​. 
(2e) If ​AX = B​, find ​A​-1​
.   
TEST1A page: 11
MAT225 TEST1A Name:
Show all work algebraically if possible.
   
TEST1A page: 12
MAT225 TEST1A Name:
Show all work algebraically if possible.
(2) Circuit Analysis: 
The currents I​1​ , I​2​ , I​3​ in a circuit with resistors R​1​, R​2​ and voltages E​1​ , E​2 
are described by the following system of equations: 
 
R​1​I​1​ + R​3​I​3​ = E​1 
R​2​I​2​ + R​3​I​3​ = E​2 
I​1​ + I​2​ - I​3​ = 0 
 
Let R1 = 2 Ohms, R​2​ = 1 Ohm, R​3​ = 4 Ohms, E​1​ = 14 Volts and E​2​ = 28 Volts. 
 
A​ = X​ = B​ =  
 
(2f) Rewrite ​AX = B​ as ​X=A​-1​
B​. 
(2g) If ​AX = B​, find the solution vector ​X​.   
TEST1A page: 13
MAT225 TEST1A Name:
Show all work algebraically if possible.
   
TEST1A page: 14
MAT225 TEST1A Name:
Show all work algebraically if possible.
(3) TetraHedrons 
A molecule of Methane CH​4​ forms a Tetrahedron with Carbon at 
the centroid E(k/2, k/2, k/2) and Hydrogen atoms at the 4 corners: 
 
A(0, 0, 0), B(k, k, 0), C(k,0,k) and D(0, k, k) 
 
(3a) Find the length of side ​CD​. 
(3b) What is the angle between sides ​AC​ and ​AD​. 
(3c) Calculate the bonding angle between the vectors ​ED​ and ​EA​.   
TEST1A page: 15
MAT225 TEST1A Name:
Show all work algebraically if possible.
   
TEST1A page: 16
MAT225 TEST1A Name:
Show all work algebraically if possible.
(4) r(t)​ , ​v(t)​ , ​a(t) 
The motion of a particle is given by the position vector 
 
r(t)​ = < 3cos(t), 3sin(t), t> 
 
(4a) Find ​v(t)​ and its magnitude and interpret your result. 
(4b) Find ​a(t)​ and its magnitude and interpret your result. 
(4c) Calculate the dot product ​v(t)​ • ​a(t)​ and interpret your result.   
TEST1A page: 17
MAT225 TEST1A Name:
Show all work algebraically if possible.
   
TEST1A page: 18
MAT225 TEST1A Name:
Show all work algebraically if possible.
(5)  Triangles In Space 
Consider the triangle with vertices 
 
A(2, 1, 0), B(1, 0, 1) and C(2, -1, 1) 
 
(5a) Find the area of the triangle ABC. 
(5b) What is the equation of the plane containing points A, B and C? 
(5c) Where is the point of intersection of this plane with the line parallel to 
the vector v = <1, 1, 1> passing through the point S(-1, 0, 0)?   
TEST1A page: 19
MAT225 TEST1A Name:
Show all work algebraically if possible.
   
TEST1A page: 20
MAT225 TEST1A Name:
Show all work algebraically if possible.
(6) Vector Calculus 
Let ​r(t)​ be a displacement vector in space. 
 
(6a) Find the derivative of ​r(t)​ • ​r(t)​ with respect to time. 
(6b) Show that ​r(t)​ and ​v(t)​ are perpendicular when ​r(t)​ is constant. 
(6c) Calculate ​r(t)​ • ​a(t)​ given ​r(t)​ is constant.   
TEST1A page: 21
MAT225 TEST1A Name:
Show all work algebraically if possible.
   
TEST1A page: 22
MAT225 TEST1A Name:
Show all work algebraically if possible.
Reference Sheet: Derivatives You Should Know Cold! 
 
Power Functions: 
x nx
d
dx
n = n−1  
 
Trig Functions: 
sin(x) os(x)
d
dx
= c cos(x) in(x)
d
dx
= − s  
tan(x) (x)
d
dx
= sec2 cot(x) (x)
d
dx
= − csc2  
sec(x) ec(x) tan(x)
d
dx
= s csc(x) sc(x) cot(x)
d
dx
= − c  
 
Transcendental Functions: 
e
d
dx
x = ex a n(a) a
d
dx
x = l x  
ln(x)
d
dx = x
1
log (x)
d
dx a = 1
ln(a) x
1
 
 
Inverse Trig Functions: 
sin (x)
d
dx
−1
= 1
√1−x2
cos (x)
d
dx
−1
= −1
√1−x2
 
tan (x)
d
dx
−1
= 1
1+x2 cot (x)
d
dx
−1
= −1
1+x2  
 
Product Rule: 
f(x) g(x) (x) g (x) (x) f (x)
d
dx = f ′ + g ′  
 
Quotient Rule: 
d
dx
f(x)
g(x) = g (x)
2
g(x) f (x) − f(x) g (x)
′ ′
 
 
Chain Rule: 
f(g(x)) (g(x)) g (x)
d
dx = f′ ′  
 
Difference Quotient: 
f’(x) =​ lim
h→0
h
f(x+h) − f(x)
   
TEST1A page: 23
MAT225 TEST1A Name:
Show all work algebraically if possible.
 
 
 
 
 
 
TEST1A page: 24

More Related Content

PDF
preTEST3A Double Integrals Solved
PDF
2020 preTEST1A
PDF
2020 preTEST3A
PDF
2021 preTEST4A Vector Calculus
PDF
2021 preTEST5A Final Review Packet!
PDF
1988 FRQs AP Calculus
PDF
2020 preTEST4A
PDF
2020 preTEST5A
preTEST3A Double Integrals Solved
2020 preTEST1A
2020 preTEST3A
2021 preTEST4A Vector Calculus
2021 preTEST5A Final Review Packet!
1988 FRQs AP Calculus
2020 preTEST4A
2020 preTEST5A

What's hot (17)

PDF
Applied mathematics 40
PDF
2020 preTEST2A
PDF
1st Semester Physics Cycle (Dec-2015; Jan-2016) Question Papers
PDF
Ch01 composition of_forces
PDF
MinFill_Presentation
PDF
William hyatt-7th-edition-drill-problems-solution
PDF
1st Semester Chemistry Cycle (Dec-2015; Jan-2016) Question Papers
PDF
3rd semester Computer Science and Information Science Engg (2013 December) Q...
PDF
1st semester chemistry stream (2015-June) Question Papers
PDF
4R2012 preTest8A
PDF
4R2012 preTest1A
PDF
3rd Semester CS and IS (2013-June) Question Papers
PDF
Matlab solved tutorials 2017 june.
PDF
4R2012 preTest12A
PDF
3rd Semester Electronic and Communication Engineering (2013-December) Questio...
PDF
3rd Semester Electronic and Communication Engineering (2013-June) Question P...
PDF
4R2012 preTest11A
Applied mathematics 40
2020 preTEST2A
1st Semester Physics Cycle (Dec-2015; Jan-2016) Question Papers
Ch01 composition of_forces
MinFill_Presentation
William hyatt-7th-edition-drill-problems-solution
1st Semester Chemistry Cycle (Dec-2015; Jan-2016) Question Papers
3rd semester Computer Science and Information Science Engg (2013 December) Q...
1st semester chemistry stream (2015-June) Question Papers
4R2012 preTest8A
4R2012 preTest1A
3rd Semester CS and IS (2013-June) Question Papers
Matlab solved tutorials 2017 june.
4R2012 preTest12A
3rd Semester Electronic and Communication Engineering (2013-December) Questio...
3rd Semester Electronic and Communication Engineering (2013-June) Question P...
4R2012 preTest11A
Ad

Similar to preTEST1A Solved Multivariable Calculus (20)

PDF
preTEST1A Multivariable Calculus
PDF
preTEST3A Double Integrals
PDF
preTEST2A MAT225 Multivariable Calculus
PDF
preTEST2A Solution MAT225 Multivariable Calculus
PDF
math1مرحلة اولى -compressed.pdf
PDF
A level-math-12-nov2011
PPTX
Online Maths Assignment Help
PDF
Matlab
PPTX
Online Maths Assignment Help
DOCX
Pre-Calculus Midterm ExamScore ______ ______Name _______.docx
PDF
1-CIE-IGCSE-Additional-Mathematics-Topical-Past-Paper-Functions.pdf
PDF
Nbhm m. a. and m.sc. scholarship test 2012 with answer key
PDF
Add maths complete f4 & f5 Notes
PDF
3rd Semester Mechanical Engineering (June/July-2015) Question Papers
PDF
3rd Semester Computer Science and Engineering (ACU) Question papers
PDF
DE-PS.pdf
PDF
Solution of matlab chapter 3
DOCX
PROBLEM SETS (DE).docx
DOCX
Question 1 1. Evaluate the integral. .docx
PDF
129215 specimen-paper-and-mark-schemes
preTEST1A Multivariable Calculus
preTEST3A Double Integrals
preTEST2A MAT225 Multivariable Calculus
preTEST2A Solution MAT225 Multivariable Calculus
math1مرحلة اولى -compressed.pdf
A level-math-12-nov2011
Online Maths Assignment Help
Matlab
Online Maths Assignment Help
Pre-Calculus Midterm ExamScore ______ ______Name _______.docx
1-CIE-IGCSE-Additional-Mathematics-Topical-Past-Paper-Functions.pdf
Nbhm m. a. and m.sc. scholarship test 2012 with answer key
Add maths complete f4 & f5 Notes
3rd Semester Mechanical Engineering (June/July-2015) Question Papers
3rd Semester Computer Science and Engineering (ACU) Question papers
DE-PS.pdf
Solution of matlab chapter 3
PROBLEM SETS (DE).docx
Question 1 1. Evaluate the integral. .docx
129215 specimen-paper-and-mark-schemes
Ad

More from A Jorge Garcia (20)

PDF
LIMACON 2023 Brochure
PDF
2022-RESUME-NEW
PDF
MAT122 DAY508 MEETING 44 of 45 2021.1217 FRIDAY
PDF
MAT122 DAY507 MEETING 43 of 45 2021.1216 THURSDAY
PDF
MAT122 DAY506 MEETING 42 of 45 2021.1215 WEDNESDAY
PDF
MAT122 DAY308 Lesson 26 of 45
PDF
MAT122 DAY307 Lesson 25 of 45
PDF
MAT122 DAY306 Lesson 24 of 45
PDF
MAT122 DAY305 Lesson 23 of 45
PDF
MAT122 DAY304 Lesson 22 of 45
PDF
MAT122 DAY303 Lesson 21 of 45
PDF
MAT122 DAY302 Lesson 20 of 45
PDF
MAT122 DAY301 Lesson 19 of 45
PDF
MAT122 DAY205
PDF
MAT122 DAY204
PDF
MAT122 DAY203
PDF
MAT122 DAY202
PDF
MAT122 DAY201
PDF
MAT122 DAY06
PDF
MAT122 DAY05
LIMACON 2023 Brochure
2022-RESUME-NEW
MAT122 DAY508 MEETING 44 of 45 2021.1217 FRIDAY
MAT122 DAY507 MEETING 43 of 45 2021.1216 THURSDAY
MAT122 DAY506 MEETING 42 of 45 2021.1215 WEDNESDAY
MAT122 DAY308 Lesson 26 of 45
MAT122 DAY307 Lesson 25 of 45
MAT122 DAY306 Lesson 24 of 45
MAT122 DAY305 Lesson 23 of 45
MAT122 DAY304 Lesson 22 of 45
MAT122 DAY303 Lesson 21 of 45
MAT122 DAY302 Lesson 20 of 45
MAT122 DAY301 Lesson 19 of 45
MAT122 DAY205
MAT122 DAY204
MAT122 DAY203
MAT122 DAY202
MAT122 DAY201
MAT122 DAY06
MAT122 DAY05

Recently uploaded (20)

PDF
Complications of Minimal Access Surgery at WLH
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
Cell Structure & Organelles in detailed.
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
Trump Administration's workforce development strategy
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
RMMM.pdf make it easy to upload and study
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Classroom Observation Tools for Teachers
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
GDM (1) (1).pptx small presentation for students
PPTX
Lesson notes of climatology university.
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
Complications of Minimal Access Surgery at WLH
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Supply Chain Operations Speaking Notes -ICLT Program
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Cell Structure & Organelles in detailed.
Chinmaya Tiranga quiz Grand Finale.pdf
Trump Administration's workforce development strategy
Module 4: Burden of Disease Tutorial Slides S2 2025
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
VCE English Exam - Section C Student Revision Booklet
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
RMMM.pdf make it easy to upload and study
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
Final Presentation General Medicine 03-08-2024.pptx
Classroom Observation Tools for Teachers
2.FourierTransform-ShortQuestionswithAnswers.pdf
GDM (1) (1).pptx small presentation for students
Lesson notes of climatology university.
human mycosis Human fungal infections are called human mycosis..pptx

preTEST1A Solved Multivariable Calculus

  • 1. MAT225 TEST1A Name: Show all work algebraically if possible. RVA/RVB (Question 1) Rational Functions    Let f(x)= x − 4 2 2x − 16 3     (1a) (x) ? lim x→−∞ f =   (1b) (x) ? lim x→∞ f =   (1c) (x) ? lim x→−2− f =   (1d) (x) ? lim x→−2+ f =   (1e) (x) ? lim x→2− f =   (1f) (x) ? lim x→2+ f =     TEST1A page: 1
  • 2. MAT225 TEST1A Name: Show all work algebraically if possible.       TEST1A page: 2
  • 3. MAT225 TEST1A Name: Show all work algebraically if possible. RVA/RVB (Question 2) Difference Quotients    Let g(x) = x​2​ - x    (2a) Find g’(x) using the Difference Quotient.  (2b) Calculate g(x) and g’(x) when x= . 2 1   (2c) State the equation of the tangent line to g(x) at x= . 2 1     TEST1A page: 3
  • 4. MAT225 TEST1A Name: Show all work algebraically if possible.     TEST1A page: 4
  • 5. MAT225 TEST1A Name: Show all work algebraically if possible. RVA/RVB (Question 3) Difference Quotients    (1a) = ? lim h→0 h (x+h) − x 2 2   (1b) = ? lim h→0 h (5+h) − 25 2   (1c) = ? lim h→0 h sin(x+h) − sin(x)   (1d) = ? lim h→0 h sin( +h) − 1 2 π   (1e) = ? lim h→0 h e − e x+h x   (1f) = ? lim h→0 h e − 1 h   TEST1A page: 5
  • 6. MAT225 TEST1A Name: Show all work algebraically if possible.     TEST1A page: 6
  • 7. MAT225 TEST1A Name: Show all work algebraically if possible. (1)  Vector Arithmetic    Let ​u​ = <1,2,3>, ​v​ = <3,–2,1>, ​w​ = <4,0,6>    (1a) Find ​u​ – ​v  (1b) Find –2(​u​ – ​v​)  (1c) Find ​u​ + ​w  (1d) Find 3(​u​ + ​w​)  (1e) Find 3(​u​ + ​v​) – 2(​u​ – ​v​)    TEST1A page: 7
  • 8. MAT225 TEST1A Name: Show all work algebraically if possible. TEST1A page: 8
  • 9. MAT225 TEST1A Name: Show all work algebraically if possible. (2) Circuit Analysis:  The currents I​1​ , I​2​ , I​3​ in a circuit with resistors R​1​, R​2​ and voltages E​1​ , E​2  are described by the following system of equations:    R​1​I​1​ + R​3​I​3​ = E​1  R​2​I​2​ + R​3​I​3​ = E​2  I​1​ + I​2​ - I​3​ = 0    Let R1 = 2 Ohms, R​2​ = 1 Ohm, R​3​ = 4 Ohms, E​1​ = 14 Volts and E​2​ = 28 Volts.    A​ = X​ = B​ =     (2a) If ​AX = B​, list the Minors of Matrix ​A​.  (2b) If ​AX = B​, state the CoFactors of the Minors of Matrix ​A​.  (2c) If ​AX = B​, find the Transpose of the CoFactors of the Minors of Matrix ​A​.    TEST1A page: 9
  • 10. MAT225 TEST1A Name: Show all work algebraically if possible.     TEST1A page: 10
  • 11. MAT225 TEST1A Name: Show all work algebraically if possible. (2) Circuit Analysis:  The currents I​1​ , I​2​ , I​3​ in a circuit with resistors R​1​, R​2​ and voltages E​1​ , E​2  are described by the following system of equations:    R​1​I​1​ + R​3​I​3​ = E​1  R​2​I​2​ + R​3​I​3​ = E​2  I​1​ + I​2​ - I​3​ = 0    Let R1 = 2 Ohms, R​2​ = 1 Ohm, R​3​ = 4 Ohms, E​1​ = 14 Volts and E​2​ = 28 Volts.    A​ = X​ = B​ =     (2d) If ​AX = B​, calculate det(​A​)​ = |A|​.  (2e) If ​AX = B​, find ​A​-1​ .    TEST1A page: 11
  • 12. MAT225 TEST1A Name: Show all work algebraically if possible.     TEST1A page: 12
  • 13. MAT225 TEST1A Name: Show all work algebraically if possible. (2) Circuit Analysis:  The currents I​1​ , I​2​ , I​3​ in a circuit with resistors R​1​, R​2​ and voltages E​1​ , E​2  are described by the following system of equations:    R​1​I​1​ + R​3​I​3​ = E​1  R​2​I​2​ + R​3​I​3​ = E​2  I​1​ + I​2​ - I​3​ = 0    Let R1 = 2 Ohms, R​2​ = 1 Ohm, R​3​ = 4 Ohms, E​1​ = 14 Volts and E​2​ = 28 Volts.    A​ = X​ = B​ =     (2f) Rewrite ​AX = B​ as ​X=A​-1​ B​.  (2g) If ​AX = B​, find the solution vector ​X​.    TEST1A page: 13
  • 14. MAT225 TEST1A Name: Show all work algebraically if possible.     TEST1A page: 14
  • 15. MAT225 TEST1A Name: Show all work algebraically if possible. (3) TetraHedrons  A molecule of Methane CH​4​ forms a Tetrahedron with Carbon at  the centroid E(k/2, k/2, k/2) and Hydrogen atoms at the 4 corners:    A(0, 0, 0), B(k, k, 0), C(k,0,k) and D(0, k, k)    (3a) Find the length of side ​CD​.  (3b) What is the angle between sides ​AC​ and ​AD​.  (3c) Calculate the bonding angle between the vectors ​ED​ and ​EA​.    TEST1A page: 15
  • 16. MAT225 TEST1A Name: Show all work algebraically if possible.     TEST1A page: 16
  • 17. MAT225 TEST1A Name: Show all work algebraically if possible. (4) r(t)​ , ​v(t)​ , ​a(t)  The motion of a particle is given by the position vector    r(t)​ = < 3cos(t), 3sin(t), t>    (4a) Find ​v(t)​ and its magnitude and interpret your result.  (4b) Find ​a(t)​ and its magnitude and interpret your result.  (4c) Calculate the dot product ​v(t)​ • ​a(t)​ and interpret your result.    TEST1A page: 17
  • 18. MAT225 TEST1A Name: Show all work algebraically if possible.     TEST1A page: 18
  • 19. MAT225 TEST1A Name: Show all work algebraically if possible. (5)  Triangles In Space  Consider the triangle with vertices    A(2, 1, 0), B(1, 0, 1) and C(2, -1, 1)    (5a) Find the area of the triangle ABC.  (5b) What is the equation of the plane containing points A, B and C?  (5c) Where is the point of intersection of this plane with the line parallel to  the vector v = <1, 1, 1> passing through the point S(-1, 0, 0)?    TEST1A page: 19
  • 20. MAT225 TEST1A Name: Show all work algebraically if possible.     TEST1A page: 20
  • 21. MAT225 TEST1A Name: Show all work algebraically if possible. (6) Vector Calculus  Let ​r(t)​ be a displacement vector in space.    (6a) Find the derivative of ​r(t)​ • ​r(t)​ with respect to time.  (6b) Show that ​r(t)​ and ​v(t)​ are perpendicular when ​r(t)​ is constant.  (6c) Calculate ​r(t)​ • ​a(t)​ given ​r(t)​ is constant.    TEST1A page: 21
  • 22. MAT225 TEST1A Name: Show all work algebraically if possible.     TEST1A page: 22
  • 23. MAT225 TEST1A Name: Show all work algebraically if possible. Reference Sheet: Derivatives You Should Know Cold!    Power Functions:  x nx d dx n = n−1     Trig Functions:  sin(x) os(x) d dx = c cos(x) in(x) d dx = − s   tan(x) (x) d dx = sec2 cot(x) (x) d dx = − csc2   sec(x) ec(x) tan(x) d dx = s csc(x) sc(x) cot(x) d dx = − c     Transcendental Functions:  e d dx x = ex a n(a) a d dx x = l x   ln(x) d dx = x 1 log (x) d dx a = 1 ln(a) x 1     Inverse Trig Functions:  sin (x) d dx −1 = 1 √1−x2 cos (x) d dx −1 = −1 √1−x2   tan (x) d dx −1 = 1 1+x2 cot (x) d dx −1 = −1 1+x2     Product Rule:  f(x) g(x) (x) g (x) (x) f (x) d dx = f ′ + g ′     Quotient Rule:  d dx f(x) g(x) = g (x) 2 g(x) f (x) − f(x) g (x) ′ ′     Chain Rule:  f(g(x)) (g(x)) g (x) d dx = f′ ′     Difference Quotient:  f’(x) =​ lim h→0 h f(x+h) − f(x)     TEST1A page: 23
  • 24. MAT225 TEST1A Name: Show all work algebraically if possible.             TEST1A page: 24