SlideShare a Scribd company logo
The Logarithmic Functions
There are three numbers in an exponential notation.
The Logarithmic Functions
4 3 = 64
There are three numbers in an exponential notation.
The Logarithmic Functions
the base
4 3 = 64
There are three numbers in an exponential notation.
The Logarithmic Functions
the exponent
the base
4 3 = 64
There are three numbers in an exponential notation.
The Logarithmic Functions
the exponent
the base
the output
4 3 = 64
There are three numbers in an exponential notation.
Given the above expression, we say that
“(base) 4 raised to the exponent (power) 3 gives 64”.
The Logarithmic Functions
the exponent
the base
the output
4 3 = 64
There are three numbers in an exponential notation.
The Logarithmic Functions
the exponent
the base
the output
4 3 = 64
Given the above expression, we say that
“(base) 4 raised to the exponent (power) 3 gives 64”.
The focus of the above statement is that when 43 is
executed, the output is 64.
There are three numbers in an exponential notation.
The Logarithmic Functions
the exponent
the base
the output
4 3 = 64
However if we are given the output is 64 from
raising 4 to a power,
Given the above expression, we say that
“(base) 4 raised to the exponent (power) 3 gives 64”.
The focus of the above statement is that when 43 is
executed, the output is 64.
There are three numbers in an exponential notation.
The Logarithmic Functions
the exponent
the base
the output
4 3 = 64
However if we are given the output is 64 from
raising 4 to a power,
the power
the base the output
4 = 64
3
Given the above expression, we say that
“(base) 4 raised to the exponent (power) 3 gives 64”.
The focus of the above statement is that when 43 is
executed, the output is 64.
There are three numbers in an exponential notation.
The Logarithmic Functions
the exponent
the base
the output
4 3 = 64
However if we are given the output is 64 from
raising 4 to a power, then the
needed power is called
log4(64)
the power = log4(64)
the base the output
4 = 64
3
Given the above expression, we say that
“(base) 4 raised to the exponent (power) 3 gives 64”.
The focus of the above statement is that when 43 is
executed, the output is 64.
There are three numbers in an exponential notation.
The Logarithmic Functions
the exponent
the base
the output
4 3 = 64
However if we are given the output is 64 from
raising 4 to a power, then the
needed power is called
log4(64) which is 3.
the power = log4(64)
the base the output
4 = 64
3
Given the above expression, we say that
“(base) 4 raised to the exponent (power) 3 gives 64”.
The focus of the above statement is that when 43 is
executed, the output is 64.
There are three numbers in an exponential notation.
The Logarithmic Functions
the exponent
the base
the output
4 3 = 64
However if we are given the output is 64 from
raising 4 to a power, then the
needed power is called
log4(64) which is 3.
the power = log4(64)
the base the output
4 = 64
3
or that log4(64) = 3 and we say
that “log–base–4 of 64 is 3”.
Given the above expression, we say that
“(base) 4 raised to the exponent (power) 3 gives 64”.
The focus of the above statement is that when 43 is
executed, the output is 64.
The Logarithmic Functions
Just as the sentence
“Bart's dad is Homer.”
contains the same information as
“Homer's son is Bart.”,
The Logarithmic Functions
Just as the sentence
“Bart's dad is Homer.”
contains the same information as
“Homer's son is Bart.” The expression
“64 = 43”
contains the same information as
“log4(64) = 3”.
The Logarithmic Functions
Just as the sentence
“Bart's dad is Homer.”
contains the same information as
“Homer's son is Bart.” The expression
“64 = 43”
contains the same information as
“log4(64) = 3”.
The expression “64 = 43” is called the exponential form
and “log4(64) = 3” is called the logarithmic form of the
expressed relation.
The Logarithmic Functions
Just as the sentence
“Bart's dad is Homer.”
contains the same information as
“Homer's son is Bart.” The expression
“64 = 43”
contains the same information as
“log4(64) = 3”.
The expression “64 = 43” is called the exponential form
and “log4(64) = 3” is called the logarithmic form of the
expressed relation.
In general, we say that
“log–base–b of y is x” or
logb(y) = x
The Logarithmic Functions
Just as the sentence
“Bart's dad is Homer.”
contains the same information as
“Homer's son is Bart.” The expression
“64 = 43”
contains the same information as
“log4(64) = 3”.
The expression “64 = 43” is called the exponential form
and “log4(64) = 3” is called the logarithmic form of the
expressed relation.
In general, we say that
“log–base–b of y is x” or
logb(y) = x if y = bx (b > 0).
The Logarithmic Functions
Just as the sentence
“Bart's dad is Homer.”
contains the same information as
“Homer's son is Bart.” The expression
“64 = 43”
contains the same information as
“log4(64) = 3”.
The expression “64 = 43” is called the exponential form
and “log4(64) = 3” is called the logarithmic form of the
expressed relation.
In general, we say that
“log–base–b of y is x” or
logb(y) = x if y = bx (b > 0).
the power = logb(y)
the base the output
b = y
x
The Logarithmic Functions
Just as the sentence
“Bart's dad is Homer.”
contains the same information as
“Homer's son is Bart.” The expression
“64 = 43”
contains the same information as
“log4(64) = 3”.
The expression “64 = 43” is called the exponential form
and “log4(64) = 3” is called the logarithmic form of the
expressed relation.
In general, we say that
“log–base–b of y is x” or
logb(y) = x if y = bx (b > 0),
i.e. logb(y) is the exponent x.
the power = logb(y)
the base the output
b = y
x
The Logarithmic Functions
When working with the exponential form or the
logarithmic expressions, always identify the base
number b first.
The Logarithmic Functions
When working with the exponential form or the
logarithmic expressions, always identify the base
number b first.
All the following exponential expressions yield 64.
The Logarithmic Functions
When working with the exponential form or the
logarithmic expressions, always identify the base
number b first.
All the following exponential expressions yield 64.
43 → 64
82 → 64
26 → 64
exp–form
The Logarithmic Functions
When working with the exponential form or the
logarithmic expressions, always identify the base
number b first.
All the following exponential expressions yield 64.
Their corresponding
log–form are differentiated
by the bases and the
different exponents
required.
43 → 64
82 → 64
26 → 64
exp–form log–form
The Logarithmic Functions
When working with the exponential form or the
logarithmic expressions, always identify the base
number b first.
All the following exponential expressions yield 64.
43 → 64
82 → 64
26 → 64
log4(64)
log8(64)
log2(64)
exp–form log–formTheir corresponding
log–form are differentiated
by the bases and the
different exponents
required.
The Logarithmic Functions
When working with the exponential form or the
logarithmic expressions, always identify the base
number b first.
All the following exponential expressions yield 64.
Their corresponding
log–form are differentiated
by the bases and the
different exponents
required.
43 → 64
82 → 64
26 → 64
log4(64) →
log8(64) →
log2(64) →
exp–form log–form
The Logarithmic Functions
When working with the exponential form or the
logarithmic expressions, always identify the base
number b first.
All the following exponential expressions yield 64.
43 → 64
82 → 64
26 → 64
log4(64) → 3
log8(64) →
log2(64) →
exp–form log–formTheir corresponding
log–form are differentiated
by the bases and the
different exponents
required.
The Logarithmic Functions
When working with the exponential form or the
logarithmic expressions, always identify the base
number b first.
All the following exponential expressions yield 64.
43 → 64
82 → 64
26 → 64
log4(64) → 3
log8(64) → 2
log2(64) →
exp–form log–formTheir corresponding
log–form are differentiated
by the bases and the
different exponents
required.
The Logarithmic Functions
When working with the exponential form or the
logarithmic expressions, always identify the base
number b first.
All the following exponential expressions yield 64.
43 → 64
82 → 64
26 → 64
log4(64) → 3
log8(64) → 2
log2(64) → 6
exp–form log–formTheir corresponding
log–form are differentiated
by the bases and the
different exponents
required.
The Logarithmic Functions
When working with the exponential form or the
logarithmic expressions, always identify the base
number b first.
All the following exponential expressions yield 64.
43 → 64
82 → 64
26 → 64
log4(64) → 3
log8(64) → 2
log2(64) → 6
exp–form log–formTheir corresponding
log–form are differentiated
by the bases and the
different exponents
required.
Both numbers b and y appeared in the log notation
“logb(y)” must be positive.
The Logarithmic Functions
When working with the exponential form or the
logarithmic expressions, always identify the base
number b first.
All the following exponential expressions yield 64.
43 → 64
82 → 64
26 → 64
log4(64) → 3
log8(64) → 2
log2(64) → 6
exp–form log–formTheir corresponding
log–form are differentiated
by the bases and the
different exponents
required.
Both numbers b and y appeared in the log notation
“logb(y)” must be positive. Switch to x as the input,
the domain of logb(x) is the set D = {x l x > 0 }.
The Logarithmic Functions
When working with the exponential form or the
logarithmic expressions, always identify the base
number b first.
All the following exponential expressions yield 64.
43 → 64
82 → 64
26 → 64
log4(64) → 3
log8(64) → 2
log2(64) → 6
exp–form log–formTheir corresponding
log–form are differentiated
by the bases and the
different exponents
required.
Both numbers b and y appeared in the log notation
“logb(y)” must be positive. Switch to x as the input,
the domain of logb(x) is the set D = {x l x > 0 }.
We would get an error message if we execute
log2(–1) with software.
The Logarithmic Functions
To convert the exp-form to the log–form:
b = y
x
The Logarithmic Functions
To convert the exp-form to the log–form:
b = y
x
logb( y ) = x→
Identity the base and the
correct log–function
The Logarithmic Functions
To convert the exp-form to the log–form:
b = y
x
logb( y ) = x→
insert the exponential
output.
The Logarithmic Functions
To convert the exp-form to the log–form:
b = y
x
logb( y ) = x→
The log–output is the
required exponent.
The Logarithmic Functions
Example A. Rewrite the exp-form into the log-form.
a. 42 = 16
b. w = u2+v
To convert the exp-form to the log–form:
b = y
x
logb( y ) = x→
The Logarithmic Functions
Example A. Rewrite the exp-form into the log-form.
a. 42 = 16  log4(16) = 2
b. w = u2+v
To convert the exp-form to the log–form:
b = y
x
logb( y ) = x→
The Logarithmic Functions
Example A. Rewrite the exp-form into the log-form.
a. 42 = 16  log4(16) = 2
b. w = u2+v
To convert the exp-form to the log–form:
b = y
x
logb( y ) = x→
The Logarithmic Functions
Example A. Rewrite the exp-form into the log-form.
a. 42 = 16  log4(16) = 2
b. w = u2+v
To convert the exp-form to the log–form:
b = y
x
logb( y ) = x→
The Logarithmic Functions
Example A. Rewrite the exp-form into the log-form.
a. 42 = 16  log4(16) = 2
b. w = u2+v  logu(w) = 2+v
To convert the exp-form to the log–form:
b = y
x
logb( y ) = x→
The Logarithmic Functions
Example A. Rewrite the exp-form into the log-form.
a. 42 = 16  log4(16) = 2
b. w = u2+v  logu(w) = 2+v
To convert the exp-form to the log–form:
b = y
x
logb( y ) = x→
The Logarithmic Functions
Example A. Rewrite the exp-form into the log-form.
a. 42 = 16  log4(16) = 2
b. w = u2+v  logu(w) = 2+v
To convert the exp-form to the log–form:
b = y
x
logb( y ) = x→
The Logarithmic Functions
Example A. Rewrite the exp-form into the log-form.
a. 42 = 16  log4(16) = 2
b. w = u2+v  logu(w) = 2+v
To convert the exp-form to the log–form:
b = y
x
→
To convert the log–form to the exp–form:
logb( y ) = x
logb( y ) = x
The Logarithmic Functions
Example A. Rewrite the exp-form into the log-form.
a. 42 = 16  log4(16) = 2
b. w = u2+v  logu(w) = 2+v
To convert the exp-form to the log–form:
b = y
x
→
To convert the log–form to the exp–form:
b = y
x
logb( y ) = x→
logb( y ) = x
The Logarithmic Functions
Example A. Rewrite the exp-form into the log-form.
a. 42 = 16  log4(16) = 2
b. w = u2+v  logu(w) = 2+v
To convert the exp-form to the log–form:
b = y
x
→
To convert the log–form to the exp–form:
b = y
x
logb( y ) = x→
logb( y ) = x
The Logarithmic Functions
Example A. Rewrite the exp-form into the log-form.
a. 42 = 16  log4(16) = 2
b. w = u2+v  logu(w) = 2+v
To convert the exp-form to the log–form:
b = y
x
→
To convert the log–form to the exp–form:
b = y
x
logb( y ) = x→
logb( y ) = x
The Logarithmic Functions
Example B. Rewrite the log-form into the exp-form.
a. log3(1/9) = –2
b. 2w = logv(a – b)
Example A. Rewrite the exp-form into the log-form.
a. 42 = 16  log4(16) = 2
b. w = u2+v  logu(w) = 2+v
To convert the exp-form to the log–form:
b = y
x
logb( y ) = x→
To convert the log–form to the exp–form:
b = y
x
logb( y ) = x→
The Logarithmic Functions
Example B. Rewrite the log-form into the exp-form.
a. log3(1/9) = –2  3-2 = 1/9
b. 2w = logv(a – b)
Example A. Rewrite the exp-form into the log-form.
a. 42 = 16  log4(16) = 2
b. w = u2+v  logu(w) = 2+v
To convert the exp-form to the log–form:
b = y
x
logb( y ) = x→
To convert the log–form to the exp–form:
b = y
x
logb( y ) = x→
The Logarithmic Functions
Example B. Rewrite the log-form into the exp-form.
a. log3(1/9) = –2  3-2 = 1/9
b. 2w = logv(a – b)
Example A. Rewrite the exp-form into the log-form.
a. 42 = 16  log4(16) = 2
b. w = u2+v  logu(w) = 2+v
To convert the exp-form to the log–form:
b = y
x
logb( y ) = x→
To convert the log–form to the exp–form:
b = y
x
logb( y ) = x→
The Logarithmic Functions
Example B. Rewrite the log-form into the exp-form.
a. log3(1/9) = –2  3-2 = 1/9
b. 2w = logv(a – b)
Example A. Rewrite the exp-form into the log-form.
a. 42 = 16  log4(16) = 2
b. w = u2+v  logu(w) = 2+v
To convert the exp-form to the log–form:
b = y
x
logb( y ) = x→
To convert the log–form to the exp–form:
b = y
x
logb( y ) = x→
The Logarithmic Functions
Example B. Rewrite the log-form into the exp-form.
a. log3(1/9) = –2  3-2 = 1/9
b. 2w = logv(a – b)  v2w = a – b
Example A. Rewrite the exp-form into the log-form.
a. 42 = 16  log4(16) = 2
b. w = u2+v  logu(w) = 2+v
To convert the exp-form to the log–form:
b = y
x
logb( y ) = x→
To convert the log–form to the exp–form:
b = y
x
logb( y ) = x→
The Logarithmic Functions
Example B. Rewrite the log-form into the exp-form.
a. log3(1/9) = –2  3-2 = 1/9
b. 2w = logv(a – b)  v2w = a – b
Example A. Rewrite the exp-form into the log-form.
a. 42 = 16  log4(16) = 2
b. w = u2+v  logu(w) = 2+v
To convert the exp-form to the log–form:
b = y
x
logb( y ) = x→
To convert the log–form to the exp–form:
b = y
x
logb( y ) = x→
The Logarithmic Functions
Example B. Rewrite the log-form into the exp-form.
a. log3(1/9) = –2  3-2 = 1/9
b. 2w = logv(a – b)  v2w = a – b
Example A. Rewrite the exp-form into the log-form.
a. 42 = 16  log4(16) = 2
b. w = u2+v  logu(w) = 2+v
To convert the exp-form to the log–form:
b = y
x
logb( y ) = x→
To convert the log–form to the exp–form:
b = y
x
logb( y ) = x→
The Logarithmic Functions
Example B. Rewrite the log-form into the exp-form.
a. log3(1/9) = –2  3-2 = 1/9
b. 2w = logv(a – b)  v2w = a – b
Example A. Rewrite the exp-form into the log-form.
a. 42 = 16  log4(16) = 2
b. w = u2+v  logu(w) = 2+v
To convert the exp-form to the log–form:
b = y
x
logb( y ) = x→
To convert the log–form to the exp–form:
b = y
x
logb( y ) = x→
The output of logb(x), i.e. the exponent in the defined
relation, may be positive or negative.
The Logarithmic Functions
Example C.
a. Rewrite the exp-form into the log-form.
4–3 = 1/64
8–2 = 1/64
log4(1/64) = –3
log8(1/64) = –2
exp–form log–form
b. Rewrite the log-form into the exp-form.
(1/2)–2 = 4log1/2(4) = –2
log1/2(8) = –3
exp–formlog–form
(1/2)–3 = 8
The Logarithmic Functions
The Common Log and the Natural Log
Example C.
a. Rewrite the exp-form into the log-form.
4–3 = 1/64
8–2 = 1/64
log4(1/64) = –3
log8(1/64) = –2
exp–form log–form
b. Rewrite the log-form into the exp-form.
(1/2)–2 = 4log1/2(4) = –2
log1/2(8) = –3
exp–formlog–form
(1/2)–3 = 8
The Logarithmic Functions
Base 10 is called the common base.
The Common Log and the Natural Log
Example C.
a. Rewrite the exp-form into the log-form.
4–3 = 1/64
8–2 = 1/64
log4(1/64) = –3
log8(1/64) = –2
exp–form log–form
b. Rewrite the log-form into the exp-form.
(1/2)–2 = 4log1/2(4) = –2
log1/2(8) = –3
exp–formlog–form
(1/2)–3 = 8
The Logarithmic Functions
Base 10 is called the common base. Log with
base10, written as log(x) without the base number b,
is called the common log,
The Common Log and the Natural Log
Example C.
a. Rewrite the exp-form into the log-form.
4–3 = 1/64
8–2 = 1/64
log4(1/64) = –3
log8(1/64) = –2
exp–form log–form
b. Rewrite the log-form into the exp-form.
(1/2)–2 = 4log1/2(4) = –2
log1/2(8) = –3
exp–formlog–form
(1/2)–3 = 8
The Logarithmic Functions
Base 10 is called the common base. Log with
base10, written as log(x) without the base number b,
is called the common log, i.e. log(x) is log10(x).
The Common Log and the Natural Log
Example C.
a. Rewrite the exp-form into the log-form.
4–3 = 1/64
8–2 = 1/64
log4(1/64) = –3
log8(1/64) = –2
exp–form log–form
b. Rewrite the log-form into the exp-form.
(1/2)–2 = 4log1/2(4) = –2
log1/2(8) = –3
exp–formlog–form
(1/2)–3 = 8
Base e is called the natural base.
The Common Log and the Natural Log
Base e is called the natural base.
Log with base e is written as ln(x) and it’s called
the natural log,
The Common Log and the Natural Log
Base e is called the natural base.
Log with base e is written as ln(x) and it’s called
the natural log, i.e. In(x) is loge(x).
The Common Log and the Natural Log
Base e is called the natural base.
Log with base e is written as ln(x) and it’s called
the natural log, i.e. In(x) is loge(x).
The Common Log and the Natural Log
Example D. Convert to the other form.
exp-form log-form
103 = 1000
ln(1/e2) = -2
ert =
log(1) = 0
A
P
Base e is called the natural base.
Log with base e is written as ln(x) and it’s called
the natural log, i.e. In(x) is loge(x).
The Common Log and the Natural Log
Example D. Convert to the other form.
exp-form log-form
103 = 1000 log(1000) = 3
ln(1/e2) = -2
ert =
log(1) = 0
A
P
Base e is called the natural base.
Log with base e is written as ln(x) and it’s called
the natural log, i.e. In(x) is loge(x).
The Common Log and the Natural Log
Example D. Convert to the other form.
exp-form log-form
103 = 1000 log(1000) = 3
e-2 = 1/e2 ln(1/e2) = -2
ert =
log(1) = 0
A
P
Base e is called the natural base.
Log with base e is written as ln(x) and it’s called
the natural log, i.e. In(x) is loge(x).
The Common Log and the Natural Log
Example D. Convert to the other form.
exp-form log-form
103 = 1000 log(1000) = 3
e-2 = 1/e2 ln(1/e2) = -2
ert = ln( ) = rt
log(1) = 0
A
P
A
P
Base e is called the natural base.
Log with base e is written as ln(x) and it’s called
the natural log, i.e. In(x) is loge(x).
The Common Log and the Natural Log
Example D. Convert to the other form.
exp-form log-form
103 = 1000 log(1000) = 3
e-2 = 1/e2 ln(1/e2) = -2
ert = ln( ) = rt
100 = 1 log(1) = 0
A
P
A
P
Base e is called the natural base.
Log with base e is written as ln(x) and it’s called
the natural log, i.e. In(x) is loge(x).
The Common Log and the Natural Log
Example D. Convert to the other form.
exp-form log-form
103 = 1000 log(1000) = 3
e-2 = 1/e2 ln(1/e2) = -2
ert = ln( ) = rt
100 = 1 log(1) = 0
A
P
A
P
Most log and powers can’t be computed efficiently by
hand.
Base e is called the natural base.
Log with base e is written as ln(x) and it’s called
the natural log, i.e. In(x) is loge(x).
The Common Log and the Natural Log
Example D. Convert to the other form.
exp-form log-form
103 = 1000 log(1000) = 3
e-2 = 1/e2 ln(1/e2) = -2
ert = ln( ) = rt
100 = 1 log(1) = 0
A
P
A
P
Most log and powers can’t be computed efficiently by
hand. We need a calculation device to extract
numerical solutions.
The Common Log and the Natural Log
Example E. Calculate each of the following logs
using a calculator. Then convert the relation into the
exp–form and confirm the exp–form with a calculator.
a. log(50) =
The Common Log and the Natural Log
Example E. Calculate each of the following logs
using a calculator. Then convert the relation into the
exp–form and confirm the exp–form with a calculator.
a. log(50) = 1.69897...
The Common Log and the Natural Log
Example E. Calculate each of the following logs
using a calculator. Then convert the relation into the
exp–form and confirm the exp–form with a calculator.
a. log(50) = 1.69897...
In the exp–form, it’s101.69897 =
The Common Log and the Natural Log
Example E. Calculate each of the following logs
using a calculator. Then convert the relation into the
exp–form and confirm the exp–form with a calculator.
a. log(50) = 1.69897...
In the exp–form, it’s101.69897 = 49.9999995...≈50
The Common Log and the Natural Log
Example E. Calculate each of the following logs
using a calculator. Then convert the relation into the
exp–form and confirm the exp–form with a calculator.
a. log(50) = 1.69897...
In the exp–form, it’s101.69897 = 49.9999995...≈50
b. ln(9) =
The Common Log and the Natural Log
Example E. Calculate each of the following logs
using a calculator. Then convert the relation into the
exp–form and confirm the exp–form with a calculator.
a. log(50) = 1.69897...
In the exp–form, it’s101.69897 = 49.9999995...≈50
b. ln(9) = 2.1972245..
The Common Log and the Natural Log
Example E. Calculate each of the following logs
using a calculator. Then convert the relation into the
exp–form and confirm the exp–form with a calculator.
a. log(50) = 1.69897...
In the exp–form, it’s101.69897 = 49.9999995...≈50
b. ln(9) = 2.1972245..
In the exp–form, it’s e2.1972245 =
The Common Log and the Natural Log
Example E. Calculate each of the following logs
using a calculator. Then convert the relation into the
exp–form and confirm the exp–form with a calculator.
a. log(50) = 1.69897...
In the exp–form, it’s101.69897 = 49.9999995...≈50
b. ln(9) = 2.1972245..
In the exp–form, it’s e2.1972245 = 8.9999993...≈ 9
The Common Log and the Natural Log
Example E. Calculate each of the following logs
using a calculator. Then convert the relation into the
exp–form and confirm the exp–form with a calculator.
a. log(50) = 1.69897...
In the exp–form, it’s101.69897 = 49.9999995...≈50
b. ln(9) = 2.1972245..
c. Calculate the power using a calculator.
Then convert the relation into the log–form and
confirm the log–form by the calculator.
e4.3 =
In the exp–form, it’s e2.1972245 = 8.9999993...≈ 9
The Common Log and the Natural Log
Example E. Calculate each of the following logs
using a calculator. Then convert the relation into the
exp–form and confirm the exp–form with a calculator.
a. log(50) = 1.69897...
In the exp–form, it’s101.69897 = 49.9999995...≈50
b. ln(9) = 2.1972245..
c. Calculate the power using a calculator.
Then convert the relation into the log–form and
confirm the log–form by the calculator.
e4.3 = 73.699793..
In the exp–form, it’s e2.1972245 = 8.9999993...≈ 9
The Common Log and the Natural Log
Example E. Calculate each of the following logs
using a calculator. Then convert the relation into the
exp–form and confirm the exp–form with a calculator.
a. log(50) = 1.69897...
In the exp–form, it’s101.69897 = 49.9999995...≈50
b. ln(9) = 2.1972245..
c. Calculate the power using a calculator.
Then convert the relation into the log–form and
confirm the log–form by the calculator.
e4.3 = 73.699793..→ In(73.699793) =
In the exp–form, it’s e2.1972245 = 8.9999993...≈ 9
The Common Log and the Natural Log
Example E. Calculate each of the following logs
using a calculator. Then convert the relation into the
exp–form and confirm the exp–form with a calculator.
a. log(50) = 1.69897...
In the exp–form, it’s101.69897 = 49.9999995...≈50
b. ln(9) = 2.1972245..
c. Calculate the power using a calculator.
Then convert the relation into the log–form and
confirm the log–form by the calculator.
e4.3 = 73.699793..→ In(73.699793) = 4.299999..≈ 4.3
In the exp–form, it’s e2.1972245 = 8.9999993...≈ 9
The Common Log and the Natural Log
Example E. Calculate each of the following logs
using a calculator. Then convert the relation into the
exp–form and confirm the exp–form with a calculator.
a. log(50) = 1.69897...
In the exp–form, it’s101.69897 = 49.9999995...≈50
b. ln(9) = 2.1972245..
c. Calculate the power using a calculator.
Then convert the relation into the log–form and
confirm the log–form by the calculator.
e4.3 = 73.699793..→ In(73.699793) = 4.299999..≈ 4.3
Your turn. Follow the instructions in part c for 10π.
In the exp–form, it’s e2.1972245 = 8.9999993...≈ 9
Equation may be formed with log–notation.
The Common Log and the Natural Log
Equation may be formed with log–notation. Often we
need to restate them in the exp–form.
The Common Log and the Natural Log
Equation may be formed with log–notation. Often we
need to restate them in the exp–form. We say we
"drop the log" when this step is taken.
The Common Log and the Natural Log
Example F. Solve for x
a. log9(x) = –1
Equation may be formed with log–notation. Often we
need to restate them in the exp–form. We say we
"drop the log" when this step is taken.
The Common Log and the Natural Log
Example F. Solve for x
a. log9(x) = –1
Drop the log and get x = 9–1.
Equation may be formed with log–notation. Often we
need to restate them in the exp–form. We say we
"drop the log" when this step is taken.
The Common Log and the Natural Log
Example F. Solve for x
a. log9(x) = –1
Drop the log and get x = 9–1.
So x = 1/9
Equation may be formed with log–notation. Often we
need to restate them in the exp–form. We say we
"drop the log" when this step is taken.
The Common Log and the Natural Log
Example F. Solve for x
a. log9(x) = –1
Drop the log and get x = 9–1.
So x = 1/9
b. logx(9) = –2
Equation may be formed with log–notation. Often we
need to restate them in the exp–form. We say we
"drop the log" when this step is taken.
The Common Log and the Natural Log
Example F. Solve for x
a. log9(x) = –1
Drop the log and get x = 9–1.
So x = 1/9
b. logx(9) = –2
Drop the log and get 9 = x–2,
Equation may be formed with log–notation. Often we
need to restate them in the exp–form. We say we
"drop the log" when this step is taken.
The Common Log and the Natural Log
Example F. Solve for x
a. log9(x) = –1
Drop the log and get x = 9–1.
So x = 1/9
b. logx(9) = –2
Drop the log and get 9 = x–2, i.e. 9 =
1
x2
Equation may be formed with log–notation. Often we
need to restate them in the exp–form. We say we
"drop the log" when this step is taken.
The Common Log and the Natural Log
Example F. Solve for x
a. log9(x) = –1
Drop the log and get x = 9–1.
So x = 1/9
b. logx(9) = –2
Drop the log and get 9 = x–2, i.e. 9 =
So 9x2 = 1
1
x2
Equation may be formed with log–notation. Often we
need to restate them in the exp–form. We say we
"drop the log" when this step is taken.
The Common Log and the Natural Log
Example F. Solve for x
a. log9(x) = –1
Drop the log and get x = 9–1.
So x = 1/9
b. logx(9) = –2
Drop the log and get 9 = x–2, i.e. 9 =
So 9x2 = 1
x2 = 1/9
x = 1/3 or x= –1/3
1
x2
Equation may be formed with log–notation. Often we
need to restate them in the exp–form. We say we
"drop the log" when this step is taken.
The Common Log and the Natural Log
Example F. Solve for x
a. log9(x) = –1
Drop the log and get x = 9–1.
So x = 1/9
b. logx(9) = –2
Drop the log and get 9 = x–2, i.e. 9 =
So 9x2 = 1
x2 = 1/9
x = 1/3 or x= –1/3
Since the base b > 0, so x = 1/3 is the only solution.
1
x2
Equation may be formed with log–notation. Often we
need to restate them in the exp–form. We say we
"drop the log" when this step is taken.
The Common Log and the Natural Log
The Logarithmic Functions
Graphs of the Logarithmic Functions
Recall that the domain of logb(x) is the set of all x > 0.
The Logarithmic Functions
Graphs of the Logarithmic Functions
1/4
1/2
1
2
4
8
x y=log2(x)
Recall that the domain of logb(x) is the set of all x > 0.
Hence to make a table to plot the graph of y = log2(x),
we only select positive x’s.
The Logarithmic Functions
Graphs of the Logarithmic Functions
2
4
8
x y=log2(x)
Recall that the domain of logb(x) is the set of all x > 0.
Hence to make a table to plot the graph of y = log2(x),
we only select positive x’s. In particular we select x’s
related to base 2 for easy computation of the y’s.
The Logarithmic Functions
Graphs of the Logarithmic Functions
1/4
1/2
1
2
4
8
x y=log2(x)
Recall that the domain of logb(x) is the set of all x > 0.
Hence to make a table to plot the graph of y = log2(x),
we only select positive x’s. In particular we select x’s
related to base 2 for easy computation of the y’s.
The Logarithmic Functions
Graphs of the Logarithmic Functions
1/4 -2
1/2
1
2
4
8
x y=log2(x)
Recall that the domain of logb(x) is the set of all x > 0.
Hence to make a table to plot the graph of y = log2(x),
we only select positive x’s. In particular we select x’s
related to base 2 for easy computation of the y’s.
The Logarithmic Functions
Graphs of the Logarithmic Functions
1/4 -2
1/2 -1
1
2
4
8
x y=log2(x)
Recall that the domain of logb(x) is the set of all x > 0.
Hence to make a table to plot the graph of y = log2(x),
we only select positive x’s. In particular we select x’s
related to base 2 for easy computation of the y’s.
The Logarithmic Functions
Graphs of the Logarithmic Functions
1/4 -2
1/2 -1
1 0
2
4
8
x y=log2(x)
Recall that the domain of logb(x) is the set of all x > 0.
Hence to make a table to plot the graph of y = log2(x),
we only select positive x’s. In particular we select x’s
related to base 2 for easy computation of the y’s.
The Logarithmic Functions
Graphs of the Logarithmic Functions
1/4 -2
1/2 -1
1 0
2 1
4
8
x y=log2(x)
Recall that the domain of logb(x) is the set of all x > 0.
Hence to make a table to plot the graph of y = log2(x),
we only select positive x’s. In particular we select x’s
related to base 2 for easy computation of the y’s.
The Logarithmic Functions
Graphs of the Logarithmic Functions
1/4 -2
1/2 -1
1 0
2 1
4 2
8 3
x y=log2(x)
Recall that the domain of logb(x) is the set of all x > 0.
Hence to make a table to plot the graph of y = log2(x),
we only select positive x’s. In particular we select x’s
related to base 2 for easy computation of the y’s.
The Logarithmic Functions
(1, 0)
(2, 1)
(4, 2)
(8, 3)
(16, 4)
(1/2, -1)
(1/4, -2)
y=log2(x)
Graphs of the Logarithmic Functions
1/4 -2
1/2 -1
1 0
2 1
4 2
8 3
x y=log2(x)
Recall that the domain of logb(x) is the set of all x > 0.
Hence to make a table to plot the graph of y = log2(x),
we only select positive x’s. In particular we select x’s
related to base 2 for easy computation of the y’s.
x
y
The Logarithmic Functions
To graph log with base b = ½, we have
log1/2(4) = –2, log1/2(8) = –3, log1/2(16) = –4
The Logarithmic Functions
x
y
(1, 0)
(8, -3)
To graph log with base b = ½, we have
log1/2(4) = –2, log1/2(8) = –3, log1/2(16) = –4
(4, -2)
(16, -4)
y = log1/2(x)
The Logarithmic Functions
x
y
(1, 0)
(8, -3)
To graph log with base b = ½, we have
log1/2(4) = –2, log1/2(8) = –3, log1/2(16) = –4
(4, -2)
(16, -4)
y = log1/2(x)
x x
y
(1, 0)(1, 0)
y = logb(x), b > 1
y = logb(x), 1 > b
Here are the general shapes of log–functions.
y
(b, 1)
(b, 1)
1. 41/2 = 2 2. 91/2 = 3 3. 4 = 161/2
4. 5 = 251/2
9
25
( )1/2 = 3/58.7. (8)–1/3 = 1/2
6. ¼ = 16–1/2
9
25
( ) –1/2 = 5/39.
10.
1
64
( ) –1/3= 4 11. 1/64 = 16–3/2
Fractional Exponents
Express the following in the log-form
1
64
( ) –2/3 = 1612.
13. log4 (2) = 1/2 14. ½ = log9 (3) 15. log16 4 = ½
16. 1/2 = log25 (5)
5. 1/3 = 9 –1/2
1/2 = log9/25 (3/5)20.19. log8 (1/2) = –1/3
18. log16 (1/2) = –¼
21. 22. log1/64(4 ) = –1/3
Express the following in the exp-form
17. log25 (1/5) = – ½
–3/2 = log9 (1/27)
Properties of Logarithm
Express the following in the log-form
19. 102 = 100 20. 103 = 1000 21. 10–1 = 1/10
22. 100 = 1 23. 10 –3 = 1/1000 24. 10–1/2 = 1/√10
Express the following in the exp-form
25. log(10) = 1 26. 3 = log(1000) 27. –1 = log(1/10)
28. 0 = log(1) 29. log(√10) = 1/2 30. –1/2 = log(1/√10)
Express the following in the ln-form
31. e–2 = 1/e2 32. √e = e–1/2 33. err = k
34. a + b = e – t 35. e –r + t = A 36. eA = x2
Express the following in the exp-form
37. ln(1/e) = –1 38. 1/2 = ln(√e) 39. p = ln(eP)
40. 10 = ln(1)
41. ln(1/√e) = –1/3
3
Properties of Logarithm
Solve for x.
48. log 3 (x + 5) = 1 49. 2 = log 2 (5 – 2x) 50. –1 = log( )
51. ln(2x) = –1 53. 2 = logX (3x )
42. log x (3) = 1/2 43. ½ = log9 (x) 44. logx 4 = ½
45. 1/2 = log25 (x) 47. log16 (1/2) = x46. logx (1/5) = – ½
x
x+1
52. ln(2x –1) = 2
54. 2 = logX (2x – 3)
Graph the following functions. Plot at least 5 pt.
55. y = log2 (x) 56. y = log 1/2 (x)
57. y = log3 (x) 58. y = log 1/3 (x)

More Related Content

PPT
Logarithms and logarithmic functions
PDF
6.1 Exponential Functions
PPTX
7.6 solving logarithmic equations
PPTX
Lesson 19: Exponential and Logarithmic Functions
PDF
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
PPTX
Exponential and logrithmic functions
PPTX
5 6 laws of logarithms
PPTX
Cubic Equation
Logarithms and logarithmic functions
6.1 Exponential Functions
7.6 solving logarithmic equations
Lesson 19: Exponential and Logarithmic Functions
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Exponential and logrithmic functions
5 6 laws of logarithms
Cubic Equation

What's hot (20)

PPTX
1 directed angle
PPTX
Introduction of Probability
PPTX
Quadratic functions
PPTX
QUADRATIC FUNCTIONS
PPT
10.1 Distance and Midpoint Formulas
PDF
Factoring Sum and Difference of Two Cubes
PPTX
Two point form Equation of a line
PPT
Remainder theorem
PPTX
Geometric Sequence & Series.pptx
PPTX
Factoring GCF and Grouping
PPT
Completing the square
PPTX
7.2 simplifying radicals
PPTX
Mathematics 9 Lesson 1-B: Solving Quadratic Equations using Quadratic Formula
PPT
Quadratic Equation and discriminant
PPTX
Graphing quadratic equations
PPTX
Factoring the difference of two squares
PPT
Systems of Linear Equations Graphing
PPTX
Simple Interest
PPTX
Division of Radicals.pptx
1 directed angle
Introduction of Probability
Quadratic functions
QUADRATIC FUNCTIONS
10.1 Distance and Midpoint Formulas
Factoring Sum and Difference of Two Cubes
Two point form Equation of a line
Remainder theorem
Geometric Sequence & Series.pptx
Factoring GCF and Grouping
Completing the square
7.2 simplifying radicals
Mathematics 9 Lesson 1-B: Solving Quadratic Equations using Quadratic Formula
Quadratic Equation and discriminant
Graphing quadratic equations
Factoring the difference of two squares
Systems of Linear Equations Graphing
Simple Interest
Division of Radicals.pptx
Ad

Viewers also liked (8)

PPT
3.2 more on log and exponential equations
PPT
1.3 sign charts and inequalities
PPTX
4 5 fractional exponents
PPT
1.5 notation and algebra of functions
PPT
3.4 ellipses
PPTX
1.6 sign charts and inequalities i
PPTX
1.6 inverse function (optional)
PPTX
2.2 exponential function and compound interest
3.2 more on log and exponential equations
1.3 sign charts and inequalities
4 5 fractional exponents
1.5 notation and algebra of functions
3.4 ellipses
1.6 sign charts and inequalities i
1.6 inverse function (optional)
2.2 exponential function and compound interest
Ad

Similar to 2.4 introduction to logarithm (20)

PPTX
4.4the logarithm functions
PPTX
26 the logarithm functions x
PPTX
64 introduction to logarithm
PPT
1.4 review on log exp-functions
PPT
Logarithmic Functions
PPT
1528 exponential-log
ODP
Log summary & equations
PPT
Logarithms and logarithmic functions
PPTX
4.4 the logarithm functions t
DOCX
WEEK-9.docx
PPTX
Math12 lesson11
PPTX
Math12 lesson11
PPT
Introduction to logarithm 10th gradersss
PDF
Module 4 exponential and logarithmic functions
PDF
Logarithms in mathematics maths log loga
PPTX
Logarithmic Function a REVIEW powerpoint
PPTX
Grade 11: General Mathematics_LOGARITHMS
PPTX
Grade 11: General Mathematics: Logarithms
PPTX
GRADE 11 GENERAL MATHEMATICS: LOGARITHMS
PPTX
Logarithmic functions (2)
4.4the logarithm functions
26 the logarithm functions x
64 introduction to logarithm
1.4 review on log exp-functions
Logarithmic Functions
1528 exponential-log
Log summary & equations
Logarithms and logarithmic functions
4.4 the logarithm functions t
WEEK-9.docx
Math12 lesson11
Math12 lesson11
Introduction to logarithm 10th gradersss
Module 4 exponential and logarithmic functions
Logarithms in mathematics maths log loga
Logarithmic Function a REVIEW powerpoint
Grade 11: General Mathematics_LOGARITHMS
Grade 11: General Mathematics: Logarithms
GRADE 11 GENERAL MATHEMATICS: LOGARITHMS
Logarithmic functions (2)

More from math123c (20)

PPTX
0. exponents y
DOC
123c test 4 review b
PPTX
6 binomial theorem
PPTX
5.5 permutations and combinations
PPT
5.4 trees and factorials
PPT
5.3 geometric sequences
PPT
5.2 arithmetic sequences
PPTX
5.1 sequences
PPT
4.5 matrix notation
PPT
4.4 system of linear equations 2
PPT
4.3 system of linear equations 1
PPT
4.2 stem parabolas revisited
PPT
4.1 stem hyperbolas
PPT
3.3 conic sections circles
PPT
3.1 properties of logarithm
PPT
2.5 calculation with log and exp
PPTX
2.3 continuous compound interests
PPTX
2.1 reviews of exponents and the power functions
PPTX
1.7 power equations and calculator inputs
PPT
1.4 the basic language of functions
0. exponents y
123c test 4 review b
6 binomial theorem
5.5 permutations and combinations
5.4 trees and factorials
5.3 geometric sequences
5.2 arithmetic sequences
5.1 sequences
4.5 matrix notation
4.4 system of linear equations 2
4.3 system of linear equations 1
4.2 stem parabolas revisited
4.1 stem hyperbolas
3.3 conic sections circles
3.1 properties of logarithm
2.5 calculation with log and exp
2.3 continuous compound interests
2.1 reviews of exponents and the power functions
1.7 power equations and calculator inputs
1.4 the basic language of functions

Recently uploaded (20)

PDF
Encapsulation_ Review paper, used for researhc scholars
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PPTX
Cloud computing and distributed systems.
PPTX
Spectroscopy.pptx food analysis technology
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PPTX
sap open course for s4hana steps from ECC to s4
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PPT
Teaching material agriculture food technology
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
cuic standard and advanced reporting.pdf
PPTX
Programs and apps: productivity, graphics, security and other tools
Encapsulation_ Review paper, used for researhc scholars
Digital-Transformation-Roadmap-for-Companies.pptx
20250228 LYD VKU AI Blended-Learning.pptx
Cloud computing and distributed systems.
Spectroscopy.pptx food analysis technology
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Review of recent advances in non-invasive hemoglobin estimation
Chapter 3 Spatial Domain Image Processing.pdf
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
sap open course for s4hana steps from ECC to s4
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
Building Integrated photovoltaic BIPV_UPV.pdf
Teaching material agriculture food technology
Per capita expenditure prediction using model stacking based on satellite ima...
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
cuic standard and advanced reporting.pdf
Programs and apps: productivity, graphics, security and other tools

2.4 introduction to logarithm

  • 2. There are three numbers in an exponential notation. The Logarithmic Functions 4 3 = 64
  • 3. There are three numbers in an exponential notation. The Logarithmic Functions the base 4 3 = 64
  • 4. There are three numbers in an exponential notation. The Logarithmic Functions the exponent the base 4 3 = 64
  • 5. There are three numbers in an exponential notation. The Logarithmic Functions the exponent the base the output 4 3 = 64
  • 6. There are three numbers in an exponential notation. Given the above expression, we say that “(base) 4 raised to the exponent (power) 3 gives 64”. The Logarithmic Functions the exponent the base the output 4 3 = 64
  • 7. There are three numbers in an exponential notation. The Logarithmic Functions the exponent the base the output 4 3 = 64 Given the above expression, we say that “(base) 4 raised to the exponent (power) 3 gives 64”. The focus of the above statement is that when 43 is executed, the output is 64.
  • 8. There are three numbers in an exponential notation. The Logarithmic Functions the exponent the base the output 4 3 = 64 However if we are given the output is 64 from raising 4 to a power, Given the above expression, we say that “(base) 4 raised to the exponent (power) 3 gives 64”. The focus of the above statement is that when 43 is executed, the output is 64.
  • 9. There are three numbers in an exponential notation. The Logarithmic Functions the exponent the base the output 4 3 = 64 However if we are given the output is 64 from raising 4 to a power, the power the base the output 4 = 64 3 Given the above expression, we say that “(base) 4 raised to the exponent (power) 3 gives 64”. The focus of the above statement is that when 43 is executed, the output is 64.
  • 10. There are three numbers in an exponential notation. The Logarithmic Functions the exponent the base the output 4 3 = 64 However if we are given the output is 64 from raising 4 to a power, then the needed power is called log4(64) the power = log4(64) the base the output 4 = 64 3 Given the above expression, we say that “(base) 4 raised to the exponent (power) 3 gives 64”. The focus of the above statement is that when 43 is executed, the output is 64.
  • 11. There are three numbers in an exponential notation. The Logarithmic Functions the exponent the base the output 4 3 = 64 However if we are given the output is 64 from raising 4 to a power, then the needed power is called log4(64) which is 3. the power = log4(64) the base the output 4 = 64 3 Given the above expression, we say that “(base) 4 raised to the exponent (power) 3 gives 64”. The focus of the above statement is that when 43 is executed, the output is 64.
  • 12. There are three numbers in an exponential notation. The Logarithmic Functions the exponent the base the output 4 3 = 64 However if we are given the output is 64 from raising 4 to a power, then the needed power is called log4(64) which is 3. the power = log4(64) the base the output 4 = 64 3 or that log4(64) = 3 and we say that “log–base–4 of 64 is 3”. Given the above expression, we say that “(base) 4 raised to the exponent (power) 3 gives 64”. The focus of the above statement is that when 43 is executed, the output is 64.
  • 13. The Logarithmic Functions Just as the sentence “Bart's dad is Homer.” contains the same information as “Homer's son is Bart.”,
  • 14. The Logarithmic Functions Just as the sentence “Bart's dad is Homer.” contains the same information as “Homer's son is Bart.” The expression “64 = 43” contains the same information as “log4(64) = 3”.
  • 15. The Logarithmic Functions Just as the sentence “Bart's dad is Homer.” contains the same information as “Homer's son is Bart.” The expression “64 = 43” contains the same information as “log4(64) = 3”. The expression “64 = 43” is called the exponential form and “log4(64) = 3” is called the logarithmic form of the expressed relation.
  • 16. The Logarithmic Functions Just as the sentence “Bart's dad is Homer.” contains the same information as “Homer's son is Bart.” The expression “64 = 43” contains the same information as “log4(64) = 3”. The expression “64 = 43” is called the exponential form and “log4(64) = 3” is called the logarithmic form of the expressed relation. In general, we say that “log–base–b of y is x” or logb(y) = x
  • 17. The Logarithmic Functions Just as the sentence “Bart's dad is Homer.” contains the same information as “Homer's son is Bart.” The expression “64 = 43” contains the same information as “log4(64) = 3”. The expression “64 = 43” is called the exponential form and “log4(64) = 3” is called the logarithmic form of the expressed relation. In general, we say that “log–base–b of y is x” or logb(y) = x if y = bx (b > 0).
  • 18. The Logarithmic Functions Just as the sentence “Bart's dad is Homer.” contains the same information as “Homer's son is Bart.” The expression “64 = 43” contains the same information as “log4(64) = 3”. The expression “64 = 43” is called the exponential form and “log4(64) = 3” is called the logarithmic form of the expressed relation. In general, we say that “log–base–b of y is x” or logb(y) = x if y = bx (b > 0). the power = logb(y) the base the output b = y x
  • 19. The Logarithmic Functions Just as the sentence “Bart's dad is Homer.” contains the same information as “Homer's son is Bart.” The expression “64 = 43” contains the same information as “log4(64) = 3”. The expression “64 = 43” is called the exponential form and “log4(64) = 3” is called the logarithmic form of the expressed relation. In general, we say that “log–base–b of y is x” or logb(y) = x if y = bx (b > 0), i.e. logb(y) is the exponent x. the power = logb(y) the base the output b = y x
  • 20. The Logarithmic Functions When working with the exponential form or the logarithmic expressions, always identify the base number b first.
  • 21. The Logarithmic Functions When working with the exponential form or the logarithmic expressions, always identify the base number b first. All the following exponential expressions yield 64.
  • 22. The Logarithmic Functions When working with the exponential form or the logarithmic expressions, always identify the base number b first. All the following exponential expressions yield 64. 43 → 64 82 → 64 26 → 64 exp–form
  • 23. The Logarithmic Functions When working with the exponential form or the logarithmic expressions, always identify the base number b first. All the following exponential expressions yield 64. Their corresponding log–form are differentiated by the bases and the different exponents required. 43 → 64 82 → 64 26 → 64 exp–form log–form
  • 24. The Logarithmic Functions When working with the exponential form or the logarithmic expressions, always identify the base number b first. All the following exponential expressions yield 64. 43 → 64 82 → 64 26 → 64 log4(64) log8(64) log2(64) exp–form log–formTheir corresponding log–form are differentiated by the bases and the different exponents required.
  • 25. The Logarithmic Functions When working with the exponential form or the logarithmic expressions, always identify the base number b first. All the following exponential expressions yield 64. Their corresponding log–form are differentiated by the bases and the different exponents required. 43 → 64 82 → 64 26 → 64 log4(64) → log8(64) → log2(64) → exp–form log–form
  • 26. The Logarithmic Functions When working with the exponential form or the logarithmic expressions, always identify the base number b first. All the following exponential expressions yield 64. 43 → 64 82 → 64 26 → 64 log4(64) → 3 log8(64) → log2(64) → exp–form log–formTheir corresponding log–form are differentiated by the bases and the different exponents required.
  • 27. The Logarithmic Functions When working with the exponential form or the logarithmic expressions, always identify the base number b first. All the following exponential expressions yield 64. 43 → 64 82 → 64 26 → 64 log4(64) → 3 log8(64) → 2 log2(64) → exp–form log–formTheir corresponding log–form are differentiated by the bases and the different exponents required.
  • 28. The Logarithmic Functions When working with the exponential form or the logarithmic expressions, always identify the base number b first. All the following exponential expressions yield 64. 43 → 64 82 → 64 26 → 64 log4(64) → 3 log8(64) → 2 log2(64) → 6 exp–form log–formTheir corresponding log–form are differentiated by the bases and the different exponents required.
  • 29. The Logarithmic Functions When working with the exponential form or the logarithmic expressions, always identify the base number b first. All the following exponential expressions yield 64. 43 → 64 82 → 64 26 → 64 log4(64) → 3 log8(64) → 2 log2(64) → 6 exp–form log–formTheir corresponding log–form are differentiated by the bases and the different exponents required. Both numbers b and y appeared in the log notation “logb(y)” must be positive.
  • 30. The Logarithmic Functions When working with the exponential form or the logarithmic expressions, always identify the base number b first. All the following exponential expressions yield 64. 43 → 64 82 → 64 26 → 64 log4(64) → 3 log8(64) → 2 log2(64) → 6 exp–form log–formTheir corresponding log–form are differentiated by the bases and the different exponents required. Both numbers b and y appeared in the log notation “logb(y)” must be positive. Switch to x as the input, the domain of logb(x) is the set D = {x l x > 0 }.
  • 31. The Logarithmic Functions When working with the exponential form or the logarithmic expressions, always identify the base number b first. All the following exponential expressions yield 64. 43 → 64 82 → 64 26 → 64 log4(64) → 3 log8(64) → 2 log2(64) → 6 exp–form log–formTheir corresponding log–form are differentiated by the bases and the different exponents required. Both numbers b and y appeared in the log notation “logb(y)” must be positive. Switch to x as the input, the domain of logb(x) is the set D = {x l x > 0 }. We would get an error message if we execute log2(–1) with software.
  • 32. The Logarithmic Functions To convert the exp-form to the log–form: b = y x
  • 33. The Logarithmic Functions To convert the exp-form to the log–form: b = y x logb( y ) = x→ Identity the base and the correct log–function
  • 34. The Logarithmic Functions To convert the exp-form to the log–form: b = y x logb( y ) = x→ insert the exponential output.
  • 35. The Logarithmic Functions To convert the exp-form to the log–form: b = y x logb( y ) = x→ The log–output is the required exponent.
  • 36. The Logarithmic Functions Example A. Rewrite the exp-form into the log-form. a. 42 = 16 b. w = u2+v To convert the exp-form to the log–form: b = y x logb( y ) = x→
  • 37. The Logarithmic Functions Example A. Rewrite the exp-form into the log-form. a. 42 = 16  log4(16) = 2 b. w = u2+v To convert the exp-form to the log–form: b = y x logb( y ) = x→
  • 38. The Logarithmic Functions Example A. Rewrite the exp-form into the log-form. a. 42 = 16  log4(16) = 2 b. w = u2+v To convert the exp-form to the log–form: b = y x logb( y ) = x→
  • 39. The Logarithmic Functions Example A. Rewrite the exp-form into the log-form. a. 42 = 16  log4(16) = 2 b. w = u2+v To convert the exp-form to the log–form: b = y x logb( y ) = x→
  • 40. The Logarithmic Functions Example A. Rewrite the exp-form into the log-form. a. 42 = 16  log4(16) = 2 b. w = u2+v  logu(w) = 2+v To convert the exp-form to the log–form: b = y x logb( y ) = x→
  • 41. The Logarithmic Functions Example A. Rewrite the exp-form into the log-form. a. 42 = 16  log4(16) = 2 b. w = u2+v  logu(w) = 2+v To convert the exp-form to the log–form: b = y x logb( y ) = x→
  • 42. The Logarithmic Functions Example A. Rewrite the exp-form into the log-form. a. 42 = 16  log4(16) = 2 b. w = u2+v  logu(w) = 2+v To convert the exp-form to the log–form: b = y x logb( y ) = x→
  • 43. The Logarithmic Functions Example A. Rewrite the exp-form into the log-form. a. 42 = 16  log4(16) = 2 b. w = u2+v  logu(w) = 2+v To convert the exp-form to the log–form: b = y x → To convert the log–form to the exp–form: logb( y ) = x logb( y ) = x
  • 44. The Logarithmic Functions Example A. Rewrite the exp-form into the log-form. a. 42 = 16  log4(16) = 2 b. w = u2+v  logu(w) = 2+v To convert the exp-form to the log–form: b = y x → To convert the log–form to the exp–form: b = y x logb( y ) = x→ logb( y ) = x
  • 45. The Logarithmic Functions Example A. Rewrite the exp-form into the log-form. a. 42 = 16  log4(16) = 2 b. w = u2+v  logu(w) = 2+v To convert the exp-form to the log–form: b = y x → To convert the log–form to the exp–form: b = y x logb( y ) = x→ logb( y ) = x
  • 46. The Logarithmic Functions Example A. Rewrite the exp-form into the log-form. a. 42 = 16  log4(16) = 2 b. w = u2+v  logu(w) = 2+v To convert the exp-form to the log–form: b = y x → To convert the log–form to the exp–form: b = y x logb( y ) = x→ logb( y ) = x
  • 47. The Logarithmic Functions Example B. Rewrite the log-form into the exp-form. a. log3(1/9) = –2 b. 2w = logv(a – b) Example A. Rewrite the exp-form into the log-form. a. 42 = 16  log4(16) = 2 b. w = u2+v  logu(w) = 2+v To convert the exp-form to the log–form: b = y x logb( y ) = x→ To convert the log–form to the exp–form: b = y x logb( y ) = x→
  • 48. The Logarithmic Functions Example B. Rewrite the log-form into the exp-form. a. log3(1/9) = –2  3-2 = 1/9 b. 2w = logv(a – b) Example A. Rewrite the exp-form into the log-form. a. 42 = 16  log4(16) = 2 b. w = u2+v  logu(w) = 2+v To convert the exp-form to the log–form: b = y x logb( y ) = x→ To convert the log–form to the exp–form: b = y x logb( y ) = x→
  • 49. The Logarithmic Functions Example B. Rewrite the log-form into the exp-form. a. log3(1/9) = –2  3-2 = 1/9 b. 2w = logv(a – b) Example A. Rewrite the exp-form into the log-form. a. 42 = 16  log4(16) = 2 b. w = u2+v  logu(w) = 2+v To convert the exp-form to the log–form: b = y x logb( y ) = x→ To convert the log–form to the exp–form: b = y x logb( y ) = x→
  • 50. The Logarithmic Functions Example B. Rewrite the log-form into the exp-form. a. log3(1/9) = –2  3-2 = 1/9 b. 2w = logv(a – b) Example A. Rewrite the exp-form into the log-form. a. 42 = 16  log4(16) = 2 b. w = u2+v  logu(w) = 2+v To convert the exp-form to the log–form: b = y x logb( y ) = x→ To convert the log–form to the exp–form: b = y x logb( y ) = x→
  • 51. The Logarithmic Functions Example B. Rewrite the log-form into the exp-form. a. log3(1/9) = –2  3-2 = 1/9 b. 2w = logv(a – b)  v2w = a – b Example A. Rewrite the exp-form into the log-form. a. 42 = 16  log4(16) = 2 b. w = u2+v  logu(w) = 2+v To convert the exp-form to the log–form: b = y x logb( y ) = x→ To convert the log–form to the exp–form: b = y x logb( y ) = x→
  • 52. The Logarithmic Functions Example B. Rewrite the log-form into the exp-form. a. log3(1/9) = –2  3-2 = 1/9 b. 2w = logv(a – b)  v2w = a – b Example A. Rewrite the exp-form into the log-form. a. 42 = 16  log4(16) = 2 b. w = u2+v  logu(w) = 2+v To convert the exp-form to the log–form: b = y x logb( y ) = x→ To convert the log–form to the exp–form: b = y x logb( y ) = x→
  • 53. The Logarithmic Functions Example B. Rewrite the log-form into the exp-form. a. log3(1/9) = –2  3-2 = 1/9 b. 2w = logv(a – b)  v2w = a – b Example A. Rewrite the exp-form into the log-form. a. 42 = 16  log4(16) = 2 b. w = u2+v  logu(w) = 2+v To convert the exp-form to the log–form: b = y x logb( y ) = x→ To convert the log–form to the exp–form: b = y x logb( y ) = x→
  • 54. The Logarithmic Functions Example B. Rewrite the log-form into the exp-form. a. log3(1/9) = –2  3-2 = 1/9 b. 2w = logv(a – b)  v2w = a – b Example A. Rewrite the exp-form into the log-form. a. 42 = 16  log4(16) = 2 b. w = u2+v  logu(w) = 2+v To convert the exp-form to the log–form: b = y x logb( y ) = x→ To convert the log–form to the exp–form: b = y x logb( y ) = x→ The output of logb(x), i.e. the exponent in the defined relation, may be positive or negative.
  • 55. The Logarithmic Functions Example C. a. Rewrite the exp-form into the log-form. 4–3 = 1/64 8–2 = 1/64 log4(1/64) = –3 log8(1/64) = –2 exp–form log–form b. Rewrite the log-form into the exp-form. (1/2)–2 = 4log1/2(4) = –2 log1/2(8) = –3 exp–formlog–form (1/2)–3 = 8
  • 56. The Logarithmic Functions The Common Log and the Natural Log Example C. a. Rewrite the exp-form into the log-form. 4–3 = 1/64 8–2 = 1/64 log4(1/64) = –3 log8(1/64) = –2 exp–form log–form b. Rewrite the log-form into the exp-form. (1/2)–2 = 4log1/2(4) = –2 log1/2(8) = –3 exp–formlog–form (1/2)–3 = 8
  • 57. The Logarithmic Functions Base 10 is called the common base. The Common Log and the Natural Log Example C. a. Rewrite the exp-form into the log-form. 4–3 = 1/64 8–2 = 1/64 log4(1/64) = –3 log8(1/64) = –2 exp–form log–form b. Rewrite the log-form into the exp-form. (1/2)–2 = 4log1/2(4) = –2 log1/2(8) = –3 exp–formlog–form (1/2)–3 = 8
  • 58. The Logarithmic Functions Base 10 is called the common base. Log with base10, written as log(x) without the base number b, is called the common log, The Common Log and the Natural Log Example C. a. Rewrite the exp-form into the log-form. 4–3 = 1/64 8–2 = 1/64 log4(1/64) = –3 log8(1/64) = –2 exp–form log–form b. Rewrite the log-form into the exp-form. (1/2)–2 = 4log1/2(4) = –2 log1/2(8) = –3 exp–formlog–form (1/2)–3 = 8
  • 59. The Logarithmic Functions Base 10 is called the common base. Log with base10, written as log(x) without the base number b, is called the common log, i.e. log(x) is log10(x). The Common Log and the Natural Log Example C. a. Rewrite the exp-form into the log-form. 4–3 = 1/64 8–2 = 1/64 log4(1/64) = –3 log8(1/64) = –2 exp–form log–form b. Rewrite the log-form into the exp-form. (1/2)–2 = 4log1/2(4) = –2 log1/2(8) = –3 exp–formlog–form (1/2)–3 = 8
  • 60. Base e is called the natural base. The Common Log and the Natural Log
  • 61. Base e is called the natural base. Log with base e is written as ln(x) and it’s called the natural log, The Common Log and the Natural Log
  • 62. Base e is called the natural base. Log with base e is written as ln(x) and it’s called the natural log, i.e. In(x) is loge(x). The Common Log and the Natural Log
  • 63. Base e is called the natural base. Log with base e is written as ln(x) and it’s called the natural log, i.e. In(x) is loge(x). The Common Log and the Natural Log Example D. Convert to the other form. exp-form log-form 103 = 1000 ln(1/e2) = -2 ert = log(1) = 0 A P
  • 64. Base e is called the natural base. Log with base e is written as ln(x) and it’s called the natural log, i.e. In(x) is loge(x). The Common Log and the Natural Log Example D. Convert to the other form. exp-form log-form 103 = 1000 log(1000) = 3 ln(1/e2) = -2 ert = log(1) = 0 A P
  • 65. Base e is called the natural base. Log with base e is written as ln(x) and it’s called the natural log, i.e. In(x) is loge(x). The Common Log and the Natural Log Example D. Convert to the other form. exp-form log-form 103 = 1000 log(1000) = 3 e-2 = 1/e2 ln(1/e2) = -2 ert = log(1) = 0 A P
  • 66. Base e is called the natural base. Log with base e is written as ln(x) and it’s called the natural log, i.e. In(x) is loge(x). The Common Log and the Natural Log Example D. Convert to the other form. exp-form log-form 103 = 1000 log(1000) = 3 e-2 = 1/e2 ln(1/e2) = -2 ert = ln( ) = rt log(1) = 0 A P A P
  • 67. Base e is called the natural base. Log with base e is written as ln(x) and it’s called the natural log, i.e. In(x) is loge(x). The Common Log and the Natural Log Example D. Convert to the other form. exp-form log-form 103 = 1000 log(1000) = 3 e-2 = 1/e2 ln(1/e2) = -2 ert = ln( ) = rt 100 = 1 log(1) = 0 A P A P
  • 68. Base e is called the natural base. Log with base e is written as ln(x) and it’s called the natural log, i.e. In(x) is loge(x). The Common Log and the Natural Log Example D. Convert to the other form. exp-form log-form 103 = 1000 log(1000) = 3 e-2 = 1/e2 ln(1/e2) = -2 ert = ln( ) = rt 100 = 1 log(1) = 0 A P A P Most log and powers can’t be computed efficiently by hand.
  • 69. Base e is called the natural base. Log with base e is written as ln(x) and it’s called the natural log, i.e. In(x) is loge(x). The Common Log and the Natural Log Example D. Convert to the other form. exp-form log-form 103 = 1000 log(1000) = 3 e-2 = 1/e2 ln(1/e2) = -2 ert = ln( ) = rt 100 = 1 log(1) = 0 A P A P Most log and powers can’t be computed efficiently by hand. We need a calculation device to extract numerical solutions.
  • 70. The Common Log and the Natural Log Example E. Calculate each of the following logs using a calculator. Then convert the relation into the exp–form and confirm the exp–form with a calculator. a. log(50) =
  • 71. The Common Log and the Natural Log Example E. Calculate each of the following logs using a calculator. Then convert the relation into the exp–form and confirm the exp–form with a calculator. a. log(50) = 1.69897...
  • 72. The Common Log and the Natural Log Example E. Calculate each of the following logs using a calculator. Then convert the relation into the exp–form and confirm the exp–form with a calculator. a. log(50) = 1.69897... In the exp–form, it’s101.69897 =
  • 73. The Common Log and the Natural Log Example E. Calculate each of the following logs using a calculator. Then convert the relation into the exp–form and confirm the exp–form with a calculator. a. log(50) = 1.69897... In the exp–form, it’s101.69897 = 49.9999995...≈50
  • 74. The Common Log and the Natural Log Example E. Calculate each of the following logs using a calculator. Then convert the relation into the exp–form and confirm the exp–form with a calculator. a. log(50) = 1.69897... In the exp–form, it’s101.69897 = 49.9999995...≈50 b. ln(9) =
  • 75. The Common Log and the Natural Log Example E. Calculate each of the following logs using a calculator. Then convert the relation into the exp–form and confirm the exp–form with a calculator. a. log(50) = 1.69897... In the exp–form, it’s101.69897 = 49.9999995...≈50 b. ln(9) = 2.1972245..
  • 76. The Common Log and the Natural Log Example E. Calculate each of the following logs using a calculator. Then convert the relation into the exp–form and confirm the exp–form with a calculator. a. log(50) = 1.69897... In the exp–form, it’s101.69897 = 49.9999995...≈50 b. ln(9) = 2.1972245.. In the exp–form, it’s e2.1972245 =
  • 77. The Common Log and the Natural Log Example E. Calculate each of the following logs using a calculator. Then convert the relation into the exp–form and confirm the exp–form with a calculator. a. log(50) = 1.69897... In the exp–form, it’s101.69897 = 49.9999995...≈50 b. ln(9) = 2.1972245.. In the exp–form, it’s e2.1972245 = 8.9999993...≈ 9
  • 78. The Common Log and the Natural Log Example E. Calculate each of the following logs using a calculator. Then convert the relation into the exp–form and confirm the exp–form with a calculator. a. log(50) = 1.69897... In the exp–form, it’s101.69897 = 49.9999995...≈50 b. ln(9) = 2.1972245.. c. Calculate the power using a calculator. Then convert the relation into the log–form and confirm the log–form by the calculator. e4.3 = In the exp–form, it’s e2.1972245 = 8.9999993...≈ 9
  • 79. The Common Log and the Natural Log Example E. Calculate each of the following logs using a calculator. Then convert the relation into the exp–form and confirm the exp–form with a calculator. a. log(50) = 1.69897... In the exp–form, it’s101.69897 = 49.9999995...≈50 b. ln(9) = 2.1972245.. c. Calculate the power using a calculator. Then convert the relation into the log–form and confirm the log–form by the calculator. e4.3 = 73.699793.. In the exp–form, it’s e2.1972245 = 8.9999993...≈ 9
  • 80. The Common Log and the Natural Log Example E. Calculate each of the following logs using a calculator. Then convert the relation into the exp–form and confirm the exp–form with a calculator. a. log(50) = 1.69897... In the exp–form, it’s101.69897 = 49.9999995...≈50 b. ln(9) = 2.1972245.. c. Calculate the power using a calculator. Then convert the relation into the log–form and confirm the log–form by the calculator. e4.3 = 73.699793..→ In(73.699793) = In the exp–form, it’s e2.1972245 = 8.9999993...≈ 9
  • 81. The Common Log and the Natural Log Example E. Calculate each of the following logs using a calculator. Then convert the relation into the exp–form and confirm the exp–form with a calculator. a. log(50) = 1.69897... In the exp–form, it’s101.69897 = 49.9999995...≈50 b. ln(9) = 2.1972245.. c. Calculate the power using a calculator. Then convert the relation into the log–form and confirm the log–form by the calculator. e4.3 = 73.699793..→ In(73.699793) = 4.299999..≈ 4.3 In the exp–form, it’s e2.1972245 = 8.9999993...≈ 9
  • 82. The Common Log and the Natural Log Example E. Calculate each of the following logs using a calculator. Then convert the relation into the exp–form and confirm the exp–form with a calculator. a. log(50) = 1.69897... In the exp–form, it’s101.69897 = 49.9999995...≈50 b. ln(9) = 2.1972245.. c. Calculate the power using a calculator. Then convert the relation into the log–form and confirm the log–form by the calculator. e4.3 = 73.699793..→ In(73.699793) = 4.299999..≈ 4.3 Your turn. Follow the instructions in part c for 10π. In the exp–form, it’s e2.1972245 = 8.9999993...≈ 9
  • 83. Equation may be formed with log–notation. The Common Log and the Natural Log
  • 84. Equation may be formed with log–notation. Often we need to restate them in the exp–form. The Common Log and the Natural Log
  • 85. Equation may be formed with log–notation. Often we need to restate them in the exp–form. We say we "drop the log" when this step is taken. The Common Log and the Natural Log
  • 86. Example F. Solve for x a. log9(x) = –1 Equation may be formed with log–notation. Often we need to restate them in the exp–form. We say we "drop the log" when this step is taken. The Common Log and the Natural Log
  • 87. Example F. Solve for x a. log9(x) = –1 Drop the log and get x = 9–1. Equation may be formed with log–notation. Often we need to restate them in the exp–form. We say we "drop the log" when this step is taken. The Common Log and the Natural Log
  • 88. Example F. Solve for x a. log9(x) = –1 Drop the log and get x = 9–1. So x = 1/9 Equation may be formed with log–notation. Often we need to restate them in the exp–form. We say we "drop the log" when this step is taken. The Common Log and the Natural Log
  • 89. Example F. Solve for x a. log9(x) = –1 Drop the log and get x = 9–1. So x = 1/9 b. logx(9) = –2 Equation may be formed with log–notation. Often we need to restate them in the exp–form. We say we "drop the log" when this step is taken. The Common Log and the Natural Log
  • 90. Example F. Solve for x a. log9(x) = –1 Drop the log and get x = 9–1. So x = 1/9 b. logx(9) = –2 Drop the log and get 9 = x–2, Equation may be formed with log–notation. Often we need to restate them in the exp–form. We say we "drop the log" when this step is taken. The Common Log and the Natural Log
  • 91. Example F. Solve for x a. log9(x) = –1 Drop the log and get x = 9–1. So x = 1/9 b. logx(9) = –2 Drop the log and get 9 = x–2, i.e. 9 = 1 x2 Equation may be formed with log–notation. Often we need to restate them in the exp–form. We say we "drop the log" when this step is taken. The Common Log and the Natural Log
  • 92. Example F. Solve for x a. log9(x) = –1 Drop the log and get x = 9–1. So x = 1/9 b. logx(9) = –2 Drop the log and get 9 = x–2, i.e. 9 = So 9x2 = 1 1 x2 Equation may be formed with log–notation. Often we need to restate them in the exp–form. We say we "drop the log" when this step is taken. The Common Log and the Natural Log
  • 93. Example F. Solve for x a. log9(x) = –1 Drop the log and get x = 9–1. So x = 1/9 b. logx(9) = –2 Drop the log and get 9 = x–2, i.e. 9 = So 9x2 = 1 x2 = 1/9 x = 1/3 or x= –1/3 1 x2 Equation may be formed with log–notation. Often we need to restate them in the exp–form. We say we "drop the log" when this step is taken. The Common Log and the Natural Log
  • 94. Example F. Solve for x a. log9(x) = –1 Drop the log and get x = 9–1. So x = 1/9 b. logx(9) = –2 Drop the log and get 9 = x–2, i.e. 9 = So 9x2 = 1 x2 = 1/9 x = 1/3 or x= –1/3 Since the base b > 0, so x = 1/3 is the only solution. 1 x2 Equation may be formed with log–notation. Often we need to restate them in the exp–form. We say we "drop the log" when this step is taken. The Common Log and the Natural Log
  • 95. The Logarithmic Functions Graphs of the Logarithmic Functions Recall that the domain of logb(x) is the set of all x > 0.
  • 96. The Logarithmic Functions Graphs of the Logarithmic Functions 1/4 1/2 1 2 4 8 x y=log2(x) Recall that the domain of logb(x) is the set of all x > 0. Hence to make a table to plot the graph of y = log2(x), we only select positive x’s.
  • 97. The Logarithmic Functions Graphs of the Logarithmic Functions 2 4 8 x y=log2(x) Recall that the domain of logb(x) is the set of all x > 0. Hence to make a table to plot the graph of y = log2(x), we only select positive x’s. In particular we select x’s related to base 2 for easy computation of the y’s.
  • 98. The Logarithmic Functions Graphs of the Logarithmic Functions 1/4 1/2 1 2 4 8 x y=log2(x) Recall that the domain of logb(x) is the set of all x > 0. Hence to make a table to plot the graph of y = log2(x), we only select positive x’s. In particular we select x’s related to base 2 for easy computation of the y’s.
  • 99. The Logarithmic Functions Graphs of the Logarithmic Functions 1/4 -2 1/2 1 2 4 8 x y=log2(x) Recall that the domain of logb(x) is the set of all x > 0. Hence to make a table to plot the graph of y = log2(x), we only select positive x’s. In particular we select x’s related to base 2 for easy computation of the y’s.
  • 100. The Logarithmic Functions Graphs of the Logarithmic Functions 1/4 -2 1/2 -1 1 2 4 8 x y=log2(x) Recall that the domain of logb(x) is the set of all x > 0. Hence to make a table to plot the graph of y = log2(x), we only select positive x’s. In particular we select x’s related to base 2 for easy computation of the y’s.
  • 101. The Logarithmic Functions Graphs of the Logarithmic Functions 1/4 -2 1/2 -1 1 0 2 4 8 x y=log2(x) Recall that the domain of logb(x) is the set of all x > 0. Hence to make a table to plot the graph of y = log2(x), we only select positive x’s. In particular we select x’s related to base 2 for easy computation of the y’s.
  • 102. The Logarithmic Functions Graphs of the Logarithmic Functions 1/4 -2 1/2 -1 1 0 2 1 4 8 x y=log2(x) Recall that the domain of logb(x) is the set of all x > 0. Hence to make a table to plot the graph of y = log2(x), we only select positive x’s. In particular we select x’s related to base 2 for easy computation of the y’s.
  • 103. The Logarithmic Functions Graphs of the Logarithmic Functions 1/4 -2 1/2 -1 1 0 2 1 4 2 8 3 x y=log2(x) Recall that the domain of logb(x) is the set of all x > 0. Hence to make a table to plot the graph of y = log2(x), we only select positive x’s. In particular we select x’s related to base 2 for easy computation of the y’s.
  • 104. The Logarithmic Functions (1, 0) (2, 1) (4, 2) (8, 3) (16, 4) (1/2, -1) (1/4, -2) y=log2(x) Graphs of the Logarithmic Functions 1/4 -2 1/2 -1 1 0 2 1 4 2 8 3 x y=log2(x) Recall that the domain of logb(x) is the set of all x > 0. Hence to make a table to plot the graph of y = log2(x), we only select positive x’s. In particular we select x’s related to base 2 for easy computation of the y’s. x y
  • 105. The Logarithmic Functions To graph log with base b = ½, we have log1/2(4) = –2, log1/2(8) = –3, log1/2(16) = –4
  • 106. The Logarithmic Functions x y (1, 0) (8, -3) To graph log with base b = ½, we have log1/2(4) = –2, log1/2(8) = –3, log1/2(16) = –4 (4, -2) (16, -4) y = log1/2(x)
  • 107. The Logarithmic Functions x y (1, 0) (8, -3) To graph log with base b = ½, we have log1/2(4) = –2, log1/2(8) = –3, log1/2(16) = –4 (4, -2) (16, -4) y = log1/2(x) x x y (1, 0)(1, 0) y = logb(x), b > 1 y = logb(x), 1 > b Here are the general shapes of log–functions. y (b, 1) (b, 1)
  • 108. 1. 41/2 = 2 2. 91/2 = 3 3. 4 = 161/2 4. 5 = 251/2 9 25 ( )1/2 = 3/58.7. (8)–1/3 = 1/2 6. ¼ = 16–1/2 9 25 ( ) –1/2 = 5/39. 10. 1 64 ( ) –1/3= 4 11. 1/64 = 16–3/2 Fractional Exponents Express the following in the log-form 1 64 ( ) –2/3 = 1612. 13. log4 (2) = 1/2 14. ½ = log9 (3) 15. log16 4 = ½ 16. 1/2 = log25 (5) 5. 1/3 = 9 –1/2 1/2 = log9/25 (3/5)20.19. log8 (1/2) = –1/3 18. log16 (1/2) = –¼ 21. 22. log1/64(4 ) = –1/3 Express the following in the exp-form 17. log25 (1/5) = – ½ –3/2 = log9 (1/27)
  • 109. Properties of Logarithm Express the following in the log-form 19. 102 = 100 20. 103 = 1000 21. 10–1 = 1/10 22. 100 = 1 23. 10 –3 = 1/1000 24. 10–1/2 = 1/√10 Express the following in the exp-form 25. log(10) = 1 26. 3 = log(1000) 27. –1 = log(1/10) 28. 0 = log(1) 29. log(√10) = 1/2 30. –1/2 = log(1/√10) Express the following in the ln-form 31. e–2 = 1/e2 32. √e = e–1/2 33. err = k 34. a + b = e – t 35. e –r + t = A 36. eA = x2 Express the following in the exp-form 37. ln(1/e) = –1 38. 1/2 = ln(√e) 39. p = ln(eP) 40. 10 = ln(1) 41. ln(1/√e) = –1/3 3
  • 110. Properties of Logarithm Solve for x. 48. log 3 (x + 5) = 1 49. 2 = log 2 (5 – 2x) 50. –1 = log( ) 51. ln(2x) = –1 53. 2 = logX (3x ) 42. log x (3) = 1/2 43. ½ = log9 (x) 44. logx 4 = ½ 45. 1/2 = log25 (x) 47. log16 (1/2) = x46. logx (1/5) = – ½ x x+1 52. ln(2x –1) = 2 54. 2 = logX (2x – 3) Graph the following functions. Plot at least 5 pt. 55. y = log2 (x) 56. y = log 1/2 (x) 57. y = log3 (x) 58. y = log 1/3 (x)