SlideShare a Scribd company logo
Chapter 2 AC to DC Converters
Outline
2.1 Single-phase controlled rectifier
2.2 Three-phase controlled rectifier
2.3 Effect of transformer leakage inductance on rectifier circuits
2.4 Capacitor-filtered uncontrolled rectifier
2.5 Harmonics and power factor of rectifier circuits
2.6 High power controlled rectifier
2.7 Inverter mode operation of rectifier circuit
2.8 Thyristor-DC motor system
2.9 Realization of phase-control in rectifier
2.1 Single- phase controlled (controllable) rectifier
2.1.1 Single-phase half-wave controlled rectifier
Resistive load
T
VT
R
a)
u1
u2
uVT
ud
id
0 t1  2
 t
u2
ug
ud
uVT
 
0
b)
c)
d)
e)
0
0
 t
 t
 t













 2
cos
1
45
.
0
)
cos
1
(
2
2
)
(
sin
2
2
1
2
2
2
d U
U
t
td
U
U
(2-1)
Inductive (resistor-inductor) load
a)
u1
T
VT
R
L
u2
uVT
ud
id
u2
0 t1
 2
 t
ug
0
ud
0
id
0
uVT
0


b)
c)
d)
e)
f)
+ +
 t
 t
 t
 t
Basic thought process of time-domain analysis for power electronic
circuits
The time- domain behavior of a power electronic circuit is actually the
combination of consecutive transients of the different linear circuits
when the power semiconductor devices are in different states.
a) b)
VT
R
L
VT
R
L
u2 u2
t
U
Ri
t
i
L 
sin
2
d
d
2
d
d


ωt= a ,id=0
)
sin(
2
)
sin(
2 2
)
(
2
d 













t
Z
U
e
Z
U
i
t
L
R
(2-2)
(2-3)
Single- phase half- wave controlled rectifier with freewheeling diode
load (L is large enough) Inductive
a)
L
T VT
R
u1
u2
uVT
ud
VDR
id
iVD
u2
ud
id
uVT
iVT
Id
Id
t
O
O
O
O
O
O
- +
b)
iVDR
t
t
t
t
t
g)
c)
e)
f)
d)
T1
Maximum forward voltage, maximum reverse voltage
Disadvantages:
–Only single pulse in one line cycle
–DC component in the transformer current
d
dVT
2
I
I


 

d
2
d
VT
2
)
(
2
1
I
t
d
I
I









 
d
2
2
d
VD
2
)
(
2
1
R
I
t
d
I
I










 

d
dVD
2
R
I
I


 

(2-5)
(2-6)
(2-7)
(2-8)
2.1.2 Single- phase bridge fully-controlled rectifier
 Resistive load
  t
0
0
0
i2
ud
id
b)
c)
d)
ud
(id
)
 
R
T
u1 u2
a)
i2
a
b
VT3
ud
i
d
uVT
1,4
 t
 t
VT4
VT1
VT2
Average output (rectified) voltage:
Average output current:
For thyristor:
For transformer:













 2
cos
1
9
.
0
2
cos
1
2
2
)
(
d
sin
2
1
2
2
2
d U
U
t
t
U
U (2-9)
(2-10)
2
cos
1
9
.
0
2
cos
1
2
2 2
2
d
d








R
U
R
U
R
U
I
(2-11)
2
cos
1
45
.
0
2
1 2
d
dVT




R
U
I
I













  2
sin
2
1
2
)
(
d
)
sin
2
(
2
1 2
2
2
VT
R
U
t
t
R
U
I (2-12)














  2
sin
2
1
)
(
)
sin
2
(
1 2
2
2
2
R
U
t
d
t
R
U
I
I (2-13)
 Inductive load (L is large enough)
 t
 t
 t
 t
 t
 t
 t







u2
ud
id
Id
Id
Id
Id
Id
iVT1,4
iVT2,3
uVT1,4
i2
,
b)
R
T
u1 u2
a)
i2
a
b
VT3
ud
i
d
VT4
VT1
VT2
 Electro- motive-force (EMF) load With resistor














cos
9
.
0
cos
2
2
)
(
d
sin
2
1
2
2
2
d U
U
t
t
U
U (2-15)
a) b)
R
E
id
ud id
O
E
ud
t
Id
O t
  
 With resistor and inductor
When L is large enough, the output voltage and current waveforms are the
same as ordinary inductive load.
When L is at a critical value
O
ud
0
E
id
 t
 t


 =
dmin
2
3
dmin
2
10
87
.
2
2
2
I
U
I
U
L 



 (2-17)
2.1.3 Single- phase full- wave controlled rectifier
a) b)
u1
T
R
u2
u2
i1 VT1
VT2 ud
ud
i1
O
O
  t
t
2.1.4 Single- phase bridge half-controlled rectifier
a)
T a
b R
L
O
b)
u2
i2
ud
id
VT
1
VT
2
VD
3
VD
4
VD
R
u2
O
ud
id Id
O
O
O
O
O
i2
Id
Id
Id
Id
Id

t
t
t
t
t
t
t



iVT
1
iVD
4
iVT
2
iVD
3
iVD
R
 Another single- phase bridge half-controlled rectifier
Comparison with previous circuit:
–No need for additional freewheeling diode
–Isolation is necessary between the drive circuits of the two thyristors
load
T
u2
VT2 VT4
VT1 VT3
Summary of some important points in analysis
When analyzing a thyristor circuit, start from a diode circuit with the same
topology. The behavior of the diode circuit is exactly the same as the
thyristor circuit when firing angle is 0.
A power electronic circuit can be considered as different linear circuits
when the power semiconductor devices are in different states. The
time- domain behavior of the power electronic circuit is actually the
combination of consecutive transients of the different linear circuits.
Take different principle when dealing with different load
– For resistive load: current waveform of a resistor is the same as the
voltage waveform
–For inductive load with a large inductor: the inductor current can
be considered constant
2.2 Three- phase controlled (controllable) rectifier
2.2.1 Three- phase half- wave controlled rectifier
Resistive load, α= 0º
a
b
c
T
R
ud
id
VT2
VT1
VT3
u2
O
O
O
uab uac
O
iVT1
uVT
1
 t
 t
 t
 t
 t
u a u b u c
u G
u d
 t1  t2  t3
Common-cathode connection
Natural commutation point
Resistive load, α= 30º
u2
ua ub uc
O
O
O t
O
t
O
t
uG
ud
uab uac
t1
iVT
1
uVT1 uac
t
t
a
b
c
T
R
ud
id
VT2
VT1
VT3
Resistive load, α= 60º
t
u2 ua ub uc
O
O
O
O
uG
ud
iVT
1
t
t
t
a
b
c
T
R
ud
id
VT2
VT1
VT3
Resistive load, quantitative analysis
When α≤ 30º , load current id is continuous.
When α > 30º , load current id is discontinuous.
Average load current
Thyristor voltages









 cos
17
.
1
cos
2
6
3
)
(
sin
2
3
2
1
2
2
6
5
6
2
d U
U
t
td
U
U 

 


(2-18)


















  
)
6
cos(
1
675
.
0
)
6
cos(
1
2
2
3
)
(
sin
2
3
2
1
2
6
2
d 









 U
t
td
U
U (2-19)
R
U
I d
d  (2-20)
0 30 60 90 120 150
0.4
0.8
1.2
1.17
3
2
1
/(°)
Ud/U2
 Inductive load, L is large enough
Thyristor voltage and currents, transformer current :









 cos
17
.
1
cos
2
6
3
)
(
sin
2
3
2
1
2
2
6
5
6
2
d U
U
t
td
U
U 

 


(2-18)
d
d
VT
2 577
.
0
3
1
I
I
I
I 

 d
VT
VT(AV) 368
.
0
57
.
1
I
I
I 

2
RM
FM 45
.
2 U
U
U 

(2-23)
(2-25)
(2-24)
2.2.2 Three- phase bridge fully-controlled rectifier
Circuit diagram
Common- cathode group and common- anode group of thyristors
Numbering of the 6 thyristors indicates the trigger sequence.
b
a
c
T
n
load
ia
id
ud
VT1 VT3 VT5
VT4 VT6 VT2 d2
d1
Resistive load, α= 0º
b
a
c
T
n
load
ia
id
ud
VT1 VT3 VT5
VT4 VT6 VT2 d2
d1
u2
ud1
ud2
u2L
ud
uab uac
uab uac ubc uba uca ucb uab uac
uab uac ubc uba uca ucb uab uac
I II III IV V VI
ua uc
ub
 t1
O t
O t
O t
O t
= 0°
iVT
1
uVT
1
Resistive load, α= 30º
b
a
c
T
n
load
ia
id
ud
VT1 VT3 VT5
VT4 VT6 VT2 d2
d1
ud1
ud2

=30
¡
ã
ia
O
O
O
O  t
ud
uab uac
ua ub
uc
 t1
uab uac ubc uba uca ucb uab uac
І II III IV V VI
uab u ac ubc uba u ca ucb u ab u ac
uVT
1
 t
 t
 t
Resistive load, α= 60º
b
a
c
T
n
load
ia
id
ud
VT1 VT3 VT5
VT4 VT6 VT2 d2
d1
= 60º
ud1
ud2
ud
uac
uac
uab
uab
uac
ubc
uba
uca
ucb
uab
uac
ua
I II III IV V VI
u
b uc
O
t1
O t
O
uVT
1
t
t
Resistive load, α= 90º
b
a
c
T
n
load
ia
id
ud
VT1 VT3 VT5
VT4 VT6 VT2 d2
d1
2.ppt
Inductive load, α= 0º
b
a
c
T
n
load
ia
id
ud
VT1 VT3 VT5
VT4 VT6 VT2 d2
d1
ud1
u2
ud2
u2L
ud
id
O
O
O
 t
O
ua
= 0
ub
uc
t1
uab uac ubc uba
uca
ucb
uab uac
I II III IV V VI
iVT
1
 t
 t
 t
º
Inductive load, α= 30º
b
a
c
T
n
load
ia
id
ud
VT1 VT3 VT5
VT4 VT6 VT2 d2
d1
ud1
= 30
ud2
ud
uab
uac
ubc
uba
uca
ucb
uab
uac
I II III IV V VI
 t
O
 t
O
t
O
 t
O
id
ia
t1
ua ub uc
°
Inductive load, α= 90º
b
a
c
T
n
load
ia
id
ud
VT1 VT3 VT5
VT4 VT6 VT2 d2
d1
2.ppt
Quantitative analysis
Average output voltage:
For resistive load, When a > 60º, load current id is discontinuous.
everage output current (load current):
Transformer current:







 cos
34
.
2
)
(
sin
6
3
1
2
3
2
3
2
d U
t
td
U
U 
 


(2-26)
(2-27)









  
)
3
cos(
1
34
.
2
)
(
sin
6
3
2
3
2
d 






 U
t
td
U
U
R
U
I d
d  (2-20)
d
d
d
d I
I
I
I
I 816
.
0
3
2
3
2
)
(
3
2
2
1 2
2
2 











 


(2-28)
2.3 Effect of transformer leakage inductance on rectifier circuits
In practical, the transformer leakage inductance has to be taken into account.
Commutation between thyristors, thus can not happen instantly,but with a
commutation process.
a
b
c
T
L
ud
ic
ib
ia
LB
LB
LB
ik VT1
VT2
VT3
R
id
O 
ic ia ib ic ia Id
ud
 t
ua ub uc

 t
O
Commutation process analysis
Circulating current ik during commutation
Output voltage during commutation
ik: 0 Id
ub-ua = 2·LB·dia/dt
ia = Id-ik : Id
ib = ik : 0 Id
0
2
d
d
d
d b
a
k
B
b
k
B
a
d
u
u
t
i
L
u
t
i
L
u
u





 (2-30)
Quantitative calculation
Reduction of average output voltage due to the commutation process
Calculation of commutation angle
– Id ↑,γ↑
– XB↑, γ↑
– For α ≤ 90۫ , α↓, γ↑
d
B
0
B
6
5
6
5 B
6
5
6
5 B
b
b
6
5
6
5 d
b
d
2
3
d
2
3
)
(
d
d
d
2
3
)
(
d
)]
d
d
(
[
2
3
)
(
d
)
(
3
/
2
1
I
X
i
L
t
t
i
L
t
t
i
L
u
u
t
u
u
U
I














































d
k
k
k
(2-31)
2
d
B
6
2
)
cos(
cos
U
I
X


 

 (2-36)
Summary of the effect on rectifier circuits
Circuits
Single-
phase
Full wave
Single-
phase
bridge
Three-
phase
half wave
Three-
phase
bridge
m-pulse recfifier
d
U
 d
B
I
X
 d
B
2
I
X
 d
B
2
3
I
X

d
B
3
I
X
 d
B
2
I
mX

)
cos(
cos 

 

2
B
d
2U
X
I
2
B
d
2
2
U
X
I
2
d
B
6
2
U
I
X
2
d
B
6
2
U
I
X
m
U
X
I

sin
2 2
B
d
 Conclusions
–Commutation process actually provides additional working states of the
circuit.
–di/dt of the thyristor current is reduced.
–The average output voltage is reduced.
–Positive du/dt
– Notching in the AC side voltag
2.4 Capacitor- filtered uncontrolled (uncontrollable) rectifier
2.4.1 Capacitor- filtered single- phase uncontrolled rectifier
Single-phase bridge, RC load:
a)
+
R
C
u1 u2
i2
VD1 VD3
VD2 VD4
id
iC
iR
ud
b)
0
i
ud


 2 t
i,ud
Single-phase bridge, RLC load
a) b)
-
+
R
C
L
+
u1 u2
i2
ud
uL
id
iC iR
VD2 VD4
VD1
VD3
u2 ud
i2
0
   t
i2,u2,ud
2.4.2 Capacitor- filtered three- phase uncontrolled rectifier
Three-phase bridge, RC load
a)
+
a
b
c
T
ia
R
C
ud
id
iC
iR
VD2
b)
O
ia
ud
id
ud
u
ab u
ac
0
  

3
t
VD6
VD4
VD1VD3VD5
t
Three- phase bridge, RC load Waveform when ωRC≤1.732
a) b)
t t
t
t
ia
id
ia
id
O
O
O
O
a)RC=
•
b)RC<
3 3
Three- phase bridge, RLC load
a)
b)
c)
+
a
b
c
T ia
R
C
ud
id
iC
iR
VD4
VD6
VD1
VD3
VD5
VD2
ia
ia
O
O t
t
2.5 Harmonics and power factor of rectifier circuits
2.5.1 Basic concepts of harmonics and reactive power
For pure sinusoidal waveform
For periodic non-sinusoidal waveform
where
 Harmonics-related specifications
Take current harmonics as examples
Content of nth harmonics
In is the effective (RMS) value of nth harmonics.
I1 is the effective (RMS) value of fundamental component.
Total harmonic distortion
Ih is the total effective (RMS) value of all the harmonic components.
%
100
1


I
I
HRI n
n (2-57)
%
100
1


I
I
THD h
i (2-58)
 Definition of power and power factor for sinusoidal circuits
Active power
Reactive power
Apparent power
Power factor
 





2
0
cos
)
(
2
1
UI
t
uid
P (2-59)
Q=U I sin (2-61)
S=UI (2-60)
2
2
2
Q
P
S 
 (2-63)
S
P

 (2-62)
=cos  (2-64)
 Definition of power and power factor For non- sinusoidal circuit
Active power:
Power factor:
Distortion factor (fundamental- component factor):
Displacement factor (power factor of fundamental component):
Definition of reactive power is still in dispute
P=U I1 cos1 (2-65)
(2-66)
1
1
1
1
1
cos
cos
cos




 



I
I
UI
UI
S
P
=I1 / I
=cos 
 
 Review of the reactive power concept
The reactive power Q does not lead to net transmission of energy between
the source and load. When Q ≠ 0, the rms current and apparent power
are greater than the minimum amount necessary to transmit the
average power P.
Inductor: current lags voltage by 90°, hence displacement factor is zero.
The alternate storing and releasing of energy in an inductor leads to
current flow and nonzero apparent power, but P = 0. Just as resistors
consume real (average) power P, inductors can be viewed as
consumers of reactive power Q.
Capacitor: current leads voltage by 90°, hence displacement factor is
zero. Capacitors supply reactive power Q. They are often placed in the
utility power distribution system near inductive loads. If Q supplied by
capacitor is equal to Q consumed by inductor, then the net current
(flowing from the source into the capacitor- inductive- load
combination) is in phase with the voltage, leading to unity power
factor and minimum rms current magnitude.
2.5.2 AC side harmonics and power factor of controlled rectifiers with
inductive load
 Single- phase bridge fully-controlled rectifier
R
T
u1 u2
a)
i2
a
b
VT3
ud
i
d
VT4
VT1
VT2
 t
 t
 t
 t
 t
 t
 t







u2
ud
id
Id
Id
Id
Id
Id
iVT1,4
iVT2,3
uVT1,4
i2
,
b)
AC side current harmonics of single- phase bridge fully-controlled
rectifier with inductive load
Where
Conclusions
–Only odd order harmonics exist
– In∝1/n
– In / I1 = 1/n

 










,
5
,
3
,
1
,
5
,
3
,
1
d
d
2
sin
2
sin
1
4
)
5
sin
5
1
3
sin
3
1
(sin
4
n
n
n
t
n
I
t
n
n
I
t
t
t
I
i







(2-72)

n
I
In
d
2
2
 n=1,3,5,… (2-73)
 A typical gate triggering control circuit
220V 36V
+
B
TP
+15V
A
VS
+15V
-15V -15V
X Y
Disable
R
Q
uts
VD1
VD2
C1 R2
R4
TS
V2 R5
R8
R6
R7
R3
R9
R10
R11
R12
R13
R
14
R16
R15
R18
R17
RP1
uco
up
C2
C3
C3
C5
C6
C7
R1
RP2
V1
I1c
V3
V4
V6
V5
V7
V8
VD4
VD
10 VD5
VD6
VD7
VD9
VD8
VD15
VD11
~VD
14
 Three- phase bridge fully-controlled rectifier
b
a
c
T
n
load
ia
id
ud
VT1 VT3 VT5
VT4 VT6 VT2 d2
d1
ud1
= 30
ud2
ud
uab
uac
ubc
uba
uca
ucb
uab
uac
I II III IV V VI
 t
O
 t
O
t
O
 t
O
id
ia
t1
ua ub uc
°
 AC side current harmonics of three- phase bridge fully- controlled
rectifier with inductive load
where























3
,
2
,
1
1
6
1
3
,
2
,
1
1
6
d
d
d
a
sin
2
)
1
(
sin
2
sin
1
)
1
(
3
2
sin
3
2
]
13
sin
13
1
11
sin
11
1
7
sin
7
1
5
sin
5
1
[sin
3
2
k
k
n
n
k
k
k
n
k
t
n
I
t
I
t
n
n
I
t
I
t
t
t
t
t
I
i











 (2-79)
(2-80)













,
3
,
2
,
1
,
1
6
,
6
6
d
d
1
k
k
n
I
n
I
I
I
n


2.5.3 AC side harmonics and power factor of capacitor- filtered
uncontrolled rectifiers
Situation is a little complicated than rectifiers with inductive load.
Some conclusions that are easy to remember:
–Only odd order harmonics exist in single- phase circuit, and only 6k±1
(k is positive integer) order harmonics exist in three- phase circuit.
–Magnitude of harmonics decreases as harmonic order increases.
–Harmonics increases and power factor decreases as capacitor increases.
–Harmonics decreases and power factor increases as inductor increases.
2.5.4 Harmonic analysis of output voltage and current










 





t
n
n
k
U
t
n
b
U
u
mk
n
mk
n
n 

 cos
1
cos
2
1
cos 2
d0
d0
d0 (2-85)
(2-86)
m
m
U
U


sin
2 2
d0 
d0
2
1
cos
2
U
n
k
bn




(2-87)
u
d
t
O

m

m
2
m
U
2
2
Output voltage of m- pulse
rectifier when α = 0º
Ripple factor in the output voltage
Output voltage ripple factor
where UR is the total RMS value of all the harmonic components in the
output voltage
and U is the total RMS value of the output voltage
d0
R
U
U
u 
 (2-88)
(2-89)
2
d0
2
2
R U
U
U
U
mk
n
n 

 


 Harmonics in the output current
where
)
cos(
d
d n
mk
n
n t
n
d
I
i 
 

 


(2-92)
(2-93)
R
E
U
I

 d0
d
2
2
)
( L
n
R
b
z
b
d n
n
n
n




R
L
n
n

 arctan

(2-94)
(2-95)
Conclusions
for α = 0º
Only mk (k is positive integer) order harmonics exist in the output voltage
and current of m- pulse rectifiers
Magnitude of harmonics decreases as harmonic order increases when m is
constant.
The order number of the lowest harmonics increases as m increases. The
corresponding magnitude of the lowest harmonics decreases
accordingly.
For α ≠ 0º
Quantitative harmonic analysis of output voltage and current is very
complicated for α ≠ 0º.
As an example,for 3- phase bridge fully- controlled rectifie
2.6 High power controlled rectifier
2.6.1 Double- star controlled rectifier
Circuit Waveforms When α= 0º
T
a b c
L
R
n
iP
LP
ud
id
VT5
c
a'
b'
n1
n2
'
VT4 VT6 VT2
VT3 VT1
ud1
ua ub uc
ia
ud2
ia
'
uc
' ua
' ub
' uc
'
O t
O t
O t
O t
Id
1
2
Id
1
6
Id
1
2
Id
1
6
 Effect of interphase reactor(inductor, transformer)
n
L
R
+
- +
-
ud1
LP
ub
'
ud2
ud
n2
n1
iP
ua
VT1 VT6
uP
1
2
up
ud1
,ud2
O
O
60
360
t1 t
t
b)
a)
ua ub uc
uc
' ua
'
ub
' ub
'

d1
d2
p u
u
u 

)
(
2
1
2
1
2
1
d2
d1
p
d1
p
d2
d u
u
U
u
u
u
u 





(2-97)
(2-98)
Quantitative analysis when α = 0º
]
9
cos
40
1
6
cos
35
2
3
cos
4
1
1
[
2
6
3 2
d1 






 t
t
t
U
u 



]
9
cos
40
1
6
cos
35
2
3
cos
4
1
1
[
2
6
3
]
)
60
(
9
cos
40
1
)
60
(
6
cos
35
2
)
60
(
3
cos
4
1
1
[
2
6
3
2
2
d2





















t
t
t
U
t
t
t
U
u








]
9
cos
20
1
3
cos
2
1
[
2
6
3 2
p 





 t
t
U
u 


]
6
cos
35
2
1
[
2
6
3 2
d 




 t
U
u 

(2-99)
(2-100)
(2-101)
(2-102)
Waveforms when α > 0º
Ud=1.17 U2 cos 

90



60



30


ud
ud
ud
t
O
t
O
t
O
ua ub uc
uc
' ua
' ub
'
ub
uc
uc
' ua
' ub
'
ub
uc
uc
' ua
' ub
'
2.6.2 Connection of multiple rectifiers
Connection
of multiple
rectifiers
To increase the
output capacity
To improve the AC side current waveform
and DC side voltage waveform
Larger output voltage:
series connection
Larger output current:
parallel connection
 Phase-shift connection of multiple rectifiers
Parallel connection
M
L
T
VT
1 2
c1
b1
a1
c2
b2
a2
LP
12- pulse rectifier realized by
paralleled 3- phase bridge rectifiers
Series connection
C
?
L
R
B
A
1
*
?
?
*
*
0
30°
3
iA
c1
b1
a1
1
c2
b2
a2
iab 2
ua2b2
ua1
b1
i
a1 id
ud
I
II
I
III
0
a)
b)
c)
d)
ia1
Id
   

   

ia2
iab2
'
iA
Id
iab2
t
t
t
t
0
0
0
Id
2
3
3
3
Id
3
3
Id
Id
3
2 3
(1+ ) Id
3
2 3
(1+ )Id
3
3
Id
1
3
12- pulse rectifier realized by
series 3- phase bridge rectifiers
 Sequential control of multiple series-connected rectifiers
L
i
a)
load
Ⅰ
Ⅱ
Ⅲ
u
2
u
2
u
2
Id
VT11
u d
b)
c)
i Id
2 Id
ud
O   + 
VT12
VT13
VT14
VT21
VT22
VT23
VT24
VT31
VT32
VT33
VT34
Circuit and waveforms of series- connected
three single-phase bridge rectifiers
2.7 Inverter mode operationof rectifiers
 Review of DC generator- motor system
c)
b)
a)
M
G M
G M
G
EG EM
Id
R¡Æ
EG EM
Id
R¡Æ
EG
EM
Id
R¡Æ
Id =
EG EM
RΣ
-
Id =
EM EG
RΣ
- should be avoided
 Inverter mode operation of rectifiers
Rectifier and inverter mode operation of single- phase full- wave
converter
Necessary conditions for the inverter mode operation of controlled
rectifiers
There must be DC EMF in the load and the direction of the DC EMF must
be enabling current flow in
thyristors. (In other word EM must be negative if taking the ordinary
output voltage direction as positive.)
α > 90º so that the output voltage Ud is also negative.
 Inverter mode operation of 3- phase bridge rectifier
uab uac ubc uba uca ucb uab uac ubc uba uca ucb uab uac ubc uba uca ucb uab uac ubc
ua ub uc ua ub uc ua ub uc ua ub
u2
ud
t
O
t
O
=

4
= 
3
=

6
= 
4
= 
3
= 
6
t1 t3
t2
Inversion angle (extinction angle) β
α+ β=180º
Inversion failure and minimum inversion angle
Possible reasons of inversion failures
–Malfunction of triggering circuit
–Failure in thyristors
–Sudden dropout of AC source voltage
–Insufficient margin for commutation of thyristors
Minimum inversion angle (extinction angle)
βmin= δ + γ+ θ′(2-109)
2.ppt
2.8 Thyristor- DC motor system
2.8.1 Rectifier mode of operation
Waveforms and equations
U
I
R
E
U d
M
d 


  (2-112)
where
R RM RB
3XB
2π
 

(for 3- phase half-wave)
u
d
O
id
t
ua ub uc

ud
O
ia ib ic
ic
t
E
Ud
idR
(Waveforms of 3- phase half- wave
rectifier with DC motor load
 Speed- torque (mechanic) characteristic when load current is
continuous
n
EM 
 Ce (2-113)
For 3- phase half-wave
U
I
EM 

 cos
1.17 2
U 
R d 
EM  cos
1.17 2
U

e
d
e C
U
I
R
C
U
n





cos
1.17 2
(2-114)
For 3-phase bridge

e
d
e C
I
R
C
U
n 


cos
2.34 2
(2-115)
(2-116)
O
n
a1<a2<a3
a3
a2
a1
Id
(RB+RM+ )
Id
Ce
3XB
2
For 3- phase half-wave
 Speed- torque (mechanic) characteristic when load current is
discontinuous
EMF at no load (taking 3- phase half-wave as example)
For α≤ 60º
2
2U
Eo=
For α>60º
)
3
cos(
2 2 
 
U
Eo=
discontinuouts
mode
continuous mode
E
E0
E0'
O
Idmin
Id
(0.585U2)
( U2)
2
For 3- phase half-wave
2.8.2 Inverter mode of operation
Equations
–are just the same as in the
rectifier mode of operation
except that Ud, EM and n
become negative. E.g., in
3- phase half- wave
U
I
EM 

 cos
1.17 2
U 
R d 

e
d
e C
U
I
R
C
U
n





cos
1.17 2
(2-114)
(2-115)
– Or in another form
(2-123)
I)
0cos +
( 
R
I
U
E d
d
M = - (2-122)
e
C
n 
 
 R
I
U d
d 
cos
0

rectifier
mode
n
3
2
1
Id
4
2
3
4
1
==

2
inverter
mode
α
increasing
β
increasing
Speed-torque characteristic of
a DC motor fed by a thyristor
rectifier circuit
2.8.3 Reversible DC motor drive system(4-quadrant operation)
L
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
AC
source
converter 2
converter 1
converter 2
+T
- T
converter 1 rectifying
converter 2 rectifying
converter 2 inverting
converter 1 inverting
forward motoring
reverse motoring
forward braking(regenerating)
reverse braking(regenerating)
converter 1 converter 2
EM
M
a
b
c
a
b
c
+n
Id Id
Ud
M EM
Id
M EM
M
EM
Id
Energ
y
M
EM
- n
Ud
Ud Ud
O
AC
source
converter 1
Energ
y
Energ
y
Energ
y
converter 2 converter 2
converter 1
converter 1
AC
source
AC
source
Back-to-back
connection of two 3-
phase bridge circuits
converter 1
converter 2
n
3
2
1
Id
4
2
3
4
1
==

2
'='=

2
'3
'2
'1
'4
'2
'3
'4
'1
1
='1
;'1
=1
2
='2
;'2
=2
α
increasing
β
increasing
β
increasing
α
increasing
2.9 Gate triggering control circuit for thyristor rectifiers
A typical gate triggering control circuit
220V 36V
+
B
TP
+15V
A
VS
+15V
-15V -15V
X Y
Disable
R
Q
uts
VD1
VD2
C1 R2
R4
TS
V2 R5
R8
R6
R7
R3
R9
R10
R11
R12
R13
R14
R16
R15
R18
R17
RP1
uco
up
C2
C3
C3
C5
C6
C7
R1
RP2
V1
I1c
V3
V4
V6
V5
V7
V8
VD4
VD
10 VD5
VD6
VD7
VD9
VD8
VD15
VD11
~VD
14

More Related Content

PPT
Chapter 2 AC to DC Converters (.........)
PPTX
chapter_2 AC to DC Converter.pptx
PDF
Chapter 20
PPTX
PDF
Chapter 6 AC-AC Converters.pdf
PPTX
Chapter 2 AC to DC Converters (.........)
chapter_2 AC to DC Converter.pptx
Chapter 20
Chapter 6 AC-AC Converters.pdf

Similar to 2.ppt (20)

PDF
4th_power_PE App enginering electricql.pdf
PPT
three phase full wave rectifier ac to dc
PPT
Power Electronics Unit 2 Notes for B.E (EEE)
PDF
Chapter 2 Uncontrolled Rectifiers.pdf
PDF
Chapter 3 Controlled Rectifier.pdf
PPT
ddc cinverter control design process.ppt
PDF
Edc unit 2
PPTX
Topic 2 - Switch Realization.pptx
PDF
A current mirror is a circuit block which functions to produce a copy of the ...
PDF
Chapter 02
PDF
Ch2slide (1).pdf
PPT
Unit 5 inverters
PDF
L-24(DK&SSG)(PE) ((EE)NPTEL) (4 files merged).pdf
PPT
Commutation techniques in power electronics
PPTX
Dual Active Bridge Converter a Bidirectional Isolated DC DC Converter
PPT
Lession 2 Rectifiers .ppt
PPT
l4-ac-ac converters.ppt
PDF
Single Switched Non-isolated High Gain Converter
PDF
Ee6378 linear regulators
4th_power_PE App enginering electricql.pdf
three phase full wave rectifier ac to dc
Power Electronics Unit 2 Notes for B.E (EEE)
Chapter 2 Uncontrolled Rectifiers.pdf
Chapter 3 Controlled Rectifier.pdf
ddc cinverter control design process.ppt
Edc unit 2
Topic 2 - Switch Realization.pptx
A current mirror is a circuit block which functions to produce a copy of the ...
Chapter 02
Ch2slide (1).pdf
Unit 5 inverters
L-24(DK&SSG)(PE) ((EE)NPTEL) (4 files merged).pdf
Commutation techniques in power electronics
Dual Active Bridge Converter a Bidirectional Isolated DC DC Converter
Lession 2 Rectifiers .ppt
l4-ac-ac converters.ppt
Single Switched Non-isolated High Gain Converter
Ee6378 linear regulators
Ad

More from Baladuraikannan thiyagarajan (6)

PPTX
Collocation samples in english for research Scholar
PPTX
basic electrical and electronics engineering
PPT
Induction Machines.ppt
PPTX
Srivid CET-presentation.pptx
Collocation samples in english for research Scholar
basic electrical and electronics engineering
Induction Machines.ppt
Srivid CET-presentation.pptx
Ad

Recently uploaded (20)

PDF
advance database management system book.pdf
PDF
SOIL: Factor, Horizon, Process, Classification, Degradation, Conservation
PPTX
Lesson notes of climatology university.
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PDF
Complications of Minimal Access Surgery at WLH
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PPTX
Unit 4 Skeletal System.ppt.pptxopresentatiom
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
Orientation - ARALprogram of Deped to the Parents.pptx
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
Weekly quiz Compilation Jan -July 25.pdf
PPTX
Introduction to Building Materials
PDF
IGGE1 Understanding the Self1234567891011
PDF
A systematic review of self-coping strategies used by university students to ...
PDF
Hazard Identification & Risk Assessment .pdf
PDF
Trump Administration's workforce development strategy
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
advance database management system book.pdf
SOIL: Factor, Horizon, Process, Classification, Degradation, Conservation
Lesson notes of climatology university.
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
Complications of Minimal Access Surgery at WLH
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Unit 4 Skeletal System.ppt.pptxopresentatiom
Supply Chain Operations Speaking Notes -ICLT Program
Orientation - ARALprogram of Deped to the Parents.pptx
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
Chinmaya Tiranga quiz Grand Finale.pdf
Weekly quiz Compilation Jan -July 25.pdf
Introduction to Building Materials
IGGE1 Understanding the Self1234567891011
A systematic review of self-coping strategies used by university students to ...
Hazard Identification & Risk Assessment .pdf
Trump Administration's workforce development strategy
Final Presentation General Medicine 03-08-2024.pptx
202450812 BayCHI UCSC-SV 20250812 v17.pptx

2.ppt

  • 1. Chapter 2 AC to DC Converters Outline 2.1 Single-phase controlled rectifier 2.2 Three-phase controlled rectifier 2.3 Effect of transformer leakage inductance on rectifier circuits 2.4 Capacitor-filtered uncontrolled rectifier 2.5 Harmonics and power factor of rectifier circuits 2.6 High power controlled rectifier 2.7 Inverter mode operation of rectifier circuit 2.8 Thyristor-DC motor system 2.9 Realization of phase-control in rectifier
  • 2. 2.1 Single- phase controlled (controllable) rectifier 2.1.1 Single-phase half-wave controlled rectifier Resistive load T VT R a) u1 u2 uVT ud id 0 t1  2  t u2 ug ud uVT   0 b) c) d) e) 0 0  t  t  t               2 cos 1 45 . 0 ) cos 1 ( 2 2 ) ( sin 2 2 1 2 2 2 d U U t td U U (2-1)
  • 3. Inductive (resistor-inductor) load a) u1 T VT R L u2 uVT ud id u2 0 t1  2  t ug 0 ud 0 id 0 uVT 0   b) c) d) e) f) + +  t  t  t  t
  • 4. Basic thought process of time-domain analysis for power electronic circuits The time- domain behavior of a power electronic circuit is actually the combination of consecutive transients of the different linear circuits when the power semiconductor devices are in different states. a) b) VT R L VT R L u2 u2 t U Ri t i L  sin 2 d d 2 d d   ωt= a ,id=0 ) sin( 2 ) sin( 2 2 ) ( 2 d               t Z U e Z U i t L R (2-2) (2-3)
  • 5. Single- phase half- wave controlled rectifier with freewheeling diode load (L is large enough) Inductive a) L T VT R u1 u2 uVT ud VDR id iVD u2 ud id uVT iVT Id Id t O O O O O O - + b) iVDR t t t t t g) c) e) f) d) T1
  • 6. Maximum forward voltage, maximum reverse voltage Disadvantages: –Only single pulse in one line cycle –DC component in the transformer current d dVT 2 I I      d 2 d VT 2 ) ( 2 1 I t d I I            d 2 2 d VD 2 ) ( 2 1 R I t d I I              d dVD 2 R I I      (2-5) (2-6) (2-7) (2-8)
  • 7. 2.1.2 Single- phase bridge fully-controlled rectifier  Resistive load   t 0 0 0 i2 ud id b) c) d) ud (id )   R T u1 u2 a) i2 a b VT3 ud i d uVT 1,4  t  t VT4 VT1 VT2
  • 8. Average output (rectified) voltage: Average output current: For thyristor: For transformer:               2 cos 1 9 . 0 2 cos 1 2 2 ) ( d sin 2 1 2 2 2 d U U t t U U (2-9) (2-10) 2 cos 1 9 . 0 2 cos 1 2 2 2 2 d d         R U R U R U I (2-11) 2 cos 1 45 . 0 2 1 2 d dVT     R U I I                2 sin 2 1 2 ) ( d ) sin 2 ( 2 1 2 2 2 VT R U t t R U I (2-12)                 2 sin 2 1 ) ( ) sin 2 ( 1 2 2 2 2 R U t d t R U I I (2-13)
  • 9.  Inductive load (L is large enough)  t  t  t  t  t  t  t        u2 ud id Id Id Id Id Id iVT1,4 iVT2,3 uVT1,4 i2 , b) R T u1 u2 a) i2 a b VT3 ud i d VT4 VT1 VT2
  • 10.  Electro- motive-force (EMF) load With resistor               cos 9 . 0 cos 2 2 ) ( d sin 2 1 2 2 2 d U U t t U U (2-15) a) b) R E id ud id O E ud t Id O t   
  • 11.  With resistor and inductor When L is large enough, the output voltage and current waveforms are the same as ordinary inductive load. When L is at a critical value O ud 0 E id  t  t    = dmin 2 3 dmin 2 10 87 . 2 2 2 I U I U L      (2-17)
  • 12. 2.1.3 Single- phase full- wave controlled rectifier a) b) u1 T R u2 u2 i1 VT1 VT2 ud ud i1 O O   t t
  • 13. 2.1.4 Single- phase bridge half-controlled rectifier a) T a b R L O b) u2 i2 ud id VT 1 VT 2 VD 3 VD 4 VD R u2 O ud id Id O O O O O i2 Id Id Id Id Id  t t t t t t t    iVT 1 iVD 4 iVT 2 iVD 3 iVD R
  • 14.  Another single- phase bridge half-controlled rectifier Comparison with previous circuit: –No need for additional freewheeling diode –Isolation is necessary between the drive circuits of the two thyristors load T u2 VT2 VT4 VT1 VT3
  • 15. Summary of some important points in analysis When analyzing a thyristor circuit, start from a diode circuit with the same topology. The behavior of the diode circuit is exactly the same as the thyristor circuit when firing angle is 0. A power electronic circuit can be considered as different linear circuits when the power semiconductor devices are in different states. The time- domain behavior of the power electronic circuit is actually the combination of consecutive transients of the different linear circuits. Take different principle when dealing with different load – For resistive load: current waveform of a resistor is the same as the voltage waveform –For inductive load with a large inductor: the inductor current can be considered constant
  • 16. 2.2 Three- phase controlled (controllable) rectifier 2.2.1 Three- phase half- wave controlled rectifier Resistive load, α= 0º a b c T R ud id VT2 VT1 VT3 u2 O O O uab uac O iVT1 uVT 1  t  t  t  t  t u a u b u c u G u d  t1  t2  t3 Common-cathode connection Natural commutation point
  • 17. Resistive load, α= 30º u2 ua ub uc O O O t O t O t uG ud uab uac t1 iVT 1 uVT1 uac t t a b c T R ud id VT2 VT1 VT3
  • 18. Resistive load, α= 60º t u2 ua ub uc O O O O uG ud iVT 1 t t t a b c T R ud id VT2 VT1 VT3
  • 19. Resistive load, quantitative analysis When α≤ 30º , load current id is continuous. When α > 30º , load current id is discontinuous. Average load current Thyristor voltages           cos 17 . 1 cos 2 6 3 ) ( sin 2 3 2 1 2 2 6 5 6 2 d U U t td U U       (2-18)                      ) 6 cos( 1 675 . 0 ) 6 cos( 1 2 2 3 ) ( sin 2 3 2 1 2 6 2 d            U t td U U (2-19) R U I d d  (2-20) 0 30 60 90 120 150 0.4 0.8 1.2 1.17 3 2 1 /(°) Ud/U2
  • 20.  Inductive load, L is large enough
  • 21. Thyristor voltage and currents, transformer current :           cos 17 . 1 cos 2 6 3 ) ( sin 2 3 2 1 2 2 6 5 6 2 d U U t td U U       (2-18) d d VT 2 577 . 0 3 1 I I I I    d VT VT(AV) 368 . 0 57 . 1 I I I   2 RM FM 45 . 2 U U U   (2-23) (2-25) (2-24)
  • 22. 2.2.2 Three- phase bridge fully-controlled rectifier Circuit diagram Common- cathode group and common- anode group of thyristors Numbering of the 6 thyristors indicates the trigger sequence. b a c T n load ia id ud VT1 VT3 VT5 VT4 VT6 VT2 d2 d1
  • 23. Resistive load, α= 0º b a c T n load ia id ud VT1 VT3 VT5 VT4 VT6 VT2 d2 d1
  • 24. u2 ud1 ud2 u2L ud uab uac uab uac ubc uba uca ucb uab uac uab uac ubc uba uca ucb uab uac I II III IV V VI ua uc ub  t1 O t O t O t O t = 0° iVT 1 uVT 1
  • 25. Resistive load, α= 30º b a c T n load ia id ud VT1 VT3 VT5 VT4 VT6 VT2 d2 d1
  • 26. ud1 ud2  =30 ¡ ã ia O O O O  t ud uab uac ua ub uc  t1 uab uac ubc uba uca ucb uab uac І II III IV V VI uab u ac ubc uba u ca ucb u ab u ac uVT 1  t  t  t
  • 27. Resistive load, α= 60º b a c T n load ia id ud VT1 VT3 VT5 VT4 VT6 VT2 d2 d1
  • 28. = 60º ud1 ud2 ud uac uac uab uab uac ubc uba uca ucb uab uac ua I II III IV V VI u b uc O t1 O t O uVT 1 t t
  • 29. Resistive load, α= 90º b a c T n load ia id ud VT1 VT3 VT5 VT4 VT6 VT2 d2 d1
  • 31. Inductive load, α= 0º b a c T n load ia id ud VT1 VT3 VT5 VT4 VT6 VT2 d2 d1
  • 32. ud1 u2 ud2 u2L ud id O O O  t O ua = 0 ub uc t1 uab uac ubc uba uca ucb uab uac I II III IV V VI iVT 1  t  t  t º
  • 33. Inductive load, α= 30º b a c T n load ia id ud VT1 VT3 VT5 VT4 VT6 VT2 d2 d1
  • 34. ud1 = 30 ud2 ud uab uac ubc uba uca ucb uab uac I II III IV V VI  t O  t O t O  t O id ia t1 ua ub uc °
  • 35. Inductive load, α= 90º b a c T n load ia id ud VT1 VT3 VT5 VT4 VT6 VT2 d2 d1
  • 37. Quantitative analysis Average output voltage: For resistive load, When a > 60º, load current id is discontinuous. everage output current (load current): Transformer current:         cos 34 . 2 ) ( sin 6 3 1 2 3 2 3 2 d U t td U U      (2-26) (2-27)             ) 3 cos( 1 34 . 2 ) ( sin 6 3 2 3 2 d         U t td U U R U I d d  (2-20) d d d d I I I I I 816 . 0 3 2 3 2 ) ( 3 2 2 1 2 2 2                 (2-28)
  • 38. 2.3 Effect of transformer leakage inductance on rectifier circuits In practical, the transformer leakage inductance has to be taken into account. Commutation between thyristors, thus can not happen instantly,but with a commutation process. a b c T L ud ic ib ia LB LB LB ik VT1 VT2 VT3 R id O  ic ia ib ic ia Id ud  t ua ub uc   t O
  • 39. Commutation process analysis Circulating current ik during commutation Output voltage during commutation ik: 0 Id ub-ua = 2·LB·dia/dt ia = Id-ik : Id ib = ik : 0 Id 0 2 d d d d b a k B b k B a d u u t i L u t i L u u       (2-30)
  • 40. Quantitative calculation Reduction of average output voltage due to the commutation process Calculation of commutation angle – Id ↑,γ↑ – XB↑, γ↑ – For α ≤ 90۫ , α↓, γ↑ d B 0 B 6 5 6 5 B 6 5 6 5 B b b 6 5 6 5 d b d 2 3 d 2 3 ) ( d d d 2 3 ) ( d )] d d ( [ 2 3 ) ( d ) ( 3 / 2 1 I X i L t t i L t t i L u u t u u U I                                               d k k k (2-31) 2 d B 6 2 ) cos( cos U I X       (2-36)
  • 41. Summary of the effect on rectifier circuits Circuits Single- phase Full wave Single- phase bridge Three- phase half wave Three- phase bridge m-pulse recfifier d U  d B I X  d B 2 I X  d B 2 3 I X  d B 3 I X  d B 2 I mX  ) cos( cos      2 B d 2U X I 2 B d 2 2 U X I 2 d B 6 2 U I X 2 d B 6 2 U I X m U X I  sin 2 2 B d
  • 42.  Conclusions –Commutation process actually provides additional working states of the circuit. –di/dt of the thyristor current is reduced. –The average output voltage is reduced. –Positive du/dt – Notching in the AC side voltag
  • 43. 2.4 Capacitor- filtered uncontrolled (uncontrollable) rectifier 2.4.1 Capacitor- filtered single- phase uncontrolled rectifier Single-phase bridge, RC load: a) + R C u1 u2 i2 VD1 VD3 VD2 VD4 id iC iR ud b) 0 i ud    2 t i,ud
  • 44. Single-phase bridge, RLC load a) b) - + R C L + u1 u2 i2 ud uL id iC iR VD2 VD4 VD1 VD3 u2 ud i2 0    t i2,u2,ud
  • 45. 2.4.2 Capacitor- filtered three- phase uncontrolled rectifier Three-phase bridge, RC load a) + a b c T ia R C ud id iC iR VD2 b) O ia ud id ud u ab u ac 0     3 t VD6 VD4 VD1VD3VD5 t
  • 46. Three- phase bridge, RC load Waveform when ωRC≤1.732 a) b) t t t t ia id ia id O O O O a)RC= • b)RC< 3 3
  • 47. Three- phase bridge, RLC load a) b) c) + a b c T ia R C ud id iC iR VD4 VD6 VD1 VD3 VD5 VD2 ia ia O O t t
  • 48. 2.5 Harmonics and power factor of rectifier circuits 2.5.1 Basic concepts of harmonics and reactive power For pure sinusoidal waveform For periodic non-sinusoidal waveform where
  • 49.  Harmonics-related specifications Take current harmonics as examples Content of nth harmonics In is the effective (RMS) value of nth harmonics. I1 is the effective (RMS) value of fundamental component. Total harmonic distortion Ih is the total effective (RMS) value of all the harmonic components. % 100 1   I I HRI n n (2-57) % 100 1   I I THD h i (2-58)
  • 50.  Definition of power and power factor for sinusoidal circuits Active power Reactive power Apparent power Power factor        2 0 cos ) ( 2 1 UI t uid P (2-59) Q=U I sin (2-61) S=UI (2-60) 2 2 2 Q P S   (2-63) S P   (2-62) =cos  (2-64)
  • 51.  Definition of power and power factor For non- sinusoidal circuit Active power: Power factor: Distortion factor (fundamental- component factor): Displacement factor (power factor of fundamental component): Definition of reactive power is still in dispute P=U I1 cos1 (2-65) (2-66) 1 1 1 1 1 cos cos cos          I I UI UI S P =I1 / I =cos   
  • 52.  Review of the reactive power concept The reactive power Q does not lead to net transmission of energy between the source and load. When Q ≠ 0, the rms current and apparent power are greater than the minimum amount necessary to transmit the average power P. Inductor: current lags voltage by 90°, hence displacement factor is zero. The alternate storing and releasing of energy in an inductor leads to current flow and nonzero apparent power, but P = 0. Just as resistors consume real (average) power P, inductors can be viewed as consumers of reactive power Q. Capacitor: current leads voltage by 90°, hence displacement factor is zero. Capacitors supply reactive power Q. They are often placed in the utility power distribution system near inductive loads. If Q supplied by capacitor is equal to Q consumed by inductor, then the net current (flowing from the source into the capacitor- inductive- load combination) is in phase with the voltage, leading to unity power factor and minimum rms current magnitude.
  • 53. 2.5.2 AC side harmonics and power factor of controlled rectifiers with inductive load  Single- phase bridge fully-controlled rectifier R T u1 u2 a) i2 a b VT3 ud i d VT4 VT1 VT2  t  t  t  t  t  t  t        u2 ud id Id Id Id Id Id iVT1,4 iVT2,3 uVT1,4 i2 , b)
  • 54. AC side current harmonics of single- phase bridge fully-controlled rectifier with inductive load Where Conclusions –Only odd order harmonics exist – In∝1/n – In / I1 = 1/n              , 5 , 3 , 1 , 5 , 3 , 1 d d 2 sin 2 sin 1 4 ) 5 sin 5 1 3 sin 3 1 (sin 4 n n n t n I t n n I t t t I i        (2-72)  n I In d 2 2  n=1,3,5,… (2-73)
  • 55.  A typical gate triggering control circuit 220V 36V + B TP +15V A VS +15V -15V -15V X Y Disable R Q uts VD1 VD2 C1 R2 R4 TS V2 R5 R8 R6 R7 R3 R9 R10 R11 R12 R13 R 14 R16 R15 R18 R17 RP1 uco up C2 C3 C3 C5 C6 C7 R1 RP2 V1 I1c V3 V4 V6 V5 V7 V8 VD4 VD 10 VD5 VD6 VD7 VD9 VD8 VD15 VD11 ~VD 14
  • 56.  Three- phase bridge fully-controlled rectifier b a c T n load ia id ud VT1 VT3 VT5 VT4 VT6 VT2 d2 d1
  • 57. ud1 = 30 ud2 ud uab uac ubc uba uca ucb uab uac I II III IV V VI  t O  t O t O  t O id ia t1 ua ub uc °
  • 58.  AC side current harmonics of three- phase bridge fully- controlled rectifier with inductive load where                        3 , 2 , 1 1 6 1 3 , 2 , 1 1 6 d d d a sin 2 ) 1 ( sin 2 sin 1 ) 1 ( 3 2 sin 3 2 ] 13 sin 13 1 11 sin 11 1 7 sin 7 1 5 sin 5 1 [sin 3 2 k k n n k k k n k t n I t I t n n I t I t t t t t I i             (2-79) (2-80)              , 3 , 2 , 1 , 1 6 , 6 6 d d 1 k k n I n I I I n  
  • 59. 2.5.3 AC side harmonics and power factor of capacitor- filtered uncontrolled rectifiers Situation is a little complicated than rectifiers with inductive load. Some conclusions that are easy to remember: –Only odd order harmonics exist in single- phase circuit, and only 6k±1 (k is positive integer) order harmonics exist in three- phase circuit. –Magnitude of harmonics decreases as harmonic order increases. –Harmonics increases and power factor decreases as capacitor increases. –Harmonics decreases and power factor increases as inductor increases.
  • 60. 2.5.4 Harmonic analysis of output voltage and current                  t n n k U t n b U u mk n mk n n    cos 1 cos 2 1 cos 2 d0 d0 d0 (2-85) (2-86) m m U U   sin 2 2 d0  d0 2 1 cos 2 U n k bn     (2-87) u d t O  m  m 2 m U 2 2 Output voltage of m- pulse rectifier when α = 0º
  • 61. Ripple factor in the output voltage Output voltage ripple factor where UR is the total RMS value of all the harmonic components in the output voltage and U is the total RMS value of the output voltage d0 R U U u   (2-88) (2-89) 2 d0 2 2 R U U U U mk n n      
  • 62.  Harmonics in the output current where ) cos( d d n mk n n t n d I i         (2-92) (2-93) R E U I   d0 d 2 2 ) ( L n R b z b d n n n n     R L n n   arctan  (2-94) (2-95)
  • 63. Conclusions for α = 0º Only mk (k is positive integer) order harmonics exist in the output voltage and current of m- pulse rectifiers Magnitude of harmonics decreases as harmonic order increases when m is constant. The order number of the lowest harmonics increases as m increases. The corresponding magnitude of the lowest harmonics decreases accordingly. For α ≠ 0º Quantitative harmonic analysis of output voltage and current is very complicated for α ≠ 0º. As an example,for 3- phase bridge fully- controlled rectifie
  • 64. 2.6 High power controlled rectifier 2.6.1 Double- star controlled rectifier Circuit Waveforms When α= 0º T a b c L R n iP LP ud id VT5 c a' b' n1 n2 ' VT4 VT6 VT2 VT3 VT1 ud1 ua ub uc ia ud2 ia ' uc ' ua ' ub ' uc ' O t O t O t O t Id 1 2 Id 1 6 Id 1 2 Id 1 6
  • 65.  Effect of interphase reactor(inductor, transformer) n L R + - + - ud1 LP ub ' ud2 ud n2 n1 iP ua VT1 VT6 uP 1 2 up ud1 ,ud2 O O 60 360 t1 t t b) a) ua ub uc uc ' ua ' ub ' ub '  d1 d2 p u u u   ) ( 2 1 2 1 2 1 d2 d1 p d1 p d2 d u u U u u u u       (2-97) (2-98)
  • 66. Quantitative analysis when α = 0º ] 9 cos 40 1 6 cos 35 2 3 cos 4 1 1 [ 2 6 3 2 d1         t t t U u     ] 9 cos 40 1 6 cos 35 2 3 cos 4 1 1 [ 2 6 3 ] ) 60 ( 9 cos 40 1 ) 60 ( 6 cos 35 2 ) 60 ( 3 cos 4 1 1 [ 2 6 3 2 2 d2                      t t t U t t t U u         ] 9 cos 20 1 3 cos 2 1 [ 2 6 3 2 p        t t U u    ] 6 cos 35 2 1 [ 2 6 3 2 d       t U u   (2-99) (2-100) (2-101) (2-102)
  • 67. Waveforms when α > 0º Ud=1.17 U2 cos   90    60    30   ud ud ud t O t O t O ua ub uc uc ' ua ' ub ' ub uc uc ' ua ' ub ' ub uc uc ' ua ' ub '
  • 68. 2.6.2 Connection of multiple rectifiers Connection of multiple rectifiers To increase the output capacity To improve the AC side current waveform and DC side voltage waveform Larger output voltage: series connection Larger output current: parallel connection
  • 69.  Phase-shift connection of multiple rectifiers Parallel connection M L T VT 1 2 c1 b1 a1 c2 b2 a2 LP 12- pulse rectifier realized by paralleled 3- phase bridge rectifiers
  • 70. Series connection C ? L R B A 1 * ? ? * * 0 30° 3 iA c1 b1 a1 1 c2 b2 a2 iab 2 ua2b2 ua1 b1 i a1 id ud I II I III 0 a) b) c) d) ia1 Id           ia2 iab2 ' iA Id iab2 t t t t 0 0 0 Id 2 3 3 3 Id 3 3 Id Id 3 2 3 (1+ ) Id 3 2 3 (1+ )Id 3 3 Id 1 3 12- pulse rectifier realized by series 3- phase bridge rectifiers
  • 71.  Sequential control of multiple series-connected rectifiers L i a) load Ⅰ Ⅱ Ⅲ u 2 u 2 u 2 Id VT11 u d b) c) i Id 2 Id ud O   +  VT12 VT13 VT14 VT21 VT22 VT23 VT24 VT31 VT32 VT33 VT34 Circuit and waveforms of series- connected three single-phase bridge rectifiers
  • 72. 2.7 Inverter mode operationof rectifiers  Review of DC generator- motor system c) b) a) M G M G M G EG EM Id R¡Æ EG EM Id R¡Æ EG EM Id R¡Æ Id = EG EM RΣ - Id = EM EG RΣ - should be avoided
  • 73.  Inverter mode operation of rectifiers Rectifier and inverter mode operation of single- phase full- wave converter
  • 74. Necessary conditions for the inverter mode operation of controlled rectifiers There must be DC EMF in the load and the direction of the DC EMF must be enabling current flow in thyristors. (In other word EM must be negative if taking the ordinary output voltage direction as positive.) α > 90º so that the output voltage Ud is also negative.
  • 75.  Inverter mode operation of 3- phase bridge rectifier uab uac ubc uba uca ucb uab uac ubc uba uca ucb uab uac ubc uba uca ucb uab uac ubc ua ub uc ua ub uc ua ub uc ua ub u2 ud t O t O =  4 =  3 =  6 =  4 =  3 =  6 t1 t3 t2
  • 76. Inversion angle (extinction angle) β α+ β=180º Inversion failure and minimum inversion angle Possible reasons of inversion failures –Malfunction of triggering circuit –Failure in thyristors –Sudden dropout of AC source voltage –Insufficient margin for commutation of thyristors Minimum inversion angle (extinction angle) βmin= δ + γ+ θ′(2-109)
  • 78. 2.8 Thyristor- DC motor system 2.8.1 Rectifier mode of operation Waveforms and equations U I R E U d M d      (2-112) where R RM RB 3XB 2π    (for 3- phase half-wave) u d O id t ua ub uc  ud O ia ib ic ic t E Ud idR (Waveforms of 3- phase half- wave rectifier with DC motor load
  • 79.  Speed- torque (mechanic) characteristic when load current is continuous n EM   Ce (2-113) For 3- phase half-wave U I EM    cos 1.17 2 U  R d  EM  cos 1.17 2 U  e d e C U I R C U n      cos 1.17 2 (2-114) For 3-phase bridge  e d e C I R C U n    cos 2.34 2 (2-115) (2-116) O n a1<a2<a3 a3 a2 a1 Id (RB+RM+ ) Id Ce 3XB 2 For 3- phase half-wave
  • 80.  Speed- torque (mechanic) characteristic when load current is discontinuous EMF at no load (taking 3- phase half-wave as example) For α≤ 60º 2 2U Eo= For α>60º ) 3 cos( 2 2    U Eo= discontinuouts mode continuous mode E E0 E0' O Idmin Id (0.585U2) ( U2) 2 For 3- phase half-wave
  • 81. 2.8.2 Inverter mode of operation Equations –are just the same as in the rectifier mode of operation except that Ud, EM and n become negative. E.g., in 3- phase half- wave U I EM    cos 1.17 2 U  R d   e d e C U I R C U n      cos 1.17 2 (2-114) (2-115) – Or in another form (2-123) I) 0cos + (  R I U E d d M = - (2-122) e C n     R I U d d  cos 0  rectifier mode n 3 2 1 Id 4 2 3 4 1 ==  2 inverter mode α increasing β increasing Speed-torque characteristic of a DC motor fed by a thyristor rectifier circuit
  • 82. 2.8.3 Reversible DC motor drive system(4-quadrant operation) L + - + - + - + - + - + - + - + - AC source converter 2 converter 1 converter 2 +T - T converter 1 rectifying converter 2 rectifying converter 2 inverting converter 1 inverting forward motoring reverse motoring forward braking(regenerating) reverse braking(regenerating) converter 1 converter 2 EM M a b c a b c +n Id Id Ud M EM Id M EM M EM Id Energ y M EM - n Ud Ud Ud O AC source converter 1 Energ y Energ y Energ y converter 2 converter 2 converter 1 converter 1 AC source AC source Back-to-back connection of two 3- phase bridge circuits
  • 84. 2.9 Gate triggering control circuit for thyristor rectifiers A typical gate triggering control circuit 220V 36V + B TP +15V A VS +15V -15V -15V X Y Disable R Q uts VD1 VD2 C1 R2 R4 TS V2 R5 R8 R6 R7 R3 R9 R10 R11 R12 R13 R14 R16 R15 R18 R17 RP1 uco up C2 C3 C3 C5 C6 C7 R1 RP2 V1 I1c V3 V4 V6 V5 V7 V8 VD4 VD 10 VD5 VD6 VD7 VD9 VD8 VD15 VD11 ~VD 14