SlideShare a Scribd company logo
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis1
Chapter 2
Principles of Steady-State Converter Analysis
2.1. Introduction
2.2. Inductor volt-second balance, capacitor charge
balance, and the small ripple approximation
2.3. Boost converter example
2.4. Cuk converter example
2.5. Estimating the ripple in converters containing two-
pole low-pass filters
2.6. Summary of key points
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis2
2.1 Introduction
Buck converter
SPDT switch changes dc
component
Switch output voltage
waveform
complement D′:
D′ = 1 - D
Duty cycle D:
0 ≤ D ≤ 1
+
–
R
+
v(t)
–
1
2
+
vs(t)
–
Vg
vs(t)
Vg
DTs D'Ts
0
t0 DTs Ts
Switch
position: 1 2 1
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis3
Dc component of switch output voltage
vs = 1
Ts
vs(t) dt
0
Ts
vs = 1
Ts
(DTsVg) = DVg
Fourier analysis: Dc component = average value
vs(t)
Vg
0
t0 DTs Ts
〈vs〉 = DVgarea =
DTsVg
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis4
Insertion of low-pass filter to remove switching
harmonics and pass only dc component
v ≈ vs = DVg
+
–
L
C R
+
v(t)
–
1
2
+
vs(t)
–
Vg
Vg
0
0 D
V
1
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis5
Three basic dc-dc converters
Buck
Boost
Buck-boost
M(D)
D
0
0.2
0.4
0.6
0.8
1
0 0.2 0.4 0.6 0.8 1
M(D)
D
0
1
2
3
4
5
0 0.2 0.4 0.6 0.8 1
M(D)
D
–5
–4
–3
–2
–1
0
0 0.2 0.4 0.6 0.8 1
(a)
(b)
(c)
+
–
L
C R
+
v
–
1
2
+
–
L
C R
+
v
–
1
2
+
– L
C R
+
v
–
1 2
M(D) = D
M(D) = 1
1 – D
M(D) = – D
1 – D
iL (t)
Vg
iL (t)
Vg
iL (t)
Vg
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis6
Objectives of this chapter
G Develop techniques for easily determining output
voltage of an arbitrary converter circuit
G Derive the principles of inductor volt-second balance
and capacitor charge (amp-second) balance
G Introduce the key small ripple approximation
G Develop simple methods for selecting filter element
values
G Illustrate via examples
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis7
2.2. Inductor volt-second balance, capacitor charge
balance, and the small ripple approximation
Buck converter
containing practical
low-pass filter
Actual output voltage
waveform
v(t) = V + vripple(t)
Actual output voltage waveform, buck converter
+
–
L
C R
+
v(t)
–
1
2
iL(t)
+ vL(t) –
iC(t)
Vg
v(t)
t
0
V
Actual waveform
v(t) = V + vripple(t)
dc component V
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis8
The small ripple approximation
In a well-designed converter, the output voltage ripple is small. Hence,
the waveforms can be easily determined by ignoring the ripple:
v(t) ≈ V
v(t) = V + vripple(t)
v(t)
t
0
V
Actual waveform
v(t) = V + vripple(t)
dc component V
vripple < V
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis9
Buck converter analysis:
inductor current waveform
original
converter
switch in position 2switch in position 1
+
–
L
C R
+
v(t)
–
1
2
iL(t)
+ vL(t) –
iC(t)
Vg
L
C R
+
v(t)
–
iL(t)
+ vL(t) –
iC(t)
+
–
Vg
L
C R
+
v(t)
–
iL(t)
+ vL(t) –
iC(t)
+
–
Vg
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis10
Inductor voltage and current
Subinterval 1: switch in position 1
vL = Vg – v(t)
Inductor voltage
Small ripple approximation:
vL ≈ Vg – V
Knowing the inductor voltage, we can now find the inductor current via
vL(t) = L
diL(t)
dt
Solve for the slope:
diL(t)
dt
=
vL(t)
L
≈
Vg – V
L
⇒ The inductor current changes with an
essentially constant slope
L
C R
+
v(t)
–
iL(t)
+ vL(t) –
iC(t)
+
–
Vg
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis11
Inductor voltage and current
Subinterval 2: switch in position 2
Inductor voltage
Small ripple approximation:
Knowing the inductor voltage, we can again find the inductor current via
vL(t) = L
diL(t)
dt
Solve for the slope:
⇒ The inductor current changes with an
essentially constant slope
vL(t) = – v(t)
vL(t) ≈ – V
diL(t)
dt
≈ – V
L
L
C R
+
v(t)
–
iL(t)
+ vL(t) –
iC(t)
+
–
Vg
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis12
Inductor voltage and current waveforms
vL(t) = L
diL(t)
dt
vL(t)
Vg – V
t
– V
D'TsDTs
Switch
position: 1 2 1
– V
L
Vg – V
L
iL(t)
t0 DTs Ts
I
iL(0)
iL(DTs)
∆iL
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis13
Determination of inductor current ripple magnitude
(change in iL) = (slope)(length of subinterval)
2∆iL =
Vg – V
L
DTs
∆iL =
Vg – V
2L
DTs
L =
Vg – V
2∆iL
DTs⇒
– V
L
Vg – V
L
iL(t)
t0 DTs Ts
I
iL(0)
iL(DTs)
∆iL
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis14
Inductor current waveform
during turn-on transient
When the converter operates in equilibrium:
iL((n + 1)Ts) = iL(nTs)
iL(t)
t0 DTs
Ts
iL(0) = 0
iL(nTs)
iL
(Ts
)
2Ts nTs
(n + 1)Ts
iL((n + 1)Ts)
Vg – v(t)
L
– v(t)
L
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis15
The principle of inductor volt-second balance:
Derivation
Inductor defining relation:
Integrate over one complete switching period:
In periodic steady state, the net change in inductor current is zero:
Hence, the total area (or volt-seconds) under the inductor voltage
waveform is zero whenever the converter operates in steady state.
An equivalent form:
The average inductor voltage is zero in steady state.
vL(t) = L
diL(t)
dt
iL(Ts) – iL(0) = 1
L
vL(t) dt
0
Ts
0 = vL(t) dt
0
Ts
0 = 1
Ts
vL(t) dt
0
Ts
= vL
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis16
Inductor volt-second balance:
Buck converter example
Inductor voltage waveform,
previously derived:
Integral of voltage waveform is area of rectangles:
λ = vL(t) dt
0
Ts
= (Vg – V)(DTs) + ( – V)(D'Ts)
Average voltage is
vL = λ
Ts
= D(Vg – V) + D'( – V)
Equate to zero and solve for V:
0 = DVg – (D + D')V = DVg – V ⇒ V = DVg
vL(t)
Vg – V
t
– V
DTs
Total area λ
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis17
The principle of capacitor charge balance:
Derivation
Capacitor defining relation:
Integrate over one complete switching period:
In periodic steady state, the net change in capacitor voltage is zero:
Hence, the total area (or charge) under the capacitor current
waveform is zero whenever the converter operates in steady state.
The average capacitor current is then zero.
iC(t) = C
dvC(t)
dt
vC(Ts) – vC(0) = 1
C
iC(t) dt
0
Ts
0 = 1
Ts
iC(t) dt
0
Ts
= iC
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis18
2.3 Boost converter example
Boost converter
with ideal switch
Realization using
power MOSFET
and diode
+
–
L
C R
+
v
–
1
2
iL(t)
Vg
iC(t)
+ vL(t) –
+
–
L
C R
+
v
–
iL(t)
Vg
iC(t)
+ vL(t) –
D1
Q1
DTs Ts
+
–
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis19
Boost converter analysis
original
converter
switch in position 2switch in position 1
+
–
L
C R
+
v
–
1
2
iL(t)
Vg
iC(t)
+ vL(t) –
C R
+
v
–
iC(t)
+
–
L
iL(t)
Vg
+ vL(t) –
C R
+
v
–
iC(t)
+
–
L
iL(t)
Vg
+ vL(t) –
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis20
Subinterval 1: switch in position 1
Inductor voltage and capacitor current
Small ripple approximation:
vL = Vg
iC = – v / R
vL = Vg
iC = – V / R
C R
+
v
–
iC(t)
+
–
L
iL(t)
Vg
+ vL(t) –
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis21
Subinterval 2: switch in position 2
Inductor voltage and capacitor current
Small ripple approximation:
vL = Vg – v
iC = iL – v / R
vL = Vg – V
iC = I – V / R
C R
+
v
–
iC(t)
+
–
L
iL(t)
Vg
+ vL(t) –
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis22
Inductor voltage and capacitor current waveforms
vL(t)
Vg – V
t
DTs
Vg
D'Ts
iC(t)
– V/R
t
DTs
I – V/R
D'Ts
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis23
Inductor volt-second balance
Net volt-seconds applied to inductor
over one switching period:
vL(t) dt
0
Ts
= (Vg) DTs + (Vg – V) D'Ts
Equate to zero and collect terms:
Vg (D + D') – V D' = 0
Solve for V:
V =
Vg
D'
The voltage conversion ratio is therefore
M(D) = V
Vg
= 1
D'
= 1
1 – D
vL(t)
Vg – V
t
DTs
Vg
D'Ts
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis24
Conversion ratio M(D) of the boost converterM(D)
D
0
1
2
3
4
5
0 0.2 0.4 0.6 0.8 1
M(D) = 1
D'
= 1
1 – D
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis25
Determination of inductor current dc component
Capacitor charge balance:
iC(t) dt
0
Ts
= ( – V
R
) DTs + (I – V
R
) D'Ts
Collect terms and equate to zero:
– V
R
(D + D') + I D' = 0
Solve for I:
I = V
D' R
I =
Vg
D'2
R
Eliminate V to express in terms of Vg:
iC(t)
– V/R
t
DTs
I – V/R
D'Ts
D
0
2
4
6
8
0 0.2 0.4 0.6 0.8 1
I
Vg/R
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis26
Determination of inductor current ripple
Inductor current slope during
subinterval 1:
diL(t)
dt
=
vL(t)
L
=
Vg – V
L
Inductor current slope during
subinterval 2:
2∆iL =
Vg
L
DTs
diL(t)
dt
=
vL(t)
L
=
Vg
L
Change in inductor current during subinterval 1 is (slope) (length of subinterval):
Solve for peak ripple:
∆iL =
Vg
2L
DTs
• Choose L such that desired ripple magnitude
is obtained
Vg – V
L
Vg
L
iL(t)
t0 DTs Ts
I ∆iL
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis27
Determination of capacitor voltage ripple
Capacitor voltage slope during
subinterval 1:
Capacitor voltage slope during
subinterval 2:
Change in capacitor voltage during subinterval 1 is (slope) (length of subinterval):
Solve for peak ripple: • Choose C such that desired voltage ripple
magnitude is obtained
• In practice, capacitor equivalent series
resistance (esr) leads to increased voltage ripple
dvC(t)
dt
=
iC(t)
C
= – V
RC
dvC(t)
dt
=
iC(t)
C
= I
C
– V
RC
– 2∆v = – V
RC
DTs
∆v = V
2RC
DTs
v(t)
t0 DTs Ts
V ∆v
I
C
– V
RC
– V
RC
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis28
2.4 Cuk converter example
+
–
L1
C2 R
+
v2
–
C1 L2
1 2
+ v1 –i1
i2
Vg
+
–
L1
C2 R
+
v2
–
C1 L2
+ v1 –i1
i2
D1Q1Vg
Cuk converter,
with ideal switch
Cuk converter:
practical realization
using MOSFET and
diode
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis29
Cuk converter circuit
with switch in positions 1 and 2
+
–
L1
C2 R
+
v2
–
C1
L2
i1
i2
–
v1
+
iC1 iC2
+ vL2 –+ vL1 –
Vg
+
–
L1
C2 R
+
v2
–
C1
L2i1 i2
+
v1
–
iC1
iC2
+ vL2 –+ vL1 –
Vg
Switch in position 1:
MOSFET conducts
Capacitor C1 releases
energy to output
Switch in position 2:
diode conducts
Capacitor C1 is
charged from input
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis30
Waveforms during subinterval 1
MOSFET conduction interval
+
–
L1
C2 R
+
v2
–
C1
L2
i1
i2
–
v1
+
iC1 iC2
+ vL2 –+ vL1 –
Vg
vL1 = Vg
vL2 = – v1 – v2
iC1 = i2
iC2 = i2 –
v2
R
Inductor voltages and
capacitor currents:
Small ripple approximation for subinterval 1:
vL1 = Vg
vL2 = – V1 – V2
iC1 = I2
iC2 = I2 –
V2
R
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis31
Waveforms during subinterval 2
Diode conduction interval
Inductor voltages and
capacitor currents:
Small ripple approximation for subinterval 2:
+
–
L1
C2 R
+
v2
–
C1
L2i1 i2
+
v1
–
iC1
iC2
+ vL2 –+ vL1 –
Vg
vL1 = Vg – v1
vL2 = – v2
iC1 = i1
iC2 = i2 –
v2
R
vL1 = Vg – V1
vL2 = – V2
iC1 = I1
iC2 = I2 –
V2
R
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis32
Equate average values to zero
The principles of inductor volt-second and capacitor charge balance
state that the average values of the periodic inductor voltage and
capacitor current waveforms are zero, when the converter operates in
steady state. Hence, to determine the steady-state conditions in the
converter, let us sketch the inductor voltage and capacitor current
waveforms, and equate their average values to zero.
Waveforms:
vL1(t)
Vg – V1
t
DTs
Vg
D'Ts
Inductor voltage vL1(t)
vL1 = DVg + D'(Vg – V1) = 0
Volt-second balance on L1:
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis33
Equate average values to zero
vL2(t)
– V1 – V2
t
DTs
– V2
D'Ts
iC1(t)
I2
t
DTs
I1
D'Ts
Inductor L2 voltage
Capacitor C1 current
vL2 = D( – V1 – V2) + D'( – V2) = 0
iC1 = DI2 + D'I1 = 0
Average the waveforms:
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis34
Equate average values to zero
iC2(t)
I2 – V2 / R (= 0)
tDTs D'Ts
Capacitor current iC2(t) waveform
Note: during both subintervals, the
capacitor current iC2 is equal to the
difference between the inductor current
i2 and the load current V2/R. When
ripple is neglected, iC2 is constant and
equal to zero.
iC2 = I2 –
V2
R
= 0
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis35
Cuk converter conversion ratio M = V/VgM(D)
D
-5
-4
-3
-2
-1
0
0 0.2 0.4 0.6 0.8 1
M(D) =
V2
Vg
= – D
1 – D
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis36
Inductor current waveforms
di1(t)
dt
=
vL1(t)
L1
=
Vg
L1
di2(t)
dt
=
vL2(t)
L2
=
– V1 – V2
L2
Interval 1 slopes, using small
ripple approximation:
Interval 2 slopes:
di1(t)
dt
=
vL1(t)
L1
=
Vg – V1
L1
di2(t)
dt
=
vL2(t)
L2
=
– V2
L2
i1(t)
tDTs Ts
I1
∆i1
Vg – V1
L1
Vg
L1
– V2
L2
– V1 – V2
L2
i2(t)
tDTs Ts
I2 ∆i2
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis37
Capacitor C1 waveform
dv1(t)
dt
=
iC1(t)
C1
=
I2
C1
Subinterval 1:
Subinterval 2:
dv1(t)
dt
=
iC1(t)
C1
=
I1
C1
I1
C1
I2
C1
v1(t)
tDTs Ts
V1
∆v1
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis38
Ripple magnitudes
∆i1 =
VgDTs
2L1
∆i2 =
V1 + V2
2L2
DTs
∆v1 =
– I2DTs
2C1
Use dc converter solution to simplify:
∆i1 =
VgDTs
2L1
∆i2 =
VgDTs
2L2
∆v1 =
VgD2
Ts
2D'RC1
Analysis results
Q: How large is the output voltage ripple?
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis39
2.5 Estimating ripple in converters
containing two-pole low-pass filters
Buck converter example: Determine output voltage ripple
Inductor current
waveform.
What is the
capacitor current?
+
–
L
C R
+
vC(t)
–
1
2
iC(t) iR(t)
iL(t)
Vg
– V
L
Vg – V
L
iL(t)
t0 DTs
Ts
I
iL(0)
iL(DTs)
∆iL
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis40
Capacitor current and voltage, buck example
Must not
neglect
inductor
current ripple!
If the capacitor
voltage ripple is
small, then
essentially all of
the ac component
of inductor current
flows through the
capacitor.
iC(t)
vC(t)
t
t
Total charge
q
DTs D'Ts
Ts /2
V
∆iL
∆v
∆v
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis41
Estimating capacitor voltage ripple ∆v
q = C (2∆v)
Current iC(t) is positive for half
of the switching period. This
positive current causes the
capacitor voltage vC(t) to
increase between its minimum
and maximum extrema.
During this time, the total
charge q is deposited on the
capacitor plates, where
(change in charge) =
C (change in voltage)
iC(t)
vC(t)
t
t
Total charge
q
DTs D'Ts
Ts /2
V
∆iL
∆v
∆v
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis42
Estimating capacitor voltage ripple ∆v
The total charge q is the area
of the triangle, as shown:
q = 1
2 ∆iL
Ts
2
Eliminate q and solve for ∆v:
∆v =
∆iL Ts
8 C
Note: in practice, capacitor
equivalent series resistance
(esr) further increases ∆v.
iC(t)
vC(t)
t
t
Total charge
q
DTs D'Ts
Ts /2
V
∆iL
∆v
∆v
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis43
Inductor current ripple in two-pole filters
Example:
problem 2.9
can use similar arguments, with
λ = L (2∆i)
λ = inductor flux linkages
= inductor volt-seconds
R
+
v
–
+
–
C2
L2L1
C1
+
vC1
–
i1
iT
i2
D1
Q1
Vg
vL(t)
iL(t)
t
t
Total
flux linkage
λ
DTs D'Ts
Ts /2
I
∆v
∆i
∆i
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis44
2.6 Summary of Key Points
1. The dc component of a converter waveform is given by its average
value, or the integral over one switching period, divided by the
switching period. Solution of a dc-dc converter to find its dc, or steady-
state, voltages and currents therefore involves averaging the
waveforms.
2. The linear ripple approximation greatly simplifies the analysis. In a well-
designed converter, the switching ripples in the inductor currents and
capacitor voltages are small compared to the respective dc
components, and can be neglected.
3. The principle of inductor volt-second balance allows determination of the
dc voltage components in any switching converter. In steady-state, the
average voltage applied to an inductor must be zero.
Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis45
Summary of Chapter 2
4. The principle of capacitor charge balance allows determination of the dc
components of the inductor currents in a switching converter. In steady-
state, the average current applied to a capacitor must be zero.
5. By knowledge of the slopes of the inductor current and capacitor voltage
waveforms, the ac switching ripple magnitudes may be computed.
Inductance and capacitance values can then be chosen to obtain
desired ripple magnitudes.
6. In converters containing multiple-pole filters, continuous (nonpulsating)
voltages and currents are applied to one or more of the inductors or
capacitors. Computation of the ac switching ripple in these elements
can be done using capacitor charge and/or inductor flux-linkage
arguments, without use of the small-ripple approximation.
7. Converters capable of increasing (boost), decreasing (buck), and
inverting the voltage polarity (buck-boost and Cuk) have been
described. Converter circuits are explored more fully in a later chapter.

More Related Content

PPT
BUCK CONVERTER
PPTX
state space modeling of electrical system
PDF
Chapter 01
PPTX
Unit 4 inverters (part-1)
PPTX
Inverter ppt
PPTX
Power MOSFET
PPT
Hvdc dad
PPTX
Two port network
BUCK CONVERTER
state space modeling of electrical system
Chapter 01
Unit 4 inverters (part-1)
Inverter ppt
Power MOSFET
Hvdc dad
Two port network

What's hot (20)

PDF
Chapter 2 - Isolated DC-DC Converter.pdf
PPTX
Mesh analysis and Nodal Analysis
PDF
Solved problems
PDF
Transformer differential protection
PPTX
Buck boost converter
DOCX
Unit step function
PDF
Chapter 2 Uncontrolled Rectifiers.pdf
PPT
Two port networks
POT
2 port network
PPTX
voltage regulators
PDF
Control systems engineering. by i.j. nagrath
PPT
A.c circuits
PDF
Unsymmetrical Fault
DOC
Et201 chapter3 sinusoidal steady state circuit analysis
PDF
Gate ee 2008 with solutions
PDF
Three phase-circuits
PPTX
PPT
Rc and rl differentiator and integrator circuit
PDF
Signals and Systems Formula Sheet
PPTX
Two port networks (y parameters)
Chapter 2 - Isolated DC-DC Converter.pdf
Mesh analysis and Nodal Analysis
Solved problems
Transformer differential protection
Buck boost converter
Unit step function
Chapter 2 Uncontrolled Rectifiers.pdf
Two port networks
2 port network
voltage regulators
Control systems engineering. by i.j. nagrath
A.c circuits
Unsymmetrical Fault
Et201 chapter3 sinusoidal steady state circuit analysis
Gate ee 2008 with solutions
Three phase-circuits
Rc and rl differentiator and integrator circuit
Signals and Systems Formula Sheet
Two port networks (y parameters)
Ad

Viewers also liked (20)

PPTX
The Fastest Possible Search Algorithm: Grover's Search and the World of Quant...
PPT
Quantum mechanics in electronics
PDF
Chapter 03
PDF
Chapter 14
PDF
7.7.3 Phasors
PDF
Chapter 15
PDF
Chapter 05
PDF
Chapter 16
PPSX
Steady-state Analysis for Switched Electronic Systems Trough Complementarity
PPT
Ecd302 unit 04 (analysis)
PPT
L18 1 ph-ac
PDF
Chapter 17
PPT
Lecture 29 ac circuits. phasors.
PDF
Chapter 20
PPTX
Impedence
PPTX
Basic electronics.rtf
PPTX
Electronics ..
PDF
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
PDF
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
PPTX
Basic electronics
The Fastest Possible Search Algorithm: Grover's Search and the World of Quant...
Quantum mechanics in electronics
Chapter 03
Chapter 14
7.7.3 Phasors
Chapter 15
Chapter 05
Chapter 16
Steady-state Analysis for Switched Electronic Systems Trough Complementarity
Ecd302 unit 04 (analysis)
L18 1 ph-ac
Chapter 17
Lecture 29 ac circuits. phasors.
Chapter 20
Impedence
Basic electronics.rtf
Electronics ..
Circuit Network Analysis - [Chapter1] Basic Circuit Laws
Circuit Network Analysis - [Chapter2] Sinusoidal Steady-state Analysis
Basic electronics
Ad

Similar to Chapter 02 (20)

PDF
Ch2slide (1).pdf
PDF
copperlosessssssssssssssssssssssssssssssssssssssss
PDF
Chapter 5 DC-DC Converters.pdf
PPT
Buck_Converter.ppt
PPTX
DC DC Converter
PDF
Single-Switch Soft-Switched Boost Power Factor Corrector for Modular Applicat...
PPT
abc.ppt
PPT
CC1.ppt
PDF
L 23(dp)(pe) ((ee)nptel)
PPT
6 ee462_l_dc_dc_buck_ppt
PPTX
PPT
DC_DC_Buck_PPT.ppt
PDF
6 obert W. Erickson - Fundamentals of Power Electronics_ book for instructors...
PDF
Fundamentals of Power Electronics - R. W. Erickson.pdf
PPTX
Ch1 hgruriehrhrhrhrrhrjorjjehruh(3).pptx
PDF
11.[49 61]optimizing the output current for a dc-dc converter
PPT
EE394V_DG_Week6.ppt
PDF
Chapter 10
PDF
power electronics(ii)
PDF
Design and Simulation of DC-DC Converters
Ch2slide (1).pdf
copperlosessssssssssssssssssssssssssssssssssssssss
Chapter 5 DC-DC Converters.pdf
Buck_Converter.ppt
DC DC Converter
Single-Switch Soft-Switched Boost Power Factor Corrector for Modular Applicat...
abc.ppt
CC1.ppt
L 23(dp)(pe) ((ee)nptel)
6 ee462_l_dc_dc_buck_ppt
DC_DC_Buck_PPT.ppt
6 obert W. Erickson - Fundamentals of Power Electronics_ book for instructors...
Fundamentals of Power Electronics - R. W. Erickson.pdf
Ch1 hgruriehrhrhrhrrhrjorjjehruh(3).pptx
11.[49 61]optimizing the output current for a dc-dc converter
EE394V_DG_Week6.ppt
Chapter 10
power electronics(ii)
Design and Simulation of DC-DC Converters

More from Tha Mike (6)

PDF
Chapter 18
PDF
Chapter 13
PDF
Chapter 12a
PDF
Chapter 09
PDF
Chapter 08
PDF
Chapter 04a
Chapter 18
Chapter 13
Chapter 12a
Chapter 09
Chapter 08
Chapter 04a

Recently uploaded (20)

PDF
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PDF
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
PDF
Unlock new opportunities with location data.pdf
PDF
A review of recent deep learning applications in wood surface defect identifi...
PPTX
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
PDF
Architecture types and enterprise applications.pdf
PPTX
Chapter 5: Probability Theory and Statistics
PDF
STKI Israel Market Study 2025 version august
PPTX
Modernising the Digital Integration Hub
PDF
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
PDF
A Late Bloomer's Guide to GenAI: Ethics, Bias, and Effective Prompting - Boha...
PDF
sustainability-14-14877-v2.pddhzftheheeeee
PPT
What is a Computer? Input Devices /output devices
PDF
Getting started with AI Agents and Multi-Agent Systems
PPTX
O2C Customer Invoices to Receipt V15A.pptx
PDF
Hindi spoken digit analysis for native and non-native speakers
PPT
Geologic Time for studying geology for geologist
PPTX
Tartificialntelligence_presentation.pptx
PPTX
Benefits of Physical activity for teenagers.pptx
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
Unlock new opportunities with location data.pdf
A review of recent deep learning applications in wood surface defect identifi...
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
Architecture types and enterprise applications.pdf
Chapter 5: Probability Theory and Statistics
STKI Israel Market Study 2025 version august
Modernising the Digital Integration Hub
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
A Late Bloomer's Guide to GenAI: Ethics, Bias, and Effective Prompting - Boha...
sustainability-14-14877-v2.pddhzftheheeeee
What is a Computer? Input Devices /output devices
Getting started with AI Agents and Multi-Agent Systems
O2C Customer Invoices to Receipt V15A.pptx
Hindi spoken digit analysis for native and non-native speakers
Geologic Time for studying geology for geologist
Tartificialntelligence_presentation.pptx
Benefits of Physical activity for teenagers.pptx

Chapter 02

  • 1. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis1 Chapter 2 Principles of Steady-State Converter Analysis 2.1. Introduction 2.2. Inductor volt-second balance, capacitor charge balance, and the small ripple approximation 2.3. Boost converter example 2.4. Cuk converter example 2.5. Estimating the ripple in converters containing two- pole low-pass filters 2.6. Summary of key points
  • 2. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis2 2.1 Introduction Buck converter SPDT switch changes dc component Switch output voltage waveform complement D′: D′ = 1 - D Duty cycle D: 0 ≤ D ≤ 1 + – R + v(t) – 1 2 + vs(t) – Vg vs(t) Vg DTs D'Ts 0 t0 DTs Ts Switch position: 1 2 1
  • 3. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis3 Dc component of switch output voltage vs = 1 Ts vs(t) dt 0 Ts vs = 1 Ts (DTsVg) = DVg Fourier analysis: Dc component = average value vs(t) Vg 0 t0 DTs Ts 〈vs〉 = DVgarea = DTsVg
  • 4. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis4 Insertion of low-pass filter to remove switching harmonics and pass only dc component v ≈ vs = DVg + – L C R + v(t) – 1 2 + vs(t) – Vg Vg 0 0 D V 1
  • 5. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis5 Three basic dc-dc converters Buck Boost Buck-boost M(D) D 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 M(D) D 0 1 2 3 4 5 0 0.2 0.4 0.6 0.8 1 M(D) D –5 –4 –3 –2 –1 0 0 0.2 0.4 0.6 0.8 1 (a) (b) (c) + – L C R + v – 1 2 + – L C R + v – 1 2 + – L C R + v – 1 2 M(D) = D M(D) = 1 1 – D M(D) = – D 1 – D iL (t) Vg iL (t) Vg iL (t) Vg
  • 6. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis6 Objectives of this chapter G Develop techniques for easily determining output voltage of an arbitrary converter circuit G Derive the principles of inductor volt-second balance and capacitor charge (amp-second) balance G Introduce the key small ripple approximation G Develop simple methods for selecting filter element values G Illustrate via examples
  • 7. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis7 2.2. Inductor volt-second balance, capacitor charge balance, and the small ripple approximation Buck converter containing practical low-pass filter Actual output voltage waveform v(t) = V + vripple(t) Actual output voltage waveform, buck converter + – L C R + v(t) – 1 2 iL(t) + vL(t) – iC(t) Vg v(t) t 0 V Actual waveform v(t) = V + vripple(t) dc component V
  • 8. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis8 The small ripple approximation In a well-designed converter, the output voltage ripple is small. Hence, the waveforms can be easily determined by ignoring the ripple: v(t) ≈ V v(t) = V + vripple(t) v(t) t 0 V Actual waveform v(t) = V + vripple(t) dc component V vripple < V
  • 9. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis9 Buck converter analysis: inductor current waveform original converter switch in position 2switch in position 1 + – L C R + v(t) – 1 2 iL(t) + vL(t) – iC(t) Vg L C R + v(t) – iL(t) + vL(t) – iC(t) + – Vg L C R + v(t) – iL(t) + vL(t) – iC(t) + – Vg
  • 10. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis10 Inductor voltage and current Subinterval 1: switch in position 1 vL = Vg – v(t) Inductor voltage Small ripple approximation: vL ≈ Vg – V Knowing the inductor voltage, we can now find the inductor current via vL(t) = L diL(t) dt Solve for the slope: diL(t) dt = vL(t) L ≈ Vg – V L ⇒ The inductor current changes with an essentially constant slope L C R + v(t) – iL(t) + vL(t) – iC(t) + – Vg
  • 11. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis11 Inductor voltage and current Subinterval 2: switch in position 2 Inductor voltage Small ripple approximation: Knowing the inductor voltage, we can again find the inductor current via vL(t) = L diL(t) dt Solve for the slope: ⇒ The inductor current changes with an essentially constant slope vL(t) = – v(t) vL(t) ≈ – V diL(t) dt ≈ – V L L C R + v(t) – iL(t) + vL(t) – iC(t) + – Vg
  • 12. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis12 Inductor voltage and current waveforms vL(t) = L diL(t) dt vL(t) Vg – V t – V D'TsDTs Switch position: 1 2 1 – V L Vg – V L iL(t) t0 DTs Ts I iL(0) iL(DTs) ∆iL
  • 13. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis13 Determination of inductor current ripple magnitude (change in iL) = (slope)(length of subinterval) 2∆iL = Vg – V L DTs ∆iL = Vg – V 2L DTs L = Vg – V 2∆iL DTs⇒ – V L Vg – V L iL(t) t0 DTs Ts I iL(0) iL(DTs) ∆iL
  • 14. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis14 Inductor current waveform during turn-on transient When the converter operates in equilibrium: iL((n + 1)Ts) = iL(nTs) iL(t) t0 DTs Ts iL(0) = 0 iL(nTs) iL (Ts ) 2Ts nTs (n + 1)Ts iL((n + 1)Ts) Vg – v(t) L – v(t) L
  • 15. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis15 The principle of inductor volt-second balance: Derivation Inductor defining relation: Integrate over one complete switching period: In periodic steady state, the net change in inductor current is zero: Hence, the total area (or volt-seconds) under the inductor voltage waveform is zero whenever the converter operates in steady state. An equivalent form: The average inductor voltage is zero in steady state. vL(t) = L diL(t) dt iL(Ts) – iL(0) = 1 L vL(t) dt 0 Ts 0 = vL(t) dt 0 Ts 0 = 1 Ts vL(t) dt 0 Ts = vL
  • 16. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis16 Inductor volt-second balance: Buck converter example Inductor voltage waveform, previously derived: Integral of voltage waveform is area of rectangles: λ = vL(t) dt 0 Ts = (Vg – V)(DTs) + ( – V)(D'Ts) Average voltage is vL = λ Ts = D(Vg – V) + D'( – V) Equate to zero and solve for V: 0 = DVg – (D + D')V = DVg – V ⇒ V = DVg vL(t) Vg – V t – V DTs Total area λ
  • 17. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis17 The principle of capacitor charge balance: Derivation Capacitor defining relation: Integrate over one complete switching period: In periodic steady state, the net change in capacitor voltage is zero: Hence, the total area (or charge) under the capacitor current waveform is zero whenever the converter operates in steady state. The average capacitor current is then zero. iC(t) = C dvC(t) dt vC(Ts) – vC(0) = 1 C iC(t) dt 0 Ts 0 = 1 Ts iC(t) dt 0 Ts = iC
  • 18. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis18 2.3 Boost converter example Boost converter with ideal switch Realization using power MOSFET and diode + – L C R + v – 1 2 iL(t) Vg iC(t) + vL(t) – + – L C R + v – iL(t) Vg iC(t) + vL(t) – D1 Q1 DTs Ts + –
  • 19. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis19 Boost converter analysis original converter switch in position 2switch in position 1 + – L C R + v – 1 2 iL(t) Vg iC(t) + vL(t) – C R + v – iC(t) + – L iL(t) Vg + vL(t) – C R + v – iC(t) + – L iL(t) Vg + vL(t) –
  • 20. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis20 Subinterval 1: switch in position 1 Inductor voltage and capacitor current Small ripple approximation: vL = Vg iC = – v / R vL = Vg iC = – V / R C R + v – iC(t) + – L iL(t) Vg + vL(t) –
  • 21. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis21 Subinterval 2: switch in position 2 Inductor voltage and capacitor current Small ripple approximation: vL = Vg – v iC = iL – v / R vL = Vg – V iC = I – V / R C R + v – iC(t) + – L iL(t) Vg + vL(t) –
  • 22. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis22 Inductor voltage and capacitor current waveforms vL(t) Vg – V t DTs Vg D'Ts iC(t) – V/R t DTs I – V/R D'Ts
  • 23. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis23 Inductor volt-second balance Net volt-seconds applied to inductor over one switching period: vL(t) dt 0 Ts = (Vg) DTs + (Vg – V) D'Ts Equate to zero and collect terms: Vg (D + D') – V D' = 0 Solve for V: V = Vg D' The voltage conversion ratio is therefore M(D) = V Vg = 1 D' = 1 1 – D vL(t) Vg – V t DTs Vg D'Ts
  • 24. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis24 Conversion ratio M(D) of the boost converterM(D) D 0 1 2 3 4 5 0 0.2 0.4 0.6 0.8 1 M(D) = 1 D' = 1 1 – D
  • 25. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis25 Determination of inductor current dc component Capacitor charge balance: iC(t) dt 0 Ts = ( – V R ) DTs + (I – V R ) D'Ts Collect terms and equate to zero: – V R (D + D') + I D' = 0 Solve for I: I = V D' R I = Vg D'2 R Eliminate V to express in terms of Vg: iC(t) – V/R t DTs I – V/R D'Ts D 0 2 4 6 8 0 0.2 0.4 0.6 0.8 1 I Vg/R
  • 26. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis26 Determination of inductor current ripple Inductor current slope during subinterval 1: diL(t) dt = vL(t) L = Vg – V L Inductor current slope during subinterval 2: 2∆iL = Vg L DTs diL(t) dt = vL(t) L = Vg L Change in inductor current during subinterval 1 is (slope) (length of subinterval): Solve for peak ripple: ∆iL = Vg 2L DTs • Choose L such that desired ripple magnitude is obtained Vg – V L Vg L iL(t) t0 DTs Ts I ∆iL
  • 27. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis27 Determination of capacitor voltage ripple Capacitor voltage slope during subinterval 1: Capacitor voltage slope during subinterval 2: Change in capacitor voltage during subinterval 1 is (slope) (length of subinterval): Solve for peak ripple: • Choose C such that desired voltage ripple magnitude is obtained • In practice, capacitor equivalent series resistance (esr) leads to increased voltage ripple dvC(t) dt = iC(t) C = – V RC dvC(t) dt = iC(t) C = I C – V RC – 2∆v = – V RC DTs ∆v = V 2RC DTs v(t) t0 DTs Ts V ∆v I C – V RC – V RC
  • 28. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis28 2.4 Cuk converter example + – L1 C2 R + v2 – C1 L2 1 2 + v1 –i1 i2 Vg + – L1 C2 R + v2 – C1 L2 + v1 –i1 i2 D1Q1Vg Cuk converter, with ideal switch Cuk converter: practical realization using MOSFET and diode
  • 29. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis29 Cuk converter circuit with switch in positions 1 and 2 + – L1 C2 R + v2 – C1 L2 i1 i2 – v1 + iC1 iC2 + vL2 –+ vL1 – Vg + – L1 C2 R + v2 – C1 L2i1 i2 + v1 – iC1 iC2 + vL2 –+ vL1 – Vg Switch in position 1: MOSFET conducts Capacitor C1 releases energy to output Switch in position 2: diode conducts Capacitor C1 is charged from input
  • 30. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis30 Waveforms during subinterval 1 MOSFET conduction interval + – L1 C2 R + v2 – C1 L2 i1 i2 – v1 + iC1 iC2 + vL2 –+ vL1 – Vg vL1 = Vg vL2 = – v1 – v2 iC1 = i2 iC2 = i2 – v2 R Inductor voltages and capacitor currents: Small ripple approximation for subinterval 1: vL1 = Vg vL2 = – V1 – V2 iC1 = I2 iC2 = I2 – V2 R
  • 31. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis31 Waveforms during subinterval 2 Diode conduction interval Inductor voltages and capacitor currents: Small ripple approximation for subinterval 2: + – L1 C2 R + v2 – C1 L2i1 i2 + v1 – iC1 iC2 + vL2 –+ vL1 – Vg vL1 = Vg – v1 vL2 = – v2 iC1 = i1 iC2 = i2 – v2 R vL1 = Vg – V1 vL2 = – V2 iC1 = I1 iC2 = I2 – V2 R
  • 32. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis32 Equate average values to zero The principles of inductor volt-second and capacitor charge balance state that the average values of the periodic inductor voltage and capacitor current waveforms are zero, when the converter operates in steady state. Hence, to determine the steady-state conditions in the converter, let us sketch the inductor voltage and capacitor current waveforms, and equate their average values to zero. Waveforms: vL1(t) Vg – V1 t DTs Vg D'Ts Inductor voltage vL1(t) vL1 = DVg + D'(Vg – V1) = 0 Volt-second balance on L1:
  • 33. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis33 Equate average values to zero vL2(t) – V1 – V2 t DTs – V2 D'Ts iC1(t) I2 t DTs I1 D'Ts Inductor L2 voltage Capacitor C1 current vL2 = D( – V1 – V2) + D'( – V2) = 0 iC1 = DI2 + D'I1 = 0 Average the waveforms:
  • 34. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis34 Equate average values to zero iC2(t) I2 – V2 / R (= 0) tDTs D'Ts Capacitor current iC2(t) waveform Note: during both subintervals, the capacitor current iC2 is equal to the difference between the inductor current i2 and the load current V2/R. When ripple is neglected, iC2 is constant and equal to zero. iC2 = I2 – V2 R = 0
  • 35. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis35 Cuk converter conversion ratio M = V/VgM(D) D -5 -4 -3 -2 -1 0 0 0.2 0.4 0.6 0.8 1 M(D) = V2 Vg = – D 1 – D
  • 36. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis36 Inductor current waveforms di1(t) dt = vL1(t) L1 = Vg L1 di2(t) dt = vL2(t) L2 = – V1 – V2 L2 Interval 1 slopes, using small ripple approximation: Interval 2 slopes: di1(t) dt = vL1(t) L1 = Vg – V1 L1 di2(t) dt = vL2(t) L2 = – V2 L2 i1(t) tDTs Ts I1 ∆i1 Vg – V1 L1 Vg L1 – V2 L2 – V1 – V2 L2 i2(t) tDTs Ts I2 ∆i2
  • 37. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis37 Capacitor C1 waveform dv1(t) dt = iC1(t) C1 = I2 C1 Subinterval 1: Subinterval 2: dv1(t) dt = iC1(t) C1 = I1 C1 I1 C1 I2 C1 v1(t) tDTs Ts V1 ∆v1
  • 38. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis38 Ripple magnitudes ∆i1 = VgDTs 2L1 ∆i2 = V1 + V2 2L2 DTs ∆v1 = – I2DTs 2C1 Use dc converter solution to simplify: ∆i1 = VgDTs 2L1 ∆i2 = VgDTs 2L2 ∆v1 = VgD2 Ts 2D'RC1 Analysis results Q: How large is the output voltage ripple?
  • 39. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis39 2.5 Estimating ripple in converters containing two-pole low-pass filters Buck converter example: Determine output voltage ripple Inductor current waveform. What is the capacitor current? + – L C R + vC(t) – 1 2 iC(t) iR(t) iL(t) Vg – V L Vg – V L iL(t) t0 DTs Ts I iL(0) iL(DTs) ∆iL
  • 40. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis40 Capacitor current and voltage, buck example Must not neglect inductor current ripple! If the capacitor voltage ripple is small, then essentially all of the ac component of inductor current flows through the capacitor. iC(t) vC(t) t t Total charge q DTs D'Ts Ts /2 V ∆iL ∆v ∆v
  • 41. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis41 Estimating capacitor voltage ripple ∆v q = C (2∆v) Current iC(t) is positive for half of the switching period. This positive current causes the capacitor voltage vC(t) to increase between its minimum and maximum extrema. During this time, the total charge q is deposited on the capacitor plates, where (change in charge) = C (change in voltage) iC(t) vC(t) t t Total charge q DTs D'Ts Ts /2 V ∆iL ∆v ∆v
  • 42. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis42 Estimating capacitor voltage ripple ∆v The total charge q is the area of the triangle, as shown: q = 1 2 ∆iL Ts 2 Eliminate q and solve for ∆v: ∆v = ∆iL Ts 8 C Note: in practice, capacitor equivalent series resistance (esr) further increases ∆v. iC(t) vC(t) t t Total charge q DTs D'Ts Ts /2 V ∆iL ∆v ∆v
  • 43. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis43 Inductor current ripple in two-pole filters Example: problem 2.9 can use similar arguments, with λ = L (2∆i) λ = inductor flux linkages = inductor volt-seconds R + v – + – C2 L2L1 C1 + vC1 – i1 iT i2 D1 Q1 Vg vL(t) iL(t) t t Total flux linkage λ DTs D'Ts Ts /2 I ∆v ∆i ∆i
  • 44. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis44 2.6 Summary of Key Points 1. The dc component of a converter waveform is given by its average value, or the integral over one switching period, divided by the switching period. Solution of a dc-dc converter to find its dc, or steady- state, voltages and currents therefore involves averaging the waveforms. 2. The linear ripple approximation greatly simplifies the analysis. In a well- designed converter, the switching ripples in the inductor currents and capacitor voltages are small compared to the respective dc components, and can be neglected. 3. The principle of inductor volt-second balance allows determination of the dc voltage components in any switching converter. In steady-state, the average voltage applied to an inductor must be zero.
  • 45. Fundamentals of Power Electronics Chapter 2: Principles of steady-state converter analysis45 Summary of Chapter 2 4. The principle of capacitor charge balance allows determination of the dc components of the inductor currents in a switching converter. In steady- state, the average current applied to a capacitor must be zero. 5. By knowledge of the slopes of the inductor current and capacitor voltage waveforms, the ac switching ripple magnitudes may be computed. Inductance and capacitance values can then be chosen to obtain desired ripple magnitudes. 6. In converters containing multiple-pole filters, continuous (nonpulsating) voltages and currents are applied to one or more of the inductors or capacitors. Computation of the ac switching ripple in these elements can be done using capacitor charge and/or inductor flux-linkage arguments, without use of the small-ripple approximation. 7. Converters capable of increasing (boost), decreasing (buck), and inverting the voltage polarity (buck-boost and Cuk) have been described. Converter circuits are explored more fully in a later chapter.