SlideShare a Scribd company logo
Continuous probability
distribution
Recall
Continuous probability distribution
 A continuous probability distribution can assume an
infinite number of values within a given range – for
variables that take continuous values.
 The distance students travel to class.
 The time it takes an executive to drive to work.
 The length of an afternoon nap.
 The length of time of a particular phone call.
 The amount of money spent on your last haircut.
Normal Probability Distribution
Normal Probability Distribution
 The normal probability distribution is the most
important distribution for describing a continuous
random variable.
 It has been used in a wide variety of
applications:
 Heights and weights of people
 Test scores
 Scientific measurements
 Amounts of rainfall
 It is widely used in statistical inference
Normal Probability Distribution
 Normal Probability Density Function
where:
µ = mean
σ = standard deviation
π = 3.14159
e = 2.71828
22
2/)(
2
1
)( σµ
σπ
−−
= x
exf
This formula generates the density curve which gives
the shape of the normal distribution.
According to the Germans:
“That’s right on the money”
2
2
1
2
1 




 −
−
σ
µ
πσ
X
e
Herr
Gauss
The Normal distribution is also known as
the Gaussian distribution
 “Bell shaped” and Symmetrical
about the mean µ.
 Unimodal and its mode
occurs at x = µ.
 Mean, median and
mode are equal
 Interquartile range
equals 1.33 σ
 Random variable has infinite
range from –∞ to ∞.
 The total area under the
curve and above the horizontal axis is equal to 1.
Properties of the Normal
Distribution
µ
x
f(x)
Mean
Median
Mode
Most
observations in
the distribution
are close to the
mean, with
gradually fewer
observations
further away
Properties of the Normal
Distribution
µ
x
f(x)
Mean
Median
Mode
Properties of the Normal
Distribution
Empirical Rule
 68.3 % of all observations
lie within 1 standard
deviation of the mean
 95.4 % of all observations
lie within 2 standard
deviations of the mean
 99.7 % of all observations
lie within 3 standard
deviations of the mean
µ-3σ µ-2σ µ-1σ µ µ+1σ µ+2σ µ+3σ
68.26%
95.45%
99.74%
55 70 14585 100 115 130
µ-3σ µ-2σ µ-1σ µ µ+1σ µ+2σ µ+3σ
55 70 14585 100 115 130
For a normal distribution, the following rules hold true;
These rules are commonly
known as the Empirical Rule
Women participating in a three-day experimental
diet regime have been demonstrated to have
normally distributed weight loss with mean 600 g
and a standard deviation 200 g.
a) What percentage of these women will have a
weight loss between 400 and 800 g?
b) What percentage of women will lose weight too
quickly on the diet (where too much weight is
defined as >1000g)?
Application of the Empirical Rule
X : (600,200)
600 800 1000 12004002000
~ 68%
a)
X : (600,200)
600 800 1000 12004002000
b)
2.3%
σ2
2
2
µ x
σ1
2
1
µ µ1 < µ2
 a. The normal distribution depends on the values of the
parameters µ, the population mean and σ2, the
population variance.
 a. Two normal curves, which have the same standard
deviation but different means.
Properties of the Normal Distribution
σ2
2
xµ1 = µ2
σ1
2
σ2
2
σ1
2
<
b. Two normal curves with the same mean but
different standard deviations
Properties of the Normal Distribution
σ2
2
xµ1 < µ2
σ1
2
σ2
2
σ1
2
<
µ1
µ2
 c. Two normal curves that have different means and
different standard deviations.
Properties of the Normal Distribution
Areas under the Normal Curve
 The area under the curve bounded by the two ordinates x = x1
and x = x2 equals the probability that the random variable x
assumes a value between x = x1 and x = x2. Thus, for the normal
curve in the Figure below, the P(x1 < x < x2) is represented by the
area of the shaded region.
µx1 x2
 The area under the curve between any two ordinates
depend upon the values of µ and σ and consequently, the
probability associated with distributions differ in mean and
standard deviation will be different for the two given values
of x.
Areas under the Normal Curve
I
II
x1 x2
P(x1 < x < x2) for different Normal curves
Many Normal Distributions
By varying the parameters σ and µ, we
obtain different normal distributions
There are an infinite number of normal distributions
 It would be hopeless task to set up separate
tables of normal curve areas for every
conceivable value of µ and σ
Areas under the Normal Curve
Which Table to Use?
An infinite number of normal distributions means an
infinite number of tables to look up!
Yet we must use tables if we hope to avoid the
use of integral calculus
P(x1 < x < x2)
= ?
Finding Probabilities
Probability is the
area under the
curve!
x1 x2
X
Fortunately, all the observations of any normal
random variable x could be transformed to a new
set of observations of a normal random variable z
with mean zero and variance 1, by using the
transformation namely,
σ
µ−
=
X
Z
The Standard Normal Distribution
σ
µ z1
σ =1
0x1
z2x2
Any Normal Distribution Standard Normal Distribution
Areas will be equal.
zx
The Standard Normal Distribution
 The new distribution is called Standard Normal
Distribution, with mean equal to 0 and it’s standard
deviation equal to 1.
 By standardising any normally distributed random
variable, we can use just the table namely,
Areas Under the Normal Curve
Or
Areas of a Standard Normal Distribution
Such tables are usually found in the Appendix of any
statistics book.
Standard Normal Distribution
Tables
Learn how to use the different table
4 2 continuous probability    distributionn
Entries give the probability that a standard
normally distributed random variable will assume
a value to the left of a given z value.
This means we have to sometimes perform minor
calculations to determine probabilities.
Use of the Normal Probability Table
Example
z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
Find the probability that z is less than 1.74.
1. Locate a value of z equal to 1.7 in the left column.
2. Move across the row to the column under 0.04, where we
read 0.9591.
Therefore,
P(z < 1.74) = 0.9591.
z
1. State the problem.
2. What is the appropriate probability
statement?
3. Draw a picture and shade required area
4. Convert to a standard normal distribution
5. Find the probability in the standard normal
table
Computing Normal Probabilities
Example: Suppose the number of a
particular type of bacteria in samples of
1-ml of drinking water tend to be
approximately normally distributed with µ
=85 and σ2
= 81.
What is the probability that a given 1-ml
sample will contain more than 100
bacteria?
σ
85 100
Find this area
σ = 9
We are to find the P(x> 100)
Sketch a curve
To find the P(x> 100), we need to evaluate the area
under the normal curve to the right of x = 100.
x
 transform x = 100 to the corresponding z value
σ
µ−
= 1
1
x
z
Since µ = 85 and σ = 981 =
9
85100 −
=z = 1.67
0 1.67
σ = 1
Find this area
z
Hence
P(x> 100) = P(z > 1.67)
Since the area to the right and the table only
gives the probability to the left of the
distribution we use
P(z > 1.67) = 1 − P(z < 1.67)
Z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
1.5 0.9332 0.9345 0.9357 0.937 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.975 0.9756 0.9761 0.9767
0 1.67
σ = 1
Find this area
z
Hence
P(x> 100) = P(z > 1.67)
Since the area to the right and the table only gives the
probability to the left of the distribution we use
P(z > 1.67) = 1 − P(z < 1.67)
= 1 − 0.9525 = 0.0475.
So 1-ml sample will has 0.0475 probability to contain more
than 100 bacteria
Exercise
If the total cholesterol values for a certain target population
are approximately normally distributed with a mean of 200
(mg/100 mL) and a standard deviation of 20 (mg/100 mL),
What is the probability that a person picked at random from
this population will have a cholesterol value greater than 240
(mg/100 mL)?
Answer = 0.0228
Example 2
IQ scores (IQ is Intelligence Quotient) on the
Wechsler Adult Intelligence Scale are
approximately normally distributed with mean µ =
100 and σ = 15.
a. What is the proportion of persons having IQs
between 80 and 120?
Solution
Let x1 = 80 and x2 = 120
This question means that we are to find the probability
P(x1<IQ<x2) = P(80< IQ <120)
Sketch a normal curve like the one in the figure below.
Shade in the area desired.
σ =15
10080 120 x
Example 2 cont.
Find the z values corresponding to x1 = 80 and x2 = 120
Example 2 cont.
Since, P(x1<x<x2) =P (z1<z<z2)
Therefore, P(80<IQ<120) = P(−1.33<z<1.33)
The P(−1.33<z<1.33) is given by the area of the shaded region
in the figure. This area may be found by subtracting the area
to the left of the ordinate z = −1.33 from the entire area to the
left of z = 1.33.
Example 2 cont.
σ = 1
0-1.33 1.33 z
P(80<IQ<120) = P(−1.33<z<1.33)
= P(z<1.33) − P(z<−1.33)
= 0.9082 – 0.0918
= 0.8164.
Therefore the proportion of persons
having IQs between 80 and 120
is 0.8164, about 82%.
σ =1
0-1.33 1.33 z
Example 3
Suppose that the hemoglobin levels for healthy adult males
are approximately normally distributed with a mean of 16
and variance of 0.81. Find the probability that a randomly
chosen healthy adult male has a hemoglobin level less than
14.
Solution
We are to find P(x < 14)
Since µ = 16 and σ = = 0.9
We find Z = − 2.22
P(x < 14) = P(Z < − 2.22)
= 0.0132
Therefore, only about 1.3% of healthy adult males have
σ=0.81
σ= 1
16
0
14
-2.22
x
z
4 2 continuous probability    distributionn
.
Inverse Normal Distribution
Finding x value when probabilities
(areas) are given
1. State the problem
2. Draw a picture
3. Use table to find the probability closest to the one you
need
4. Read off the z-value
5. Unstandardise i.e. x = µ + zσ
Finding a Value (X) given a Probability
Example
Given a normal distribution with µ = 40 and σ = 6,
find the value of x that has
a. 45% of the area below it
b. 14% of the area above it.
Solution
In this problem we reverse the process and begin
with a known area or probability, find the z value,
and then determine x by rearranging the formula
to give
σ
µ−
=
x
z µσ += zx
4 2 continuous probability    distributionn
a. We require a z value that leaves an area of 0.45 to the left.
From the table we find P(z < -0.13) = 0.45 so that the desired
z value is -0.13.
σ=6
40 x
0.45
µσ += zx
= (-0.13 X 6 )+ 40 = 39.22
x =?
Example cont.
b. 14% of the area above it.
This time we require a z value that leaves 0.14 of the area to
the right and hence an area of 0.86 to the left.
From the table we find P(z < 1.08) = 0.86
so that the desired z value is 1.08 and
x = (6)(1.08) + 40
= 46.48
σ =6
x =?
0.86
40
µσ += zx
Example cont.
0.14
4 2 continuous probability    distributionn
Classification of arterial diastolic blood pressure (mm Hg) in
adults, 18 years and older
Consider that blood pressure readings are obtained from nearly
200,000 participants in a a large-scale community blood pressure
screening program, and that these measurements follow a normal
distribution. The mean is 85 mm Hg, with a standard deviation of 13
mm Hg.
Diastolic blood pressure (mm Hg) Blood Pressure Classification
Less than 85 Normal
85-89 High normal
90-104 Mild hypertension
105-114 Moderate hypertension
Greater or equal to 115 Severe hypertension
Exercise
a) What proportion of our sample will NOT be categorised
as severely hypertensive?
b) Suppose that we recommend that a physician be
consulted if an individual has an arterial diastolic blood
pressure equal or greater than 90 mm Hg. What
proportion of individuals in our screening program will be
asked to consult a physician?
c) What proportion of individuals have diastolic blood
pressure in the mildly hypertensive range?
d) What diastolic blood pressure will 75% of the
population be above?
Exercise
EXERCISE
(a) The distribution of serum levels of alpha tocopherol
(serum vitamin E) is approximately normal with mean
860 mg/dL and standard deviation 340mg/dL.
What serum level will 85% of the population be
below?
(b) Suppose a person is identified as having toxic
levels of alpha tocopherol if his or her serum level is
greater than 2000mg/dL. What percentage of people
will be so identified?
Under certain conditions, a binomial random
variable has a distribution that is approximately
normal.
Normal approximation of the
Binomial Distribution
If n, p, and q are such
that:
np and nq
are both greater than
5.
We use a normal distribution with
qpnandpn =σ=µ
Normal approximation of the
Binomial Distribution
Application of Normal Distribution
If 22% of all patients with high blood pressure
have side effects from a certain medication, and
100 patients are treated, find the probability that
at least 30 of them will have side effects.
Using the Binomial Probability Formula we would need
to compute:
P(30) + P(31) + ... + P(100) or 1 − P( x < 29)
Using the Normal Approximation to
the Binomial Distribution
Check if Is it appropriate to use the normal
distribution?
n p = 22
n q = 78
Both are greater than five.
Find the mean and standard deviation
µ = n p = 100(.22) = 22
and σ =
14.416.17
)78)(.22(.100
=
=
qpnandpn =σ=µ
Using the Normal Approximation to
the Binomial Distribution
σ
22 30
Find this area
To find the probability that at least 30 of
them will have side effects, find P( x ≥ 30)
σ = 4.14
Using the Normal Approximation to the
Binomial Distribution
Applying the Normal Distribution
z = 30 – 22 = 1.81
4.14
Find P( z ≥ 1.81) = 1 – P (z < 1.81) = 0.0351
0 1.81
The probability that at least 30 of the patients will have side
effects is 0.0351.
σσ = 1

More Related Content

PDF
Continuous probability distribution
PPTX
Discreet and continuous probability
PPTX
Uniform Distribution
PPTX
Discrete distributions: Binomial, Poisson & Hypergeometric distributions
PPTX
Probability distributions & expected values
PPTX
Probability distribution for Dummies
PPTX
Discrete probability distributions
PPTX
Chap05 continuous random variables and probability distributions
Continuous probability distribution
Discreet and continuous probability
Uniform Distribution
Discrete distributions: Binomial, Poisson & Hypergeometric distributions
Probability distributions & expected values
Probability distribution for Dummies
Discrete probability distributions
Chap05 continuous random variables and probability distributions

What's hot (20)

PDF
Discrete probability distributions
PDF
Discrete probability distribution (complete)
PPT
Discrete Probability Distributions
KEY
Random Variables
PPTX
Random variables
PPTX
Discrete uniform distributions
PPTX
Exponential probability distribution
PPTX
Binomial probability distribution
PPTX
Geometric probability distribution
PPTX
Conditional probability
PDF
Basic concepts of probability
PDF
Chapter 4 part3- Means and Variances of Random Variables
PPTX
introduction to probability
PPTX
Hypergeometric probability distribution
PPT
Fundamentals Probability 08072009
PPTX
Discrete and Continuous Random Variables
PPTX
STATISTICS: Normal Distribution
PDF
Chapter 4 part2- Random Variables
PPTX
Binomial probability distributions
Discrete probability distributions
Discrete probability distribution (complete)
Discrete Probability Distributions
Random Variables
Random variables
Discrete uniform distributions
Exponential probability distribution
Binomial probability distribution
Geometric probability distribution
Conditional probability
Basic concepts of probability
Chapter 4 part3- Means and Variances of Random Variables
introduction to probability
Hypergeometric probability distribution
Fundamentals Probability 08072009
Discrete and Continuous Random Variables
STATISTICS: Normal Distribution
Chapter 4 part2- Random Variables
Binomial probability distributions
Ad

Similar to 4 2 continuous probability distributionn (20)

PPT
Normal Distribution
PPT
continuous probability distributions.ppt
PPT
lecture6.ppt
PPTX
Statistics and Probability- NORMAL DISTRIBUTION.pptx
PPTX
Inferiential statistics .pptx
PPT
Probability.ppt
PPT
Ch3 Probability and The Normal Distribution
PPTX
NORMAL CURVE DISTRIBUTION OR BALANCE CURVE
PPTX
The Standard Normal Distribution
PPTX
standarized normal distribution (1).pptx
PPTX
statistics...normal/ distribution curvee
DOCX
How normal distribution is used in heights, blood pressure, measurement error...
PPT
The Normal Distribution.ppt
PDF
L6.slides.pdf
PPTX
The Standard Normal Distribution
PPTX
L5.pptx jsnushebdiodjenenehdydyhdhieoskdjdn
PPT
Normal Distribution.ppt
PPTX
Normal Distribution slides(1).pptx
PPTX
THE NORMALDISTRIBUTION IN STATISTICS AND PROBABILITY SUBJECTpptx
PPTX
The normal distribution, also called the Gaussian distribution
Normal Distribution
continuous probability distributions.ppt
lecture6.ppt
Statistics and Probability- NORMAL DISTRIBUTION.pptx
Inferiential statistics .pptx
Probability.ppt
Ch3 Probability and The Normal Distribution
NORMAL CURVE DISTRIBUTION OR BALANCE CURVE
The Standard Normal Distribution
standarized normal distribution (1).pptx
statistics...normal/ distribution curvee
How normal distribution is used in heights, blood pressure, measurement error...
The Normal Distribution.ppt
L6.slides.pdf
The Standard Normal Distribution
L5.pptx jsnushebdiodjenenehdydyhdhieoskdjdn
Normal Distribution.ppt
Normal Distribution slides(1).pptx
THE NORMALDISTRIBUTION IN STATISTICS AND PROBABILITY SUBJECTpptx
The normal distribution, also called the Gaussian distribution
Ad

More from Lama K Banna (20)

PDF
The TikTok Masterclass Deck.pdf
PDF
دليل كتابة المشاريع.pdf
DOC
Investment proposal
DOC
Funding proposal
PPTX
5 incisions
PPTX
Lecture 3 facial cosmetic surgery
PPTX
lecture 1 facial cosmatic surgery
PPTX
Facial neuropathology Maxillofacial Surgery
PPTX
Lecture 2 Facial cosmatic surgery
PPTX
Lecture 12 general considerations in treatment of tmd
PPTX
Lecture 10 temporomandibular joint
PPTX
Lecture 11 temporomandibular joint Part 3
PPTX
Lecture 9 TMJ anatomy examination
PPTX
Lecture 7 correction of dentofacial deformities Part 2
PPTX
Lecture 8 management of patients with orofacial clefts
PPTX
Lecture 5 Diagnosis and management of salivary gland disorders Part 2
PPTX
Lecture 6 correction of dentofacial deformities
PPTX
lecture 4 Diagnosis and management of salivary gland disorders
PPTX
Lecture 3 maxillofacial trauma part 3
PPTX
Lecture 2 maxillofacial trauma
The TikTok Masterclass Deck.pdf
دليل كتابة المشاريع.pdf
Investment proposal
Funding proposal
5 incisions
Lecture 3 facial cosmetic surgery
lecture 1 facial cosmatic surgery
Facial neuropathology Maxillofacial Surgery
Lecture 2 Facial cosmatic surgery
Lecture 12 general considerations in treatment of tmd
Lecture 10 temporomandibular joint
Lecture 11 temporomandibular joint Part 3
Lecture 9 TMJ anatomy examination
Lecture 7 correction of dentofacial deformities Part 2
Lecture 8 management of patients with orofacial clefts
Lecture 5 Diagnosis and management of salivary gland disorders Part 2
Lecture 6 correction of dentofacial deformities
lecture 4 Diagnosis and management of salivary gland disorders
Lecture 3 maxillofacial trauma part 3
Lecture 2 maxillofacial trauma

Recently uploaded (20)

PPTX
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
PDF
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
PDF
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
PDF
Mega Projects Data Mega Projects Data
PPTX
STUDY DESIGN details- Lt Col Maksud (21).pptx
PPTX
advance b rammar.pptxfdgdfgdfsgdfgsdgfdfgdfgsdfgdfgdfg
PPTX
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
PPTX
CEE 2 REPORT G7.pptxbdbshjdgsgjgsjfiuhsd
PPTX
Database Infoormation System (DBIS).pptx
PPTX
Global journeys: estimating international migration
PPTX
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
PDF
Fluorescence-microscope_Botany_detailed content
PPTX
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
PDF
Foundation of Data Science unit number two notes
PPT
Miokarditis (Inflamasi pada Otot Jantung)
PPTX
Business Ppt On Nestle.pptx huunnnhhgfvu
PPTX
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
PPTX
Introduction to Knowledge Engineering Part 1
PDF
Clinical guidelines as a resource for EBP(1).pdf
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
Mega Projects Data Mega Projects Data
STUDY DESIGN details- Lt Col Maksud (21).pptx
advance b rammar.pptxfdgdfgdfsgdfgsdgfdfgdfgsdfgdfgdfg
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
CEE 2 REPORT G7.pptxbdbshjdgsgjgsjfiuhsd
Database Infoormation System (DBIS).pptx
Global journeys: estimating international migration
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
Fluorescence-microscope_Botany_detailed content
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
Foundation of Data Science unit number two notes
Miokarditis (Inflamasi pada Otot Jantung)
Business Ppt On Nestle.pptx huunnnhhgfvu
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
Introduction to Knowledge Engineering Part 1
Clinical guidelines as a resource for EBP(1).pdf

4 2 continuous probability distributionn

  • 2. Recall Continuous probability distribution  A continuous probability distribution can assume an infinite number of values within a given range – for variables that take continuous values.  The distance students travel to class.  The time it takes an executive to drive to work.  The length of an afternoon nap.  The length of time of a particular phone call.  The amount of money spent on your last haircut.
  • 4. Normal Probability Distribution  The normal probability distribution is the most important distribution for describing a continuous random variable.  It has been used in a wide variety of applications:  Heights and weights of people  Test scores  Scientific measurements  Amounts of rainfall  It is widely used in statistical inference
  • 5. Normal Probability Distribution  Normal Probability Density Function where: µ = mean σ = standard deviation π = 3.14159 e = 2.71828 22 2/)( 2 1 )( σµ σπ −− = x exf This formula generates the density curve which gives the shape of the normal distribution.
  • 6. According to the Germans: “That’s right on the money” 2 2 1 2 1       − − σ µ πσ X e Herr Gauss The Normal distribution is also known as the Gaussian distribution
  • 7.  “Bell shaped” and Symmetrical about the mean µ.  Unimodal and its mode occurs at x = µ.  Mean, median and mode are equal  Interquartile range equals 1.33 σ  Random variable has infinite range from –∞ to ∞.  The total area under the curve and above the horizontal axis is equal to 1. Properties of the Normal Distribution µ x f(x) Mean Median Mode
  • 8. Most observations in the distribution are close to the mean, with gradually fewer observations further away Properties of the Normal Distribution µ x f(x) Mean Median Mode
  • 9. Properties of the Normal Distribution Empirical Rule  68.3 % of all observations lie within 1 standard deviation of the mean  95.4 % of all observations lie within 2 standard deviations of the mean  99.7 % of all observations lie within 3 standard deviations of the mean µ-3σ µ-2σ µ-1σ µ µ+1σ µ+2σ µ+3σ 68.26% 95.45% 99.74% 55 70 14585 100 115 130 µ-3σ µ-2σ µ-1σ µ µ+1σ µ+2σ µ+3σ 55 70 14585 100 115 130 For a normal distribution, the following rules hold true; These rules are commonly known as the Empirical Rule
  • 10. Women participating in a three-day experimental diet regime have been demonstrated to have normally distributed weight loss with mean 600 g and a standard deviation 200 g. a) What percentage of these women will have a weight loss between 400 and 800 g? b) What percentage of women will lose weight too quickly on the diet (where too much weight is defined as >1000g)? Application of the Empirical Rule
  • 11. X : (600,200) 600 800 1000 12004002000 ~ 68% a)
  • 12. X : (600,200) 600 800 1000 12004002000 b) 2.3%
  • 13. σ2 2 2 µ x σ1 2 1 µ µ1 < µ2  a. The normal distribution depends on the values of the parameters µ, the population mean and σ2, the population variance.  a. Two normal curves, which have the same standard deviation but different means. Properties of the Normal Distribution
  • 14. σ2 2 xµ1 = µ2 σ1 2 σ2 2 σ1 2 < b. Two normal curves with the same mean but different standard deviations Properties of the Normal Distribution
  • 15. σ2 2 xµ1 < µ2 σ1 2 σ2 2 σ1 2 < µ1 µ2  c. Two normal curves that have different means and different standard deviations. Properties of the Normal Distribution
  • 16. Areas under the Normal Curve  The area under the curve bounded by the two ordinates x = x1 and x = x2 equals the probability that the random variable x assumes a value between x = x1 and x = x2. Thus, for the normal curve in the Figure below, the P(x1 < x < x2) is represented by the area of the shaded region. µx1 x2
  • 17.  The area under the curve between any two ordinates depend upon the values of µ and σ and consequently, the probability associated with distributions differ in mean and standard deviation will be different for the two given values of x. Areas under the Normal Curve I II x1 x2 P(x1 < x < x2) for different Normal curves
  • 18. Many Normal Distributions By varying the parameters σ and µ, we obtain different normal distributions There are an infinite number of normal distributions
  • 19.  It would be hopeless task to set up separate tables of normal curve areas for every conceivable value of µ and σ Areas under the Normal Curve
  • 20. Which Table to Use? An infinite number of normal distributions means an infinite number of tables to look up! Yet we must use tables if we hope to avoid the use of integral calculus
  • 21. P(x1 < x < x2) = ? Finding Probabilities Probability is the area under the curve! x1 x2 X
  • 22. Fortunately, all the observations of any normal random variable x could be transformed to a new set of observations of a normal random variable z with mean zero and variance 1, by using the transformation namely, σ µ− = X Z The Standard Normal Distribution
  • 23. σ µ z1 σ =1 0x1 z2x2 Any Normal Distribution Standard Normal Distribution Areas will be equal. zx The Standard Normal Distribution  The new distribution is called Standard Normal Distribution, with mean equal to 0 and it’s standard deviation equal to 1.
  • 24.  By standardising any normally distributed random variable, we can use just the table namely, Areas Under the Normal Curve Or Areas of a Standard Normal Distribution Such tables are usually found in the Appendix of any statistics book. Standard Normal Distribution Tables
  • 25. Learn how to use the different table
  • 27. Entries give the probability that a standard normally distributed random variable will assume a value to the left of a given z value. This means we have to sometimes perform minor calculations to determine probabilities. Use of the Normal Probability Table
  • 28. Example z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 Find the probability that z is less than 1.74. 1. Locate a value of z equal to 1.7 in the left column. 2. Move across the row to the column under 0.04, where we read 0.9591. Therefore, P(z < 1.74) = 0.9591. z
  • 29. 1. State the problem. 2. What is the appropriate probability statement? 3. Draw a picture and shade required area 4. Convert to a standard normal distribution 5. Find the probability in the standard normal table Computing Normal Probabilities
  • 30. Example: Suppose the number of a particular type of bacteria in samples of 1-ml of drinking water tend to be approximately normally distributed with µ =85 and σ2 = 81. What is the probability that a given 1-ml sample will contain more than 100 bacteria?
  • 31. σ 85 100 Find this area σ = 9 We are to find the P(x> 100) Sketch a curve To find the P(x> 100), we need to evaluate the area under the normal curve to the right of x = 100. x
  • 32.  transform x = 100 to the corresponding z value σ µ− = 1 1 x z Since µ = 85 and σ = 981 = 9 85100 − =z = 1.67
  • 33. 0 1.67 σ = 1 Find this area z Hence P(x> 100) = P(z > 1.67) Since the area to the right and the table only gives the probability to the left of the distribution we use P(z > 1.67) = 1 − P(z < 1.67)
  • 34. Z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 1.5 0.9332 0.9345 0.9357 0.937 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.975 0.9756 0.9761 0.9767
  • 35. 0 1.67 σ = 1 Find this area z Hence P(x> 100) = P(z > 1.67) Since the area to the right and the table only gives the probability to the left of the distribution we use P(z > 1.67) = 1 − P(z < 1.67) = 1 − 0.9525 = 0.0475. So 1-ml sample will has 0.0475 probability to contain more than 100 bacteria
  • 36. Exercise If the total cholesterol values for a certain target population are approximately normally distributed with a mean of 200 (mg/100 mL) and a standard deviation of 20 (mg/100 mL), What is the probability that a person picked at random from this population will have a cholesterol value greater than 240 (mg/100 mL)? Answer = 0.0228
  • 37. Example 2 IQ scores (IQ is Intelligence Quotient) on the Wechsler Adult Intelligence Scale are approximately normally distributed with mean µ = 100 and σ = 15. a. What is the proportion of persons having IQs between 80 and 120?
  • 38. Solution Let x1 = 80 and x2 = 120 This question means that we are to find the probability P(x1<IQ<x2) = P(80< IQ <120) Sketch a normal curve like the one in the figure below. Shade in the area desired. σ =15 10080 120 x Example 2 cont.
  • 39. Find the z values corresponding to x1 = 80 and x2 = 120 Example 2 cont. Since, P(x1<x<x2) =P (z1<z<z2) Therefore, P(80<IQ<120) = P(−1.33<z<1.33)
  • 40. The P(−1.33<z<1.33) is given by the area of the shaded region in the figure. This area may be found by subtracting the area to the left of the ordinate z = −1.33 from the entire area to the left of z = 1.33. Example 2 cont. σ = 1 0-1.33 1.33 z
  • 41. P(80<IQ<120) = P(−1.33<z<1.33) = P(z<1.33) − P(z<−1.33) = 0.9082 – 0.0918 = 0.8164. Therefore the proportion of persons having IQs between 80 and 120 is 0.8164, about 82%. σ =1 0-1.33 1.33 z
  • 42. Example 3 Suppose that the hemoglobin levels for healthy adult males are approximately normally distributed with a mean of 16 and variance of 0.81. Find the probability that a randomly chosen healthy adult male has a hemoglobin level less than 14. Solution We are to find P(x < 14) Since µ = 16 and σ = = 0.9 We find Z = − 2.22 P(x < 14) = P(Z < − 2.22) = 0.0132 Therefore, only about 1.3% of healthy adult males have σ=0.81 σ= 1 16 0 14 -2.22 x z
  • 44. . Inverse Normal Distribution Finding x value when probabilities (areas) are given
  • 45. 1. State the problem 2. Draw a picture 3. Use table to find the probability closest to the one you need 4. Read off the z-value 5. Unstandardise i.e. x = µ + zσ Finding a Value (X) given a Probability
  • 46. Example Given a normal distribution with µ = 40 and σ = 6, find the value of x that has a. 45% of the area below it b. 14% of the area above it. Solution In this problem we reverse the process and begin with a known area or probability, find the z value, and then determine x by rearranging the formula to give σ µ− = x z µσ += zx
  • 48. a. We require a z value that leaves an area of 0.45 to the left. From the table we find P(z < -0.13) = 0.45 so that the desired z value is -0.13. σ=6 40 x 0.45 µσ += zx = (-0.13 X 6 )+ 40 = 39.22 x =? Example cont.
  • 49. b. 14% of the area above it. This time we require a z value that leaves 0.14 of the area to the right and hence an area of 0.86 to the left. From the table we find P(z < 1.08) = 0.86 so that the desired z value is 1.08 and x = (6)(1.08) + 40 = 46.48 σ =6 x =? 0.86 40 µσ += zx Example cont. 0.14
  • 51. Classification of arterial diastolic blood pressure (mm Hg) in adults, 18 years and older Consider that blood pressure readings are obtained from nearly 200,000 participants in a a large-scale community blood pressure screening program, and that these measurements follow a normal distribution. The mean is 85 mm Hg, with a standard deviation of 13 mm Hg. Diastolic blood pressure (mm Hg) Blood Pressure Classification Less than 85 Normal 85-89 High normal 90-104 Mild hypertension 105-114 Moderate hypertension Greater or equal to 115 Severe hypertension Exercise
  • 52. a) What proportion of our sample will NOT be categorised as severely hypertensive? b) Suppose that we recommend that a physician be consulted if an individual has an arterial diastolic blood pressure equal or greater than 90 mm Hg. What proportion of individuals in our screening program will be asked to consult a physician? c) What proportion of individuals have diastolic blood pressure in the mildly hypertensive range? d) What diastolic blood pressure will 75% of the population be above? Exercise
  • 53. EXERCISE (a) The distribution of serum levels of alpha tocopherol (serum vitamin E) is approximately normal with mean 860 mg/dL and standard deviation 340mg/dL. What serum level will 85% of the population be below? (b) Suppose a person is identified as having toxic levels of alpha tocopherol if his or her serum level is greater than 2000mg/dL. What percentage of people will be so identified?
  • 54. Under certain conditions, a binomial random variable has a distribution that is approximately normal. Normal approximation of the Binomial Distribution
  • 55. If n, p, and q are such that: np and nq are both greater than 5. We use a normal distribution with qpnandpn =σ=µ Normal approximation of the Binomial Distribution
  • 56. Application of Normal Distribution If 22% of all patients with high blood pressure have side effects from a certain medication, and 100 patients are treated, find the probability that at least 30 of them will have side effects. Using the Binomial Probability Formula we would need to compute: P(30) + P(31) + ... + P(100) or 1 − P( x < 29)
  • 57. Using the Normal Approximation to the Binomial Distribution Check if Is it appropriate to use the normal distribution? n p = 22 n q = 78 Both are greater than five.
  • 58. Find the mean and standard deviation µ = n p = 100(.22) = 22 and σ = 14.416.17 )78)(.22(.100 = = qpnandpn =σ=µ Using the Normal Approximation to the Binomial Distribution
  • 59. σ 22 30 Find this area To find the probability that at least 30 of them will have side effects, find P( x ≥ 30) σ = 4.14 Using the Normal Approximation to the Binomial Distribution
  • 60. Applying the Normal Distribution z = 30 – 22 = 1.81 4.14 Find P( z ≥ 1.81) = 1 – P (z < 1.81) = 0.0351 0 1.81 The probability that at least 30 of the patients will have side effects is 0.0351. σσ = 1