SlideShare a Scribd company logo
/ 35
1
A machine-learning view on
heterogeneous catalyst design and discovery
Ichigaku Takigawa
ichigaku.takigawa@riken.jp
1 July 2021 @ Telluride, Colorado
Telluride Workshop on Computational Materials Chemistry
Advanced Intelligence Project
/ 35
2
RIKEN Center for AI Project Inst. Chemical Reaction Design & Discovery
Hokkaido Univ
Two Interrelated Research Interests:
Hi, I am a ML researcher working for
ML for Stem Cell Biology ML for Chemistry
ML with discrete (combinatorial) structures ML for natural sciences
Edit-aware graph autocompletion (Hu+) Low-electron dose TEM image improvement (Katsuno+)
/ 35
3
Today’s talk
Gas-phase reactions on sold-phase catalyst surface (Heterogeneous catalysis)
https://en.wikipedia.org/wiki/Heterogeneous_catalysis
Industrial Synthesis (e.g. Haber-Bosch), Automobile Exhaust Gas Purification, Methane Conversion, etc.
Reactants
(Gas)
Catalysts
(Solid)
Nano-particle
surface
Adsorption
Diffusion
Dissociation
Recombination
Desorption
Our struggles for better ML practices with underspecified, sparse, biased
observational data (i.e. a collection of experimental facts from literature)
/ 35
3
Today’s talk
Gas-phase reactions on sold-phase catalyst surface (Heterogeneous catalysis)
https://en.wikipedia.org/wiki/Heterogeneous_catalysis
Industrial Synthesis (e.g. Haber-Bosch), Automobile Exhaust Gas Purification, Methane Conversion, etc.
Reactants
(Gas)
Catalysts
(Solid)
Nano-particle
surface
High Temperature, High Pressure
Adsorption
Diffusion
Dissociation
Recombination
Desorption
Our struggles for better ML practices with underspecified, sparse, biased
observational data (i.e. a collection of experimental facts from literature)
/ 35
4
Today’s talk
Gas-phase reactions on sold-phase catalyst surface (Heterogeneous catalysis)
Industrial Synthesis (e.g. Haber-Bosch), Automobile Exhaust Gas Purification, Methane Conversion, etc.
Reactants
(Gas)
Catalysts
(Solid)
Nano-particle
surface
High Temperature, High Pressure
Adsorption
Diffusion
Dissociation
Recombination
Desorption
God made the bulk;
the surface was invented by the devil
Devilishly complex too-many-factor process!!
—— Wolfgang Pauli
Our struggles for better ML practices with underspecified, sparse, biased
observational data (i.e. a collection of experimental facts from literature)
/ 35
5
simulation
input output
ML: A new way for (lazy) programming
computer program
input output
computer program
ML
full specification in
every detail required
give up explicit model
instead, grab a tunable
model, and show it many
input-output instances
inductive (empiricism)
airhead with a god-like
learning capability
Random Forest Neural Networks SVR Kernel Ridge
All about fitting a very-flexible function to finite points in high-dimensional space.
deductive (rationalism)
/ 35
6
ML: A new way for (lazy) programming
ResNet50: 26 million params
ResNet101: 45 million params
EfficientNet-B7: 66 million params
VGG19: 144 million params
12-layer, 12-heads BERT: 110 million params
24-layer, 16-heads BERT: 336 million params
GPT-2 XL: 1558 million params
GPT-3: 175 billion params
simulation
input output
computer program
input output
computer program
ML
full specification in
every detail required
give up explicit model
instead, grab a tunable
model, and show it many
input-output instances
inductive (empiricism)
airhead with a god-like
learning capability
deductive (rationalism)
All about fitting a very-flexible function to finite points in high-dimensional space.
/ 35
6
ML: A new way for (lazy) programming
ResNet50: 26 million params
ResNet101: 45 million params
EfficientNet-B7: 66 million params
VGG19: 144 million params
12-layer, 12-heads BERT: 110 million params
24-layer, 16-heads BERT: 336 million params
GPT-2 XL: 1558 million params
GPT-3: 175 billion params
Modern ML: Can we imagine what would happen if we try to fit a function having 175
billion parameters to 100 million data points in 10 thousand dimension??
simulation
input output
computer program
input output
computer program
ML
full specification in
every detail required
give up explicit model
instead, grab a tunable
model, and show it many
input-output instances
inductive (empiricism)
airhead with a god-like
learning capability
deductive (rationalism)
All about fitting a very-flexible function to finite points in high-dimensional space.
/ 35
7
Rashomon Effect: multiplicity of good models
ML models are too flexible to overrepresent given finite instances, and many different
shapes of functions exist for representing the same finite data. (even if it’s huge)
The Rashomon Effect
In many practical cases, we have many equally-accurate but different ML models.
(the choice of ML methods or the design of NN architectures doesn’t really matter)
Note: The Rashomon Effect in ML is attributed to Leo Breiman’s very influential “The Two Cultures” paper published in
2001, but obviously “Rashomon” itself originates from a classic Japanese movie in 1950 by Kurosawa, where four
witnesses to a murder describe entirely different contradictory perspectives, but all of them sound true.
We often see this in ML competitions. Top ranking solutions are very competitive in
performance (equally accurate in practice) but can be very different approaches.
5-CV RMSE: 0.12016 5-CV RMSE: 0.13209 5-CV RMSE: 0.11976 5-CV RMSE: 0.12432 5-CV RMSE: 0.20899 5-CV RMSE: 0.17446
Neural Network Random Forest ExtraTrees GBDT Gaussian Process Kernel Ridge
/ 35
8
We see differences in underspecified cases
right data scarce/underspecified + outliers
Neural Networks (ReLU)
Random Forest
Extra Trees (bootstrap)
Neural Networks (ReLU)
Random Forest
Extra Trees (bootstrap)
Neural Networks (Tanh)
Linear Regression
Kernel Ridge (RBF) Kernel Ridge (Laplacian)
Extra Trees (no bootstrap)
Gradient Boosting
/ 35
8
We see differences in underspecified cases
right data scarce/underspecified + outliers
Neural Networks (ReLU)
Random Forest
Extra Trees (bootstrap)
Neural Networks (ReLU)
Random Forest
Extra Trees (bootstrap)
Neural Networks (Tanh)
Linear Regression
Kernel Ridge (RBF) Kernel Ridge (Laplacian)
Extra Trees (no bootstrap)
Gradient Boosting
some apparently underfitted?
/ 35
8
We see differences in underspecified cases
right data scarce/underspecified + outliers
Neural Networks (ReLU)
Random Forest
Extra Trees (bootstrap)
Neural Networks (ReLU)
Random Forest
Extra Trees (bootstrap)
Neural Networks (Tanh)
Linear Regression
Kernel Ridge (RBF) Kernel Ridge (Laplacian)
Extra Trees (no bootstrap)
Gradient Boosting
some apparently underfitted?
But we often still see the Rashomon
(i.e. similar CV performances)
and these can predict very differently for
further test cases. (in particular, out-of-
distribution cases)
/ 35
9
Designing relevant “inductive biases”
Use heuristic assumptions, domain knowledge to constrain/regularize the model space.
Prediction
Input
variables
Classifier or
Regressor
<latexit sha1_base64="Ill3Als4zZd947f5Xm9sW99d0QA=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTomJcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkI/HxK1YPL0RSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVA6Qmg==</latexit>
x1
<latexit sha1_base64="QFtMwnKe2I12XGZu0bNJbdnDaaE=">AAAChnichVG7TgJBFD2sL8QHqI2JDZFgrMhAVIwV0caShzwSJGR3HXHDvrK7EJH4Aya2UlhpYmH8AD/Axh+w4BOMJSY2Fl6WTYwS8W5m58yZe+6cmSuZqmI7jHV9wtj4xOSUfzowMzs3HwwtLBZso2HJPC8bqmGVJNHmqqLzvKM4Ki+ZFhc1SeVFqb7X3y82uWUrhn7gtExe0cSarhwrsugQlTutJqqhCIsxN8LDIO6BCLxIG6FHHOIIBmQ0oIFDh0NYhQibvjLiYDCJq6BNnEVIcfc5zhEgbYOyOGWIxNbpX6NV2WN1Wvdr2q5aplNUGhYpw4iyF3bPeuyZPbBX9vlnrbZbo++lRbM00HKzGrxYzn38q9JodnDyrRrp2cExtl2vCnk3XaZ/C3mgb551ermdbLS9xm7ZG/m/YV32RDfQm+/yXYZnr0f4kcgLvRg1KP67HcOgkIjFt2KJzEYkteu1yo8VrGKd+pFECvtII0/1a7jEFTqCX4gJm0JykCr4PM0SfoSQ+gJWLpCb</latexit>
x2
<latexit sha1_base64="lFhRrRrVTrFR31ebbMgRp5myJpc=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqcljfKgRCLMCeCwyDqghDcSOqBRxzhGDpkNFAHhwabsAoRFn1FRMFgEFdCmziTkOLsc5zDR9oGZXHKEImt0b9Kq6LLarTu17QctUynqDRMUgYRZi/snvXYM3tgr+zzz1ptp0bfS4tmaaDlRtl/sZz5+FdVp9nGybdqpGcbFew4XhXybjhM/xbyQN886/Qyu+lwe43dsjfyf8O67IluoDXf5bsUT1+P8CORF3oxalD0dzuGQS4WiW5HYqnNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFWE6QnA==</latexit>
x3
<latexit sha1_base64="0IPXcU0UIDvzZlYURjV2A/THv9U=">AAACiXichVG7SgNBFD2ur/hM1EawEYNiFWZFNKQKprGMj0TBBNndTHR0X+xOFmLwB6zsRK0ULMQP8ANs/AELP0EsFWwsvNksiAbjXWbnzJl77pyZq7um8CVjz11Kd09vX39sYHBoeGQ0nhgbL/pOzTN4wXBMx9vWNZ+bwuYFKaTJt12Pa5Zu8i39MNfc3wq45wvH3pR1l5ctbc8WVWFokqhiKag40t9NJFmKhTHdDtQIJBFF3knco4QKHBiowQKHDUnYhAafvh2oYHCJK6NBnEdIhPscxxgkbY2yOGVoxB7Sf49WOxFr07pZ0w/VBp1i0vBIOY1Z9sRu2Rt7ZHfshX3+WasR1mh6qdOst7Tc3Y2fTG58/KuyaJbY/1Z19CxRRTr0Ksi7GzLNWxgtfXB09raRWZ9tzLFr9kr+r9gze6Ab2MG7cbPG1y87+NHJC70YNUj93Y52UFxIqUuphbXFZHYlalUMU5jBPPVjGVmsIo8C1T/AKc5xoQwpqpJWMq1UpSvSTOBHKLkvAi+SPA==</latexit>
.
.
.
Input representation design,
selection, and its engineering
(descriptors + feature engineering)
Function
model
vs “Kitchen-sink” models
(feeding every possible descriptor)
Simple model is enough whenever we can have determining input variables necessary
and sufficient to fully define the desired output.
Every requirement should be
explicitly encoded into model,
otherwise we need to provide it
through examples.
(symmetry, invariance, etc)
/ 35
10
Designing relevant “inductive biases”
Prediction
Input
variables
Function
model
<latexit sha1_base64="QFtMwnKe2I12XGZu0bNJbdnDaaE=">AAAChnichVG7TgJBFD2sL8QHqI2JDZFgrMhAVIwV0caShzwSJGR3HXHDvrK7EJH4Aya2UlhpYmH8AD/Axh+w4BOMJSY2Fl6WTYwS8W5m58yZe+6cmSuZqmI7jHV9wtj4xOSUfzowMzs3HwwtLBZso2HJPC8bqmGVJNHmqqLzvKM4Ki+ZFhc1SeVFqb7X3y82uWUrhn7gtExe0cSarhwrsugQlTutJqqhCIsxN8LDIO6BCLxIG6FHHOIIBmQ0oIFDh0NYhQibvjLiYDCJq6BNnEVIcfc5zhEgbYOyOGWIxNbpX6NV2WN1Wvdr2q5aplNUGhYpw4iyF3bPeuyZPbBX9vlnrbZbo++lRbM00HKzGrxYzn38q9JodnDyrRrp2cExtl2vCnk3XaZ/C3mgb551ermdbLS9xm7ZG/m/YV32RDfQm+/yXYZnr0f4kcgLvRg1KP67HcOgkIjFt2KJzEYkteu1yo8VrGKd+pFECvtII0/1a7jEFTqCX4gJm0JykCr4PM0SfoSQ+gJWLpCb</latexit>
x2
<latexit sha1_base64="lFhRrRrVTrFR31ebbMgRp5myJpc=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqcljfKgRCLMCeCwyDqghDcSOqBRxzhGDpkNFAHhwabsAoRFn1FRMFgEFdCmziTkOLsc5zDR9oGZXHKEImt0b9Kq6LLarTu17QctUynqDRMUgYRZi/snvXYM3tgr+zzz1ptp0bfS4tmaaDlRtl/sZz5+FdVp9nGybdqpGcbFew4XhXybjhM/xbyQN886/Qyu+lwe43dsjfyf8O67IluoDXf5bsUT1+P8CORF3oxalD0dzuGQS4WiW5HYqnNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFWE6QnA==</latexit>
x3
<latexit sha1_base64="0IPXcU0UIDvzZlYURjV2A/THv9U=">AAACiXichVG7SgNBFD2ur/hM1EawEYNiFWZFNKQKprGMj0TBBNndTHR0X+xOFmLwB6zsRK0ULMQP8ANs/AELP0EsFWwsvNksiAbjXWbnzJl77pyZq7um8CVjz11Kd09vX39sYHBoeGQ0nhgbL/pOzTN4wXBMx9vWNZ+bwuYFKaTJt12Pa5Zu8i39MNfc3wq45wvH3pR1l5ctbc8WVWFokqhiKag40t9NJFmKhTHdDtQIJBFF3knco4QKHBiowQKHDUnYhAafvh2oYHCJK6NBnEdIhPscxxgkbY2yOGVoxB7Sf49WOxFr07pZ0w/VBp1i0vBIOY1Z9sRu2Rt7ZHfshX3+WasR1mh6qdOst7Tc3Y2fTG58/KuyaJbY/1Z19CxRRTr0Ksi7GzLNWxgtfXB09raRWZ9tzLFr9kr+r9gze6Ab2MG7cbPG1y87+NHJC70YNUj93Y52UFxIqUuphbXFZHYlalUMU5jBPPVjGVmsIo8C1T/AKc5xoQwpqpJWMq1UpSvSTOBHKLkvAi+SPA==</latexit>
.
.
.
Latent
variables
Learnable variable
transformation
Representation learning
Classifier or
Regressor
<latexit sha1_base64="Ill3Als4zZd947f5Xm9sW99d0QA=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTomJcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkI/HxK1YPL0RSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVA6Qmg==</latexit>
x1
Architecture design when we go for representation learning
“Kitchen-sink”
(raw) inputs
Use heuristic assumptions, domain knowledge to constrain/regularize the model space.
/ 35
10
Designing relevant “inductive biases”
Prediction
Input
variables
Function
model
<latexit sha1_base64="QFtMwnKe2I12XGZu0bNJbdnDaaE=">AAAChnichVG7TgJBFD2sL8QHqI2JDZFgrMhAVIwV0caShzwSJGR3HXHDvrK7EJH4Aya2UlhpYmH8AD/Axh+w4BOMJSY2Fl6WTYwS8W5m58yZe+6cmSuZqmI7jHV9wtj4xOSUfzowMzs3HwwtLBZso2HJPC8bqmGVJNHmqqLzvKM4Ki+ZFhc1SeVFqb7X3y82uWUrhn7gtExe0cSarhwrsugQlTutJqqhCIsxN8LDIO6BCLxIG6FHHOIIBmQ0oIFDh0NYhQibvjLiYDCJq6BNnEVIcfc5zhEgbYOyOGWIxNbpX6NV2WN1Wvdr2q5aplNUGhYpw4iyF3bPeuyZPbBX9vlnrbZbo++lRbM00HKzGrxYzn38q9JodnDyrRrp2cExtl2vCnk3XaZ/C3mgb551ermdbLS9xm7ZG/m/YV32RDfQm+/yXYZnr0f4kcgLvRg1KP67HcOgkIjFt2KJzEYkteu1yo8VrGKd+pFECvtII0/1a7jEFTqCX4gJm0JykCr4PM0SfoSQ+gJWLpCb</latexit>
x2
<latexit sha1_base64="lFhRrRrVTrFR31ebbMgRp5myJpc=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqcljfKgRCLMCeCwyDqghDcSOqBRxzhGDpkNFAHhwabsAoRFn1FRMFgEFdCmziTkOLsc5zDR9oGZXHKEImt0b9Kq6LLarTu17QctUynqDRMUgYRZi/snvXYM3tgr+zzz1ptp0bfS4tmaaDlRtl/sZz5+FdVp9nGybdqpGcbFew4XhXybjhM/xbyQN886/Qyu+lwe43dsjfyf8O67IluoDXf5bsUT1+P8CORF3oxalD0dzuGQS4WiW5HYqnNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFWE6QnA==</latexit>
x3
<latexit sha1_base64="0IPXcU0UIDvzZlYURjV2A/THv9U=">AAACiXichVG7SgNBFD2ur/hM1EawEYNiFWZFNKQKprGMj0TBBNndTHR0X+xOFmLwB6zsRK0ULMQP8ANs/AELP0EsFWwsvNksiAbjXWbnzJl77pyZq7um8CVjz11Kd09vX39sYHBoeGQ0nhgbL/pOzTN4wXBMx9vWNZ+bwuYFKaTJt12Pa5Zu8i39MNfc3wq45wvH3pR1l5ctbc8WVWFokqhiKag40t9NJFmKhTHdDtQIJBFF3knco4QKHBiowQKHDUnYhAafvh2oYHCJK6NBnEdIhPscxxgkbY2yOGVoxB7Sf49WOxFr07pZ0w/VBp1i0vBIOY1Z9sRu2Rt7ZHfshX3+WasR1mh6qdOst7Tc3Y2fTG58/KuyaJbY/1Z19CxRRTr0Ksi7GzLNWxgtfXB09raRWZ9tzLFr9kr+r9gze6Ab2MG7cbPG1y87+NHJC70YNUj93Y52UFxIqUuphbXFZHYlalUMU5jBPPVjGVmsIo8C1T/AKc5xoQwpqpJWMq1UpSvSTOBHKLkvAi+SPA==</latexit>
.
.
.
Latent
variables
Learnable variable
transformation
Representation learning
Classifier or
Regressor
<latexit sha1_base64="Ill3Als4zZd947f5Xm9sW99d0QA=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTomJcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkI/HxK1YPL0RSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVA6Qmg==</latexit>
x1
Architecture design when we go for representation learning
“Kitchen-sink”
(raw) inputs
Use heuristic assumptions, domain knowledge to constrain/regularize the model space.
/ 35
10
Designing relevant “inductive biases”
Prediction
Input
variables
Function
model
<latexit sha1_base64="QFtMwnKe2I12XGZu0bNJbdnDaaE=">AAAChnichVG7TgJBFD2sL8QHqI2JDZFgrMhAVIwV0caShzwSJGR3HXHDvrK7EJH4Aya2UlhpYmH8AD/Axh+w4BOMJSY2Fl6WTYwS8W5m58yZe+6cmSuZqmI7jHV9wtj4xOSUfzowMzs3HwwtLBZso2HJPC8bqmGVJNHmqqLzvKM4Ki+ZFhc1SeVFqb7X3y82uWUrhn7gtExe0cSarhwrsugQlTutJqqhCIsxN8LDIO6BCLxIG6FHHOIIBmQ0oIFDh0NYhQibvjLiYDCJq6BNnEVIcfc5zhEgbYOyOGWIxNbpX6NV2WN1Wvdr2q5aplNUGhYpw4iyF3bPeuyZPbBX9vlnrbZbo++lRbM00HKzGrxYzn38q9JodnDyrRrp2cExtl2vCnk3XaZ/C3mgb551ermdbLS9xm7ZG/m/YV32RDfQm+/yXYZnr0f4kcgLvRg1KP67HcOgkIjFt2KJzEYkteu1yo8VrGKd+pFECvtII0/1a7jEFTqCX4gJm0JykCr4PM0SfoSQ+gJWLpCb</latexit>
x2
<latexit sha1_base64="lFhRrRrVTrFR31ebbMgRp5myJpc=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqcljfKgRCLMCeCwyDqghDcSOqBRxzhGDpkNFAHhwabsAoRFn1FRMFgEFdCmziTkOLsc5zDR9oGZXHKEImt0b9Kq6LLarTu17QctUynqDRMUgYRZi/snvXYM3tgr+zzz1ptp0bfS4tmaaDlRtl/sZz5+FdVp9nGybdqpGcbFew4XhXybjhM/xbyQN886/Qyu+lwe43dsjfyf8O67IluoDXf5bsUT1+P8CORF3oxalD0dzuGQS4WiW5HYqnNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFWE6QnA==</latexit>
x3
<latexit sha1_base64="0IPXcU0UIDvzZlYURjV2A/THv9U=">AAACiXichVG7SgNBFD2ur/hM1EawEYNiFWZFNKQKprGMj0TBBNndTHR0X+xOFmLwB6zsRK0ULMQP8ANs/AELP0EsFWwsvNksiAbjXWbnzJl77pyZq7um8CVjz11Kd09vX39sYHBoeGQ0nhgbL/pOzTN4wXBMx9vWNZ+bwuYFKaTJt12Pa5Zu8i39MNfc3wq45wvH3pR1l5ctbc8WVWFokqhiKag40t9NJFmKhTHdDtQIJBFF3knco4QKHBiowQKHDUnYhAafvh2oYHCJK6NBnEdIhPscxxgkbY2yOGVoxB7Sf49WOxFr07pZ0w/VBp1i0vBIOY1Z9sRu2Rt7ZHfshX3+WasR1mh6qdOst7Tc3Y2fTG58/KuyaJbY/1Z19CxRRTr0Ksi7GzLNWxgtfXB09raRWZ9tzLFr9kr+r9gze6Ab2MG7cbPG1y87+NHJC70YNUj93Y52UFxIqUuphbXFZHYlalUMU5jBPPVjGVmsIo8C1T/AKc5xoQwpqpJWMq1UpSvSTOBHKLkvAi+SPA==</latexit>
.
.
.
Latent
variables
Learnable variable
transformation
Representation learning
Classifier or
Regressor
<latexit sha1_base64="Ill3Als4zZd947f5Xm9sW99d0QA=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTomJcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkI/HxK1YPL0RSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVA6Qmg==</latexit>
x1
Architecture design when we go for representation learning
“Kitchen-sink”
(raw) inputs
Use heuristic assumptions, domain knowledge to constrain/regularize the model space.
/ 35
10
Designing relevant “inductive biases”
Prediction
Input
variables
Function
model
<latexit sha1_base64="QFtMwnKe2I12XGZu0bNJbdnDaaE=">AAAChnichVG7TgJBFD2sL8QHqI2JDZFgrMhAVIwV0caShzwSJGR3HXHDvrK7EJH4Aya2UlhpYmH8AD/Axh+w4BOMJSY2Fl6WTYwS8W5m58yZe+6cmSuZqmI7jHV9wtj4xOSUfzowMzs3HwwtLBZso2HJPC8bqmGVJNHmqqLzvKM4Ki+ZFhc1SeVFqb7X3y82uWUrhn7gtExe0cSarhwrsugQlTutJqqhCIsxN8LDIO6BCLxIG6FHHOIIBmQ0oIFDh0NYhQibvjLiYDCJq6BNnEVIcfc5zhEgbYOyOGWIxNbpX6NV2WN1Wvdr2q5aplNUGhYpw4iyF3bPeuyZPbBX9vlnrbZbo++lRbM00HKzGrxYzn38q9JodnDyrRrp2cExtl2vCnk3XaZ/C3mgb551ermdbLS9xm7ZG/m/YV32RDfQm+/yXYZnr0f4kcgLvRg1KP67HcOgkIjFt2KJzEYkteu1yo8VrGKd+pFECvtII0/1a7jEFTqCX4gJm0JykCr4PM0SfoSQ+gJWLpCb</latexit>
x2
<latexit sha1_base64="lFhRrRrVTrFR31ebbMgRp5myJpc=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqcljfKgRCLMCeCwyDqghDcSOqBRxzhGDpkNFAHhwabsAoRFn1FRMFgEFdCmziTkOLsc5zDR9oGZXHKEImt0b9Kq6LLarTu17QctUynqDRMUgYRZi/snvXYM3tgr+zzz1ptp0bfS4tmaaDlRtl/sZz5+FdVp9nGybdqpGcbFew4XhXybjhM/xbyQN886/Qyu+lwe43dsjfyf8O67IluoDXf5bsUT1+P8CORF3oxalD0dzuGQS4WiW5HYqnNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFWE6QnA==</latexit>
x3
<latexit sha1_base64="0IPXcU0UIDvzZlYURjV2A/THv9U=">AAACiXichVG7SgNBFD2ur/hM1EawEYNiFWZFNKQKprGMj0TBBNndTHR0X+xOFmLwB6zsRK0ULMQP8ANs/AELP0EsFWwsvNksiAbjXWbnzJl77pyZq7um8CVjz11Kd09vX39sYHBoeGQ0nhgbL/pOzTN4wXBMx9vWNZ+bwuYFKaTJt12Pa5Zu8i39MNfc3wq45wvH3pR1l5ctbc8WVWFokqhiKag40t9NJFmKhTHdDtQIJBFF3knco4QKHBiowQKHDUnYhAafvh2oYHCJK6NBnEdIhPscxxgkbY2yOGVoxB7Sf49WOxFr07pZ0w/VBp1i0vBIOY1Z9sRu2Rt7ZHfshX3+WasR1mh6qdOst7Tc3Y2fTG58/KuyaJbY/1Z19CxRRTr0Ksi7GzLNWxgtfXB09raRWZ9tzLFr9kr+r9gze6Ab2MG7cbPG1y87+NHJC70YNUj93Y52UFxIqUuphbXFZHYlalUMU5jBPPVjGVmsIo8C1T/AKc5xoQwpqpJWMq1UpSvSTOBHKLkvAi+SPA==</latexit>
.
.
.
Latent
variables
Learnable variable
transformation
Representation learning
Classifier or
Regressor
<latexit sha1_base64="Ill3Als4zZd947f5Xm9sW99d0QA=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTomJcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkI/HxK1YPL0RSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVA6Qmg==</latexit>
x1
Architecture design when we go for representation learning
“Kitchen-sink”
(raw) inputs
Use heuristic assumptions, domain knowledge to constrain/regularize the model space.
/ 35
10
Designing relevant “inductive biases”
Prediction
Input
variables
Function
model
<latexit sha1_base64="QFtMwnKe2I12XGZu0bNJbdnDaaE=">AAAChnichVG7TgJBFD2sL8QHqI2JDZFgrMhAVIwV0caShzwSJGR3HXHDvrK7EJH4Aya2UlhpYmH8AD/Axh+w4BOMJSY2Fl6WTYwS8W5m58yZe+6cmSuZqmI7jHV9wtj4xOSUfzowMzs3HwwtLBZso2HJPC8bqmGVJNHmqqLzvKM4Ki+ZFhc1SeVFqb7X3y82uWUrhn7gtExe0cSarhwrsugQlTutJqqhCIsxN8LDIO6BCLxIG6FHHOIIBmQ0oIFDh0NYhQibvjLiYDCJq6BNnEVIcfc5zhEgbYOyOGWIxNbpX6NV2WN1Wvdr2q5aplNUGhYpw4iyF3bPeuyZPbBX9vlnrbZbo++lRbM00HKzGrxYzn38q9JodnDyrRrp2cExtl2vCnk3XaZ/C3mgb551ermdbLS9xm7ZG/m/YV32RDfQm+/yXYZnr0f4kcgLvRg1KP67HcOgkIjFt2KJzEYkteu1yo8VrGKd+pFECvtII0/1a7jEFTqCX4gJm0JykCr4PM0SfoSQ+gJWLpCb</latexit>
x2
<latexit sha1_base64="lFhRrRrVTrFR31ebbMgRp5myJpc=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqcljfKgRCLMCeCwyDqghDcSOqBRxzhGDpkNFAHhwabsAoRFn1FRMFgEFdCmziTkOLsc5zDR9oGZXHKEImt0b9Kq6LLarTu17QctUynqDRMUgYRZi/snvXYM3tgr+zzz1ptp0bfS4tmaaDlRtl/sZz5+FdVp9nGybdqpGcbFew4XhXybjhM/xbyQN886/Qyu+lwe43dsjfyf8O67IluoDXf5bsUT1+P8CORF3oxalD0dzuGQS4WiW5HYqnNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFWE6QnA==</latexit>
x3
<latexit sha1_base64="0IPXcU0UIDvzZlYURjV2A/THv9U=">AAACiXichVG7SgNBFD2ur/hM1EawEYNiFWZFNKQKprGMj0TBBNndTHR0X+xOFmLwB6zsRK0ULMQP8ANs/AELP0EsFWwsvNksiAbjXWbnzJl77pyZq7um8CVjz11Kd09vX39sYHBoeGQ0nhgbL/pOzTN4wXBMx9vWNZ+bwuYFKaTJt12Pa5Zu8i39MNfc3wq45wvH3pR1l5ctbc8WVWFokqhiKag40t9NJFmKhTHdDtQIJBFF3knco4QKHBiowQKHDUnYhAafvh2oYHCJK6NBnEdIhPscxxgkbY2yOGVoxB7Sf49WOxFr07pZ0w/VBp1i0vBIOY1Z9sRu2Rt7ZHfshX3+WasR1mh6qdOst7Tc3Y2fTG58/KuyaJbY/1Z19CxRRTr0Ksi7GzLNWxgtfXB09raRWZ9tzLFr9kr+r9gze6Ab2MG7cbPG1y87+NHJC70YNUj93Y52UFxIqUuphbXFZHYlalUMU5jBPPVjGVmsIo8C1T/AKc5xoQwpqpJWMq1UpSvSTOBHKLkvAi+SPA==</latexit>
.
.
.
Latent
variables
Learnable variable
transformation
Representation learning
Classifier or
Regressor
<latexit sha1_base64="Ill3Als4zZd947f5Xm9sW99d0QA=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTomJcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkI/HxK1YPL0RSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVA6Qmg==</latexit>
x1
Architecture design when we go for representation learning
“Kitchen-sink”
(raw) inputs
Use heuristic assumptions, domain knowledge to constrain/regularize the model space.
/ 35
10
Designing relevant “inductive biases”
Prediction
Input
variables
Function
model
<latexit sha1_base64="QFtMwnKe2I12XGZu0bNJbdnDaaE=">AAAChnichVG7TgJBFD2sL8QHqI2JDZFgrMhAVIwV0caShzwSJGR3HXHDvrK7EJH4Aya2UlhpYmH8AD/Axh+w4BOMJSY2Fl6WTYwS8W5m58yZe+6cmSuZqmI7jHV9wtj4xOSUfzowMzs3HwwtLBZso2HJPC8bqmGVJNHmqqLzvKM4Ki+ZFhc1SeVFqb7X3y82uWUrhn7gtExe0cSarhwrsugQlTutJqqhCIsxN8LDIO6BCLxIG6FHHOIIBmQ0oIFDh0NYhQibvjLiYDCJq6BNnEVIcfc5zhEgbYOyOGWIxNbpX6NV2WN1Wvdr2q5aplNUGhYpw4iyF3bPeuyZPbBX9vlnrbZbo++lRbM00HKzGrxYzn38q9JodnDyrRrp2cExtl2vCnk3XaZ/C3mgb551ermdbLS9xm7ZG/m/YV32RDfQm+/yXYZnr0f4kcgLvRg1KP67HcOgkIjFt2KJzEYkteu1yo8VrGKd+pFECvtII0/1a7jEFTqCX4gJm0JykCr4PM0SfoSQ+gJWLpCb</latexit>
x2
<latexit sha1_base64="lFhRrRrVTrFR31ebbMgRp5myJpc=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqcljfKgRCLMCeCwyDqghDcSOqBRxzhGDpkNFAHhwabsAoRFn1FRMFgEFdCmziTkOLsc5zDR9oGZXHKEImt0b9Kq6LLarTu17QctUynqDRMUgYRZi/snvXYM3tgr+zzz1ptp0bfS4tmaaDlRtl/sZz5+FdVp9nGybdqpGcbFew4XhXybjhM/xbyQN886/Qyu+lwe43dsjfyf8O67IluoDXf5bsUT1+P8CORF3oxalD0dzuGQS4WiW5HYqnNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFWE6QnA==</latexit>
x3
<latexit sha1_base64="0IPXcU0UIDvzZlYURjV2A/THv9U=">AAACiXichVG7SgNBFD2ur/hM1EawEYNiFWZFNKQKprGMj0TBBNndTHR0X+xOFmLwB6zsRK0ULMQP8ANs/AELP0EsFWwsvNksiAbjXWbnzJl77pyZq7um8CVjz11Kd09vX39sYHBoeGQ0nhgbL/pOzTN4wXBMx9vWNZ+bwuYFKaTJt12Pa5Zu8i39MNfc3wq45wvH3pR1l5ctbc8WVWFokqhiKag40t9NJFmKhTHdDtQIJBFF3knco4QKHBiowQKHDUnYhAafvh2oYHCJK6NBnEdIhPscxxgkbY2yOGVoxB7Sf49WOxFr07pZ0w/VBp1i0vBIOY1Z9sRu2Rt7ZHfshX3+WasR1mh6qdOst7Tc3Y2fTG58/KuyaJbY/1Z19CxRRTr0Ksi7GzLNWxgtfXB09raRWZ9tzLFr9kr+r9gze6Ab2MG7cbPG1y87+NHJC70YNUj93Y52UFxIqUuphbXFZHYlalUMU5jBPPVjGVmsIo8C1T/AKc5xoQwpqpJWMq1UpSvSTOBHKLkvAi+SPA==</latexit>
.
.
.
Latent
variables
Learnable variable
transformation
Representation learning
Classifier or
Regressor
<latexit sha1_base64="Ill3Als4zZd947f5Xm9sW99d0QA=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTomJcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkI/HxK1YPL0RSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVA6Qmg==</latexit>
x1
Architecture design when we go for representation learning
“Kitchen-sink”
(raw) inputs
Use heuristic assumptions, domain knowledge to constrain/regularize the model space.
/ 35
10
Designing relevant “inductive biases”
Prediction
Input
variables
Function
model
<latexit sha1_base64="QFtMwnKe2I12XGZu0bNJbdnDaaE=">AAAChnichVG7TgJBFD2sL8QHqI2JDZFgrMhAVIwV0caShzwSJGR3HXHDvrK7EJH4Aya2UlhpYmH8AD/Axh+w4BOMJSY2Fl6WTYwS8W5m58yZe+6cmSuZqmI7jHV9wtj4xOSUfzowMzs3HwwtLBZso2HJPC8bqmGVJNHmqqLzvKM4Ki+ZFhc1SeVFqb7X3y82uWUrhn7gtExe0cSarhwrsugQlTutJqqhCIsxN8LDIO6BCLxIG6FHHOIIBmQ0oIFDh0NYhQibvjLiYDCJq6BNnEVIcfc5zhEgbYOyOGWIxNbpX6NV2WN1Wvdr2q5aplNUGhYpw4iyF3bPeuyZPbBX9vlnrbZbo++lRbM00HKzGrxYzn38q9JodnDyrRrp2cExtl2vCnk3XaZ/C3mgb551ermdbLS9xm7ZG/m/YV32RDfQm+/yXYZnr0f4kcgLvRg1KP67HcOgkIjFt2KJzEYkteu1yo8VrGKd+pFECvtII0/1a7jEFTqCX4gJm0JykCr4PM0SfoSQ+gJWLpCb</latexit>
x2
<latexit sha1_base64="lFhRrRrVTrFR31ebbMgRp5myJpc=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqcljfKgRCLMCeCwyDqghDcSOqBRxzhGDpkNFAHhwabsAoRFn1FRMFgEFdCmziTkOLsc5zDR9oGZXHKEImt0b9Kq6LLarTu17QctUynqDRMUgYRZi/snvXYM3tgr+zzz1ptp0bfS4tmaaDlRtl/sZz5+FdVp9nGybdqpGcbFew4XhXybjhM/xbyQN886/Qyu+lwe43dsjfyf8O67IluoDXf5bsUT1+P8CORF3oxalD0dzuGQS4WiW5HYqnNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFWE6QnA==</latexit>
x3
<latexit sha1_base64="0IPXcU0UIDvzZlYURjV2A/THv9U=">AAACiXichVG7SgNBFD2ur/hM1EawEYNiFWZFNKQKprGMj0TBBNndTHR0X+xOFmLwB6zsRK0ULMQP8ANs/AELP0EsFWwsvNksiAbjXWbnzJl77pyZq7um8CVjz11Kd09vX39sYHBoeGQ0nhgbL/pOzTN4wXBMx9vWNZ+bwuYFKaTJt12Pa5Zu8i39MNfc3wq45wvH3pR1l5ctbc8WVWFokqhiKag40t9NJFmKhTHdDtQIJBFF3knco4QKHBiowQKHDUnYhAafvh2oYHCJK6NBnEdIhPscxxgkbY2yOGVoxB7Sf49WOxFr07pZ0w/VBp1i0vBIOY1Z9sRu2Rt7ZHfshX3+WasR1mh6qdOst7Tc3Y2fTG58/KuyaJbY/1Z19CxRRTr0Ksi7GzLNWxgtfXB09raRWZ9tzLFr9kr+r9gze6Ab2MG7cbPG1y87+NHJC70YNUj93Y52UFxIqUuphbXFZHYlalUMU5jBPPVjGVmsIo8C1T/AKc5xoQwpqpJWMq1UpSvSTOBHKLkvAi+SPA==</latexit>
.
.
.
Latent
variables
Learnable variable
transformation
Representation learning
Classifier or
Regressor
Linear
<latexit sha1_base64="Ill3Als4zZd947f5Xm9sW99d0QA=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTomJcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkI/HxK1YPL0RSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVA6Qmg==</latexit>
x1
Architecture design when we go for representation learning
“Kitchen-sink”
(raw) inputs
Again, simple model is enough
when we have good features.
Use heuristic assumptions, domain knowledge to constrain/regularize the model space.
/ 35
11
A toy example: approximate adders
Try to teach ML “arithmetic addition” only by examples.
We can also add both 5+6 and 6+5 to tell ML
by examples that addition is commutative.
adder
<latexit sha1_base64="tiacEhQgmTkomNeV5LHmrY6hmbk=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTXxhXRDcuecgjQULaOmJDaZu2EJH4AyZuZeFKExfGD/AD3PgDLvgE4xITNy68lCZGiXib6Zw5c8+dM3NlU1Nth7GOTxgZHRuf8E8GpqZnZoOhufmcbdQthWcVQzOsgizZXFN1nnVUR+MF0+JSTdZ4Xq7u9fbzDW7ZqqEfOE2Tl2pSRVePVUVyiMqclsVyKMJizI3wIBA9EIEXSSP0iEMcwYCCOmrg0OEQ1iDBpq8IEQwmcSW0iLMIqe4+xzkCpK1TFqcMidgq/Su0KnqsTuteTdtVK3SKRsMiZRhR9sLuWZc9swf2yj7/rNVya/S8NGmW+1puloMXi5mPf1U1mh2cfKuGenZwjG3Xq0reTZfp3ULp6xtn7W5mJx1trbBb9kb+b1iHPdEN9Ma7cpfi6eshfmTyQi9GDRJ/t2MQ5NZi4lZsPbURSex6rfJjCctYpX7EkcA+kshS/QoucYW24BdiwqYQ76cKPk+zgB8hJL4AVGCQmw==</latexit>
x1
<latexit sha1_base64="4Sn0JXQ8Nli9zYaRMiYfd4a9JHg=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqclmPlQIhFmBPBYRB1QQhuJPXAI45wDB0yGqiDQ4NNWIUIi74iomAwiCuhTZxJSHH2Oc7hI22DsjhliMTW6F+lVdFlNVr3a1qOWqZTVBomKYMIsxd2z3rsmT2wV/b5Z622U6PvpUWzNNByo+y/WM58/Kuq02zj5Fs10rONCnYcrwp5Nxymfwt5oG+edXqZ3XS4vcZu2Rv5v2Fd9kQ30Jrv8l2Kp69H+JHIC70YNSj6ux3DIBeLRLcjG6nNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFVoCQnA==</latexit>
x2
<latexit sha1_base64="SKy45aVsIvNNIc9wr1Q6tiMY1uI=">AAACinichVHLSsNAFL2Nr1qrrboR3BRLRRDKpIrPTVEXLvuwD6glJHFah+ZFkpbW4g+4cyXYlYIL8QP8ADf+gIt+gris4MaFN2lAtFhvmMyZM/fcOTNXMhRm2YR0fdzI6Nj4hH8yMBWcngmFZ+fyll43ZZqTdUU3i5JoUYVpNGczW6FFw6SiKim0INX2nf1Cg5oW07Uju2XQsipWNVZhsmgjVWgK/GpTSAjhKIkTNyKDgPdAFLxI6eFHOIYT0EGGOqhAQQMbsQIiWPiVgAcCBnJlaCNnImLuPoVzCKC2jlkUM0Rka/iv4qrksRqunZqWq5bxFAWHicoIxMgLuSc98kweyCv5/LNW263heGnhLPW11BBCFwvZj39VKs42nH6rhnq2oQJbrleG3g2XcW4h9/WNs6tedicTay+TW/KG/m9IlzzhDbTGu3yXppnOED8SesEXwwbxv9sxCPKJOL8RX0uvR5N7Xqv8sAhLsIL92IQkHEIKcm79S7iGDhfkEtw2t9tP5XyeZh5+BHfwBX8Zkfc=</latexit>
x1 + x2
<latexit sha1_base64="1coS+Mt9eL/r4jEoYDkZ5NYfoeE=">AAACiHichVHLSsNAFD3Gd3206kZwUywVQSg3KlYFQerGZVutCiqSxGkdTJOQpIVa/AE3LlVcKbgQP8APcOMPuPATxKWCGxfepgFRUW+YzJkz99w5M1d3TOn5RI8tSmtbe0dnV3ekp7evPxobGFzz7IpriIJhm7a7oWueMKUlCr70TbHhuEIr66ZY1/eXGvvrVeF60rZW/ZojtstayZJFaWg+UwV1YmpheieWoBQFEf8J1BAkEEbWjt1iC7uwYaCCMgQs+IxNaPD424QKgsPcNurMuYxksC9wiAhrK5wlOENjdp//JV5thqzF60ZNL1AbfIrJw2VlHEl6oGt6oXu6oSd6/7VWPajR8FLjWW9qhbMTPRpeeftXVebZx96n6k/PPoqYDbxK9u4ETOMWRlNfPTh5WZnPJ+tjdEnP7P+CHumOb2BVX42rnMif/+FHZy/8Ytwg9Xs7foK1yZQ6k5rKTScWM2GrujCCUYxzP9JYxDKyKHB9iWOc4kyJKKSklblmqtISaobwJZTMB48DkKc=</latexit>
1 + 3 = 4
<latexit sha1_base64="Jl1LVcl+mtrFJMn2AKjNmRINEM4=">AAACiHichVHLSsNAFD3GV62vqhvBjVgUQSi39VEVhFI3LtVaW1CRJE7rYJqEJC3U4g+4caniSsGF+AF+gBt/wIWfIC4ruHHhbRoQFfWGyZw5c8+dM3M125CuR/TUorS2tXd0hrrC3T29ff2RgcFN1yo7usjqlmE5eU11hSFNkfWkZ4i87Qi1pBkipx0sN/ZzFeG40jI3vKotdkpq0ZQFqaseU9nE1OxScjcSpRj5MfoTxAMQRRCrVuQO29iDBR1llCBgwmNsQIXL3xbiINjM7aDGnMNI+vsCRwiztsxZgjNUZg/4X+TVVsCavG7UdH21zqcYPBxWjmKcHumG6vRAt/RM77/Wqvk1Gl6qPGtNrbB3+4+HM2//qko8e9j/VP3p2UMB875Xyd5tn2ncQm/qK4en9czi+nhtgq7ohf1f0hPd8w3Myqt+vSbWL/7wo7EXfjFuUPx7O36CzUQsPhebXpuJptJBq0IYwRgmuR9JpLCCVWS5vsQJznCuhBVSkspCM1VpCTRD+BJK+gOby5Ct</latexit>
2 + 5 = 7
<latexit sha1_base64="NRtmyWkgZ5nlm1ETxVkZxPMO8Rc=">AAACiXichVHNLgNRGD0df6V+io3ERjREImnuUJREIrqxpNWSIM3MuGV0/jJz24TGC1jZCVYkFuIBPICNF7DwCGJZiY2Fb6aTCKK+yZ177rnf+e6591MdQ/cEY88RqaW1rb0j2tkV6+7p7Yv3DxQ8u+JqPK/Zhu1uqorHDd3ieaELg286LldM1eAbajnj729UuevptrUuDh2+Yyp7ll7SNUUQVZiZnF+UU8V4giVZECO/gRyCBMJYteP32MYubGiowASHBUHYgAKPvi3IYHCI20GNOJeQHuxzHKOLtBXK4pShEFum/x6ttkLWorVf0wvUGp1i0HBJOYIx9sRuWZ09sjv2wj7+rFULavheDmlWG1ruFPtOhnLv/6pMmgX2v1RNPQuUkA686uTdCRj/FlpDXz06q+cWsmO1cXbNXsn/FXtmD3QDq/qm3azx7GUTPyp5oRejBsk/2/EbFKaS8mxyei2VWFoOWxXFMEYxQf2YwxJWsIo81T/AKc5xIcUkWUpLC41UKRJqBvEtpMwnMx2Q7A==</latexit>
5 + 9 = 14
<latexit sha1_base64="wFMJb33bMt0hW8th8BMIqvUdNU8=">AAACinichVFLSwJRFD5OLzNLq03QRhIjCOSMRk8CqRYtfeQDTGRmutrgvJgZBZP+QLtWQa4KWkQ/oB/Qpj/Qwp8QLQ3atOg4DkRJdoY797vfPd+5371HNBTZshE7Hm5kdGx8wjvpm/JPzwSCs3M5S6+bEstKuqKbBVGwmCJrLGvLtsIKhskEVVRYXqzt9/bzDWZasq4d2U2DlVShqskVWRJsovLxVR53+Xg5GMYoOhEaBLwLwuBGUg8+wjGcgA4S1EEFBhrYhBUQwKKvCDwgGMSVoEWcSUh29hmcg4+0dcpilCEQW6N/lVZFl9Vo3atpOWqJTlFomKQMQQRf8B67+IwP+Iqff9ZqOTV6Xpo0i30tM8qBi4XMx78qlWYbTr9VQz3bUIFNx6tM3g2H6d1C6usbZ1fdzHY60lrGW3wj/zfYwSe6gdZ4l+5SLN0e4kckL/Ri1CD+dzsGQS4W5dej8dRaOLHntsoLi7AEK9SPDUjAISQh69S/hGtoc34uxm1xO/1UzuNq5uFHcAdfqESRGw==</latexit>
3 + 10 = 13
<latexit sha1_base64="FoI7hqDrtQtFjlgLPgriDwtw1iU=">AAACiXichVHLSsNAFD2Nr1pfVTeCm2JRBKFMfNQiCKIbl33YVlApSRx1NE1CMi1o8QdcuRN1peBC/AA/wI0/4MJPEJcV3LjwNg2IFvWGyZw5c8+dM3N1xxSeZOw5pLS1d3R2hbsjPb19/QPRwaGCZ1dcg+cN27TddV3zuCksnpdCmnzdcblW1k1e1A9WGvvFKnc9YVtr8tDhW2Vt1xI7wtAkUYW5qeSiqpaicZZgfsRagRqAOIJI29F7bGIbNgxUUAaHBUnYhAaPvg2oYHCI20KNOJeQ8Pc5jhEhbYWyOGVoxB7Qf5dWGwFr0bpR0/PVBp1i0nBJGcM4e2K3rM4e2R17YR+/1qr5NRpeDmnWm1rulAZORnLv/6rKNEvsfan+9Cyxg5TvVZB3x2catzCa+urRWT23kB2vTbBr9kr+r9gze6AbWNU34ybDs5d/+NHJC70YNUj92Y5WUJhOqMnETGY2vrQctCqMUYxhkvoxjyWsIo081d/HKc5xofQoqpJSFpqpSijQDONbKCufJlSQ5g==</latexit>
5 + 6 = 11
<latexit sha1_base64="n3Yy/9dJfdSB5yYDzUvImVPJv/g=">AAACiHichVHLSsNAFD3Gd3206kZwIxZFEMqNii8QRTcu1VotVClJnNahaRKStKDFH3DjUsWVggvxA/wAN/6Ai36CuFRw48LbNCAq1hsmc+bMPXfOzNUdU3o+UbVJaW5pbWvv6Ix0dff0RmN9/dueXXINkTJs03bTuuYJU1oi5UvfFGnHFVpRN8WOXlit7e+UhetJ29ryDx2xV9TylsxJQ/OZSqkT6uJSNhanBAUx/BuoIYgjjHU7do9d7MOGgRKKELDgMzahweMvAxUEh7k9VJhzGclgX+AYEdaWOEtwhsZsgf95XmVC1uJ1raYXqA0+xeThsnIYo/REt/RKj3RHz/TxZ61KUKPm5ZBnva4VTjZ6Mph8/1dV5NnHwZeqoWcfOcwFXiV7dwKmdgujri8fnb0mFzZHK2N0TS/s/4qq9MA3sMpvxs2G2Lxs4EdnL/xi3CD1Zzt+g+3JhDqTmNqYji+vhK3qwBBGMM79mMUy1rCOFNeXOMU5LpSIQsqsMl9PVZpCzQC+hbLyCaIfkLA=</latexit>
1 + 1 =?
<latexit sha1_base64="hRdVP+e2y4bjP1zOby3ZyPytH4w=">AAACi3icSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKRRhqa+gaatraxwsoG+gZgIECJsMQylBmgIKAfIHtDDEMKQz5DMkMpQy5DKkMeQwlQHYOQyJDMRBGMxgyGDAUAMViGaqBYkVAViZYPpWhloELqLcUqCoVqCIRKJoNJNOBvGioaB6QDzKzGKw7GWhLDhAXAXUqMKgaXDVYafDZ4ITBaoOXBn9wmlUNNgPklkognQTRm1oQz98lEfydoK5cIF3CkIHQhdfNJQxpDBZgt2YC3V4AFgH5Ihmiv6xq+udgqyDVajWDRQavge5faHDT4DDQB3llX5KXBqYGzcbjniSgW4AhBowgQ/TowGSEGekZmukZB5ooOzhBo4qDQZpBiUEDGB/mDA4MHgwBDKHgeJjEMJthDhMvkzGTFZMNRCkTI1SPMAMKYHIFACGukUw=</latexit>
1 + ( 1) =?
<latexit sha1_base64="iSckyhI7u8UoVI74y32YMTkgc7c=">AAACj3ichVHLSsNAFD3Gd3201Y3gRiwVQSiTVmwrqEU3umutVUFFkjitoWkSkmlBiz/gB+jChQ9wIX6AH+DGH3DhJ4jLCm5ceJsGREW9YTJnztxz58xc1TZ0VzD21Ca1d3R2dff0Bvr6BwaDofDQumtVHY0XNMuwnE1Vcbmhm7wgdGHwTdvhSkU1+IZaXmrub9S44+qWuSYObL5TUUqmXtQ1RRC1LcdT6fhUOpVIzi3shiIsxrwY+wlkH0TgR9YK3WEbe7CgoYoKOEwIwgYUuPRtQQaDTdwO6sQ5hHRvn+MIAdJWKYtThkJsmf4lWm35rEnrZk3XU2t0ikHDIeUYouyR3bAGe2C37Jm9/1qr7tVoejmgWW1pub0bPB7Jv/2rqtAssP+p+tOzQBEpz6tO3m2Pad5Ca+lrh6eN/OxqtD7BrtgL+b9kT+yebmDWXrXrHF89+8OPSl7oxahB8vd2/ATr8Zg8E0vkpiOZRb9VPRjFOCapH0lksIwsClTfxgnOcSGFpaQ0L2VaqVKbrxnGl5BWPgDiqZJ1</latexit>
12892 + 9837 =?
<latexit sha1_base64="3cCCvxejuSwhH3gAGZntIRJA/Ck=">AAAChHichVHNLgNRFP46/uunxUZi02iIhTRnWtWOhTRsLFsUCSIz42LS6cxkZtqExguwJRZWJBbiATyAjRew8AhiSWJj4cy0IhY4N/fec79zvnO/e4/mmIbnEz1FpLb2js6u7p5ob1//QCw+OLTq2TVXF2XdNm13XVM9YRqWKPuGb4p1xxVqVTPFmlZZCOJrdeF6hm2t+AeO2Kqqe5axa+iqz1ApvR1PUkrJZ7OZfIJSREpaybGjKIqckxMyI4El0bKiHb/DJnZgQ0cNVQhY8Nk3ocLjsQEZBIexLTQYc9kzwrjAEaLMrXGW4AyV0Qqve3zaaKEWn4OaXsjW+RaTp8vMBMbpkW7olR7olp7p49dajbBGoOWAd63JFc527Hhk+f1fVpV3H/vfrD81+9hFPtRqsHYnRIJX6E1+/fD8dXl2abwxQVf0wvov6Ynu+QVW/U2/Lomliz/0aKyFf4wb9NWFxO/Oajolz6QypelkYb7Vqm6MYgyT3I8cClhEEWWuL3CCU5xJndKUlJGyzVQp0uIM44dJc58RFJAW</latexit>
2
<latexit sha1_base64="dtxzgykiOKrKKToFg2z7LT9XiS0=">AAAChHichVHNLgNRFP6Mv/ovNhKbRkMspDnTqnYsRNhYaikSRGbGbU1MZyYz0ybVeAG2xMKKxEI8gAew8QIWfQSxJLGxcGZaEQucm3vvud8537nfvUdzTMPziRptUntHZ1d3pKe3r39gcCg6PLLh2RVXFwXdNm13S1M9YRqWKPiGb4otxxVqWTPFpna4HMQ3q8L1DNta92uO2C2rJcsoGrrqM5SjvWicEko2nU5lY5QgUpJKhh1FUeSMHJMZCSyOlq3a0XvsYB82dFRQhoAFn30TKjwe25BBcBjbRZ0xlz0jjAsco5e5Fc4SnKEyeshriU/bLdTic1DTC9k632LydJkZwyQ90S290iPd0TN9/FqrHtYItNR415pc4ewNnYytvf/LKvPu4+Cb9admH0VkQ60Ga3dCJHiF3uRXjy5e1+bzk/UpuqYX1n9FDXrgF1jVN/0mJ/KXf+jRWAv/GDfoqwux352NZEKeS6Rys/HFpVarIhjHBKa5HxksYgWrKHB9gVOc4VzqkmaklJRupkptLc4ofpi08AkM1JAU</latexit>
0
<latexit sha1_base64="P9nwiNSxLZKIKI1oebJys0uGCoU=">AAACiHichVHLLgRBFD3ae7wGG4nNxIRYTW63R09bydhYjscgQaS7FSp6ujvdPZMw8QM2logViYX4AB9g4wcsfIJYkthYuN0zIha4laq6de49t07VtXxHhhHRU5PS3NLa1t7Rmerq7untS/cPrIReJbBFyfYcL1izzFA40hWlSEaOWPMDYZYtR6xa+3NxfLUqglB67nJ04IvNsrnryh1pmxFDJU3TNWMrnaWckZ+amshnKEdkaIbOjmEYqq5mVEZiy6JhRS99hw1sw4ONCsoQcBGx78BEyGMdKgg+Y5uoMRawJ5O4wBFSzK1wluAMk9F9Xnf5tN5AXT7HNcOEbfMtDs+AmRmM0iPd0Cs90C0908evtWpJjVjLAe9WnSv8rb7joaX3f1ll3iPsfbP+1BxhB/lEq2TtfoLEr7Dr/Orh6evSzOJobYyu6IX1X9IT3fML3Oqbfb0gFi/+0GOxFv4xbtBXFzK/OytaTp3OTSxMZmcLjVZ1YBgjGOd+6JjFPIoocX2JE5zhXEkppOiKUU9VmhqcQfwwpfAJa7yREg==</latexit>
22729
train
test
(the case where a clear answer and underlying logic exist)
/ 35
12
A toy example: approximate adders
RF says 1 + 1 = 5.15 and 1 - 1 = 5.15 and 12892 + 9837 = 12.75
MLP better? But anyway it’s totally wrong.
2-10-5-1 Feed Forward NN (MLP, Multi-Layer Perceptron)
adder
<latexit sha1_base64="tiacEhQgmTkomNeV5LHmrY6hmbk=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTXxhXRDcuecgjQULaOmJDaZu2EJH4AyZuZeFKExfGD/AD3PgDLvgE4xITNy68lCZGiXib6Zw5c8+dM3NlU1Nth7GOTxgZHRuf8E8GpqZnZoOhufmcbdQthWcVQzOsgizZXFN1nnVUR+MF0+JSTdZ4Xq7u9fbzDW7ZqqEfOE2Tl2pSRVePVUVyiMqclsVyKMJizI3wIBA9EIEXSSP0iEMcwYCCOmrg0OEQ1iDBpq8IEQwmcSW0iLMIqe4+xzkCpK1TFqcMidgq/Su0KnqsTuteTdtVK3SKRsMiZRhR9sLuWZc9swf2yj7/rNVya/S8NGmW+1puloMXi5mPf1U1mh2cfKuGenZwjG3Xq0reTZfp3ULp6xtn7W5mJx1trbBb9kb+b1iHPdEN9Ma7cpfi6eshfmTyQi9GDRJ/t2MQ5NZi4lZsPbURSex6rfJjCctYpX7EkcA+kshS/QoucYW24BdiwqYQ76cKPk+zgB8hJL4AVGCQmw==</latexit>
x1
<latexit sha1_base64="4Sn0JXQ8Nli9zYaRMiYfd4a9JHg=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqclmPlQIhFmBPBYRB1QQhuJPXAI45wDB0yGqiDQ4NNWIUIi74iomAwiCuhTZxJSHH2Oc7hI22DsjhliMTW6F+lVdFlNVr3a1qOWqZTVBomKYMIsxd2z3rsmT2wV/b5Z622U6PvpUWzNNByo+y/WM58/Kuq02zj5Fs10rONCnYcrwp5Nxymfwt5oG+edXqZ3XS4vcZu2Rv5v2Fd9kQ30Jrv8l2Kp69H+JHIC70YNSj6ux3DIBeLRLcjG6nNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFVoCQnA==</latexit>
x2
<latexit sha1_base64="SKy45aVsIvNNIc9wr1Q6tiMY1uI=">AAACinichVHLSsNAFL2Nr1qrrboR3BRLRRDKpIrPTVEXLvuwD6glJHFah+ZFkpbW4g+4cyXYlYIL8QP8ADf+gIt+gris4MaFN2lAtFhvmMyZM/fcOTNXMhRm2YR0fdzI6Nj4hH8yMBWcngmFZ+fyll43ZZqTdUU3i5JoUYVpNGczW6FFw6SiKim0INX2nf1Cg5oW07Uju2XQsipWNVZhsmgjVWgK/GpTSAjhKIkTNyKDgPdAFLxI6eFHOIYT0EGGOqhAQQMbsQIiWPiVgAcCBnJlaCNnImLuPoVzCKC2jlkUM0Rka/iv4qrksRqunZqWq5bxFAWHicoIxMgLuSc98kweyCv5/LNW263heGnhLPW11BBCFwvZj39VKs42nH6rhnq2oQJbrleG3g2XcW4h9/WNs6tedicTay+TW/KG/m9IlzzhDbTGu3yXppnOED8SesEXwwbxv9sxCPKJOL8RX0uvR5N7Xqv8sAhLsIL92IQkHEIKcm79S7iGDhfkEtw2t9tP5XyeZh5+BHfwBX8Zkfc=</latexit>
x1 + x2
<latexit sha1_base64="1coS+Mt9eL/r4jEoYDkZ5NYfoeE=">AAACiHichVHLSsNAFD3Gd3206kZwUywVQSg3KlYFQerGZVutCiqSxGkdTJOQpIVa/AE3LlVcKbgQP8APcOMPuPATxKWCGxfepgFRUW+YzJkz99w5M1d3TOn5RI8tSmtbe0dnV3ekp7evPxobGFzz7IpriIJhm7a7oWueMKUlCr70TbHhuEIr66ZY1/eXGvvrVeF60rZW/ZojtstayZJFaWg+UwV1YmpheieWoBQFEf8J1BAkEEbWjt1iC7uwYaCCMgQs+IxNaPD424QKgsPcNurMuYxksC9wiAhrK5wlOENjdp//JV5thqzF60ZNL1AbfIrJw2VlHEl6oGt6oXu6oSd6/7VWPajR8FLjWW9qhbMTPRpeeftXVebZx96n6k/PPoqYDbxK9u4ETOMWRlNfPTh5WZnPJ+tjdEnP7P+CHumOb2BVX42rnMif/+FHZy/8Ytwg9Xs7foK1yZQ6k5rKTScWM2GrujCCUYxzP9JYxDKyKHB9iWOc4kyJKKSklblmqtISaobwJZTMB48DkKc=</latexit>
1 + 3 = 4
<latexit sha1_base64="Jl1LVcl+mtrFJMn2AKjNmRINEM4=">AAACiHichVHLSsNAFD3GV62vqhvBjVgUQSi39VEVhFI3LtVaW1CRJE7rYJqEJC3U4g+4caniSsGF+AF+gBt/wIWfIC4ruHHhbRoQFfWGyZw5c8+dM3M125CuR/TUorS2tXd0hrrC3T29ff2RgcFN1yo7usjqlmE5eU11hSFNkfWkZ4i87Qi1pBkipx0sN/ZzFeG40jI3vKotdkpq0ZQFqaseU9nE1OxScjcSpRj5MfoTxAMQRRCrVuQO29iDBR1llCBgwmNsQIXL3xbiINjM7aDGnMNI+vsCRwiztsxZgjNUZg/4X+TVVsCavG7UdH21zqcYPBxWjmKcHumG6vRAt/RM77/Wqvk1Gl6qPGtNrbB3+4+HM2//qko8e9j/VP3p2UMB875Xyd5tn2ncQm/qK4en9czi+nhtgq7ohf1f0hPd8w3Myqt+vSbWL/7wo7EXfjFuUPx7O36CzUQsPhebXpuJptJBq0IYwRgmuR9JpLCCVWS5vsQJznCuhBVSkspCM1VpCTRD+BJK+gOby5Ct</latexit>
2 + 5 = 7
<latexit sha1_base64="NRtmyWkgZ5nlm1ETxVkZxPMO8Rc=">AAACiXichVHNLgNRGD0df6V+io3ERjREImnuUJREIrqxpNWSIM3MuGV0/jJz24TGC1jZCVYkFuIBPICNF7DwCGJZiY2Fb6aTCKK+yZ177rnf+e6591MdQ/cEY88RqaW1rb0j2tkV6+7p7Yv3DxQ8u+JqPK/Zhu1uqorHDd3ieaELg286LldM1eAbajnj729UuevptrUuDh2+Yyp7ll7SNUUQVZiZnF+UU8V4giVZECO/gRyCBMJYteP32MYubGiowASHBUHYgAKPvi3IYHCI20GNOJeQHuxzHKOLtBXK4pShEFum/x6ttkLWorVf0wvUGp1i0HBJOYIx9sRuWZ09sjv2wj7+rFULavheDmlWG1ruFPtOhnLv/6pMmgX2v1RNPQuUkA686uTdCRj/FlpDXz06q+cWsmO1cXbNXsn/FXtmD3QDq/qm3azx7GUTPyp5oRejBsk/2/EbFKaS8mxyei2VWFoOWxXFMEYxQf2YwxJWsIo81T/AKc5xIcUkWUpLC41UKRJqBvEtpMwnMx2Q7A==</latexit>
5 + 9 = 14
<latexit sha1_base64="wFMJb33bMt0hW8th8BMIqvUdNU8=">AAACinichVFLSwJRFD5OLzNLq03QRhIjCOSMRk8CqRYtfeQDTGRmutrgvJgZBZP+QLtWQa4KWkQ/oB/Qpj/Qwp8QLQ3atOg4DkRJdoY797vfPd+5371HNBTZshE7Hm5kdGx8wjvpm/JPzwSCs3M5S6+bEstKuqKbBVGwmCJrLGvLtsIKhskEVVRYXqzt9/bzDWZasq4d2U2DlVShqskVWRJsovLxVR53+Xg5GMYoOhEaBLwLwuBGUg8+wjGcgA4S1EEFBhrYhBUQwKKvCDwgGMSVoEWcSUh29hmcg4+0dcpilCEQW6N/lVZFl9Vo3atpOWqJTlFomKQMQQRf8B67+IwP+Iqff9ZqOTV6Xpo0i30tM8qBi4XMx78qlWYbTr9VQz3bUIFNx6tM3g2H6d1C6usbZ1fdzHY60lrGW3wj/zfYwSe6gdZ4l+5SLN0e4kckL/Ri1CD+dzsGQS4W5dej8dRaOLHntsoLi7AEK9SPDUjAISQh69S/hGtoc34uxm1xO/1UzuNq5uFHcAdfqESRGw==</latexit>
3 + 10 = 13
<latexit sha1_base64="FoI7hqDrtQtFjlgLPgriDwtw1iU=">AAACiXichVHLSsNAFD2Nr1pfVTeCm2JRBKFMfNQiCKIbl33YVlApSRx1NE1CMi1o8QdcuRN1peBC/AA/wI0/4MJPEJcV3LjwNg2IFvWGyZw5c8+dM3N1xxSeZOw5pLS1d3R2hbsjPb19/QPRwaGCZ1dcg+cN27TddV3zuCksnpdCmnzdcblW1k1e1A9WGvvFKnc9YVtr8tDhW2Vt1xI7wtAkUYW5qeSiqpaicZZgfsRagRqAOIJI29F7bGIbNgxUUAaHBUnYhAaPvg2oYHCI20KNOJeQ8Pc5jhEhbYWyOGVoxB7Qf5dWGwFr0bpR0/PVBp1i0nBJGcM4e2K3rM4e2R17YR+/1qr5NRpeDmnWm1rulAZORnLv/6rKNEvsfan+9Cyxg5TvVZB3x2catzCa+urRWT23kB2vTbBr9kr+r9gze6AbWNU34ybDs5d/+NHJC70YNUj92Y5WUJhOqMnETGY2vrQctCqMUYxhkvoxjyWsIo081d/HKc5xofQoqpJSFpqpSijQDONbKCufJlSQ5g==</latexit>
5 + 6 = 11
<latexit sha1_base64="n3Yy/9dJfdSB5yYDzUvImVPJv/g=">AAACiHichVHLSsNAFD3Gd3206kZwIxZFEMqNii8QRTcu1VotVClJnNahaRKStKDFH3DjUsWVggvxA/wAN/6Ai36CuFRw48LbNCAq1hsmc+bMPXfOzNUdU3o+UbVJaW5pbWvv6Ix0dff0RmN9/dueXXINkTJs03bTuuYJU1oi5UvfFGnHFVpRN8WOXlit7e+UhetJ29ryDx2xV9TylsxJQ/OZSqkT6uJSNhanBAUx/BuoIYgjjHU7do9d7MOGgRKKELDgMzahweMvAxUEh7k9VJhzGclgX+AYEdaWOEtwhsZsgf95XmVC1uJ1raYXqA0+xeThsnIYo/REt/RKj3RHz/TxZ61KUKPm5ZBnva4VTjZ6Mph8/1dV5NnHwZeqoWcfOcwFXiV7dwKmdgujri8fnb0mFzZHK2N0TS/s/4qq9MA3sMpvxs2G2Lxs4EdnL/xi3CD1Zzt+g+3JhDqTmNqYji+vhK3qwBBGMM79mMUy1rCOFNeXOMU5LpSIQsqsMl9PVZpCzQC+hbLyCaIfkLA=</latexit>
1 + 1 =?
<latexit sha1_base64="hRdVP+e2y4bjP1zOby3ZyPytH4w=">AAACi3icSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKRRhqa+gaatraxwsoG+gZgIECJsMQylBmgIKAfIHtDDEMKQz5DMkMpQy5DKkMeQwlQHYOQyJDMRBGMxgyGDAUAMViGaqBYkVAViZYPpWhloELqLcUqCoVqCIRKJoNJNOBvGioaB6QDzKzGKw7GWhLDhAXAXUqMKgaXDVYafDZ4ITBaoOXBn9wmlUNNgPklkognQTRm1oQz98lEfydoK5cIF3CkIHQhdfNJQxpDBZgt2YC3V4AFgH5Ihmiv6xq+udgqyDVajWDRQavge5faHDT4DDQB3llX5KXBqYGzcbjniSgW4AhBowgQ/TowGSEGekZmukZB5ooOzhBo4qDQZpBiUEDGB/mDA4MHgwBDKHgeJjEMJthDhMvkzGTFZMNRCkTI1SPMAMKYHIFACGukUw=</latexit>
1 + ( 1) =?
<latexit sha1_base64="iSckyhI7u8UoVI74y32YMTkgc7c=">AAACj3ichVHLSsNAFD3Gd3201Y3gRiwVQSiTVmwrqEU3umutVUFFkjitoWkSkmlBiz/gB+jChQ9wIX6AH+DGH3DhJ4jLCm5ceJsGREW9YTJnztxz58xc1TZ0VzD21Ca1d3R2dff0Bvr6BwaDofDQumtVHY0XNMuwnE1Vcbmhm7wgdGHwTdvhSkU1+IZaXmrub9S44+qWuSYObL5TUUqmXtQ1RRC1LcdT6fhUOpVIzi3shiIsxrwY+wlkH0TgR9YK3WEbe7CgoYoKOEwIwgYUuPRtQQaDTdwO6sQ5hHRvn+MIAdJWKYtThkJsmf4lWm35rEnrZk3XU2t0ikHDIeUYouyR3bAGe2C37Jm9/1qr7tVoejmgWW1pub0bPB7Jv/2rqtAssP+p+tOzQBEpz6tO3m2Pad5Ca+lrh6eN/OxqtD7BrtgL+b9kT+yebmDWXrXrHF89+8OPSl7oxahB8vd2/ATr8Zg8E0vkpiOZRb9VPRjFOCapH0lksIwsClTfxgnOcSGFpaQ0L2VaqVKbrxnGl5BWPgDiqZJ1</latexit>
12892 + 9837 =?
<latexit sha1_base64="3cCCvxejuSwhH3gAGZntIRJA/Ck=">AAAChHichVHNLgNRFP46/uunxUZi02iIhTRnWtWOhTRsLFsUCSIz42LS6cxkZtqExguwJRZWJBbiATyAjRew8AhiSWJj4cy0IhY4N/fec79zvnO/e4/mmIbnEz1FpLb2js6u7p5ob1//QCw+OLTq2TVXF2XdNm13XVM9YRqWKPuGb4p1xxVqVTPFmlZZCOJrdeF6hm2t+AeO2Kqqe5axa+iqz1ApvR1PUkrJZ7OZfIJSREpaybGjKIqckxMyI4El0bKiHb/DJnZgQ0cNVQhY8Nk3ocLjsQEZBIexLTQYc9kzwrjAEaLMrXGW4AyV0Qqve3zaaKEWn4OaXsjW+RaTp8vMBMbpkW7olR7olp7p49dajbBGoOWAd63JFc527Hhk+f1fVpV3H/vfrD81+9hFPtRqsHYnRIJX6E1+/fD8dXl2abwxQVf0wvov6Ynu+QVW/U2/Lomliz/0aKyFf4wb9NWFxO/Oajolz6QypelkYb7Vqm6MYgyT3I8cClhEEWWuL3CCU5xJndKUlJGyzVQp0uIM44dJc58RFJAW</latexit>
2
<latexit sha1_base64="dtxzgykiOKrKKToFg2z7LT9XiS0=">AAAChHichVHNLgNRFP6Mv/ovNhKbRkMspDnTqnYsRNhYaikSRGbGbU1MZyYz0ybVeAG2xMKKxEI8gAew8QIWfQSxJLGxcGZaEQucm3vvud8537nfvUdzTMPziRptUntHZ1d3pKe3r39gcCg6PLLh2RVXFwXdNm13S1M9YRqWKPiGb4otxxVqWTPFpna4HMQ3q8L1DNta92uO2C2rJcsoGrrqM5SjvWicEko2nU5lY5QgUpJKhh1FUeSMHJMZCSyOlq3a0XvsYB82dFRQhoAFn30TKjwe25BBcBjbRZ0xlz0jjAsco5e5Fc4SnKEyeshriU/bLdTic1DTC9k632LydJkZwyQ90S290iPd0TN9/FqrHtYItNR415pc4ewNnYytvf/LKvPu4+Cb9admH0VkQ60Ga3dCJHiF3uRXjy5e1+bzk/UpuqYX1n9FDXrgF1jVN/0mJ/KXf+jRWAv/GDfoqwux352NZEKeS6Rys/HFpVarIhjHBKa5HxksYgWrKHB9gVOc4VzqkmaklJRupkptLc4ofpi08AkM1JAU</latexit>
0
<latexit sha1_base64="P9nwiNSxLZKIKI1oebJys0uGCoU=">AAACiHichVHLLgRBFD3ae7wGG4nNxIRYTW63R09bydhYjscgQaS7FSp6ujvdPZMw8QM2logViYX4AB9g4wcsfIJYkthYuN0zIha4laq6de49t07VtXxHhhHRU5PS3NLa1t7Rmerq7untS/cPrIReJbBFyfYcL1izzFA40hWlSEaOWPMDYZYtR6xa+3NxfLUqglB67nJ04IvNsrnryh1pmxFDJU3TNWMrnaWckZ+amshnKEdkaIbOjmEYqq5mVEZiy6JhRS99hw1sw4ONCsoQcBGx78BEyGMdKgg+Y5uoMRawJ5O4wBFSzK1wluAMk9F9Xnf5tN5AXT7HNcOEbfMtDs+AmRmM0iPd0Cs90C0908evtWpJjVjLAe9WnSv8rb7joaX3f1ll3iPsfbP+1BxhB/lEq2TtfoLEr7Dr/Orh6evSzOJobYyu6IX1X9IT3fML3Oqbfb0gFi/+0GOxFv4xbtBXFzK/OytaTp3OTSxMZmcLjVZ1YBgjGOd+6JjFPIoocX2JE5zhXEkppOiKUU9VmhqcQfwwpfAJa7yREg==</latexit>
22729
train
test
(the case where a clear answer and inductive logic exist)
Try to teach ML “arithmetic addition” only by examples.
/ 35
12
A toy example: approximate adders
RF says 1 + 1 = 5.15 and 1 - 1 = 5.15 and 12892 + 9837 = 12.75
MLP better? But anyway it’s totally wrong.
2-10-5-1 Feed Forward NN (MLP, Multi-Layer Perceptron)
adder
<latexit sha1_base64="tiacEhQgmTkomNeV5LHmrY6hmbk=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTXxhXRDcuecgjQULaOmJDaZu2EJH4AyZuZeFKExfGD/AD3PgDLvgE4xITNy68lCZGiXib6Zw5c8+dM3NlU1Nth7GOTxgZHRuf8E8GpqZnZoOhufmcbdQthWcVQzOsgizZXFN1nnVUR+MF0+JSTdZ4Xq7u9fbzDW7ZqqEfOE2Tl2pSRVePVUVyiMqclsVyKMJizI3wIBA9EIEXSSP0iEMcwYCCOmrg0OEQ1iDBpq8IEQwmcSW0iLMIqe4+xzkCpK1TFqcMidgq/Su0KnqsTuteTdtVK3SKRsMiZRhR9sLuWZc9swf2yj7/rNVya/S8NGmW+1puloMXi5mPf1U1mh2cfKuGenZwjG3Xq0reTZfp3ULp6xtn7W5mJx1trbBb9kb+b1iHPdEN9Ma7cpfi6eshfmTyQi9GDRJ/t2MQ5NZi4lZsPbURSex6rfJjCctYpX7EkcA+kshS/QoucYW24BdiwqYQ76cKPk+zgB8hJL4AVGCQmw==</latexit>
x1
<latexit sha1_base64="4Sn0JXQ8Nli9zYaRMiYfd4a9JHg=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqclmPlQIhFmBPBYRB1QQhuJPXAI45wDB0yGqiDQ4NNWIUIi74iomAwiCuhTZxJSHH2Oc7hI22DsjhliMTW6F+lVdFlNVr3a1qOWqZTVBomKYMIsxd2z3rsmT2wV/b5Z622U6PvpUWzNNByo+y/WM58/Kuq02zj5Fs10rONCnYcrwp5Nxymfwt5oG+edXqZ3XS4vcZu2Rv5v2Fd9kQ30Jrv8l2Kp69H+JHIC70YNSj6ux3DIBeLRLcjG6nNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFVoCQnA==</latexit>
x2
<latexit sha1_base64="SKy45aVsIvNNIc9wr1Q6tiMY1uI=">AAACinichVHLSsNAFL2Nr1qrrboR3BRLRRDKpIrPTVEXLvuwD6glJHFah+ZFkpbW4g+4cyXYlYIL8QP8ADf+gIt+gris4MaFN2lAtFhvmMyZM/fcOTNXMhRm2YR0fdzI6Nj4hH8yMBWcngmFZ+fyll43ZZqTdUU3i5JoUYVpNGczW6FFw6SiKim0INX2nf1Cg5oW07Uju2XQsipWNVZhsmgjVWgK/GpTSAjhKIkTNyKDgPdAFLxI6eFHOIYT0EGGOqhAQQMbsQIiWPiVgAcCBnJlaCNnImLuPoVzCKC2jlkUM0Rka/iv4qrksRqunZqWq5bxFAWHicoIxMgLuSc98kweyCv5/LNW263heGnhLPW11BBCFwvZj39VKs42nH6rhnq2oQJbrleG3g2XcW4h9/WNs6tedicTay+TW/KG/m9IlzzhDbTGu3yXppnOED8SesEXwwbxv9sxCPKJOL8RX0uvR5N7Xqv8sAhLsIL92IQkHEIKcm79S7iGDhfkEtw2t9tP5XyeZh5+BHfwBX8Zkfc=</latexit>
x1 + x2
<latexit sha1_base64="1coS+Mt9eL/r4jEoYDkZ5NYfoeE=">AAACiHichVHLSsNAFD3Gd3206kZwUywVQSg3KlYFQerGZVutCiqSxGkdTJOQpIVa/AE3LlVcKbgQP8APcOMPuPATxKWCGxfepgFRUW+YzJkz99w5M1d3TOn5RI8tSmtbe0dnV3ekp7evPxobGFzz7IpriIJhm7a7oWueMKUlCr70TbHhuEIr66ZY1/eXGvvrVeF60rZW/ZojtstayZJFaWg+UwV1YmpheieWoBQFEf8J1BAkEEbWjt1iC7uwYaCCMgQs+IxNaPD424QKgsPcNurMuYxksC9wiAhrK5wlOENjdp//JV5thqzF60ZNL1AbfIrJw2VlHEl6oGt6oXu6oSd6/7VWPajR8FLjWW9qhbMTPRpeeftXVebZx96n6k/PPoqYDbxK9u4ETOMWRlNfPTh5WZnPJ+tjdEnP7P+CHumOb2BVX42rnMif/+FHZy/8Ytwg9Xs7foK1yZQ6k5rKTScWM2GrujCCUYxzP9JYxDKyKHB9iWOc4kyJKKSklblmqtISaobwJZTMB48DkKc=</latexit>
1 + 3 = 4
<latexit sha1_base64="Jl1LVcl+mtrFJMn2AKjNmRINEM4=">AAACiHichVHLSsNAFD3GV62vqhvBjVgUQSi39VEVhFI3LtVaW1CRJE7rYJqEJC3U4g+4caniSsGF+AF+gBt/wIWfIC4ruHHhbRoQFfWGyZw5c8+dM3M125CuR/TUorS2tXd0hrrC3T29ff2RgcFN1yo7usjqlmE5eU11hSFNkfWkZ4i87Qi1pBkipx0sN/ZzFeG40jI3vKotdkpq0ZQFqaseU9nE1OxScjcSpRj5MfoTxAMQRRCrVuQO29iDBR1llCBgwmNsQIXL3xbiINjM7aDGnMNI+vsCRwiztsxZgjNUZg/4X+TVVsCavG7UdH21zqcYPBxWjmKcHumG6vRAt/RM77/Wqvk1Gl6qPGtNrbB3+4+HM2//qko8e9j/VP3p2UMB875Xyd5tn2ncQm/qK4en9czi+nhtgq7ohf1f0hPd8w3Myqt+vSbWL/7wo7EXfjFuUPx7O36CzUQsPhebXpuJptJBq0IYwRgmuR9JpLCCVWS5vsQJznCuhBVSkspCM1VpCTRD+BJK+gOby5Ct</latexit>
2 + 5 = 7
<latexit sha1_base64="NRtmyWkgZ5nlm1ETxVkZxPMO8Rc=">AAACiXichVHNLgNRGD0df6V+io3ERjREImnuUJREIrqxpNWSIM3MuGV0/jJz24TGC1jZCVYkFuIBPICNF7DwCGJZiY2Fb6aTCKK+yZ177rnf+e6591MdQ/cEY88RqaW1rb0j2tkV6+7p7Yv3DxQ8u+JqPK/Zhu1uqorHDd3ieaELg286LldM1eAbajnj729UuevptrUuDh2+Yyp7ll7SNUUQVZiZnF+UU8V4giVZECO/gRyCBMJYteP32MYubGiowASHBUHYgAKPvi3IYHCI20GNOJeQHuxzHKOLtBXK4pShEFum/x6ttkLWorVf0wvUGp1i0HBJOYIx9sRuWZ09sjv2wj7+rFULavheDmlWG1ruFPtOhnLv/6pMmgX2v1RNPQuUkA686uTdCRj/FlpDXz06q+cWsmO1cXbNXsn/FXtmD3QDq/qm3azx7GUTPyp5oRejBsk/2/EbFKaS8mxyei2VWFoOWxXFMEYxQf2YwxJWsIo81T/AKc5xIcUkWUpLC41UKRJqBvEtpMwnMx2Q7A==</latexit>
5 + 9 = 14
<latexit sha1_base64="wFMJb33bMt0hW8th8BMIqvUdNU8=">AAACinichVFLSwJRFD5OLzNLq03QRhIjCOSMRk8CqRYtfeQDTGRmutrgvJgZBZP+QLtWQa4KWkQ/oB/Qpj/Qwp8QLQ3atOg4DkRJdoY797vfPd+5371HNBTZshE7Hm5kdGx8wjvpm/JPzwSCs3M5S6+bEstKuqKbBVGwmCJrLGvLtsIKhskEVVRYXqzt9/bzDWZasq4d2U2DlVShqskVWRJsovLxVR53+Xg5GMYoOhEaBLwLwuBGUg8+wjGcgA4S1EEFBhrYhBUQwKKvCDwgGMSVoEWcSUh29hmcg4+0dcpilCEQW6N/lVZFl9Vo3atpOWqJTlFomKQMQQRf8B67+IwP+Iqff9ZqOTV6Xpo0i30tM8qBi4XMx78qlWYbTr9VQz3bUIFNx6tM3g2H6d1C6usbZ1fdzHY60lrGW3wj/zfYwSe6gdZ4l+5SLN0e4kckL/Ri1CD+dzsGQS4W5dej8dRaOLHntsoLi7AEK9SPDUjAISQh69S/hGtoc34uxm1xO/1UzuNq5uFHcAdfqESRGw==</latexit>
3 + 10 = 13
<latexit sha1_base64="FoI7hqDrtQtFjlgLPgriDwtw1iU=">AAACiXichVHLSsNAFD2Nr1pfVTeCm2JRBKFMfNQiCKIbl33YVlApSRx1NE1CMi1o8QdcuRN1peBC/AA/wI0/4MJPEJcV3LjwNg2IFvWGyZw5c8+dM3N1xxSeZOw5pLS1d3R2hbsjPb19/QPRwaGCZ1dcg+cN27TddV3zuCksnpdCmnzdcblW1k1e1A9WGvvFKnc9YVtr8tDhW2Vt1xI7wtAkUYW5qeSiqpaicZZgfsRagRqAOIJI29F7bGIbNgxUUAaHBUnYhAaPvg2oYHCI20KNOJeQ8Pc5jhEhbYWyOGVoxB7Qf5dWGwFr0bpR0/PVBp1i0nBJGcM4e2K3rM4e2R17YR+/1qr5NRpeDmnWm1rulAZORnLv/6rKNEvsfan+9Cyxg5TvVZB3x2catzCa+urRWT23kB2vTbBr9kr+r9gze6AbWNU34ybDs5d/+NHJC70YNUj92Y5WUJhOqMnETGY2vrQctCqMUYxhkvoxjyWsIo081d/HKc5xofQoqpJSFpqpSijQDONbKCufJlSQ5g==</latexit>
5 + 6 = 11
<latexit sha1_base64="n3Yy/9dJfdSB5yYDzUvImVPJv/g=">AAACiHichVHLSsNAFD3Gd3206kZwIxZFEMqNii8QRTcu1VotVClJnNahaRKStKDFH3DjUsWVggvxA/wAN/6Ai36CuFRw48LbNCAq1hsmc+bMPXfOzNUdU3o+UbVJaW5pbWvv6Ix0dff0RmN9/dueXXINkTJs03bTuuYJU1oi5UvfFGnHFVpRN8WOXlit7e+UhetJ29ryDx2xV9TylsxJQ/OZSqkT6uJSNhanBAUx/BuoIYgjjHU7do9d7MOGgRKKELDgMzahweMvAxUEh7k9VJhzGclgX+AYEdaWOEtwhsZsgf95XmVC1uJ1raYXqA0+xeThsnIYo/REt/RKj3RHz/TxZ61KUKPm5ZBnva4VTjZ6Mph8/1dV5NnHwZeqoWcfOcwFXiV7dwKmdgujri8fnb0mFzZHK2N0TS/s/4qq9MA3sMpvxs2G2Lxs4EdnL/xi3CD1Zzt+g+3JhDqTmNqYji+vhK3qwBBGMM79mMUy1rCOFNeXOMU5LpSIQsqsMl9PVZpCzQC+hbLyCaIfkLA=</latexit>
1 + 1 =?
<latexit sha1_base64="hRdVP+e2y4bjP1zOby3ZyPytH4w=">AAACi3icSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKRRhqa+gaatraxwsoG+gZgIECJsMQylBmgIKAfIHtDDEMKQz5DMkMpQy5DKkMeQwlQHYOQyJDMRBGMxgyGDAUAMViGaqBYkVAViZYPpWhloELqLcUqCoVqCIRKJoNJNOBvGioaB6QDzKzGKw7GWhLDhAXAXUqMKgaXDVYafDZ4ITBaoOXBn9wmlUNNgPklkognQTRm1oQz98lEfydoK5cIF3CkIHQhdfNJQxpDBZgt2YC3V4AFgH5Ihmiv6xq+udgqyDVajWDRQavge5faHDT4DDQB3llX5KXBqYGzcbjniSgW4AhBowgQ/TowGSEGekZmukZB5ooOzhBo4qDQZpBiUEDGB/mDA4MHgwBDKHgeJjEMJthDhMvkzGTFZMNRCkTI1SPMAMKYHIFACGukUw=</latexit>
1 + ( 1) =?
<latexit sha1_base64="iSckyhI7u8UoVI74y32YMTkgc7c=">AAACj3ichVHLSsNAFD3Gd3201Y3gRiwVQSiTVmwrqEU3umutVUFFkjitoWkSkmlBiz/gB+jChQ9wIX6AH+DGH3DhJ4jLCm5ceJsGREW9YTJnztxz58xc1TZ0VzD21Ca1d3R2dff0Bvr6BwaDofDQumtVHY0XNMuwnE1Vcbmhm7wgdGHwTdvhSkU1+IZaXmrub9S44+qWuSYObL5TUUqmXtQ1RRC1LcdT6fhUOpVIzi3shiIsxrwY+wlkH0TgR9YK3WEbe7CgoYoKOEwIwgYUuPRtQQaDTdwO6sQ5hHRvn+MIAdJWKYtThkJsmf4lWm35rEnrZk3XU2t0ikHDIeUYouyR3bAGe2C37Jm9/1qr7tVoejmgWW1pub0bPB7Jv/2rqtAssP+p+tOzQBEpz6tO3m2Pad5Ca+lrh6eN/OxqtD7BrtgL+b9kT+yebmDWXrXrHF89+8OPSl7oxahB8vd2/ATr8Zg8E0vkpiOZRb9VPRjFOCapH0lksIwsClTfxgnOcSGFpaQ0L2VaqVKbrxnGl5BWPgDiqZJ1</latexit>
12892 + 9837 =?
<latexit sha1_base64="3cCCvxejuSwhH3gAGZntIRJA/Ck=">AAAChHichVHNLgNRFP46/uunxUZi02iIhTRnWtWOhTRsLFsUCSIz42LS6cxkZtqExguwJRZWJBbiATyAjRew8AhiSWJj4cy0IhY4N/fec79zvnO/e4/mmIbnEz1FpLb2js6u7p5ob1//QCw+OLTq2TVXF2XdNm13XVM9YRqWKPuGb4p1xxVqVTPFmlZZCOJrdeF6hm2t+AeO2Kqqe5axa+iqz1ApvR1PUkrJZ7OZfIJSREpaybGjKIqckxMyI4El0bKiHb/DJnZgQ0cNVQhY8Nk3ocLjsQEZBIexLTQYc9kzwrjAEaLMrXGW4AyV0Qqve3zaaKEWn4OaXsjW+RaTp8vMBMbpkW7olR7olp7p49dajbBGoOWAd63JFc527Hhk+f1fVpV3H/vfrD81+9hFPtRqsHYnRIJX6E1+/fD8dXl2abwxQVf0wvov6Ynu+QVW/U2/Lomliz/0aKyFf4wb9NWFxO/Oajolz6QypelkYb7Vqm6MYgyT3I8cClhEEWWuL3CCU5xJndKUlJGyzVQp0uIM44dJc58RFJAW</latexit>
2
<latexit sha1_base64="dtxzgykiOKrKKToFg2z7LT9XiS0=">AAAChHichVHNLgNRFP6Mv/ovNhKbRkMspDnTqnYsRNhYaikSRGbGbU1MZyYz0ybVeAG2xMKKxEI8gAew8QIWfQSxJLGxcGZaEQucm3vvud8537nfvUdzTMPziRptUntHZ1d3pKe3r39gcCg6PLLh2RVXFwXdNm13S1M9YRqWKPiGb4otxxVqWTPFpna4HMQ3q8L1DNta92uO2C2rJcsoGrrqM5SjvWicEko2nU5lY5QgUpJKhh1FUeSMHJMZCSyOlq3a0XvsYB82dFRQhoAFn30TKjwe25BBcBjbRZ0xlz0jjAsco5e5Fc4SnKEyeshriU/bLdTic1DTC9k632LydJkZwyQ90S290iPd0TN9/FqrHtYItNR415pc4ewNnYytvf/LKvPu4+Cb9admH0VkQ60Ga3dCJHiF3uRXjy5e1+bzk/UpuqYX1n9FDXrgF1jVN/0mJ/KXf+jRWAv/GDfoqwux352NZEKeS6Rys/HFpVarIhjHBKa5HxksYgWrKHB9gVOc4VzqkmaklJRupkptLc4ofpi08AkM1JAU</latexit>
0
<latexit sha1_base64="P9nwiNSxLZKIKI1oebJys0uGCoU=">AAACiHichVHLLgRBFD3ae7wGG4nNxIRYTW63R09bydhYjscgQaS7FSp6ujvdPZMw8QM2logViYX4AB9g4wcsfIJYkthYuN0zIha4laq6de49t07VtXxHhhHRU5PS3NLa1t7Rmerq7untS/cPrIReJbBFyfYcL1izzFA40hWlSEaOWPMDYZYtR6xa+3NxfLUqglB67nJ04IvNsrnryh1pmxFDJU3TNWMrnaWckZ+amshnKEdkaIbOjmEYqq5mVEZiy6JhRS99hw1sw4ONCsoQcBGx78BEyGMdKgg+Y5uoMRawJ5O4wBFSzK1wluAMk9F9Xnf5tN5AXT7HNcOEbfMtDs+AmRmM0iPd0Cs90C0908evtWpJjVjLAe9WnSv8rb7joaX3f1ll3iPsfbP+1BxhB/lEq2TtfoLEr7Dr/Orh6evSzOJobYyu6IX1X9IT3fML3Oqbfb0gFi/+0GOxFv4xbtBXFzK/OytaTp3OTSxMZmcLjVZ1YBgjGOd+6JjFPIoocX2JE5zhXEkppOiKUU9VmhqcQfwwpfAJa7yREg==</latexit>
22729
train
test
(the case where a clear answer and inductive logic exist)
Try to teach ML “arithmetic addition” only by examples.
/ 35
13
A toy example: approximate adders
Linear regression rocks! 😆
LR says 1 + 1 = 2 and 1 - 1 = 0 and 12892 + 9837 = 22729
adder
<latexit sha1_base64="tiacEhQgmTkomNeV5LHmrY6hmbk=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTXxhXRDcuecgjQULaOmJDaZu2EJH4AyZuZeFKExfGD/AD3PgDLvgE4xITNy68lCZGiXib6Zw5c8+dM3NlU1Nth7GOTxgZHRuf8E8GpqZnZoOhufmcbdQthWcVQzOsgizZXFN1nnVUR+MF0+JSTdZ4Xq7u9fbzDW7ZqqEfOE2Tl2pSRVePVUVyiMqclsVyKMJizI3wIBA9EIEXSSP0iEMcwYCCOmrg0OEQ1iDBpq8IEQwmcSW0iLMIqe4+xzkCpK1TFqcMidgq/Su0KnqsTuteTdtVK3SKRsMiZRhR9sLuWZc9swf2yj7/rNVya/S8NGmW+1puloMXi5mPf1U1mh2cfKuGenZwjG3Xq0reTZfp3ULp6xtn7W5mJx1trbBb9kb+b1iHPdEN9Ma7cpfi6eshfmTyQi9GDRJ/t2MQ5NZi4lZsPbURSex6rfJjCctYpX7EkcA+kshS/QoucYW24BdiwqYQ76cKPk+zgB8hJL4AVGCQmw==</latexit>
x1
<latexit sha1_base64="4Sn0JXQ8Nli9zYaRMiYfd4a9JHg=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqclmPlQIhFmBPBYRB1QQhuJPXAI45wDB0yGqiDQ4NNWIUIi74iomAwiCuhTZxJSHH2Oc7hI22DsjhliMTW6F+lVdFlNVr3a1qOWqZTVBomKYMIsxd2z3rsmT2wV/b5Z622U6PvpUWzNNByo+y/WM58/Kuq02zj5Fs10rONCnYcrwp5Nxymfwt5oG+edXqZ3XS4vcZu2Rv5v2Fd9kQ30Jrv8l2Kp69H+JHIC70YNSj6ux3DIBeLRLcjG6nNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFVoCQnA==</latexit>
x2
<latexit sha1_base64="SKy45aVsIvNNIc9wr1Q6tiMY1uI=">AAACinichVHLSsNAFL2Nr1qrrboR3BRLRRDKpIrPTVEXLvuwD6glJHFah+ZFkpbW4g+4cyXYlYIL8QP8ADf+gIt+gris4MaFN2lAtFhvmMyZM/fcOTNXMhRm2YR0fdzI6Nj4hH8yMBWcngmFZ+fyll43ZZqTdUU3i5JoUYVpNGczW6FFw6SiKim0INX2nf1Cg5oW07Uju2XQsipWNVZhsmgjVWgK/GpTSAjhKIkTNyKDgPdAFLxI6eFHOIYT0EGGOqhAQQMbsQIiWPiVgAcCBnJlaCNnImLuPoVzCKC2jlkUM0Rka/iv4qrksRqunZqWq5bxFAWHicoIxMgLuSc98kweyCv5/LNW263heGnhLPW11BBCFwvZj39VKs42nH6rhnq2oQJbrleG3g2XcW4h9/WNs6tedicTay+TW/KG/m9IlzzhDbTGu3yXppnOED8SesEXwwbxv9sxCPKJOL8RX0uvR5N7Xqv8sAhLsIL92IQkHEIKcm79S7iGDhfkEtw2t9tP5XyeZh5+BHfwBX8Zkfc=</latexit>
x1 + x2
<latexit sha1_base64="1coS+Mt9eL/r4jEoYDkZ5NYfoeE=">AAACiHichVHLSsNAFD3Gd3206kZwUywVQSg3KlYFQerGZVutCiqSxGkdTJOQpIVa/AE3LlVcKbgQP8APcOMPuPATxKWCGxfepgFRUW+YzJkz99w5M1d3TOn5RI8tSmtbe0dnV3ekp7evPxobGFzz7IpriIJhm7a7oWueMKUlCr70TbHhuEIr66ZY1/eXGvvrVeF60rZW/ZojtstayZJFaWg+UwV1YmpheieWoBQFEf8J1BAkEEbWjt1iC7uwYaCCMgQs+IxNaPD424QKgsPcNurMuYxksC9wiAhrK5wlOENjdp//JV5thqzF60ZNL1AbfIrJw2VlHEl6oGt6oXu6oSd6/7VWPajR8FLjWW9qhbMTPRpeeftXVebZx96n6k/PPoqYDbxK9u4ETOMWRlNfPTh5WZnPJ+tjdEnP7P+CHumOb2BVX42rnMif/+FHZy/8Ytwg9Xs7foK1yZQ6k5rKTScWM2GrujCCUYxzP9JYxDKyKHB9iWOc4kyJKKSklblmqtISaobwJZTMB48DkKc=</latexit>
1 + 3 = 4
<latexit sha1_base64="Jl1LVcl+mtrFJMn2AKjNmRINEM4=">AAACiHichVHLSsNAFD3GV62vqhvBjVgUQSi39VEVhFI3LtVaW1CRJE7rYJqEJC3U4g+4caniSsGF+AF+gBt/wIWfIC4ruHHhbRoQFfWGyZw5c8+dM3M125CuR/TUorS2tXd0hrrC3T29ff2RgcFN1yo7usjqlmE5eU11hSFNkfWkZ4i87Qi1pBkipx0sN/ZzFeG40jI3vKotdkpq0ZQFqaseU9nE1OxScjcSpRj5MfoTxAMQRRCrVuQO29iDBR1llCBgwmNsQIXL3xbiINjM7aDGnMNI+vsCRwiztsxZgjNUZg/4X+TVVsCavG7UdH21zqcYPBxWjmKcHumG6vRAt/RM77/Wqvk1Gl6qPGtNrbB3+4+HM2//qko8e9j/VP3p2UMB875Xyd5tn2ncQm/qK4en9czi+nhtgq7ohf1f0hPd8w3Myqt+vSbWL/7wo7EXfjFuUPx7O36CzUQsPhebXpuJptJBq0IYwRgmuR9JpLCCVWS5vsQJznCuhBVSkspCM1VpCTRD+BJK+gOby5Ct</latexit>
2 + 5 = 7
<latexit sha1_base64="NRtmyWkgZ5nlm1ETxVkZxPMO8Rc=">AAACiXichVHNLgNRGD0df6V+io3ERjREImnuUJREIrqxpNWSIM3MuGV0/jJz24TGC1jZCVYkFuIBPICNF7DwCGJZiY2Fb6aTCKK+yZ177rnf+e6591MdQ/cEY88RqaW1rb0j2tkV6+7p7Yv3DxQ8u+JqPK/Zhu1uqorHDd3ieaELg286LldM1eAbajnj729UuevptrUuDh2+Yyp7ll7SNUUQVZiZnF+UU8V4giVZECO/gRyCBMJYteP32MYubGiowASHBUHYgAKPvi3IYHCI20GNOJeQHuxzHKOLtBXK4pShEFum/x6ttkLWorVf0wvUGp1i0HBJOYIx9sRuWZ09sjv2wj7+rFULavheDmlWG1ruFPtOhnLv/6pMmgX2v1RNPQuUkA686uTdCRj/FlpDXz06q+cWsmO1cXbNXsn/FXtmD3QDq/qm3azx7GUTPyp5oRejBsk/2/EbFKaS8mxyei2VWFoOWxXFMEYxQf2YwxJWsIo81T/AKc5xIcUkWUpLC41UKRJqBvEtpMwnMx2Q7A==</latexit>
5 + 9 = 14
<latexit sha1_base64="wFMJb33bMt0hW8th8BMIqvUdNU8=">AAACinichVFLSwJRFD5OLzNLq03QRhIjCOSMRk8CqRYtfeQDTGRmutrgvJgZBZP+QLtWQa4KWkQ/oB/Qpj/Qwp8QLQ3atOg4DkRJdoY797vfPd+5371HNBTZshE7Hm5kdGx8wjvpm/JPzwSCs3M5S6+bEstKuqKbBVGwmCJrLGvLtsIKhskEVVRYXqzt9/bzDWZasq4d2U2DlVShqskVWRJsovLxVR53+Xg5GMYoOhEaBLwLwuBGUg8+wjGcgA4S1EEFBhrYhBUQwKKvCDwgGMSVoEWcSUh29hmcg4+0dcpilCEQW6N/lVZFl9Vo3atpOWqJTlFomKQMQQRf8B67+IwP+Iqff9ZqOTV6Xpo0i30tM8qBi4XMx78qlWYbTr9VQz3bUIFNx6tM3g2H6d1C6usbZ1fdzHY60lrGW3wj/zfYwSe6gdZ4l+5SLN0e4kckL/Ri1CD+dzsGQS4W5dej8dRaOLHntsoLi7AEK9SPDUjAISQh69S/hGtoc34uxm1xO/1UzuNq5uFHcAdfqESRGw==</latexit>
3 + 10 = 13
<latexit sha1_base64="FoI7hqDrtQtFjlgLPgriDwtw1iU=">AAACiXichVHLSsNAFD2Nr1pfVTeCm2JRBKFMfNQiCKIbl33YVlApSRx1NE1CMi1o8QdcuRN1peBC/AA/wI0/4MJPEJcV3LjwNg2IFvWGyZw5c8+dM3N1xxSeZOw5pLS1d3R2hbsjPb19/QPRwaGCZ1dcg+cN27TddV3zuCksnpdCmnzdcblW1k1e1A9WGvvFKnc9YVtr8tDhW2Vt1xI7wtAkUYW5qeSiqpaicZZgfsRagRqAOIJI29F7bGIbNgxUUAaHBUnYhAaPvg2oYHCI20KNOJeQ8Pc5jhEhbYWyOGVoxB7Qf5dWGwFr0bpR0/PVBp1i0nBJGcM4e2K3rM4e2R17YR+/1qr5NRpeDmnWm1rulAZORnLv/6rKNEvsfan+9Cyxg5TvVZB3x2catzCa+urRWT23kB2vTbBr9kr+r9gze6AbWNU34ybDs5d/+NHJC70YNUj92Y5WUJhOqMnETGY2vrQctCqMUYxhkvoxjyWsIo081d/HKc5xofQoqpJSFpqpSijQDONbKCufJlSQ5g==</latexit>
5 + 6 = 11
<latexit sha1_base64="n3Yy/9dJfdSB5yYDzUvImVPJv/g=">AAACiHichVHLSsNAFD3Gd3206kZwIxZFEMqNii8QRTcu1VotVClJnNahaRKStKDFH3DjUsWVggvxA/wAN/6Ai36CuFRw48LbNCAq1hsmc+bMPXfOzNUdU3o+UbVJaW5pbWvv6Ix0dff0RmN9/dueXXINkTJs03bTuuYJU1oi5UvfFGnHFVpRN8WOXlit7e+UhetJ29ryDx2xV9TylsxJQ/OZSqkT6uJSNhanBAUx/BuoIYgjjHU7do9d7MOGgRKKELDgMzahweMvAxUEh7k9VJhzGclgX+AYEdaWOEtwhsZsgf95XmVC1uJ1raYXqA0+xeThsnIYo/REt/RKj3RHz/TxZ61KUKPm5ZBnva4VTjZ6Mph8/1dV5NnHwZeqoWcfOcwFXiV7dwKmdgujri8fnb0mFzZHK2N0TS/s/4qq9MA3sMpvxs2G2Lxs4EdnL/xi3CD1Zzt+g+3JhDqTmNqYji+vhK3qwBBGMM79mMUy1rCOFNeXOMU5LpSIQsqsMl9PVZpCzQC+hbLyCaIfkLA=</latexit>
1 + 1 =?
<latexit sha1_base64="hRdVP+e2y4bjP1zOby3ZyPytH4w=">AAACi3icSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKRRhqa+gaatraxwsoG+gZgIECJsMQylBmgIKAfIHtDDEMKQz5DMkMpQy5DKkMeQwlQHYOQyJDMRBGMxgyGDAUAMViGaqBYkVAViZYPpWhloELqLcUqCoVqCIRKJoNJNOBvGioaB6QDzKzGKw7GWhLDhAXAXUqMKgaXDVYafDZ4ITBaoOXBn9wmlUNNgPklkognQTRm1oQz98lEfydoK5cIF3CkIHQhdfNJQxpDBZgt2YC3V4AFgH5Ihmiv6xq+udgqyDVajWDRQavge5faHDT4DDQB3llX5KXBqYGzcbjniSgW4AhBowgQ/TowGSEGekZmukZB5ooOzhBo4qDQZpBiUEDGB/mDA4MHgwBDKHgeJjEMJthDhMvkzGTFZMNRCkTI1SPMAMKYHIFACGukUw=</latexit>
1 + ( 1) =?
<latexit sha1_base64="iSckyhI7u8UoVI74y32YMTkgc7c=">AAACj3ichVHLSsNAFD3Gd3201Y3gRiwVQSiTVmwrqEU3umutVUFFkjitoWkSkmlBiz/gB+jChQ9wIX6AH+DGH3DhJ4jLCm5ceJsGREW9YTJnztxz58xc1TZ0VzD21Ca1d3R2dff0Bvr6BwaDofDQumtVHY0XNMuwnE1Vcbmhm7wgdGHwTdvhSkU1+IZaXmrub9S44+qWuSYObL5TUUqmXtQ1RRC1LcdT6fhUOpVIzi3shiIsxrwY+wlkH0TgR9YK3WEbe7CgoYoKOEwIwgYUuPRtQQaDTdwO6sQ5hHRvn+MIAdJWKYtThkJsmf4lWm35rEnrZk3XU2t0ikHDIeUYouyR3bAGe2C37Jm9/1qr7tVoejmgWW1pub0bPB7Jv/2rqtAssP+p+tOzQBEpz6tO3m2Pad5Ca+lrh6eN/OxqtD7BrtgL+b9kT+yebmDWXrXrHF89+8OPSl7oxahB8vd2/ATr8Zg8E0vkpiOZRb9VPRjFOCapH0lksIwsClTfxgnOcSGFpaQ0L2VaqVKbrxnGl5BWPgDiqZJ1</latexit>
12892 + 9837 =?
<latexit sha1_base64="3cCCvxejuSwhH3gAGZntIRJA/Ck=">AAAChHichVHNLgNRFP46/uunxUZi02iIhTRnWtWOhTRsLFsUCSIz42LS6cxkZtqExguwJRZWJBbiATyAjRew8AhiSWJj4cy0IhY4N/fec79zvnO/e4/mmIbnEz1FpLb2js6u7p5ob1//QCw+OLTq2TVXF2XdNm13XVM9YRqWKPuGb4p1xxVqVTPFmlZZCOJrdeF6hm2t+AeO2Kqqe5axa+iqz1ApvR1PUkrJZ7OZfIJSREpaybGjKIqckxMyI4El0bKiHb/DJnZgQ0cNVQhY8Nk3ocLjsQEZBIexLTQYc9kzwrjAEaLMrXGW4AyV0Qqve3zaaKEWn4OaXsjW+RaTp8vMBMbpkW7olR7olp7p49dajbBGoOWAd63JFc527Hhk+f1fVpV3H/vfrD81+9hFPtRqsHYnRIJX6E1+/fD8dXl2abwxQVf0wvov6Ynu+QVW/U2/Lomliz/0aKyFf4wb9NWFxO/Oajolz6QypelkYb7Vqm6MYgyT3I8cClhEEWWuL3CCU5xJndKUlJGyzVQp0uIM44dJc58RFJAW</latexit>
2
<latexit sha1_base64="dtxzgykiOKrKKToFg2z7LT9XiS0=">AAAChHichVHNLgNRFP6Mv/ovNhKbRkMspDnTqnYsRNhYaikSRGbGbU1MZyYz0ybVeAG2xMKKxEI8gAew8QIWfQSxJLGxcGZaEQucm3vvud8537nfvUdzTMPziRptUntHZ1d3pKe3r39gcCg6PLLh2RVXFwXdNm13S1M9YRqWKPiGb4otxxVqWTPFpna4HMQ3q8L1DNta92uO2C2rJcsoGrrqM5SjvWicEko2nU5lY5QgUpJKhh1FUeSMHJMZCSyOlq3a0XvsYB82dFRQhoAFn30TKjwe25BBcBjbRZ0xlz0jjAsco5e5Fc4SnKEyeshriU/bLdTic1DTC9k632LydJkZwyQ90S290iPd0TN9/FqrHtYItNR415pc4ewNnYytvf/LKvPu4+Cb9admH0VkQ60Ga3dCJHiF3uRXjy5e1+bzk/UpuqYX1n9FDXrgF1jVN/0mJ/KXf+jRWAv/GDfoqwux352NZEKeS6Rys/HFpVarIhjHBKa5HxksYgWrKHB9gVOc4VzqkmaklJRupkptLc4ofpi08AkM1JAU</latexit>
0
<latexit sha1_base64="P9nwiNSxLZKIKI1oebJys0uGCoU=">AAACiHichVHLLgRBFD3ae7wGG4nNxIRYTW63R09bydhYjscgQaS7FSp6ujvdPZMw8QM2logViYX4AB9g4wcsfIJYkthYuN0zIha4laq6de49t07VtXxHhhHRU5PS3NLa1t7Rmerq7untS/cPrIReJbBFyfYcL1izzFA40hWlSEaOWPMDYZYtR6xa+3NxfLUqglB67nJ04IvNsrnryh1pmxFDJU3TNWMrnaWckZ+amshnKEdkaIbOjmEYqq5mVEZiy6JhRS99hw1sw4ONCsoQcBGx78BEyGMdKgg+Y5uoMRawJ5O4wBFSzK1wluAMk9F9Xnf5tN5AXT7HNcOEbfMtDs+AmRmM0iPd0Cs90C0908evtWpJjVjLAe9WnSv8rb7joaX3f1ll3iPsfbP+1BxhB/lEq2TtfoLEr7Dr/Orh6evSzOJobYyu6IX1X9IT3fML3Oqbfb0gFi/+0GOxFv4xbtBXFzK/OytaTp3OTSxMZmcLjVZ1YBgjGOd+6JjFPIoocX2JE5zhXEkppOiKUU9VmhqcQfwwpfAJa7yREg==</latexit>
22729
train
test
(Perfect Answers!!)
/ 35
13
A toy example: approximate adders
Linear regression rocks! 😆
LR says 1 + 1 = 2 and 1 - 1 = 0 and 12892 + 9837 = 22729
All are because of “inductive bias” intrinsically encoded in the model.
LR with two input variables is just
fitting a plane
<latexit sha1_base64="iFKbOGXhRe3/O37wsq+JtGPu+ec=">AAAClnichVHLSsNAFD2Nr1pfrW4EN8FSEYQyUVFxIaKILvuwraBSkjitoWkSkrRaiz/gD7gQFwoq4gf4AW78ARf9BHFZwY0Lb9OAqKg3JPfMmXtuzsxVLF1zXMYaAaGjs6u7J9gb6usfGBwKR4azjlmxVZ5RTd20txTZ4bpm8IyruTrfsmwulxWd55TSams/V+W2o5nGpluz+G5ZLhpaQVNll6h8OCKLh3lJnBIVytOU1Xw4yuLMC/EnkHwQhR8JM3yPHezBhIoKyuAw4BLWIcOhZxsSGCzidlEnziakefscxwiRtkJVnCpkYkv0LdJq22cNWrd6Op5apb/o9NqkFBFjT+yWNdkju2PP7P3XXnWvR8tLjbLS1nIrP3Qymn77V1Wm7GL/U/WnZxcFLHheNfJueUzrFGpbXz06baYXU7H6BLtkL+T/gjXYA53AqL6qV0meOvvDj0Je6MZoQNL3cfwE2em4NBefSc5Gl1f8UQUxhnFM0jzmsYwNJJCh/gc4xzVuhFFhSVgT1tulQsDXjOBLCIkPAxKUnQ==</latexit>
ax1 + bx2 + c
Any three instances are enough to have
<latexit sha1_base64="57verNgszw6m8+AhOWc3Hu105bk=">AAACp3ichVFNS9xQFD2mftX6MW03BTfBwaIow42WtgiC6MadOjrjgMrwEp/jw0wSkjdT7eBe/AMuXCm4KAW3unfjH+jCn1C6VHDjojeZgKioN+S+88675+a8XDtwVaSJrlqMN61t7R2db7vedff09mXefyhGfi10ZMHxXT8s2SKSrvJkQSvtylIQSlG1Xblsb83E58t1GUbK95b0TiDXqqLiqQ3lCM1UOTMgJq1R046TM0mreVXZ1CIM/R/mdtkyRziPlTNZylES5lNgpSCLNOb9zBlWsQ4fDmqoQsKDZuxCIOJnBRYIAXNraDAXMlLJucQuulhb4yrJFYLZLc4V3q2krMf7uGeUqB3+istvyEoTg/SHftE1XdJv+kt3z/ZqJD1iLzu82k2tDMp9+58Wb19VVXnV2LxXvehZYwPfE6+KvQcJE9/CaerrPw+uFyfyg43PdEz/2P8RXdEF38Cr3zgnCzJ/+IIfm73wH+MBWY/H8RQUx3LW19z4wpfs1HQ6qk70YwBDPI9vmMIs5lHg/ns4xRnOjWFjzigapWap0ZJqPuJBGOI/dKSbIg==</latexit>
a = 1, b = 1, c = 0 ) x1 + x2
MLP has partial “linearity” inside and that’s why MLP is better than RF is.
RF is “piecewise constant” and only returns values between sample min and max.
to points in 3D
adder
<latexit sha1_base64="tiacEhQgmTkomNeV5LHmrY6hmbk=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTXxhXRDcuecgjQULaOmJDaZu2EJH4AyZuZeFKExfGD/AD3PgDLvgE4xITNy68lCZGiXib6Zw5c8+dM3NlU1Nth7GOTxgZHRuf8E8GpqZnZoOhufmcbdQthWcVQzOsgizZXFN1nnVUR+MF0+JSTdZ4Xq7u9fbzDW7ZqqEfOE2Tl2pSRVePVUVyiMqclsVyKMJizI3wIBA9EIEXSSP0iEMcwYCCOmrg0OEQ1iDBpq8IEQwmcSW0iLMIqe4+xzkCpK1TFqcMidgq/Su0KnqsTuteTdtVK3SKRsMiZRhR9sLuWZc9swf2yj7/rNVya/S8NGmW+1puloMXi5mPf1U1mh2cfKuGenZwjG3Xq0reTZfp3ULp6xtn7W5mJx1trbBb9kb+b1iHPdEN9Ma7cpfi6eshfmTyQi9GDRJ/t2MQ5NZi4lZsPbURSex6rfJjCctYpX7EkcA+kshS/QoucYW24BdiwqYQ76cKPk+zgB8hJL4AVGCQmw==</latexit>
x1
<latexit sha1_base64="4Sn0JXQ8Nli9zYaRMiYfd4a9JHg=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqclmPlQIhFmBPBYRB1QQhuJPXAI45wDB0yGqiDQ4NNWIUIi74iomAwiCuhTZxJSHH2Oc7hI22DsjhliMTW6F+lVdFlNVr3a1qOWqZTVBomKYMIsxd2z3rsmT2wV/b5Z622U6PvpUWzNNByo+y/WM58/Kuq02zj5Fs10rONCnYcrwp5Nxymfwt5oG+edXqZ3XS4vcZu2Rv5v2Fd9kQ30Jrv8l2Kp69H+JHIC70YNSj6ux3DIBeLRLcjG6nNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFVoCQnA==</latexit>
x2
<latexit sha1_base64="SKy45aVsIvNNIc9wr1Q6tiMY1uI=">AAACinichVHLSsNAFL2Nr1qrrboR3BRLRRDKpIrPTVEXLvuwD6glJHFah+ZFkpbW4g+4cyXYlYIL8QP8ADf+gIt+gris4MaFN2lAtFhvmMyZM/fcOTNXMhRm2YR0fdzI6Nj4hH8yMBWcngmFZ+fyll43ZZqTdUU3i5JoUYVpNGczW6FFw6SiKim0INX2nf1Cg5oW07Uju2XQsipWNVZhsmgjVWgK/GpTSAjhKIkTNyKDgPdAFLxI6eFHOIYT0EGGOqhAQQMbsQIiWPiVgAcCBnJlaCNnImLuPoVzCKC2jlkUM0Rka/iv4qrksRqunZqWq5bxFAWHicoIxMgLuSc98kweyCv5/LNW263heGnhLPW11BBCFwvZj39VKs42nH6rhnq2oQJbrleG3g2XcW4h9/WNs6tedicTay+TW/KG/m9IlzzhDbTGu3yXppnOED8SesEXwwbxv9sxCPKJOL8RX0uvR5N7Xqv8sAhLsIL92IQkHEIKcm79S7iGDhfkEtw2t9tP5XyeZh5+BHfwBX8Zkfc=</latexit>
x1 + x2
<latexit sha1_base64="1coS+Mt9eL/r4jEoYDkZ5NYfoeE=">AAACiHichVHLSsNAFD3Gd3206kZwUywVQSg3KlYFQerGZVutCiqSxGkdTJOQpIVa/AE3LlVcKbgQP8APcOMPuPATxKWCGxfepgFRUW+YzJkz99w5M1d3TOn5RI8tSmtbe0dnV3ekp7evPxobGFzz7IpriIJhm7a7oWueMKUlCr70TbHhuEIr66ZY1/eXGvvrVeF60rZW/ZojtstayZJFaWg+UwV1YmpheieWoBQFEf8J1BAkEEbWjt1iC7uwYaCCMgQs+IxNaPD424QKgsPcNurMuYxksC9wiAhrK5wlOENjdp//JV5thqzF60ZNL1AbfIrJw2VlHEl6oGt6oXu6oSd6/7VWPajR8FLjWW9qhbMTPRpeeftXVebZx96n6k/PPoqYDbxK9u4ETOMWRlNfPTh5WZnPJ+tjdEnP7P+CHumOb2BVX42rnMif/+FHZy/8Ytwg9Xs7foK1yZQ6k5rKTScWM2GrujCCUYxzP9JYxDKyKHB9iWOc4kyJKKSklblmqtISaobwJZTMB48DkKc=</latexit>
1 + 3 = 4
<latexit sha1_base64="Jl1LVcl+mtrFJMn2AKjNmRINEM4=">AAACiHichVHLSsNAFD3GV62vqhvBjVgUQSi39VEVhFI3LtVaW1CRJE7rYJqEJC3U4g+4caniSsGF+AF+gBt/wIWfIC4ruHHhbRoQFfWGyZw5c8+dM3M125CuR/TUorS2tXd0hrrC3T29ff2RgcFN1yo7usjqlmE5eU11hSFNkfWkZ4i87Qi1pBkipx0sN/ZzFeG40jI3vKotdkpq0ZQFqaseU9nE1OxScjcSpRj5MfoTxAMQRRCrVuQO29iDBR1llCBgwmNsQIXL3xbiINjM7aDGnMNI+vsCRwiztsxZgjNUZg/4X+TVVsCavG7UdH21zqcYPBxWjmKcHumG6vRAt/RM77/Wqvk1Gl6qPGtNrbB3+4+HM2//qko8e9j/VP3p2UMB875Xyd5tn2ncQm/qK4en9czi+nhtgq7ohf1f0hPd8w3Myqt+vSbWL/7wo7EXfjFuUPx7O36CzUQsPhebXpuJptJBq0IYwRgmuR9JpLCCVWS5vsQJznCuhBVSkspCM1VpCTRD+BJK+gOby5Ct</latexit>
2 + 5 = 7
<latexit sha1_base64="NRtmyWkgZ5nlm1ETxVkZxPMO8Rc=">AAACiXichVHNLgNRGD0df6V+io3ERjREImnuUJREIrqxpNWSIM3MuGV0/jJz24TGC1jZCVYkFuIBPICNF7DwCGJZiY2Fb6aTCKK+yZ177rnf+e6591MdQ/cEY88RqaW1rb0j2tkV6+7p7Yv3DxQ8u+JqPK/Zhu1uqorHDd3ieaELg286LldM1eAbajnj729UuevptrUuDh2+Yyp7ll7SNUUQVZiZnF+UU8V4giVZECO/gRyCBMJYteP32MYubGiowASHBUHYgAKPvi3IYHCI20GNOJeQHuxzHKOLtBXK4pShEFum/x6ttkLWorVf0wvUGp1i0HBJOYIx9sRuWZ09sjv2wj7+rFULavheDmlWG1ruFPtOhnLv/6pMmgX2v1RNPQuUkA686uTdCRj/FlpDXz06q+cWsmO1cXbNXsn/FXtmD3QDq/qm3azx7GUTPyp5oRejBsk/2/EbFKaS8mxyei2VWFoOWxXFMEYxQf2YwxJWsIo81T/AKc5xIcUkWUpLC41UKRJqBvEtpMwnMx2Q7A==</latexit>
5 + 9 = 14
<latexit sha1_base64="wFMJb33bMt0hW8th8BMIqvUdNU8=">AAACinichVFLSwJRFD5OLzNLq03QRhIjCOSMRk8CqRYtfeQDTGRmutrgvJgZBZP+QLtWQa4KWkQ/oB/Qpj/Qwp8QLQ3atOg4DkRJdoY797vfPd+5371HNBTZshE7Hm5kdGx8wjvpm/JPzwSCs3M5S6+bEstKuqKbBVGwmCJrLGvLtsIKhskEVVRYXqzt9/bzDWZasq4d2U2DlVShqskVWRJsovLxVR53+Xg5GMYoOhEaBLwLwuBGUg8+wjGcgA4S1EEFBhrYhBUQwKKvCDwgGMSVoEWcSUh29hmcg4+0dcpilCEQW6N/lVZFl9Vo3atpOWqJTlFomKQMQQRf8B67+IwP+Iqff9ZqOTV6Xpo0i30tM8qBi4XMx78qlWYbTr9VQz3bUIFNx6tM3g2H6d1C6usbZ1fdzHY60lrGW3wj/zfYwSe6gdZ4l+5SLN0e4kckL/Ri1CD+dzsGQS4W5dej8dRaOLHntsoLi7AEK9SPDUjAISQh69S/hGtoc34uxm1xO/1UzuNq5uFHcAdfqESRGw==</latexit>
3 + 10 = 13
<latexit sha1_base64="FoI7hqDrtQtFjlgLPgriDwtw1iU=">AAACiXichVHLSsNAFD2Nr1pfVTeCm2JRBKFMfNQiCKIbl33YVlApSRx1NE1CMi1o8QdcuRN1peBC/AA/wI0/4MJPEJcV3LjwNg2IFvWGyZw5c8+dM3N1xxSeZOw5pLS1d3R2hbsjPb19/QPRwaGCZ1dcg+cN27TddV3zuCksnpdCmnzdcblW1k1e1A9WGvvFKnc9YVtr8tDhW2Vt1xI7wtAkUYW5qeSiqpaicZZgfsRagRqAOIJI29F7bGIbNgxUUAaHBUnYhAaPvg2oYHCI20KNOJeQ8Pc5jhEhbYWyOGVoxB7Qf5dWGwFr0bpR0/PVBp1i0nBJGcM4e2K3rM4e2R17YR+/1qr5NRpeDmnWm1rulAZORnLv/6rKNEvsfan+9Cyxg5TvVZB3x2catzCa+urRWT23kB2vTbBr9kr+r9gze6AbWNU34ybDs5d/+NHJC70YNUj92Y5WUJhOqMnETGY2vrQctCqMUYxhkvoxjyWsIo081d/HKc5xofQoqpJSFpqpSijQDONbKCufJlSQ5g==</latexit>
5 + 6 = 11
<latexit sha1_base64="n3Yy/9dJfdSB5yYDzUvImVPJv/g=">AAACiHichVHLSsNAFD3Gd3206kZwIxZFEMqNii8QRTcu1VotVClJnNahaRKStKDFH3DjUsWVggvxA/wAN/6Ai36CuFRw48LbNCAq1hsmc+bMPXfOzNUdU3o+UbVJaW5pbWvv6Ix0dff0RmN9/dueXXINkTJs03bTuuYJU1oi5UvfFGnHFVpRN8WOXlit7e+UhetJ29ryDx2xV9TylsxJQ/OZSqkT6uJSNhanBAUx/BuoIYgjjHU7do9d7MOGgRKKELDgMzahweMvAxUEh7k9VJhzGclgX+AYEdaWOEtwhsZsgf95XmVC1uJ1raYXqA0+xeThsnIYo/REt/RKj3RHz/TxZ61KUKPm5ZBnva4VTjZ6Mph8/1dV5NnHwZeqoWcfOcwFXiV7dwKmdgujri8fnb0mFzZHK2N0TS/s/4qq9MA3sMpvxs2G2Lxs4EdnL/xi3CD1Zzt+g+3JhDqTmNqYji+vhK3qwBBGMM79mMUy1rCOFNeXOMU5LpSIQsqsMl9PVZpCzQC+hbLyCaIfkLA=</latexit>
1 + 1 =?
<latexit sha1_base64="hRdVP+e2y4bjP1zOby3ZyPytH4w=">AAACi3icSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKRRhqa+gaatraxwsoG+gZgIECJsMQylBmgIKAfIHtDDEMKQz5DMkMpQy5DKkMeQwlQHYOQyJDMRBGMxgyGDAUAMViGaqBYkVAViZYPpWhloELqLcUqCoVqCIRKJoNJNOBvGioaB6QDzKzGKw7GWhLDhAXAXUqMKgaXDVYafDZ4ITBaoOXBn9wmlUNNgPklkognQTRm1oQz98lEfydoK5cIF3CkIHQhdfNJQxpDBZgt2YC3V4AFgH5Ihmiv6xq+udgqyDVajWDRQavge5faHDT4DDQB3llX5KXBqYGzcbjniSgW4AhBowgQ/TowGSEGekZmukZB5ooOzhBo4qDQZpBiUEDGB/mDA4MHgwBDKHgeJjEMJthDhMvkzGTFZMNRCkTI1SPMAMKYHIFACGukUw=</latexit>
1 + ( 1) =?
<latexit sha1_base64="iSckyhI7u8UoVI74y32YMTkgc7c=">AAACj3ichVHLSsNAFD3Gd3201Y3gRiwVQSiTVmwrqEU3umutVUFFkjitoWkSkmlBiz/gB+jChQ9wIX6AH+DGH3DhJ4jLCm5ceJsGREW9YTJnztxz58xc1TZ0VzD21Ca1d3R2dff0Bvr6BwaDofDQumtVHY0XNMuwnE1Vcbmhm7wgdGHwTdvhSkU1+IZaXmrub9S44+qWuSYObL5TUUqmXtQ1RRC1LcdT6fhUOpVIzi3shiIsxrwY+wlkH0TgR9YK3WEbe7CgoYoKOEwIwgYUuPRtQQaDTdwO6sQ5hHRvn+MIAdJWKYtThkJsmf4lWm35rEnrZk3XU2t0ikHDIeUYouyR3bAGe2C37Jm9/1qr7tVoejmgWW1pub0bPB7Jv/2rqtAssP+p+tOzQBEpz6tO3m2Pad5Ca+lrh6eN/OxqtD7BrtgL+b9kT+yebmDWXrXrHF89+8OPSl7oxahB8vd2/ATr8Zg8E0vkpiOZRb9VPRjFOCapH0lksIwsClTfxgnOcSGFpaQ0L2VaqVKbrxnGl5BWPgDiqZJ1</latexit>
12892 + 9837 =?
<latexit sha1_base64="3cCCvxejuSwhH3gAGZntIRJA/Ck=">AAAChHichVHNLgNRFP46/uunxUZi02iIhTRnWtWOhTRsLFsUCSIz42LS6cxkZtqExguwJRZWJBbiATyAjRew8AhiSWJj4cy0IhY4N/fec79zvnO/e4/mmIbnEz1FpLb2js6u7p5ob1//QCw+OLTq2TVXF2XdNm13XVM9YRqWKPuGb4p1xxVqVTPFmlZZCOJrdeF6hm2t+AeO2Kqqe5axa+iqz1ApvR1PUkrJZ7OZfIJSREpaybGjKIqckxMyI4El0bKiHb/DJnZgQ0cNVQhY8Nk3ocLjsQEZBIexLTQYc9kzwrjAEaLMrXGW4AyV0Qqve3zaaKEWn4OaXsjW+RaTp8vMBMbpkW7olR7olp7p49dajbBGoOWAd63JFc527Hhk+f1fVpV3H/vfrD81+9hFPtRqsHYnRIJX6E1+/fD8dXl2abwxQVf0wvov6Ynu+QVW/U2/Lomliz/0aKyFf4wb9NWFxO/Oajolz6QypelkYb7Vqm6MYgyT3I8cClhEEWWuL3CCU5xJndKUlJGyzVQp0uIM44dJc58RFJAW</latexit>
2
<latexit sha1_base64="dtxzgykiOKrKKToFg2z7LT9XiS0=">AAAChHichVHNLgNRFP6Mv/ovNhKbRkMspDnTqnYsRNhYaikSRGbGbU1MZyYz0ybVeAG2xMKKxEI8gAew8QIWfQSxJLGxcGZaEQucm3vvud8537nfvUdzTMPziRptUntHZ1d3pKe3r39gcCg6PLLh2RVXFwXdNm13S1M9YRqWKPiGb4otxxVqWTPFpna4HMQ3q8L1DNta92uO2C2rJcsoGrrqM5SjvWicEko2nU5lY5QgUpJKhh1FUeSMHJMZCSyOlq3a0XvsYB82dFRQhoAFn30TKjwe25BBcBjbRZ0xlz0jjAsco5e5Fc4SnKEyeshriU/bLdTic1DTC9k632LydJkZwyQ90S290iPd0TN9/FqrHtYItNR415pc4ewNnYytvf/LKvPu4+Cb9admH0VkQ60Ga3dCJHiF3uRXjy5e1+bzk/UpuqYX1n9FDXrgF1jVN/0mJ/KXf+jRWAv/GDfoqwux352NZEKeS6Rys/HFpVarIhjHBKa5HxksYgWrKHB9gVOc4VzqkmaklJRupkptLc4ofpi08AkM1JAU</latexit>
0
<latexit sha1_base64="P9nwiNSxLZKIKI1oebJys0uGCoU=">AAACiHichVHLLgRBFD3ae7wGG4nNxIRYTW63R09bydhYjscgQaS7FSp6ujvdPZMw8QM2logViYX4AB9g4wcsfIJYkthYuN0zIha4laq6de49t07VtXxHhhHRU5PS3NLa1t7Rmerq7untS/cPrIReJbBFyfYcL1izzFA40hWlSEaOWPMDYZYtR6xa+3NxfLUqglB67nJ04IvNsrnryh1pmxFDJU3TNWMrnaWckZ+amshnKEdkaIbOjmEYqq5mVEZiy6JhRS99hw1sw4ONCsoQcBGx78BEyGMdKgg+Y5uoMRawJ5O4wBFSzK1wluAMk9F9Xnf5tN5AXT7HNcOEbfMtDs+AmRmM0iPd0Cs90C0908evtWpJjVjLAe9WnSv8rb7joaX3f1ll3iPsfbP+1BxhB/lEq2TtfoLEr7Dr/Orh6evSzOJobYyu6IX1X9IT3fML3Oqbfb0gFi/+0GOxFv4xbtBXFzK/OytaTp3OTSxMZmcLjVZ1YBgjGOd+6JjFPIoocX2JE5zhXEkppOiKUU9VmhqcQfwwpfAJa7yREg==</latexit>
22729
train
test
(Perfect Answers!!)
/ 35
14
Designing relevant “inductive biases”
“Inductive biases” (often unintendedly) defines the interspace of instances, and then
also defines the prediction for unseen areas (crucial for out-of-distribution predictions).
Neural Networks (ReLU)
Random Forest
Linear Regression Extra Trees (no bootstrap)
Carefully designed inputs
(input only confidently relevant
info into ML)
Conservative models + Strong
inductive biases that best fit to
the given problem
General models having a large number
of parameters + Generalizable
inductive biases
(enables zero-shot/few-shot transfer?)
Kitchen-sink inputs (input all
potentially relevant info into ML)
Use any “physics-informed” conditions to further constrain or regularize
the model space sounds a good idea indeed
Complex
Simple
Small Large
Input-Output Correlation for Target
Data Required To Make ML Work
/ 35
15
A recent news: OGB Large-Scale Challenge @ KDDCup 2021
Current ML is too data-hungry (and purportedly vulnerable to any data bias)
Gaps between technical interests and reality
Modern ML can learn any input-output mappings in theory, but more data is needed
when the input-output correlation is weak.
PCQM4M-LSC predicting DFT-calculated HOMO-LUMO energy gap of molecules given their
2D molecular graphs. (3,803,453 graphs from PubChemQC; cf. 133,885 graphs for QM9)
1st place: 10 GNNs (12-Layer Graphormer) + 8 ExpC*s (5-Layer ExpandingConv)
73 GNNs (11-Layer LiteGEMConv with Self-Supervised Pretraining)
20 GNNs (32-Layer GN with Noisy Nodes)
Test MAE 0.1200 (eV)
2nd place: Test MAE 0.1204 (eV)
3rd place: Test MAE 0.1205 (eV)
Our reality. Practical “open-end” cases
we can only have very limited data relative to the astronomically vast search space.
Our technical interests. we’re very excited to explore ML over large data (for pretraining +
transfer) with generalizable modular structures: CNNs vs Transformers vs GNNs vs MLPs
/ 35
16
Today’s talk
Gas-phase reactions on sold-phase catalyst surface (Heterogeneous catalysis)
Industrial Synthesis (e.g. Haber-Bosch), Automobile Exhaust Gas Purification, Methane Conversion, etc.
Reactants
(Gas)
Catalysts
(Solid)
Nano-particle
surface
High Temperature, High Pressure
Adsorption
Diffusion
Dissociation
Recombination
Desorption
God made the bulk;
the surface was invented by the devil
Devilishly complex too-many-factor process!!
—— Wolfgang Pauli
Our struggles for better ML practices with underspecified, sparse, biased
observational data (i.e. a collection of experimental facts from literature)
/ 35
17
The base dataset
http://www.fhi-berlin.mpg.de/acnew/department/pages/ocmdata.html
https://www.nature.com/articles/s41467-019-08325-8#Sec19
Oxidative coupling of methane (OCM) reactions
Methane (CH4) is partially oxidized to C2 hydrocarbons such as ethane (C2H6) and ethylene (C2H4) in a single step
Elemental composition of catalyst (mol%) Process parameters + Preparation Catalytic performance
• Zavyalova, U.; Holena, M.; Schlögl, R.; Baerns, ChemCatChem 2011.
• Followup:
Kondratenko, E. V.; Schlüter, M.; Baerns, M.; Linke, D.; Holena, M.
Catal. Sci. Technol. 2015.
• Renalysis with Corrections & Outlier Removal
Schmack, R.; Friedrich, A.; Kondratenko, E. V.; Polte, J.; Werwatz, A.;
Kraehnert, R. Nat Commun 2019.
1866 catalyst records from 421 reports
/ 35
18
Problem #1: It’s underspecified
• Each catalyst was mostly measured at different reaction conditions.
• Only a few are measured under multiple conditions
158 compositions > 2 conditions
60 compositions > 3 conditions
26 compositions > 4 conditions
La:100.0 x 24
Mg:100.0 x 18
Ca:100.0 x 18
Sm:100.0 x 13
Nd:100.0 x 10
Ba:100.0 x 9
Y:100.0 x 9
Ce:100.0 x 9
Zr:100.0 x 9
Sr:100.0 x 7
Si:100.0 x 7
Gd:100.0 x 7
Na:8.9 Si:83.1 Mn:3.5 W:4.5 x 7
Pr:100.0 x 6
Eu:100.0 x 6
Yb:100.0 x 5
Al:100.0 x 4
Li:10.0 Mg:90.0 x 4
Mg:90.9 La:9.1 x 4
Li:9.1 Mg:90.9 x 4
Tb:100.0 x 4
Li:20.0 Cl:20.0 Zr:60.0 x 4
Na:20.0 Cl:20.0 Zr:60.0 x 4
Cl:20.0 K:20.0 Zr:60.0 x 4
Cl:20.0 Rb:20.0 Zr:60.0 x 4
Cl:20.0 Zr:60.0 Cs:20.0 x 4
• No replicates in the same conditions
• But as we see later, reaction conditions are quite influential. Because of
this, “no generally valid correlation between a catalyst’s composition,
its structure and its OCM performance has been established yet.”
Strong limitation of observational data (just passively acquired)
Observational study Interventional study
/ 35
19
Problem #2: It’s sparse
74 elements All pairwise comparisons
Mostly, arbitrary pairs of catalysts don’t even have any common elements.
Can we meaningfully compare 'Na:33.2 Ti:0.5 Mn:66.3’ and 'Zn:77.8 Ce:22.2’ …?
['Na:33.2 Ti:0.5 Mn:66.3', 'Zn:77.8 Ce:22.2']
['C:32.7 K:65.4 Pb:1.9', 'Y:100.0']
['Na:66.7 Mo:33.3', 'Al:94.5 Mo:5.5']
['C:4.0 Na:4.0 Ce:92.0', 'Y:70.0 Bi:30.0']
['Si:98.2 Cs:1.8', 'Ti:50.0 Gd:50.0']
['Na:9.1 Si:82.8 Cr:3.6 W:4.5', 'Na:20.0 Mg:80.0']
['Y:66.7 Ba:33.3', 'Al:77.0 Ag:18.0 Ba:5.0']
['Al:87.0 Cl:8.0 Fe:1.0 Sr:4.0', 'Na:33.2 Mn:66.3 Ta:0.5']
['Na:1.0 La:99.0', 'Li:9.1 Ca:90.9']
['Fe:100.0', 'Sr:50.0 Nd:50.0’]
['Al:75.0 Cl:16.0 Sr:8.0 Rh:1.0', 'Na:4.5 Si:79.2 Mn:16.3']
['S:2.9 K:5.7 Ca:91.4', 'Sm:100.0']
['P:34.5 Sr:65.5', 'Na:58.3 Cl:25.0 Mo:16.7']
['Li:23.0 Si:73.2 W:3.8', 'Si:33.3 Ca:66.6 Pb:0.1']
['Al:90.5 Ag:8.5 Pr:1.0', 'Na:66.7 Mo:33.3']
['Cl:20.0 Ba:10.0 Nd:70.0', 'Mg:90.9 La:9.1']
['Gd:100.0', 'Mn:50.0 Mo:50.0']
['Na:76.9 Nb:23.1', 'La:90.0 Pb:10.0']
['Li:6.5 S:3.2 Ca:90.3', 'P:34.5 Sr:65.5']
['Na:5.0 Si:72.0 Cl:5.0 Mn:18.0', 'P:34.0 S:7.5 Ca:51.0 Pb:7.5']
/ 35
20
Problem #3: It’s biased
Unavoidable Human-Caused Biases
“most chemical experiments are planned by human scientists and therefore are subject
to a variety of human cognitive biases, heuristics and social influences.”
Jia, X.; Lynch, A.; Huang, Y.; Danielson, M.; Lang’at, I.; Milder, A.; Ruby, A. E.; Wang, H.; Friedler, S. A.;
Norquist, A. J.; Schrier, J. Nature 2019, 573 (7773), 251–255.
Catalyst such as LaO3, Li/MgO, and
Mn/Na2WO4/SiO2 extensively studied.
/ 35
21
Our solutions
Solution to Problem #1 (Underspecification)
Tree ensemble regressors with prediction variances are used to make robust and less
risky prediction as well as to quantify how uncertain each ML prediction is.
Solution to Problem #2 (Sparsity)
The catalyst representation called SWED (Sorted Weighted Elemental Descriptors) is
developed to represent catalysts not in a one-hot fashion but by elemental descriptors.
Solution to Problem #3 (Strong Bias)
On the top of the above two, sequential model-based optimization with SWED only by 3
descriptors (electronegativity, density, and ΔHfus) as well as 8 descriptors are explored.
Also, for suggested candidates to be worth testing, SHAP interpretations are provided.
OCM Dataset Update, Reanalysis, Exploration
The original dataset (1866 catalyst records from 421 reports until 2009) is extended to
4559 catalyst records from 542 reports from 2010 to 2019, and reanalyzed.
/ 35
22
#1. Tree ensemble regression with uncertainty
Tree ensemble regressors with prediction variances are used to make robust and less
risky prediction as well as to quantify how uncertain each ML prediction is.
Gradient Boosted Trees
Extra Trees (no bootstrap)
Random Forest
Extra Trees (bootstrap)
sample max
sample min
GradientBoostingRegressor
LGBMRegressor
RandomForestRegressor
ExtraTreesRegressor
By quantile
regression
to .16, .5, .84
quantiles
Naturally by
the law of
total variance
bounded
prediction
Avoid the risk of unintended extrapolation?
(High-dimensional feature spaces can be
counterintuitive…)
/ 35
23
#2. SWED representation of catalysts
The catalyst representation called SWED (Sorted Weighted Elemental Descriptors) is
developed to represent catalysts not in a one-hot fashion but by elemental descriptors.
Key Idea
one-hot-like features below are statistically incomparable
so represent catalysts instead by any elemental descriptors
to represent arbitrary (used/unused) elements in a common
ground, considering chemical similarities.
/ 35
24
SWED (Sorted Weighted Elemental Descriptors)
• Product terms can represent interaction effects between variables (e.g. probabilistic gating, attention, …)
and furthermore, they can zero out the feature when the corresponding element is 0%.
• Sorted concatenation is lossless, and was better than weighted sum or weighted max.
• SWED lose the exact composition. To compensate, we also developed a SWED→composition estimator.
• We tried many other things (matrix decomposition, Aitchison geometry, GNN, etc) that didn’t work.
+
/ 35
25
#3. Optimism in the face of uncertainty
<latexit sha1_base64="Nr2ImZk9Gvp+/1cBWPwAK6yswp0=">AAACiXichVFNLwNRFD0dX1VfxUZi02iIVXNHBOmq0Y1lP7QkiMyMh9H5ysy0UU3/gJWdYEViIX6AH2DjD1j0J4gliY2F2+kkguBO3rzzzrvnvvPeVR1D93yiVkTq6u7p7Yv2xwYGh4ZH4qNjZc+uupooabZhu+uq4glDt0TJ131DrDuuUEzVEGtqJdveX6sJ19Nta9WvO2LLVPYsfVfXFJ+p8qZqNg6b2/EkpSiIxE8ghyCJMHJ2/A6b2IENDVWYELDgMzagwONvAzIIDnNbaDDnMtKDfYEmYqytcpbgDIXZCv/3eLURshav2zW9QK3xKQYPl5UJTNMj3dALPdAtPdH7r7UaQY22lzrPakcrnO2R44ni278qk2cf+5+qPz372MVS4FVn707AtG+hdfS1o9OXYrow3ZihK3pm/5fUonu+gVV71a7zonDxhx+VvfCLcYPk7+34CcpzKXkhRfn5ZGY5bFUUk5jCLPdjERmsIIcS1z/ACc5wLg1IsrQkpTupUiTUjONLSNkPIVKSSQ==</latexit>
x
<latexit sha1_base64="Qqfga3YaBoUI0Yb7fQVzumPP1Sw=">AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U=</latexit>
y
sample max
sample min
We would like to find X better than (hopefully) the currently known best .
<latexit sha1_base64="g1U7Tzgl+Lj3TSOL2Mnl/fuxw90=">AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVW5UVEpLooiuOzDPqAtJYljDc2LJC3W0B9w6cZF3Si4ED/AD3DjD7joJ4jLCm5ceJsGRIv1hsmcOXPPnTNzRUORLRux6+PGxicmp/zTgZnZ4FwoPL+Qt/SGKbGcpCu6WRQFiymyxnK2bCusaJhMUEWFFcT6fn+/0GSmJevakd0yWEUVapp8IkuCTVSxLKrOWbvKV8NRjKMbkWHAeyAKXqT08COU4Rh0kKABKjDQwCasgAAWfSXgAcEgrgIOcSYh2d1n0IYAaRuUxShDILZO/xqtSh6r0bpf03LVEp2i0DBJGYEYvuA99vAZH/AVP/+s5bg1+l5aNIsDLTOqoYul7Me/KpVmG06/VSM923ACO65XmbwbLtO/hTTQN8+vetlEJuas4i2+kf8b7OIT3UBrvkt3aZbpjPAjkhd6MWoQ/7sdwyC/Hue34pjejCb3vFb5YRlWYI36sQ1JOIQU5Nw+XEIHrrkgt8EluN1BKufzNIvwI7iDL6QMku0=</latexit>
x1
<latexit sha1_base64="HrABz/ySZPgA1Ybj81k3XV8tH68=">AAACi3ichVHNSgJRFD5Of2aZVpugjSRGKzlaVEgLKYKW/uQPqMjMdLXB+WNmlGzwBVq2aWGbghbRA/QAbXqBFj5CtDRo06LjOBAl2Rnu3O9+93znfvceQZcl00LsebiJyanpGe+sb27evxAILi7lTa1piCwnarJmFAXeZLKkspwlWTIr6gbjFUFmBaFxMNgvtJhhSpp6bLV1VlH4uirVJJG3iCqWBcU+61Tj1WAYo+hEaBTEXBAGN1Ja8BHKcAIaiNAEBRioYBGWgQeTvhLEAEEnrgI2cQYhydln0AEfaZuUxSiDJ7ZB/zqtSi6r0npQ03TUIp0i0zBIGYIIvuA99vEZH/AVP/+sZTs1Bl7aNAtDLdOrgYuV7Me/KoVmC06/VWM9W1CDXcerRN51hxncQhzqW+dX/WwiE7HX8RbfyP8N9vCJbqC23sW7NMt0x/gRyAu9GDUo9rsdoyAfj8a2o5jeCif33VZ5YRXWYIP6sQNJOIIU5Jw+XEIXrjk/t8kluL1hKudxNcvwI7jDL6Ysku4=</latexit>
x2
<latexit sha1_base64="qj6YHRPaHOekeYfY3235sFbWBxQ=">AAAChHichVHNLgNRFP6M/98WG4lNoyEW0pzpn9YCYWOpqDYpkZlxMel0ZjIzbULjBdgSCysSC/EAHsDGC1h4BLEksbFwZloRi3Ju7r3nfud85373HtU2dNcjem6T2js6u7p7evv6BwaHQuHhkU3XqjqayGuWYTlFVXGFoZsi7+meIYq2I5SKaoiCWl7244WacFzdMje8Q1tsV5R9U9/TNcVjKLewE45SLJtJUzIeoRhRJk5pdlIkZ+VsRGbEtyiatmqF77GFXVjQUEUFAiY89g0ocHmUIINgM7aNOmMOe3oQFzhGH3OrnCU4Q2G0zOs+n0pN1OSzX9MN2BrfYvB0mBnBJD3RLb3RI93RC322rFUPavhaDnlXG1xh74ROxtY//mVVePdw8MP6U7OHPWQCrTprtwPEf4XW4NeOLt7W59Ym61N0Ta+s/4qe6YFfYNbetZucWLv8Q4/KWvjHuEHfXYi0djbjMTkdS+SS0cWlZqt6MI4JTHM/ZrGIFawiz/UFTnGGc6lLmpESUqqRKrU1OaP4ZdL8F+zrkAQ=</latexit>
?
<latexit sha1_base64="qj6YHRPaHOekeYfY3235sFbWBxQ=">AAAChHichVHNLgNRFP6M/98WG4lNoyEW0pzpn9YCYWOpqDYpkZlxMel0ZjIzbULjBdgSCysSC/EAHsDGC1h4BLEksbFwZloRi3Ju7r3nfud85373HtU2dNcjem6T2js6u7p7evv6BwaHQuHhkU3XqjqayGuWYTlFVXGFoZsi7+meIYq2I5SKaoiCWl7244WacFzdMje8Q1tsV5R9U9/TNcVjKLewE45SLJtJUzIeoRhRJk5pdlIkZ+VsRGbEtyiatmqF77GFXVjQUEUFAiY89g0ocHmUIINgM7aNOmMOe3oQFzhGH3OrnCU4Q2G0zOs+n0pN1OSzX9MN2BrfYvB0mBnBJD3RLb3RI93RC322rFUPavhaDnlXG1xh74ROxtY//mVVePdw8MP6U7OHPWQCrTprtwPEf4XW4NeOLt7W59Ym61N0Ta+s/4qe6YFfYNbetZucWLv8Q4/KWvjHuEHfXYi0djbjMTkdS+SS0cWlZqt6MI4JTHM/ZrGIFawiz/UFTnGGc6lLmpESUqqRKrU1OaP4ZdL8F+zrkAQ=</latexit>
?
<latexit sha1_base64="qj6YHRPaHOekeYfY3235sFbWBxQ=">AAAChHichVHNLgNRFP6M/98WG4lNoyEW0pzpn9YCYWOpqDYpkZlxMel0ZjIzbULjBdgSCysSC/EAHsDGC1h4BLEksbFwZloRi3Ju7r3nfud85373HtU2dNcjem6T2js6u7p7evv6BwaHQuHhkU3XqjqayGuWYTlFVXGFoZsi7+meIYq2I5SKaoiCWl7244WacFzdMje8Q1tsV5R9U9/TNcVjKLewE45SLJtJUzIeoRhRJk5pdlIkZ+VsRGbEtyiatmqF77GFXVjQUEUFAiY89g0ocHmUIINgM7aNOmMOe3oQFzhGH3OrnCU4Q2G0zOs+n0pN1OSzX9MN2BrfYvB0mBnBJD3RLb3RI93RC322rFUPavhaDnlXG1xh74ROxtY//mVVePdw8MP6U7OHPWQCrTprtwPEf4XW4NeOLt7W59Ym61N0Ta+s/4qe6YFfYNbetZucWLv8Q4/KWvjHuEHfXYi0djbjMTkdS+SS0cWlZqt6MI4JTHM/ZrGIFawiz/UFTnGGc6lLmpESUqqRKrU1OaP4ZdL8F+zrkAQ=</latexit>
?
<latexit sha1_base64="qj6YHRPaHOekeYfY3235sFbWBxQ=">AAAChHichVHNLgNRFP6M/98WG4lNoyEW0pzpn9YCYWOpqDYpkZlxMel0ZjIzbULjBdgSCysSC/EAHsDGC1h4BLEksbFwZloRi3Ju7r3nfud85373HtU2dNcjem6T2js6u7p7evv6BwaHQuHhkU3XqjqayGuWYTlFVXGFoZsi7+meIYq2I5SKaoiCWl7244WacFzdMje8Q1tsV5R9U9/TNcVjKLewE45SLJtJUzIeoRhRJk5pdlIkZ+VsRGbEtyiatmqF77GFXVjQUEUFAiY89g0ocHmUIINgM7aNOmMOe3oQFzhGH3OrnCU4Q2G0zOs+n0pN1OSzX9MN2BrfYvB0mBnBJD3RLb3RI93RC322rFUPavhaDnlXG1xh74ROxtY//mVVePdw8MP6U7OHPWQCrTprtwPEf4XW4NeOLt7W59Ym61N0Ta+s/4qe6YFfYNbetZucWLv8Q4/KWvjHuEHfXYi0djbjMTkdS+SS0cWlZqt6MI4JTHM/ZrGIFawiz/UFTnGGc6lLmpESUqqRKrU1OaP4ZdL8F+zrkAQ=</latexit>
?
<latexit sha1_base64="qj6YHRPaHOekeYfY3235sFbWBxQ=">AAAChHichVHNLgNRFP6M/98WG4lNoyEW0pzpn9YCYWOpqDYpkZlxMel0ZjIzbULjBdgSCysSC/EAHsDGC1h4BLEksbFwZloRi3Ju7r3nfud85373HtU2dNcjem6T2js6u7p7evv6BwaHQuHhkU3XqjqayGuWYTlFVXGFoZsi7+meIYq2I5SKaoiCWl7244WacFzdMje8Q1tsV5R9U9/TNcVjKLewE45SLJtJUzIeoRhRJk5pdlIkZ+VsRGbEtyiatmqF77GFXVjQUEUFAiY89g0ocHmUIINgM7aNOmMOe3oQFzhGH3OrnCU4Q2G0zOs+n0pN1OSzX9MN2BrfYvB0mBnBJD3RLb3RI93RC322rFUPavhaDnlXG1xh74ROxtY//mVVePdw8MP6U7OHPWQCrTprtwPEf4XW4NeOLt7W59Ym61N0Ta+s/4qe6YFfYNbetZucWLv8Q4/KWvjHuEHfXYi0djbjMTkdS+SS0cWlZqt6MI4JTHM/ZrGIFawiz/UFTnGGc6lLmpESUqqRKrU1OaP4ZdL8F+zrkAQ=</latexit>
?
What next location of is likely to give higher ?
<latexit sha1_base64="GizvUUdXn2Kx+/exfuoNL7eSBEo=">AAACiXichVG7TgJBFD2sL8QHqI2JDZFgrMgsEh5WRBtLHgImYMzuOuDqvrK7EJX4A1Z2Rq00sTB+gB9g4w9Y8AnGEhMbCy8LxliodzM7Z87cc+fMXNnSVMdlrOMThoZHRsf844GJyanpYGhmtuyYTVvhJcXUTHtLlhyuqQYvuaqr8S3L5pIua7wiH6z39istbjuqaWy6Rxbf1qWGodZVRXKJKtdkvX14shOKsFg8kxRTK2EPJFKiB+JiOhMWY8yLCAaRM0MPqGEXJhQ0oYPDgEtYgwSHvipEMFjEbaNNnE1I9fY5ThAgbZOyOGVIxB7Qv0Gr6oA1aN2r6XhqhU7RaNikDCPKntkd67Inds9e2MevtdpejZ6XI5rlvpZbO8HT+eL7vyqdZhd736o/PbuoI+15Vcm75TG9Wyh9fev4vFtcLUTbS+yGvZL/a9Zhj3QDo/Wm3OZ54eoPPzJ5oRejBn11Ifw7KMdjYjK2kk9EsmuDVvmxgEUsUz9SyGIDOZSo/j7OcIFLYUIQhbSw2k8VfAPNHH6EsP4J1yOSpA==</latexit>
x <latexit sha1_base64="fNJj/X2guXDQcypavSpjd2rZHL0=">AAAChHichVG7SgNBFD1ZXzG+ojaCzWJQLGSZTWISLUS0sczDqKAiu+skLu6L3U0gBn9AW8XCSsFC/AA/wMYfsMgniKWCjYV3NxGxUO8yO2fO3HPnzFzVMXTPZ6wVEbq6e3r7ov2xgcGh4ZH46NiGZ9dcjZc127DdLVXxuKFbvOzrvsG3HJcrpmrwTfVwNdjfrHPX021r3W84fNdUqpZe0TXFJ6rQ2IsnmJRcyMjZlBiCdFYOQVLOLYiyxMJIoBN5O36PHezDhoYaTHBY8AkbUODRtw0ZDA5xu2gS5xLSw32OY8RIW6MsThkKsYf0r9Jqu8NatA5qeqFao1MMGi4pRUyzJ3bLXtkju2PP7OPXWs2wRuClQbPa1nJnb+RkovT+r8qk2cfBt+pPzz4qyIVedfLuhExwC62trx9dvJYWi9PNGXbNXsj/FWuxB7qBVX/Tbgq8ePmHH5W80ItRg766IP4ONpKSnJFShXRieaXTqigmMYVZ6kcWy1hDHmWqz3GKM5wLvcKckBLm26lCpKMZx48Qlj4BjPuQUA==</latexit>
y
Exploitation Make the best decision given current information
Exploration Gather more information by probing uncertain areas
A fundamental choice: exploitation-exploration tradeoff
<latexit sha1_base64="g1U7Tzgl+Lj3TSOL2Mnl/fuxw90=">AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVW5UVEpLooiuOzDPqAtJYljDc2LJC3W0B9w6cZF3Si4ED/AD3DjD7joJ4jLCm5ceJsGRIv1hsmcOXPPnTNzRUORLRux6+PGxicmp/zTgZnZ4FwoPL+Qt/SGKbGcpCu6WRQFiymyxnK2bCusaJhMUEWFFcT6fn+/0GSmJevakd0yWEUVapp8IkuCTVSxLKrOWbvKV8NRjKMbkWHAeyAKXqT08COU4Rh0kKABKjDQwCasgAAWfSXgAcEgrgIOcSYh2d1n0IYAaRuUxShDILZO/xqtSh6r0bpf03LVEp2i0DBJGYEYvuA99vAZH/AVP/+s5bg1+l5aNIsDLTOqoYul7Me/KpVmG06/VSM923ACO65XmbwbLtO/hTTQN8+vetlEJuas4i2+kf8b7OIT3UBrvkt3aZbpjPAjkhd6MWoQ/7sdwyC/Hue34pjejCb3vFb5YRlWYI36sQ1JOIQU5Nw+XEIHrrkgt8EluN1BKufzNIvwI7iDL6QMku0=</latexit>
x1
<latexit sha1_base64="HrABz/ySZPgA1Ybj81k3XV8tH68=">AAACi3ichVHNSgJRFD5Of2aZVpugjSRGKzlaVEgLKYKW/uQPqMjMdLXB+WNmlGzwBVq2aWGbghbRA/QAbXqBFj5CtDRo06LjOBAl2Rnu3O9+93znfvceQZcl00LsebiJyanpGe+sb27evxAILi7lTa1piCwnarJmFAXeZLKkspwlWTIr6gbjFUFmBaFxMNgvtJhhSpp6bLV1VlH4uirVJJG3iCqWBcU+61Tj1WAYo+hEaBTEXBAGN1Ja8BHKcAIaiNAEBRioYBGWgQeTvhLEAEEnrgI2cQYhydln0AEfaZuUxSiDJ7ZB/zqtSi6r0npQ03TUIp0i0zBIGYIIvuA99vEZH/AVP/+sZTs1Bl7aNAtDLdOrgYuV7Me/KoVmC06/VWM9W1CDXcerRN51hxncQhzqW+dX/WwiE7HX8RbfyP8N9vCJbqC23sW7NMt0x/gRyAu9GDUo9rsdoyAfj8a2o5jeCif33VZ5YRXWYIP6sQNJOIIU5Jw+XEIXrjk/t8kluL1hKudxNcvwI7jDL6Ysku4=</latexit>
x2
exploitative choice
explorative choice
<latexit sha1_base64="TEyxI6Ffe+b+OEFRulxYJ0sUB8w=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBGBdk8IVxRXTjkoc8EkTS1gEbStu0hQSJP2DiVhauNHFh/AA/wI0/4IJPMC4xcePCS2lilIi3mc6ZM/fcOTNXMlTFshnreISR0bHxCe+kb2p6ZtYfmJvPWnrdlHlG1lXdzEuixVVF4xlbsVWeN0wu1iSV56Tqfm8/1+Cmpejaod00eLEmVjSlrMiiTVS6ebxWCoRYhDkRHARRF4TgRkIPPOIIJ9Aho44aODTYhFWIsOgrIAoGg7giWsSZhBRnn+McPtLWKYtThkhslf4VWhVcVqN1r6blqGU6RaVhkjKIMHth96zLntkDe2Wff9ZqOTV6Xpo0S30tN0r+i8X0x7+qGs02Tr9VQz3bKGPH8aqQd8NhereQ+/rGWbub3k2FWyvslr2R/xvWYU90A63xLt8leep6iB+JvNCLUYOiv9sxCLLrkeh2ZCO5GYrvua3yYgnLWKV+xBDHARLIUP0KLnGFtuAVIsKWEOunCh5Xs4AfIcS/AEWBkJQ=</latexit>
y⇤
<latexit sha1_base64="ivVWRQUyNt8f9PjHjZnGRvohU5E=">AAAChnichVG5TsNAEH2YK9wBGiSaiCgIUURjbqgiaChDQg6JS7ZZgoVjW7YTKUT8ABItFFQgUSA+gA+g4Qco8gmIMkg0FEwcI6BImNXuzr6ZN/t2R7UN3fWIah1SZ1d3T2+or39gcGh4JDw6lnWtkqOJjGYZlpNXFVcYuikynu4ZIm87QimqhsipJxuNeK4sHFe3zG2vYou9olIw9SNdUzyG0pX92YNwlOLkW+SXs0jy6pIckQMkisCSVvgRuziEBQ0lFCFgwmPfgAKXxw5kEGzG9lBlzGFP9+MCZ+hnbomzBGcojJ7wWuDTToCafG7UdH22xrcYPB1mRhCjF7qnOj3TA73SZ8taVb9GQ0uFd7XJFfbByPlE+uNfVpF3D8c/rLaaPRxhxdeqs3bbRxqv0Jr88ulVPb2WilWn6ZbeWP8N1eiJX2CW37W7LZG6bqNHZS38Y9yg7y5EWjvZubi8FJ/fWogm1oNWhTCJKcxwP5aRwCaSyHD9Ai5wiSspJMWlRWm5mSp1BJxx/DEp8QVx95Cq</latexit>
y⇤
Random choice (e.g. random design) or
evenly spaced sampling (e.g. full factorial
design) can also work for lower dimensional
exploration.
/ 35
25
#3. Optimism in the face of uncertainty
<latexit sha1_base64="Nr2ImZk9Gvp+/1cBWPwAK6yswp0=">AAACiXichVFNLwNRFD0dX1VfxUZi02iIVXNHBOmq0Y1lP7QkiMyMh9H5ysy0UU3/gJWdYEViIX6AH2DjD1j0J4gliY2F2+kkguBO3rzzzrvnvvPeVR1D93yiVkTq6u7p7Yv2xwYGh4ZH4qNjZc+uupooabZhu+uq4glDt0TJ131DrDuuUEzVEGtqJdveX6sJ19Nta9WvO2LLVPYsfVfXFJ+p8qZqNg6b2/EkpSiIxE8ghyCJMHJ2/A6b2IENDVWYELDgMzagwONvAzIIDnNbaDDnMtKDfYEmYqytcpbgDIXZCv/3eLURshav2zW9QK3xKQYPl5UJTNMj3dALPdAtPdH7r7UaQY22lzrPakcrnO2R44ni278qk2cf+5+qPz372MVS4FVn707AtG+hdfS1o9OXYrow3ZihK3pm/5fUonu+gVV71a7zonDxhx+VvfCLcYPk7+34CcpzKXkhRfn5ZGY5bFUUk5jCLPdjERmsIIcS1z/ACc5wLg1IsrQkpTupUiTUjONLSNkPIVKSSQ==</latexit>
x
<latexit sha1_base64="Qqfga3YaBoUI0Yb7fQVzumPP1Sw=">AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U=</latexit>
y
sample max
sample min
We would like to find X better than (hopefully) the currently known best .
<latexit sha1_base64="g1U7Tzgl+Lj3TSOL2Mnl/fuxw90=">AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVW5UVEpLooiuOzDPqAtJYljDc2LJC3W0B9w6cZF3Si4ED/AD3DjD7joJ4jLCm5ceJsGRIv1hsmcOXPPnTNzRUORLRux6+PGxicmp/zTgZnZ4FwoPL+Qt/SGKbGcpCu6WRQFiymyxnK2bCusaJhMUEWFFcT6fn+/0GSmJevakd0yWEUVapp8IkuCTVSxLKrOWbvKV8NRjKMbkWHAeyAKXqT08COU4Rh0kKABKjDQwCasgAAWfSXgAcEgrgIOcSYh2d1n0IYAaRuUxShDILZO/xqtSh6r0bpf03LVEp2i0DBJGYEYvuA99vAZH/AVP/+s5bg1+l5aNIsDLTOqoYul7Me/KpVmG06/VSM923ACO65XmbwbLtO/hTTQN8+vetlEJuas4i2+kf8b7OIT3UBrvkt3aZbpjPAjkhd6MWoQ/7sdwyC/Hue34pjejCb3vFb5YRlWYI36sQ1JOIQU5Nw+XEIHrrkgt8EluN1BKufzNIvwI7iDL6QMku0=</latexit>
x1
<latexit sha1_base64="HrABz/ySZPgA1Ybj81k3XV8tH68=">AAACi3ichVHNSgJRFD5Of2aZVpugjSRGKzlaVEgLKYKW/uQPqMjMdLXB+WNmlGzwBVq2aWGbghbRA/QAbXqBFj5CtDRo06LjOBAl2Rnu3O9+93znfvceQZcl00LsebiJyanpGe+sb27evxAILi7lTa1piCwnarJmFAXeZLKkspwlWTIr6gbjFUFmBaFxMNgvtJhhSpp6bLV1VlH4uirVJJG3iCqWBcU+61Tj1WAYo+hEaBTEXBAGN1Ja8BHKcAIaiNAEBRioYBGWgQeTvhLEAEEnrgI2cQYhydln0AEfaZuUxSiDJ7ZB/zqtSi6r0npQ03TUIp0i0zBIGYIIvuA99vEZH/AVP/+sZTs1Bl7aNAtDLdOrgYuV7Me/KoVmC06/VWM9W1CDXcerRN51hxncQhzqW+dX/WwiE7HX8RbfyP8N9vCJbqC23sW7NMt0x/gRyAu9GDUo9rsdoyAfj8a2o5jeCif33VZ5YRXWYIP6sQNJOIIU5Jw+XEIXrjk/t8kluL1hKudxNcvwI7jDL6Ysku4=</latexit>
x2
<latexit sha1_base64="qj6YHRPaHOekeYfY3235sFbWBxQ=">AAAChHichVHNLgNRFP6M/98WG4lNoyEW0pzpn9YCYWOpqDYpkZlxMel0ZjIzbULjBdgSCysSC/EAHsDGC1h4BLEksbFwZloRi3Ju7r3nfud85373HtU2dNcjem6T2js6u7p7evv6BwaHQuHhkU3XqjqayGuWYTlFVXGFoZsi7+meIYq2I5SKaoiCWl7244WacFzdMje8Q1tsV5R9U9/TNcVjKLewE45SLJtJUzIeoRhRJk5pdlIkZ+VsRGbEtyiatmqF77GFXVjQUEUFAiY89g0ocHmUIINgM7aNOmMOe3oQFzhGH3OrnCU4Q2G0zOs+n0pN1OSzX9MN2BrfYvB0mBnBJD3RLb3RI93RC322rFUPavhaDnlXG1xh74ROxtY//mVVePdw8MP6U7OHPWQCrTprtwPEf4XW4NeOLt7W59Ym61N0Ta+s/4qe6YFfYNbetZucWLv8Q4/KWvjHuEHfXYi0djbjMTkdS+SS0cWlZqt6MI4JTHM/ZrGIFawiz/UFTnGGc6lLmpESUqqRKrU1OaP4ZdL8F+zrkAQ=</latexit>
?
<latexit sha1_base64="qj6YHRPaHOekeYfY3235sFbWBxQ=">AAAChHichVHNLgNRFP6M/98WG4lNoyEW0pzpn9YCYWOpqDYpkZlxMel0ZjIzbULjBdgSCysSC/EAHsDGC1h4BLEksbFwZloRi3Ju7r3nfud85373HtU2dNcjem6T2js6u7p7evv6BwaHQuHhkU3XqjqayGuWYTlFVXGFoZsi7+meIYq2I5SKaoiCWl7244WacFzdMje8Q1tsV5R9U9/TNcVjKLewE45SLJtJUzIeoRhRJk5pdlIkZ+VsRGbEtyiatmqF77GFXVjQUEUFAiY89g0ocHmUIINgM7aNOmMOe3oQFzhGH3OrnCU4Q2G0zOs+n0pN1OSzX9MN2BrfYvB0mBnBJD3RLb3RI93RC322rFUPavhaDnlXG1xh74ROxtY//mVVePdw8MP6U7OHPWQCrTprtwPEf4XW4NeOLt7W59Ym61N0Ta+s/4qe6YFfYNbetZucWLv8Q4/KWvjHuEHfXYi0djbjMTkdS+SS0cWlZqt6MI4JTHM/ZrGIFawiz/UFTnGGc6lLmpESUqqRKrU1OaP4ZdL8F+zrkAQ=</latexit>
?
<latexit sha1_base64="qj6YHRPaHOekeYfY3235sFbWBxQ=">AAAChHichVHNLgNRFP6M/98WG4lNoyEW0pzpn9YCYWOpqDYpkZlxMel0ZjIzbULjBdgSCysSC/EAHsDGC1h4BLEksbFwZloRi3Ju7r3nfud85373HtU2dNcjem6T2js6u7p7evv6BwaHQuHhkU3XqjqayGuWYTlFVXGFoZsi7+meIYq2I5SKaoiCWl7244WacFzdMje8Q1tsV5R9U9/TNcVjKLewE45SLJtJUzIeoRhRJk5pdlIkZ+VsRGbEtyiatmqF77GFXVjQUEUFAiY89g0ocHmUIINgM7aNOmMOe3oQFzhGH3OrnCU4Q2G0zOs+n0pN1OSzX9MN2BrfYvB0mBnBJD3RLb3RI93RC322rFUPavhaDnlXG1xh74ROxtY//mVVePdw8MP6U7OHPWQCrTprtwPEf4XW4NeOLt7W59Ym61N0Ta+s/4qe6YFfYNbetZucWLv8Q4/KWvjHuEHfXYi0djbjMTkdS+SS0cWlZqt6MI4JTHM/ZrGIFawiz/UFTnGGc6lLmpESUqqRKrU1OaP4ZdL8F+zrkAQ=</latexit>
?
<latexit sha1_base64="qj6YHRPaHOekeYfY3235sFbWBxQ=">AAAChHichVHNLgNRFP6M/98WG4lNoyEW0pzpn9YCYWOpqDYpkZlxMel0ZjIzbULjBdgSCysSC/EAHsDGC1h4BLEksbFwZloRi3Ju7r3nfud85373HtU2dNcjem6T2js6u7p7evv6BwaHQuHhkU3XqjqayGuWYTlFVXGFoZsi7+meIYq2I5SKaoiCWl7244WacFzdMje8Q1tsV5R9U9/TNcVjKLewE45SLJtJUzIeoRhRJk5pdlIkZ+VsRGbEtyiatmqF77GFXVjQUEUFAiY89g0ocHmUIINgM7aNOmMOe3oQFzhGH3OrnCU4Q2G0zOs+n0pN1OSzX9MN2BrfYvB0mBnBJD3RLb3RI93RC322rFUPavhaDnlXG1xh74ROxtY//mVVePdw8MP6U7OHPWQCrTprtwPEf4XW4NeOLt7W59Ym61N0Ta+s/4qe6YFfYNbetZucWLv8Q4/KWvjHuEHfXYi0djbjMTkdS+SS0cWlZqt6MI4JTHM/ZrGIFawiz/UFTnGGc6lLmpESUqqRKrU1OaP4ZdL8F+zrkAQ=</latexit>
?
<latexit sha1_base64="qj6YHRPaHOekeYfY3235sFbWBxQ=">AAAChHichVHNLgNRFP6M/98WG4lNoyEW0pzpn9YCYWOpqDYpkZlxMel0ZjIzbULjBdgSCysSC/EAHsDGC1h4BLEksbFwZloRi3Ju7r3nfud85373HtU2dNcjem6T2js6u7p7evv6BwaHQuHhkU3XqjqayGuWYTlFVXGFoZsi7+meIYq2I5SKaoiCWl7244WacFzdMje8Q1tsV5R9U9/TNcVjKLewE45SLJtJUzIeoRhRJk5pdlIkZ+VsRGbEtyiatmqF77GFXVjQUEUFAiY89g0ocHmUIINgM7aNOmMOe3oQFzhGH3OrnCU4Q2G0zOs+n0pN1OSzX9MN2BrfYvB0mBnBJD3RLb3RI93RC322rFUPavhaDnlXG1xh74ROxtY//mVVePdw8MP6U7OHPWQCrTprtwPEf4XW4NeOLt7W59Ym61N0Ta+s/4qe6YFfYNbetZucWLv8Q4/KWvjHuEHfXYi0djbjMTkdS+SS0cWlZqt6MI4JTHM/ZrGIFawiz/UFTnGGc6lLmpESUqqRKrU1OaP4ZdL8F+zrkAQ=</latexit>
?
What next location of is likely to give higher ?
<latexit sha1_base64="GizvUUdXn2Kx+/exfuoNL7eSBEo=">AAACiXichVG7TgJBFD2sL8QHqI2JDZFgrMgsEh5WRBtLHgImYMzuOuDqvrK7EJX4A1Z2Rq00sTB+gB9g4w9Y8AnGEhMbCy8LxliodzM7Z87cc+fMXNnSVMdlrOMThoZHRsf844GJyanpYGhmtuyYTVvhJcXUTHtLlhyuqQYvuaqr8S3L5pIua7wiH6z39istbjuqaWy6Rxbf1qWGodZVRXKJKtdkvX14shOKsFg8kxRTK2EPJFKiB+JiOhMWY8yLCAaRM0MPqGEXJhQ0oYPDgEtYgwSHvipEMFjEbaNNnE1I9fY5ThAgbZOyOGVIxB7Qv0Gr6oA1aN2r6XhqhU7RaNikDCPKntkd67Inds9e2MevtdpejZ6XI5rlvpZbO8HT+eL7vyqdZhd736o/PbuoI+15Vcm75TG9Wyh9fev4vFtcLUTbS+yGvZL/a9Zhj3QDo/Wm3OZ54eoPPzJ5oRejBn11Ifw7KMdjYjK2kk9EsmuDVvmxgEUsUz9SyGIDOZSo/j7OcIFLYUIQhbSw2k8VfAPNHH6EsP4J1yOSpA==</latexit>
x <latexit sha1_base64="fNJj/X2guXDQcypavSpjd2rZHL0=">AAAChHichVG7SgNBFD1ZXzG+ojaCzWJQLGSZTWISLUS0sczDqKAiu+skLu6L3U0gBn9AW8XCSsFC/AA/wMYfsMgniKWCjYV3NxGxUO8yO2fO3HPnzFzVMXTPZ6wVEbq6e3r7ov2xgcGh4ZH46NiGZ9dcjZc127DdLVXxuKFbvOzrvsG3HJcrpmrwTfVwNdjfrHPX021r3W84fNdUqpZe0TXFJ6rQ2IsnmJRcyMjZlBiCdFYOQVLOLYiyxMJIoBN5O36PHezDhoYaTHBY8AkbUODRtw0ZDA5xu2gS5xLSw32OY8RIW6MsThkKsYf0r9Jqu8NatA5qeqFao1MMGi4pRUyzJ3bLXtkju2PP7OPXWs2wRuClQbPa1nJnb+RkovT+r8qk2cfBt+pPzz4qyIVedfLuhExwC62trx9dvJYWi9PNGXbNXsj/FWuxB7qBVX/Tbgq8ePmHH5W80ItRg766IP4ONpKSnJFShXRieaXTqigmMYVZ6kcWy1hDHmWqz3GKM5wLvcKckBLm26lCpKMZx48Qlj4BjPuQUA==</latexit>
y
Exploitation Make the best decision given current information
Exploration Gather more information by probing uncertain areas
A fundamental choice: exploitation-exploration tradeoff
<latexit sha1_base64="g1U7Tzgl+Lj3TSOL2Mnl/fuxw90=">AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVW5UVEpLooiuOzDPqAtJYljDc2LJC3W0B9w6cZF3Si4ED/AD3DjD7joJ4jLCm5ceJsGRIv1hsmcOXPPnTNzRUORLRux6+PGxicmp/zTgZnZ4FwoPL+Qt/SGKbGcpCu6WRQFiymyxnK2bCusaJhMUEWFFcT6fn+/0GSmJevakd0yWEUVapp8IkuCTVSxLKrOWbvKV8NRjKMbkWHAeyAKXqT08COU4Rh0kKABKjDQwCasgAAWfSXgAcEgrgIOcSYh2d1n0IYAaRuUxShDILZO/xqtSh6r0bpf03LVEp2i0DBJGYEYvuA99vAZH/AVP/+s5bg1+l5aNIsDLTOqoYul7Me/KpVmG06/VSM923ACO65XmbwbLtO/hTTQN8+vetlEJuas4i2+kf8b7OIT3UBrvkt3aZbpjPAjkhd6MWoQ/7sdwyC/Hue34pjejCb3vFb5YRlWYI36sQ1JOIQU5Nw+XEIHrrkgt8EluN1BKufzNIvwI7iDL6QMku0=</latexit>
x1
<latexit sha1_base64="HrABz/ySZPgA1Ybj81k3XV8tH68=">AAACi3ichVHNSgJRFD5Of2aZVpugjSRGKzlaVEgLKYKW/uQPqMjMdLXB+WNmlGzwBVq2aWGbghbRA/QAbXqBFj5CtDRo06LjOBAl2Rnu3O9+93znfvceQZcl00LsebiJyanpGe+sb27evxAILi7lTa1piCwnarJmFAXeZLKkspwlWTIr6gbjFUFmBaFxMNgvtJhhSpp6bLV1VlH4uirVJJG3iCqWBcU+61Tj1WAYo+hEaBTEXBAGN1Ja8BHKcAIaiNAEBRioYBGWgQeTvhLEAEEnrgI2cQYhydln0AEfaZuUxSiDJ7ZB/zqtSi6r0npQ03TUIp0i0zBIGYIIvuA99vEZH/AVP/+sZTs1Bl7aNAtDLdOrgYuV7Me/KoVmC06/VWM9W1CDXcerRN51hxncQhzqW+dX/WwiE7HX8RbfyP8N9vCJbqC23sW7NMt0x/gRyAu9GDUo9rsdoyAfj8a2o5jeCif33VZ5YRXWYIP6sQNJOIIU5Jw+XEIXrjk/t8kluL1hKudxNcvwI7jDL6Ysku4=</latexit>
x2
exploitative choice
explorative choice
<latexit sha1_base64="TEyxI6Ffe+b+OEFRulxYJ0sUB8w=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBGBdk8IVxRXTjkoc8EkTS1gEbStu0hQSJP2DiVhauNHFh/AA/wI0/4IJPMC4xcePCS2lilIi3mc6ZM/fcOTNXMlTFshnreISR0bHxCe+kb2p6ZtYfmJvPWnrdlHlG1lXdzEuixVVF4xlbsVWeN0wu1iSV56Tqfm8/1+Cmpejaod00eLEmVjSlrMiiTVS6ebxWCoRYhDkRHARRF4TgRkIPPOIIJ9Aho44aODTYhFWIsOgrIAoGg7giWsSZhBRnn+McPtLWKYtThkhslf4VWhVcVqN1r6blqGU6RaVhkjKIMHth96zLntkDe2Wff9ZqOTV6Xpo0S30tN0r+i8X0x7+qGs02Tr9VQz3bKGPH8aqQd8NhereQ+/rGWbub3k2FWyvslr2R/xvWYU90A63xLt8leep6iB+JvNCLUYOiv9sxCLLrkeh2ZCO5GYrvua3yYgnLWKV+xBDHARLIUP0KLnGFtuAVIsKWEOunCh5Xs4AfIcS/AEWBkJQ=</latexit>
y⇤
<latexit sha1_base64="ivVWRQUyNt8f9PjHjZnGRvohU5E=">AAAChnichVG5TsNAEH2YK9wBGiSaiCgIUURjbqgiaChDQg6JS7ZZgoVjW7YTKUT8ABItFFQgUSA+gA+g4Qco8gmIMkg0FEwcI6BImNXuzr6ZN/t2R7UN3fWIah1SZ1d3T2+or39gcGh4JDw6lnWtkqOJjGYZlpNXFVcYuikynu4ZIm87QimqhsipJxuNeK4sHFe3zG2vYou9olIw9SNdUzyG0pX92YNwlOLkW+SXs0jy6pIckQMkisCSVvgRuziEBQ0lFCFgwmPfgAKXxw5kEGzG9lBlzGFP9+MCZ+hnbomzBGcojJ7wWuDTToCafG7UdH22xrcYPB1mRhCjF7qnOj3TA73SZ8taVb9GQ0uFd7XJFfbByPlE+uNfVpF3D8c/rLaaPRxhxdeqs3bbRxqv0Jr88ulVPb2WilWn6ZbeWP8N1eiJX2CW37W7LZG6bqNHZS38Y9yg7y5EWjvZubi8FJ/fWogm1oNWhTCJKcxwP5aRwCaSyHD9Ai5wiSspJMWlRWm5mSp1BJxx/DEp8QVx95Cq</latexit>
y⇤
Random choice (e.g. random design) or
evenly spaced sampling (e.g. full factorial
design) can also work for lower dimensional
exploration.
/ 35
26
#3. Optimism in the face of uncertainty
<latexit sha1_base64="Nr2ImZk9Gvp+/1cBWPwAK6yswp0=">AAACiXichVFNLwNRFD0dX1VfxUZi02iIVXNHBOmq0Y1lP7QkiMyMh9H5ysy0UU3/gJWdYEViIX6AH2DjD1j0J4gliY2F2+kkguBO3rzzzrvnvvPeVR1D93yiVkTq6u7p7Yv2xwYGh4ZH4qNjZc+uupooabZhu+uq4glDt0TJ131DrDuuUEzVEGtqJdveX6sJ19Nta9WvO2LLVPYsfVfXFJ+p8qZqNg6b2/EkpSiIxE8ghyCJMHJ2/A6b2IENDVWYELDgMzagwONvAzIIDnNbaDDnMtKDfYEmYqytcpbgDIXZCv/3eLURshav2zW9QK3xKQYPl5UJTNMj3dALPdAtPdH7r7UaQY22lzrPakcrnO2R44ni278qk2cf+5+qPz372MVS4FVn707AtG+hdfS1o9OXYrow3ZihK3pm/5fUonu+gVV71a7zonDxhx+VvfCLcYPk7+34CcpzKXkhRfn5ZGY5bFUUk5jCLPdjERmsIIcS1z/ACc5wLg1IsrQkpTupUiTUjONLSNkPIVKSSQ==</latexit>
x
<latexit sha1_base64="Qqfga3YaBoUI0Yb7fQVzumPP1Sw=">AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U=</latexit>
y
sample max
sample min
ML fits a function to minimize the average errors, and as a result, ML functions go
through the center (mean) of sample output values.
the currently known best
We would like to find X better than (hopefully) the currently known best.
Now we would like to use ML for the goal.
<latexit sha1_base64="TEyxI6Ffe+b+OEFRulxYJ0sUB8w=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBGBdk8IVxRXTjkoc8EkTS1gEbStu0hQSJP2DiVhauNHFh/AA/wI0/4IJPMC4xcePCS2lilIi3mc6ZM/fcOTNXMlTFshnreISR0bHxCe+kb2p6ZtYfmJvPWnrdlHlG1lXdzEuixVVF4xlbsVWeN0wu1iSV56Tqfm8/1+Cmpejaod00eLEmVjSlrMiiTVS6ebxWCoRYhDkRHARRF4TgRkIPPOIIJ9Aho44aODTYhFWIsOgrIAoGg7giWsSZhBRnn+McPtLWKYtThkhslf4VWhVcVqN1r6blqGU6RaVhkjKIMHth96zLntkDe2Wff9ZqOTV6Xpo0S30tN0r+i8X0x7+qGs02Tr9VQz3bKGPH8aqQd8NhereQ+/rGWbub3k2FWyvslr2R/xvWYU90A63xLt8leep6iB+JvNCLUYOiv9sxCLLrkeh2ZCO5GYrvua3yYgnLWKV+xBDHARLIUP0KLnGFtuAVIsKWEOunCh5Xs4AfIcS/AEWBkJQ=</latexit>
y⇤
goes through here
predictions will be groundless
when it goes beyond this area
unintended extrapolation
When ML is rightly fitted, the predicted values are
never larger than the known best, which is
inconsistent with the goal.
/ 35
26
#3. Optimism in the face of uncertainty
<latexit sha1_base64="Nr2ImZk9Gvp+/1cBWPwAK6yswp0=">AAACiXichVFNLwNRFD0dX1VfxUZi02iIVXNHBOmq0Y1lP7QkiMyMh9H5ysy0UU3/gJWdYEViIX6AH2DjD1j0J4gliY2F2+kkguBO3rzzzrvnvvPeVR1D93yiVkTq6u7p7Yv2xwYGh4ZH4qNjZc+uupooabZhu+uq4glDt0TJ131DrDuuUEzVEGtqJdveX6sJ19Nta9WvO2LLVPYsfVfXFJ+p8qZqNg6b2/EkpSiIxE8ghyCJMHJ2/A6b2IENDVWYELDgMzagwONvAzIIDnNbaDDnMtKDfYEmYqytcpbgDIXZCv/3eLURshav2zW9QK3xKQYPl5UJTNMj3dALPdAtPdH7r7UaQY22lzrPakcrnO2R44ni278qk2cf+5+qPz372MVS4FVn707AtG+hdfS1o9OXYrow3ZihK3pm/5fUonu+gVV71a7zonDxhx+VvfCLcYPk7+34CcpzKXkhRfn5ZGY5bFUUk5jCLPdjERmsIIcS1z/ACc5wLg1IsrQkpTupUiTUjONLSNkPIVKSSQ==</latexit>
x
<latexit sha1_base64="g1U7Tzgl+Lj3TSOL2Mnl/fuxw90=">AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVW5UVEpLooiuOzDPqAtJYljDc2LJC3W0B9w6cZF3Si4ED/AD3DjD7joJ4jLCm5ceJsGRIv1hsmcOXPPnTNzRUORLRux6+PGxicmp/zTgZnZ4FwoPL+Qt/SGKbGcpCu6WRQFiymyxnK2bCusaJhMUEWFFcT6fn+/0GSmJevakd0yWEUVapp8IkuCTVSxLKrOWbvKV8NRjKMbkWHAeyAKXqT08COU4Rh0kKABKjDQwCasgAAWfSXgAcEgrgIOcSYh2d1n0IYAaRuUxShDILZO/xqtSh6r0bpf03LVEp2i0DBJGYEYvuA99vAZH/AVP/+s5bg1+l5aNIsDLTOqoYul7Me/KpVmG06/VSM923ACO65XmbwbLtO/hTTQN8+vetlEJuas4i2+kf8b7OIT3UBrvkt3aZbpjPAjkhd6MWoQ/7sdwyC/Hue34pjejCb3vFb5YRlWYI36sQ1JOIQU5Nw+XEIHrrkgt8EluN1BKufzNIvwI7iDL6QMku0=</latexit>
x1
<latexit sha1_base64="HrABz/ySZPgA1Ybj81k3XV8tH68=">AAACi3ichVHNSgJRFD5Of2aZVpugjSRGKzlaVEgLKYKW/uQPqMjMdLXB+WNmlGzwBVq2aWGbghbRA/QAbXqBFj5CtDRo06LjOBAl2Rnu3O9+93znfvceQZcl00LsebiJyanpGe+sb27evxAILi7lTa1piCwnarJmFAXeZLKkspwlWTIr6gbjFUFmBaFxMNgvtJhhSpp6bLV1VlH4uirVJJG3iCqWBcU+61Tj1WAYo+hEaBTEXBAGN1Ja8BHKcAIaiNAEBRioYBGWgQeTvhLEAEEnrgI2cQYhydln0AEfaZuUxSiDJ7ZB/zqtSi6r0npQ03TUIp0i0zBIGYIIvuA99vEZH/AVP/+sZTs1Bl7aNAtDLdOrgYuV7Me/KoVmC06/VWM9W1CDXcerRN51hxncQhzqW+dX/WwiE7HX8RbfyP8N9vCJbqC23sW7NMt0x/gRyAu9GDUo9rsdoyAfj8a2o5jeCif33VZ5YRXWYIP6sQNJOIIU5Jw+XEIXrjk/t8kluL1hKudxNcvwI7jDL6Ysku4=</latexit>
x2
<latexit sha1_base64="Qqfga3YaBoUI0Yb7fQVzumPP1Sw=">AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U=</latexit>
y
sample max
sample min
ML fits a function to minimize the average errors, and as a result, ML functions go
through the center (mean) of sample output values.
the currently known best
We would like to find X better than (hopefully) the currently known best.
Now we would like to use ML for the goal.
<latexit sha1_base64="TEyxI6Ffe+b+OEFRulxYJ0sUB8w=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBGBdk8IVxRXTjkoc8EkTS1gEbStu0hQSJP2DiVhauNHFh/AA/wI0/4IJPMC4xcePCS2lilIi3mc6ZM/fcOTNXMlTFshnreISR0bHxCe+kb2p6ZtYfmJvPWnrdlHlG1lXdzEuixVVF4xlbsVWeN0wu1iSV56Tqfm8/1+Cmpejaod00eLEmVjSlrMiiTVS6ebxWCoRYhDkRHARRF4TgRkIPPOIIJ9Aho44aODTYhFWIsOgrIAoGg7giWsSZhBRnn+McPtLWKYtThkhslf4VWhVcVqN1r6blqGU6RaVhkjKIMHth96zLntkDe2Wff9ZqOTV6Xpo0S30tN0r+i8X0x7+qGs02Tr9VQz3bKGPH8aqQd8NhereQ+/rGWbub3k2FWyvslr2R/xvWYU90A63xLt8leep6iB+JvNCLUYOiv9sxCLLrkeh2ZCO5GYrvua3yYgnLWKV+xBDHARLIUP0KLnGFtuAVIsKWEOunCh5Xs4AfIcS/AEWBkJQ=</latexit>
y⇤
goes through here
predictions will be groundless
when it goes beyond this area
unintended extrapolation
When ML is rightly fitted, the predicted values are
never larger than the known best, which is
inconsistent with the goal.
/ 35
27
#3. Optimism in the face of uncertainty
<latexit sha1_base64="Nr2ImZk9Gvp+/1cBWPwAK6yswp0=">AAACiXichVFNLwNRFD0dX1VfxUZi02iIVXNHBOmq0Y1lP7QkiMyMh9H5ysy0UU3/gJWdYEViIX6AH2DjD1j0J4gliY2F2+kkguBO3rzzzrvnvvPeVR1D93yiVkTq6u7p7Yv2xwYGh4ZH4qNjZc+uupooabZhu+uq4glDt0TJ131DrDuuUEzVEGtqJdveX6sJ19Nta9WvO2LLVPYsfVfXFJ+p8qZqNg6b2/EkpSiIxE8ghyCJMHJ2/A6b2IENDVWYELDgMzagwONvAzIIDnNbaDDnMtKDfYEmYqytcpbgDIXZCv/3eLURshav2zW9QK3xKQYPl5UJTNMj3dALPdAtPdH7r7UaQY22lzrPakcrnO2R44ni278qk2cf+5+qPz372MVS4FVn707AtG+hdfS1o9OXYrow3ZihK3pm/5fUonu+gVV71a7zonDxhx+VvfCLcYPk7+34CcpzKXkhRfn5ZGY5bFUUk5jCLPdjERmsIIcS1z/ACc5wLg1IsrQkpTupUiTUjONLSNkPIVKSSQ==</latexit>
x
<latexit sha1_base64="g1U7Tzgl+Lj3TSOL2Mnl/fuxw90=">AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVW5UVEpLooiuOzDPqAtJYljDc2LJC3W0B9w6cZF3Si4ED/AD3DjD7joJ4jLCm5ceJsGRIv1hsmcOXPPnTNzRUORLRux6+PGxicmp/zTgZnZ4FwoPL+Qt/SGKbGcpCu6WRQFiymyxnK2bCusaJhMUEWFFcT6fn+/0GSmJevakd0yWEUVapp8IkuCTVSxLKrOWbvKV8NRjKMbkWHAeyAKXqT08COU4Rh0kKABKjDQwCasgAAWfSXgAcEgrgIOcSYh2d1n0IYAaRuUxShDILZO/xqtSh6r0bpf03LVEp2i0DBJGYEYvuA99vAZH/AVP/+s5bg1+l5aNIsDLTOqoYul7Me/KpVmG06/VSM923ACO65XmbwbLtO/hTTQN8+vetlEJuas4i2+kf8b7OIT3UBrvkt3aZbpjPAjkhd6MWoQ/7sdwyC/Hue34pjejCb3vFb5YRlWYI36sQ1JOIQU5Nw+XEIHrrkgt8EluN1BKufzNIvwI7iDL6QMku0=</latexit>
x1
<latexit sha1_base64="HrABz/ySZPgA1Ybj81k3XV8tH68=">AAACi3ichVHNSgJRFD5Of2aZVpugjSRGKzlaVEgLKYKW/uQPqMjMdLXB+WNmlGzwBVq2aWGbghbRA/QAbXqBFj5CtDRo06LjOBAl2Rnu3O9+93znfvceQZcl00LsebiJyanpGe+sb27evxAILi7lTa1piCwnarJmFAXeZLKkspwlWTIr6gbjFUFmBaFxMNgvtJhhSpp6bLV1VlH4uirVJJG3iCqWBcU+61Tj1WAYo+hEaBTEXBAGN1Ja8BHKcAIaiNAEBRioYBGWgQeTvhLEAEEnrgI2cQYhydln0AEfaZuUxSiDJ7ZB/zqtSi6r0npQ03TUIp0i0zBIGYIIvuA99vEZH/AVP/+sZTs1Bl7aNAtDLdOrgYuV7Me/KoVmC06/VWM9W1CDXcerRN51hxncQhzqW+dX/WwiE7HX8RbfyP8N9vCJbqC23sW7NMt0x/gRyAu9GDUo9rsdoyAfj8a2o5jeCif33VZ5YRXWYIP6sQNJOIIU5Jw+XEIXrjk/t8kluL1hKudxNcvwI7jDL6Ysku4=</latexit>
x2
<latexit sha1_base64="Qqfga3YaBoUI0Yb7fQVzumPP1Sw=">AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U=</latexit>
y
sample max
sample min
This is why we need a criterion taking uncertainty into consideration instead of direct
use of ML predicted values to guide exploration.
It’ll be nice to gather more
information around here
even though the mean is
not so high (the predictions
have a large variance)
<latexit sha1_base64="i+Yum6tkJlYfyXr5MYELEoyKzkM=">AAAChHichVFNLwNRFD3GV3222EhsGk3FQpo7rZZaSMPGUlGVIDIzHiadzkxmpk2q8QfYEgsrEgvxA/wAG3/Awk8QSxIbC3dmKmKBO3nzzjvvnvvOe1e1Dd31iJ7apPaOzq7uSE9vX//AYDQ2NLzuWjVHEyXNMixnQ1VcYeimKHm6Z4gN2xFKVTVEWa0s+vvlunBc3TLXvIYttqvKvqnv6ZriMVVs7MQSlErnc2nKx0OQzYVAzqfjcoqCSKAVy1bsDlvYhQUNNVQhYMJjbECBy98mZBBs5rbRZM5hpAf7AkfoZW2NswRnKMxW+L/Pq80Wa/Lar+kGao1PMXg4rIwjSY90Q6/0QLf0TB+/1moGNXwvDZ7VUCvsnejx6Or7v6oqzx4OvlV/evawh9nAq87e7YDxb6GF+vrh+evq3EqyOUFX9ML+L+mJ7vkGZv1Nuy6KlYs//KjshV+MG/TVhfjvYD2dknOpTHE6UVhotSqCMYxjkvsxgwKWsIwS1xc4wSnOpC5pSspI2TBVamtpRvAjpPlPiwOQTw==</latexit>
y
/ 35
27
#3. Optimism in the face of uncertainty
<latexit sha1_base64="Nr2ImZk9Gvp+/1cBWPwAK6yswp0=">AAACiXichVFNLwNRFD0dX1VfxUZi02iIVXNHBOmq0Y1lP7QkiMyMh9H5ysy0UU3/gJWdYEViIX6AH2DjD1j0J4gliY2F2+kkguBO3rzzzrvnvvPeVR1D93yiVkTq6u7p7Yv2xwYGh4ZH4qNjZc+uupooabZhu+uq4glDt0TJ131DrDuuUEzVEGtqJdveX6sJ19Nta9WvO2LLVPYsfVfXFJ+p8qZqNg6b2/EkpSiIxE8ghyCJMHJ2/A6b2IENDVWYELDgMzagwONvAzIIDnNbaDDnMtKDfYEmYqytcpbgDIXZCv/3eLURshav2zW9QK3xKQYPl5UJTNMj3dALPdAtPdH7r7UaQY22lzrPakcrnO2R44ni278qk2cf+5+qPz372MVS4FVn707AtG+hdfS1o9OXYrow3ZihK3pm/5fUonu+gVV71a7zonDxhx+VvfCLcYPk7+34CcpzKXkhRfn5ZGY5bFUUk5jCLPdjERmsIIcS1z/ACc5wLg1IsrQkpTupUiTUjONLSNkPIVKSSQ==</latexit>
x
<latexit sha1_base64="g1U7Tzgl+Lj3TSOL2Mnl/fuxw90=">AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVW5UVEpLooiuOzDPqAtJYljDc2LJC3W0B9w6cZF3Si4ED/AD3DjD7joJ4jLCm5ceJsGRIv1hsmcOXPPnTNzRUORLRux6+PGxicmp/zTgZnZ4FwoPL+Qt/SGKbGcpCu6WRQFiymyxnK2bCusaJhMUEWFFcT6fn+/0GSmJevakd0yWEUVapp8IkuCTVSxLKrOWbvKV8NRjKMbkWHAeyAKXqT08COU4Rh0kKABKjDQwCasgAAWfSXgAcEgrgIOcSYh2d1n0IYAaRuUxShDILZO/xqtSh6r0bpf03LVEp2i0DBJGYEYvuA99vAZH/AVP/+s5bg1+l5aNIsDLTOqoYul7Me/KpVmG06/VSM923ACO65XmbwbLtO/hTTQN8+vetlEJuas4i2+kf8b7OIT3UBrvkt3aZbpjPAjkhd6MWoQ/7sdwyC/Hue34pjejCb3vFb5YRlWYI36sQ1JOIQU5Nw+XEIHrrkgt8EluN1BKufzNIvwI7iDL6QMku0=</latexit>
x1
<latexit sha1_base64="HrABz/ySZPgA1Ybj81k3XV8tH68=">AAACi3ichVHNSgJRFD5Of2aZVpugjSRGKzlaVEgLKYKW/uQPqMjMdLXB+WNmlGzwBVq2aWGbghbRA/QAbXqBFj5CtDRo06LjOBAl2Rnu3O9+93znfvceQZcl00LsebiJyanpGe+sb27evxAILi7lTa1piCwnarJmFAXeZLKkspwlWTIr6gbjFUFmBaFxMNgvtJhhSpp6bLV1VlH4uirVJJG3iCqWBcU+61Tj1WAYo+hEaBTEXBAGN1Ja8BHKcAIaiNAEBRioYBGWgQeTvhLEAEEnrgI2cQYhydln0AEfaZuUxSiDJ7ZB/zqtSi6r0npQ03TUIp0i0zBIGYIIvuA99vEZH/AVP/+sZTs1Bl7aNAtDLdOrgYuV7Me/KoVmC06/VWM9W1CDXcerRN51hxncQhzqW+dX/WwiE7HX8RbfyP8N9vCJbqC23sW7NMt0x/gRyAu9GDUo9rsdoyAfj8a2o5jeCif33VZ5YRXWYIP6sQNJOIIU5Jw+XEIXrjk/t8kluL1hKudxNcvwI7jDL6Ysku4=</latexit>
x2
<latexit sha1_base64="Qqfga3YaBoUI0Yb7fQVzumPP1Sw=">AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U=</latexit>
y
sample max
sample min
This is why we need a criterion taking uncertainty into consideration instead of direct
use of ML predicted values to guide exploration.
It’ll be nice to gather more
information around here
even though the mean is
not so high (the predictions
have a large variance)
<latexit sha1_base64="i+Yum6tkJlYfyXr5MYELEoyKzkM=">AAAChHichVFNLwNRFD3GV3222EhsGk3FQpo7rZZaSMPGUlGVIDIzHiadzkxmpk2q8QfYEgsrEgvxA/wAG3/Awk8QSxIbC3dmKmKBO3nzzjvvnvvOe1e1Dd31iJ7apPaOzq7uSE9vX//AYDQ2NLzuWjVHEyXNMixnQ1VcYeimKHm6Z4gN2xFKVTVEWa0s+vvlunBc3TLXvIYttqvKvqnv6ZriMVVs7MQSlErnc2nKx0OQzYVAzqfjcoqCSKAVy1bsDlvYhQUNNVQhYMJjbECBy98mZBBs5rbRZM5hpAf7AkfoZW2NswRnKMxW+L/Pq80Wa/Lar+kGao1PMXg4rIwjSY90Q6/0QLf0TB+/1moGNXwvDZ7VUCvsnejx6Or7v6oqzx4OvlV/evawh9nAq87e7YDxb6GF+vrh+evq3EqyOUFX9ML+L+mJ7vkGZv1Nuy6KlYs//KjshV+MG/TVhfjvYD2dknOpTHE6UVhotSqCMYxjkvsxgwKWsIwS1xc4wSnOpC5pSspI2TBVamtpRvAjpPlPiwOQTw==</latexit>
y
/ 35
27
#3. Optimism in the face of uncertainty
<latexit sha1_base64="Nr2ImZk9Gvp+/1cBWPwAK6yswp0=">AAACiXichVFNLwNRFD0dX1VfxUZi02iIVXNHBOmq0Y1lP7QkiMyMh9H5ysy0UU3/gJWdYEViIX6AH2DjD1j0J4gliY2F2+kkguBO3rzzzrvnvvPeVR1D93yiVkTq6u7p7Yv2xwYGh4ZH4qNjZc+uupooabZhu+uq4glDt0TJ131DrDuuUEzVEGtqJdveX6sJ19Nta9WvO2LLVPYsfVfXFJ+p8qZqNg6b2/EkpSiIxE8ghyCJMHJ2/A6b2IENDVWYELDgMzagwONvAzIIDnNbaDDnMtKDfYEmYqytcpbgDIXZCv/3eLURshav2zW9QK3xKQYPl5UJTNMj3dALPdAtPdH7r7UaQY22lzrPakcrnO2R44ni278qk2cf+5+qPz372MVS4FVn707AtG+hdfS1o9OXYrow3ZihK3pm/5fUonu+gVV71a7zonDxhx+VvfCLcYPk7+34CcpzKXkhRfn5ZGY5bFUUk5jCLPdjERmsIIcS1z/ACc5wLg1IsrQkpTupUiTUjONLSNkPIVKSSQ==</latexit>
x
<latexit sha1_base64="g1U7Tzgl+Lj3TSOL2Mnl/fuxw90=">AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVW5UVEpLooiuOzDPqAtJYljDc2LJC3W0B9w6cZF3Si4ED/AD3DjD7joJ4jLCm5ceJsGRIv1hsmcOXPPnTNzRUORLRux6+PGxicmp/zTgZnZ4FwoPL+Qt/SGKbGcpCu6WRQFiymyxnK2bCusaJhMUEWFFcT6fn+/0GSmJevakd0yWEUVapp8IkuCTVSxLKrOWbvKV8NRjKMbkWHAeyAKXqT08COU4Rh0kKABKjDQwCasgAAWfSXgAcEgrgIOcSYh2d1n0IYAaRuUxShDILZO/xqtSh6r0bpf03LVEp2i0DBJGYEYvuA99vAZH/AVP/+s5bg1+l5aNIsDLTOqoYul7Me/KpVmG06/VSM923ACO65XmbwbLtO/hTTQN8+vetlEJuas4i2+kf8b7OIT3UBrvkt3aZbpjPAjkhd6MWoQ/7sdwyC/Hue34pjejCb3vFb5YRlWYI36sQ1JOIQU5Nw+XEIHrrkgt8EluN1BKufzNIvwI7iDL6QMku0=</latexit>
x1
<latexit sha1_base64="HrABz/ySZPgA1Ybj81k3XV8tH68=">AAACi3ichVHNSgJRFD5Of2aZVpugjSRGKzlaVEgLKYKW/uQPqMjMdLXB+WNmlGzwBVq2aWGbghbRA/QAbXqBFj5CtDRo06LjOBAl2Rnu3O9+93znfvceQZcl00LsebiJyanpGe+sb27evxAILi7lTa1piCwnarJmFAXeZLKkspwlWTIr6gbjFUFmBaFxMNgvtJhhSpp6bLV1VlH4uirVJJG3iCqWBcU+61Tj1WAYo+hEaBTEXBAGN1Ja8BHKcAIaiNAEBRioYBGWgQeTvhLEAEEnrgI2cQYhydln0AEfaZuUxSiDJ7ZB/zqtSi6r0npQ03TUIp0i0zBIGYIIvuA99vEZH/AVP/+sZTs1Bl7aNAtDLdOrgYuV7Me/KoVmC06/VWM9W1CDXcerRN51hxncQhzqW+dX/WwiE7HX8RbfyP8N9vCJbqC23sW7NMt0x/gRyAu9GDUo9rsdoyAfj8a2o5jeCif33VZ5YRXWYIP6sQNJOIIU5Jw+XEIXrjk/t8kluL1hKudxNcvwI7jDL6Ysku4=</latexit>
x2
<latexit sha1_base64="Qqfga3YaBoUI0Yb7fQVzumPP1Sw=">AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U=</latexit>
y
sample max
sample min
This is why we need a criterion taking uncertainty into consideration instead of direct
use of ML predicted values to guide exploration.
It’ll be nice to gather more
information around here
even though the mean is
not so high (the predictions
have a large variance)
<latexit sha1_base64="i+Yum6tkJlYfyXr5MYELEoyKzkM=">AAAChHichVFNLwNRFD3GV3222EhsGk3FQpo7rZZaSMPGUlGVIDIzHiadzkxmpk2q8QfYEgsrEgvxA/wAG3/Awk8QSxIbC3dmKmKBO3nzzjvvnvvOe1e1Dd31iJ7apPaOzq7uSE9vX//AYDQ2NLzuWjVHEyXNMixnQ1VcYeimKHm6Z4gN2xFKVTVEWa0s+vvlunBc3TLXvIYttqvKvqnv6ZriMVVs7MQSlErnc2nKx0OQzYVAzqfjcoqCSKAVy1bsDlvYhQUNNVQhYMJjbECBy98mZBBs5rbRZM5hpAf7AkfoZW2NswRnKMxW+L/Pq80Wa/Lar+kGao1PMXg4rIwjSY90Q6/0QLf0TB+/1moGNXwvDZ7VUCvsnejx6Or7v6oqzx4OvlV/evawh9nAq87e7YDxb6GF+vrh+evq3EqyOUFX9ML+L+mJ7vkGZv1Nuy6KlYs//KjshV+MG/TVhfjvYD2dknOpTHE6UVhotSqCMYxjkvsxgwKWsIwS1xc4wSnOpC5pSspI2TBVamtpRvAjpPlPiwOQTw==</latexit>
y
/ 35
27
#3. Optimism in the face of uncertainty
<latexit sha1_base64="Nr2ImZk9Gvp+/1cBWPwAK6yswp0=">AAACiXichVFNLwNRFD0dX1VfxUZi02iIVXNHBOmq0Y1lP7QkiMyMh9H5ysy0UU3/gJWdYEViIX6AH2DjD1j0J4gliY2F2+kkguBO3rzzzrvnvvPeVR1D93yiVkTq6u7p7Yv2xwYGh4ZH4qNjZc+uupooabZhu+uq4glDt0TJ131DrDuuUEzVEGtqJdveX6sJ19Nta9WvO2LLVPYsfVfXFJ+p8qZqNg6b2/EkpSiIxE8ghyCJMHJ2/A6b2IENDVWYELDgMzagwONvAzIIDnNbaDDnMtKDfYEmYqytcpbgDIXZCv/3eLURshav2zW9QK3xKQYPl5UJTNMj3dALPdAtPdH7r7UaQY22lzrPakcrnO2R44ni278qk2cf+5+qPz372MVS4FVn707AtG+hdfS1o9OXYrow3ZihK3pm/5fUonu+gVV71a7zonDxhx+VvfCLcYPk7+34CcpzKXkhRfn5ZGY5bFUUk5jCLPdjERmsIIcS1z/ACc5wLg1IsrQkpTupUiTUjONLSNkPIVKSSQ==</latexit>
x
<latexit sha1_base64="g1U7Tzgl+Lj3TSOL2Mnl/fuxw90=">AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVW5UVEpLooiuOzDPqAtJYljDc2LJC3W0B9w6cZF3Si4ED/AD3DjD7joJ4jLCm5ceJsGRIv1hsmcOXPPnTNzRUORLRux6+PGxicmp/zTgZnZ4FwoPL+Qt/SGKbGcpCu6WRQFiymyxnK2bCusaJhMUEWFFcT6fn+/0GSmJevakd0yWEUVapp8IkuCTVSxLKrOWbvKV8NRjKMbkWHAeyAKXqT08COU4Rh0kKABKjDQwCasgAAWfSXgAcEgrgIOcSYh2d1n0IYAaRuUxShDILZO/xqtSh6r0bpf03LVEp2i0DBJGYEYvuA99vAZH/AVP/+s5bg1+l5aNIsDLTOqoYul7Me/KpVmG06/VSM923ACO65XmbwbLtO/hTTQN8+vetlEJuas4i2+kf8b7OIT3UBrvkt3aZbpjPAjkhd6MWoQ/7sdwyC/Hue34pjejCb3vFb5YRlWYI36sQ1JOIQU5Nw+XEIHrrkgt8EluN1BKufzNIvwI7iDL6QMku0=</latexit>
x1
<latexit sha1_base64="HrABz/ySZPgA1Ybj81k3XV8tH68=">AAACi3ichVHNSgJRFD5Of2aZVpugjSRGKzlaVEgLKYKW/uQPqMjMdLXB+WNmlGzwBVq2aWGbghbRA/QAbXqBFj5CtDRo06LjOBAl2Rnu3O9+93znfvceQZcl00LsebiJyanpGe+sb27evxAILi7lTa1piCwnarJmFAXeZLKkspwlWTIr6gbjFUFmBaFxMNgvtJhhSpp6bLV1VlH4uirVJJG3iCqWBcU+61Tj1WAYo+hEaBTEXBAGN1Ja8BHKcAIaiNAEBRioYBGWgQeTvhLEAEEnrgI2cQYhydln0AEfaZuUxSiDJ7ZB/zqtSi6r0npQ03TUIp0i0zBIGYIIvuA99vEZH/AVP/+sZTs1Bl7aNAtDLdOrgYuV7Me/KoVmC06/VWM9W1CDXcerRN51hxncQhzqW+dX/WwiE7HX8RbfyP8N9vCJbqC23sW7NMt0x/gRyAu9GDUo9rsdoyAfj8a2o5jeCif33VZ5YRXWYIP6sQNJOIIU5Jw+XEIXrjk/t8kluL1hKudxNcvwI7jDL6Ysku4=</latexit>
x2
<latexit sha1_base64="Qqfga3YaBoUI0Yb7fQVzumPP1Sw=">AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U=</latexit>
y
sample max
sample min
This is why we need a criterion taking uncertainty into consideration instead of direct
use of ML predicted values to guide exploration.
<latexit sha1_base64="Qqfga3YaBoUI0Yb7fQVzumPP1Sw=">AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U=</latexit>
y <latexit sha1_base64="Qqfga3YaBoUI0Yb7fQVzumPP1Sw=">AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U=</latexit>
y
<latexit sha1_base64="uHwbcp1I7cfAojOCGzVZ2+fOJ7M=">AAACh3ichVE7TsNAEH2Yb/glQINEExGBoAnjACGh4tNQQiCAFKLINhuwcGzLdiKFiAtQ0AaJCiQKxAE4AA0XoMgRECVINBSMnSBEEZjV7s6+mTf7dke1Dd31iBodUmdXd09vX6h/YHBoOBwZGd11rbKjiaxmGZazryquMHRTZD3dM8S+7QilpBpiTz1Z9+N7FeG4umXueFVb5EvKkakXdU3xfMieqc4WIjGKp1NJWkhEKU6USlCSnUWS03I6KjPiWwwt27QiDzjAISxoKKMEARMe+wYUuDxykEGwGcujxpjDnh7EBc7Qz9wyZwnOUBg94fWIT7kWavLZr+kGbI1vMXg6zIxiip7pjt7oie7phT7b1qoFNXwtVd7VJlfYhfD5+PbHv6wS7x6Of1h/avZQRCrQqrN2O0D8V2hNfuW0/ra9nJmqTdMNvbL+a2rQI7/ArLxrt1sic/WHHpW18I9xg767EG3v7CbicjI+v7UQW1lrtaoPE5jEDPdjCSvYwCayXP8YF6jjUgpJc1JSSjVTpY4WZwy/TFr9AnUXkR0=</latexit>
p(y)
<latexit sha1_base64="xAYAr5eatCRkt85fJM86k8bLQd0=">AAAChnichVE7TsNAEH2YXwi/AA0STUQEQhTWOCQhoYqgoSSEABI/2WYTLBzbsp1IIeICSLRQUIFEgTgAB6DhAhQcAVGCREPB2AlCFMCsdnf2zbzZtzuaYxqeT/TUIXV2dff0Rvqi/QODQ8OxkdF1z665uijptmm7m5rqCdOwRMk3fFNsOq5Qq5opNrTDpSC+UReuZ9jWmt9wxE5VrVhG2dBVn6FiY3d2L5YgOZfNUCoZJ5kom6QMO2lSckourjASWAJtW7Fjd9jGPmzoqKEKAQs++yZUeDy2oIDgMLaDJmMue0YYFzhGlLk1zhKcoTJ6yGuFT1tt1OJzUNML2TrfYvJ0mRnHFD3SDb3SA93SM338WqsZ1gi0NHjXWlzh7A2fjBff/2VVefdx8M36U7OPMrKhVoO1OyESvEJv8etH56/FhdWp5jRd0Qvrv6QnuucXWPU3/bogVi/+0KOxFv4xbtBXF+K/O+tJWcnIc4VUIr/YblUEE5jEDPdjHnksYwUlrl/BKc5wLkUkWUpL861UqaPNGcMPk/Kf1ZuQ2g==</latexit>
y⇤
<latexit sha1_base64="Cx8vtQI6wD6rFemnJtzP0VxR74M=">AAACp3ichVE9T9tQFD0Y2vJRSqALUheLiCphiK5TGhIkKlSWboSPhEh8RLbzQp9wbMt+ieRG7FX/QIdOrdQBIXWFnYU/wMBPqDqCxMLQaydVxQBc6/mdd9499533ruU7MlRElwPa4NCTp8+GR0bHno+/mEhNTlVDrx3YomJ7jhfULDMUjnRFRUnliJofCLNlOWLLOliJ97c6Igil526qyBe7LXPflU1pm4qpemqmnIneRXtz2aUd6ap6l+HhHsOminQ/E2X1RlRPpSlXKhZoPq9TjqiYpwKDt2SUjJJuMBNHGv0oe6kT7KABDzbaaEHAhWLswETI3zYMEHzmdtFlLmAkk32BQ4yyts1ZgjNMZg/4v8+r7T7r8jquGSZqm09xeASs1DFLF3REV3ROx/Sbbu+t1U1qxF4inq2eVvj1iS/TGzePqlo8K3z8r3rQs0ITxcSrZO9+wsS3sHv6zqevVxuL67Pd1/SD/rD/73RJZ3wDt3Nt/1wT698e8GOxF34xbtC/Luj3g2o+ZxRyb9bm08vv+60axivMIMP9WMAyPqCMCtf/jF84wamW1Va1qlbrpWoDfc1L3AnN/AuqB50Q</latexit>
P(y > y⇤
) =
Z 1
y⇤
p(y)dy
<latexit sha1_base64="svoh2wRjAJ9IgkLWLNY4QZ6NPX0=">AAACwnichVHLTttAFL24vMsjlA0Sm1EjKlpF0XWANEECIWilLnk0gBSHyHYmMOBX7UkkY/ID/AALVi3qouoH9AO6abetWPAJqEsqsWHRayeoYgFcazxnztxz58xcw7NEIBEvupQn3T29ff0Dg0+HhkdGU2PPNgO34Zu8ZLqW628besAt4fCSFNLi257Pdduw+JZxsBLvbzW5HwjXeS9Dj1dsfdcRdWHqkqhqakGzdblnGNHbVlnLhEzLHGkZFi6GO68qC5pwZDUi2NohWJchowSz5krmTYcvWS2sptKYLRbyOJtjmEUs5DBPYA7VolpkKjFxpKETq27qG2hQAxdMaIANHByQhC3QIaCvDCogeMRVICLOJySSfQ4tGCRtg7I4ZejEHtB/l1blDuvQOq4ZJGqTTrFo+KRkMIXn+AWv8Ad+xUu8ubdWlNSIvYQ0G20t96qjxxMb14+qbJol7P1XPehZQh0KiVdB3r2EiW9htvXNw5Orjfn1qegFfsI/5P8jXuB3uoHT/Gt+XuPrpw/4McgLvRg16LYL7H6wmcuq+ezM2mx6abnTqn6YhOcwTf14DUvwDlahRPXP4Cf8gt/KG2Vf+aAE7VSlq6MZhzuhHP0DArmnyA==</latexit>
E[ y | y > y⇤
] =
Z 1
y⇤
y · p(y)dy
Probability of
improvement (PI)
Expected
Improvement (EI)
Upper Confidence
Bound (UCB)
Optimization objectives under uncertainty
(aka acquisition function)
It’ll be nice to gather more
information around here
even though the mean is
not so high (the predictions
have a large variance)
<latexit sha1_base64="i+Yum6tkJlYfyXr5MYELEoyKzkM=">AAAChHichVFNLwNRFD3GV3222EhsGk3FQpo7rZZaSMPGUlGVIDIzHiadzkxmpk2q8QfYEgsrEgvxA/wAG3/Awk8QSxIbC3dmKmKBO3nzzjvvnvvOe1e1Dd31iJ7apPaOzq7uSE9vX//AYDQ2NLzuWjVHEyXNMixnQ1VcYeimKHm6Z4gN2xFKVTVEWa0s+vvlunBc3TLXvIYttqvKvqnv6ZriMVVs7MQSlErnc2nKx0OQzYVAzqfjcoqCSKAVy1bsDlvYhQUNNVQhYMJjbECBy98mZBBs5rbRZM5hpAf7AkfoZW2NswRnKMxW+L/Pq80Wa/Lar+kGao1PMXg4rIwjSY90Q6/0QLf0TB+/1moGNXwvDZ7VUCvsnejx6Or7v6oqzx4OvlV/evawh9nAq87e7YDxb6GF+vrh+evq3EqyOUFX9ML+L+mJ7vkGZv1Nuy6KlYs//KjshV+MG/TVhfjvYD2dknOpTHE6UVhotSqCMYxjkvsxgwKWsIwS1xc4wSnOpC5pSspI2TBVamtpRvAjpPlPiwOQTw==</latexit>
y
/ 35
28
Identifying local peaks of EI of the ML model
Expected
improvement
Local peaks of EI would be nice
candidates having locally maximal EIs.
But they are not at given sample points, and
the following local search is designed.
multistart from given
sample points
adding small random
perturbation, and update
position when EI increases
stop when local
perturbation doesn’t
change the EI value
any more.
run clustering over final
candidates, and suggest K
candidates having locally
maximal EI values.
Every time SWED is changed, the
corresponding composition is
estimated by our algorithm, and
then recalculate valid SWED from it.
Partly because tree ensemble
regression functions are locally
bumpy, this clustering is effective
<latexit sha1_base64="Nr2ImZk9Gvp+/1cBWPwAK6yswp0=">AAACiXichVFNLwNRFD0dX1VfxUZi02iIVXNHBOmq0Y1lP7QkiMyMh9H5ysy0UU3/gJWdYEViIX6AH2DjD1j0J4gliY2F2+kkguBO3rzzzrvnvvPeVR1D93yiVkTq6u7p7Yv2xwYGh4ZH4qNjZc+uupooabZhu+uq4glDt0TJ131DrDuuUEzVEGtqJdveX6sJ19Nta9WvO2LLVPYsfVfXFJ+p8qZqNg6b2/EkpSiIxE8ghyCJMHJ2/A6b2IENDVWYELDgMzagwONvAzIIDnNbaDDnMtKDfYEmYqytcpbgDIXZCv/3eLURshav2zW9QK3xKQYPl5UJTNMj3dALPdAtPdH7r7UaQY22lzrPakcrnO2R44ni278qk2cf+5+qPz372MVS4FVn707AtG+hdfS1o9OXYrow3ZihK3pm/5fUonu+gVV71a7zonDxhx+VvfCLcYPk7+34CcpzKXkhRfn5ZGY5bFUUk5jCLPdjERmsIIcS1z/ACc5wLg1IsrQkpTupUiTUjONLSNkPIVKSSQ==</latexit>
x
/ 35
29
Explorative Search with SWED
SWED represent every element with respect to a given set of elemental descriptors.
So we can focus only on the selected elemental properties to explore catalysts.
74 elements
Compositional
(onehot-like)
Catalyst: Mg 83.46, Li 16.53
SWED-8
83.46 × 16.53 × 0.00 0.00
…
SWED-3
83.46 × 16.53 × 0.00 0.00
…
SWED-3 features: electronegativity, density, enthalpy of fusion
SWED-8 features: SWED-3 features + atomic weight, atomic radius, m.p., b.p., ionization enegy
Each user’s intention and focus for catalyst exploration can be design through the
elemental descriptor choice.
can control
specificity &
focus
/ 35
30
Our updated dataset
The original dataset:
1866 catalyst records
from 421 reports (1982 - 2009)
Mine, S.; Takao, M.; Yamaguchi, T.; Toyao, T.*; Maeno, Z.; Hakim Siddiki, S. M. A.; Takakusagi, S.; Shimizu, K.*; Takigawa, I.* ChemCatChem 2021.
https://doi.org/10.1002/cctc.202100495.
4559 catalyst records from 542 reports
The update dataset:
4559 catalyst records
from 542 reports (2010 - 2019)
/ 35
31
ML Predictions of C2 yields
1. Conventional: composition + condition
2. Proposed(Exploitative): composition + SWED + condition
3. Proposed(Explorative): SWED + condition w/ SWED→composition estimator
RFR (Random Forest); ETR (ExtraTrees); XGB (XGBoost)
SWED-3 features: electronegativity, density, enthalpy of fusion
SWED-8 features: SWED-3 features + atomic weight, atomic radius, m.p., b.p., ionization enegy
/ 35
32
Top 20 highest-EI candidates based on SWED-3
As appeared
not included in
the data
Fs, Se, Os, Bm
infrequent elements
also observed
though these are
toxic and impractical
but explorative
suggestions were able
be made
/ 35
33
Post analysis for models and suggested catalysts
1st: (1) Mn: 72.3 (2) Li: 27.7 2nd: (1) Sr:50.0 (2) Ce:45.0 (3) Yb:5.0
With SHAP, feature importance/permutation importance, dependency plot, etc.
/ 35
34
Today’s talk
Gas-phase reactions on sold-phase catalyst surface (Heterogeneous catalysis)
Industrial Synthesis (e.g. Haber-Bosch), Automobile Exhaust Gas Purification, Methane Conversion, etc.
Reactants
(Gas)
Catalysts
(Solid)
Nano-particle
surface
High Temperature, High Pressure
Adsorption
Diffusion
Dissociation
Recombination
Desorption
God made the bulk;
the surface was invented by the devil
Devilishly complex too-many-factor process!!
—— Wolfgang Pauli
Our struggles for better ML practices with underspecified, sparse, biased
observational data (i.e. a collection of experimental facts from literature)
/ 35
35
Acknowledgements
Ken-ichi
SHIMIZU
Satoru
TAKAKUSAGI
Takashi
TOYAO
Zen
MAENO
Keisuke SUZUKI
Motoshi TAKAO
Shinya MINE
Taichi YAMAGUCHI
S. M. A. Hakim Siddiki

More Related Content

PDF
Machine Learning and Model-Based Optimization for Heterogeneous Catalyst Desi...
PDF
Machine learning for materials design: opportunities, challenges, and methods
PDF
Kensuke Aihara
PPTX
Thesis ppt
PDF
深層ガウス過程とアクセントの潜在変数表現に基づく音声合成の検討
PPTX
Physics-Informed Machine Learning
PDF
線形カルマンフィルタの導出
PDF
[DL輪読会]Deep Neural Networks as Gaussian Processes
Machine Learning and Model-Based Optimization for Heterogeneous Catalyst Desi...
Machine learning for materials design: opportunities, challenges, and methods
Kensuke Aihara
Thesis ppt
深層ガウス過程とアクセントの潜在変数表現に基づく音声合成の検討
Physics-Informed Machine Learning
線形カルマンフィルタの導出
[DL輪読会]Deep Neural Networks as Gaussian Processes

What's hot (20)

PDF
BIOS 203 Lecture 4: Ab initio molecular dynamics
PDF
Machine Learning for Chemical Sciences
PDF
A*STAR Webinar on The AI Revolution in Materials Science
PPTX
第3回関西NIPS読み会:Temporal Regularized Matrix Factorization for High dimensional T...
PDF
Materials Design in the Age of Deep Learning and Quantum Computation
PDF
機械学習と深層学習の数理
PDF
el text.life science6.tsuneda191106
PDF
PR-409: Denoising Diffusion Probabilistic Models
PPTX
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
PDF
メカノケミカル合成の夜明け The rise of mechanochemical synthesis
PDF
集団スポーツの戦術に関するデータ解析手法
PPTX
Causal inference in data science
PPTX
Density-Functional Tight-Binding (DFTB) as fast approximate DFT method - An i...
PDF
大規模凸最適化問題に対する勾配法
PDF
NANO266 - Lecture 13 - Ab initio molecular dyanmics
PDF
Graphs, Environments, and Machine Learning for Materials Science
PDF
College Physics 1st year pdf download
PDF
Computational Discovery of Two-Dimensional Materials, Evaluation of Force-Fie...
PDF
2014年度春学期 画像情報処理 第13回 Radon変換と投影定理 (2014. 7. 16)
PPTX
PhD Qualifying Exam Slides
BIOS 203 Lecture 4: Ab initio molecular dynamics
Machine Learning for Chemical Sciences
A*STAR Webinar on The AI Revolution in Materials Science
第3回関西NIPS読み会:Temporal Regularized Matrix Factorization for High dimensional T...
Materials Design in the Age of Deep Learning and Quantum Computation
機械学習と深層学習の数理
el text.life science6.tsuneda191106
PR-409: Denoising Diffusion Probabilistic Models
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
メカノケミカル合成の夜明け The rise of mechanochemical synthesis
集団スポーツの戦術に関するデータ解析手法
Causal inference in data science
Density-Functional Tight-Binding (DFTB) as fast approximate DFT method - An i...
大規模凸最適化問題に対する勾配法
NANO266 - Lecture 13 - Ab initio molecular dyanmics
Graphs, Environments, and Machine Learning for Materials Science
College Physics 1st year pdf download
Computational Discovery of Two-Dimensional Materials, Evaluation of Force-Fie...
2014年度春学期 画像情報処理 第13回 Radon変換と投影定理 (2014. 7. 16)
PhD Qualifying Exam Slides
Ad

Similar to A machine-learning view on heterogeneous catalyst design and discovery (20)

PPTX
A Lossless FBAR Compressor
PDF
Implementing a neural network potential for exascale molecular dynamics
PDF
Hybrid Approach to Economic Load Dispatch
PPTX
The Other HPC: High Productivity Computing in Polystore Environments
PPSX
PDF
BSSML16 L2. Ensembles and Logistic Regressions
PPTX
Agbt2015 workshop schneider
PPT
Using Simulation to Investigate Requirements Prioritization Strategies
PDF
Tensors Are All You Need: Faster Inference with Hummingbird
PPTX
Enhancing non-Perl bioinformatic applications with Perl
PPTX
Enhancing non-Perl bioinformatic applications with Perl
PDF
A simple framework for contrastive learning of visual representations
PDF
Recent software and services to support the SBML community
PPTX
Molecular Simulation to build models for enzyme induced fit
PDF
AI optimizing HPC simulations (presentation from 6th EULAG Workshop)
PDF
Early Benchmarking Results for Neuromorphic Computing
PDF
Introduction to Apache Hivemall v0.5.0
PDF
Zhongyuan Zhu - 2015 - Evaluating Neural Machine Translation in English-Japan...
PDF
AI in Chemistry: Deep Learning Models Love Really Big Data
PPTX
Data-Centric Parallel Programming
A Lossless FBAR Compressor
Implementing a neural network potential for exascale molecular dynamics
Hybrid Approach to Economic Load Dispatch
The Other HPC: High Productivity Computing in Polystore Environments
BSSML16 L2. Ensembles and Logistic Regressions
Agbt2015 workshop schneider
Using Simulation to Investigate Requirements Prioritization Strategies
Tensors Are All You Need: Faster Inference with Hummingbird
Enhancing non-Perl bioinformatic applications with Perl
Enhancing non-Perl bioinformatic applications with Perl
A simple framework for contrastive learning of visual representations
Recent software and services to support the SBML community
Molecular Simulation to build models for enzyme induced fit
AI optimizing HPC simulations (presentation from 6th EULAG Workshop)
Early Benchmarking Results for Neuromorphic Computing
Introduction to Apache Hivemall v0.5.0
Zhongyuan Zhu - 2015 - Evaluating Neural Machine Translation in English-Japan...
AI in Chemistry: Deep Learning Models Love Really Big Data
Data-Centric Parallel Programming
Ad

More from Ichigaku Takigawa (20)

PDF
機械学習と自動微分
PDF
データ社会を生きる技術
〜機械学習の夢と現実〜
PDF
機械学習を科学研究で使うとは?
PDF
A Modern Introduction to Decision Tree Ensembles
PDF
Exploring Practices in Machine Learning and Machine Discovery for Heterogeneo...
PDF
機械学習と機械発見:自然科学融合が誘起するデータ科学の新展開
PDF
機械学習と機械発見:自然科学研究におけるデータ利活用の再考
PDF
小1にルービックキューブを教えてみた 〜群論スポーツの教育とパターン認知〜
PDF
"データ化"する化学と情報技術・人工知能・データサイエンス
PDF
自然科学における機械学習と機械発見
PDF
幾何と機械学習: A Short Intro
PDF
決定森回帰の信頼区間推定, Benign Overfitting, 多変量木とReLUネットの入力空間分割
PDF
Machine Learning for Molecules: Lessons and Challenges of Data-Centric Chemistry
PDF
機械学習を自然現象の理解・発見に使いたい人に知っておいてほしいこと
PDF
自己紹介:機械学習・機械発見とデータ中心的自然科学
PDF
機械学習・機械発見から見るデータ中心型化学の野望と憂鬱
PDF
Machine Learning for Molecular Graph Representations and Geometries
PDF
(2021.11) 機械学習と機械発見:データ中心型の化学・材料科学の教訓とこれから
PDF
機械学習~データを予測に変える技術~で化学に挑む! (サイエンスアゴラ2021)
PDF
(2021.10) 機械学習と機械発見 データ中心型の化学・材料科学の教訓とこれから
機械学習と自動微分
データ社会を生きる技術
〜機械学習の夢と現実〜
機械学習を科学研究で使うとは?
A Modern Introduction to Decision Tree Ensembles
Exploring Practices in Machine Learning and Machine Discovery for Heterogeneo...
機械学習と機械発見:自然科学融合が誘起するデータ科学の新展開
機械学習と機械発見:自然科学研究におけるデータ利活用の再考
小1にルービックキューブを教えてみた 〜群論スポーツの教育とパターン認知〜
"データ化"する化学と情報技術・人工知能・データサイエンス
自然科学における機械学習と機械発見
幾何と機械学習: A Short Intro
決定森回帰の信頼区間推定, Benign Overfitting, 多変量木とReLUネットの入力空間分割
Machine Learning for Molecules: Lessons and Challenges of Data-Centric Chemistry
機械学習を自然現象の理解・発見に使いたい人に知っておいてほしいこと
自己紹介:機械学習・機械発見とデータ中心的自然科学
機械学習・機械発見から見るデータ中心型化学の野望と憂鬱
Machine Learning for Molecular Graph Representations and Geometries
(2021.11) 機械学習と機械発見:データ中心型の化学・材料科学の教訓とこれから
機械学習~データを予測に変える技術~で化学に挑む! (サイエンスアゴラ2021)
(2021.10) 機械学習と機械発見 データ中心型の化学・材料科学の教訓とこれから

Recently uploaded (20)

PPTX
BIOMOLECULES PPT........................
PDF
HPLC-PPT.docx high performance liquid chromatography
PDF
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
PDF
Sciences of Europe No 170 (2025)
PDF
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
PPTX
INTRODUCTION TO EVS | Concept of sustainability
PPTX
Introduction to Cardiovascular system_structure and functions-1
PDF
. Radiology Case Scenariosssssssssssssss
PPT
6.1 High Risk New Born. Padetric health ppt
PPTX
ECG_Course_Presentation د.محمد صقران ppt
DOCX
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PPTX
neck nodes and dissection types and lymph nodes levels
PPTX
TOTAL hIP ARTHROPLASTY Presentation.pptx
PDF
CHAPTER 3 Cell Structures and Their Functions Lecture Outline.pdf
PPTX
Classification Systems_TAXONOMY_SCIENCE8.pptx
PPTX
Pharmacology of Autonomic nervous system
PDF
Lymphatic System MCQs & Practice Quiz – Functions, Organs, Nodes, Ducts
PPTX
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
PPTX
famous lake in india and its disturibution and importance
BIOMOLECULES PPT........................
HPLC-PPT.docx high performance liquid chromatography
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
Sciences of Europe No 170 (2025)
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
INTRODUCTION TO EVS | Concept of sustainability
Introduction to Cardiovascular system_structure and functions-1
. Radiology Case Scenariosssssssssssssss
6.1 High Risk New Born. Padetric health ppt
ECG_Course_Presentation د.محمد صقران ppt
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
neck nodes and dissection types and lymph nodes levels
TOTAL hIP ARTHROPLASTY Presentation.pptx
CHAPTER 3 Cell Structures and Their Functions Lecture Outline.pdf
Classification Systems_TAXONOMY_SCIENCE8.pptx
Pharmacology of Autonomic nervous system
Lymphatic System MCQs & Practice Quiz – Functions, Organs, Nodes, Ducts
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
famous lake in india and its disturibution and importance

A machine-learning view on heterogeneous catalyst design and discovery

  • 1. / 35 1 A machine-learning view on heterogeneous catalyst design and discovery Ichigaku Takigawa ichigaku.takigawa@riken.jp 1 July 2021 @ Telluride, Colorado Telluride Workshop on Computational Materials Chemistry Advanced Intelligence Project
  • 2. / 35 2 RIKEN Center for AI Project Inst. Chemical Reaction Design & Discovery Hokkaido Univ Two Interrelated Research Interests: Hi, I am a ML researcher working for ML for Stem Cell Biology ML for Chemistry ML with discrete (combinatorial) structures ML for natural sciences Edit-aware graph autocompletion (Hu+) Low-electron dose TEM image improvement (Katsuno+)
  • 3. / 35 3 Today’s talk Gas-phase reactions on sold-phase catalyst surface (Heterogeneous catalysis) https://en.wikipedia.org/wiki/Heterogeneous_catalysis Industrial Synthesis (e.g. Haber-Bosch), Automobile Exhaust Gas Purification, Methane Conversion, etc. Reactants (Gas) Catalysts (Solid) Nano-particle surface Adsorption Diffusion Dissociation Recombination Desorption Our struggles for better ML practices with underspecified, sparse, biased observational data (i.e. a collection of experimental facts from literature)
  • 4. / 35 3 Today’s talk Gas-phase reactions on sold-phase catalyst surface (Heterogeneous catalysis) https://en.wikipedia.org/wiki/Heterogeneous_catalysis Industrial Synthesis (e.g. Haber-Bosch), Automobile Exhaust Gas Purification, Methane Conversion, etc. Reactants (Gas) Catalysts (Solid) Nano-particle surface High Temperature, High Pressure Adsorption Diffusion Dissociation Recombination Desorption Our struggles for better ML practices with underspecified, sparse, biased observational data (i.e. a collection of experimental facts from literature)
  • 5. / 35 4 Today’s talk Gas-phase reactions on sold-phase catalyst surface (Heterogeneous catalysis) Industrial Synthesis (e.g. Haber-Bosch), Automobile Exhaust Gas Purification, Methane Conversion, etc. Reactants (Gas) Catalysts (Solid) Nano-particle surface High Temperature, High Pressure Adsorption Diffusion Dissociation Recombination Desorption God made the bulk; the surface was invented by the devil Devilishly complex too-many-factor process!! —— Wolfgang Pauli Our struggles for better ML practices with underspecified, sparse, biased observational data (i.e. a collection of experimental facts from literature)
  • 6. / 35 5 simulation input output ML: A new way for (lazy) programming computer program input output computer program ML full specification in every detail required give up explicit model instead, grab a tunable model, and show it many input-output instances inductive (empiricism) airhead with a god-like learning capability Random Forest Neural Networks SVR Kernel Ridge All about fitting a very-flexible function to finite points in high-dimensional space. deductive (rationalism)
  • 7. / 35 6 ML: A new way for (lazy) programming ResNet50: 26 million params ResNet101: 45 million params EfficientNet-B7: 66 million params VGG19: 144 million params 12-layer, 12-heads BERT: 110 million params 24-layer, 16-heads BERT: 336 million params GPT-2 XL: 1558 million params GPT-3: 175 billion params simulation input output computer program input output computer program ML full specification in every detail required give up explicit model instead, grab a tunable model, and show it many input-output instances inductive (empiricism) airhead with a god-like learning capability deductive (rationalism) All about fitting a very-flexible function to finite points in high-dimensional space.
  • 8. / 35 6 ML: A new way for (lazy) programming ResNet50: 26 million params ResNet101: 45 million params EfficientNet-B7: 66 million params VGG19: 144 million params 12-layer, 12-heads BERT: 110 million params 24-layer, 16-heads BERT: 336 million params GPT-2 XL: 1558 million params GPT-3: 175 billion params Modern ML: Can we imagine what would happen if we try to fit a function having 175 billion parameters to 100 million data points in 10 thousand dimension?? simulation input output computer program input output computer program ML full specification in every detail required give up explicit model instead, grab a tunable model, and show it many input-output instances inductive (empiricism) airhead with a god-like learning capability deductive (rationalism) All about fitting a very-flexible function to finite points in high-dimensional space.
  • 9. / 35 7 Rashomon Effect: multiplicity of good models ML models are too flexible to overrepresent given finite instances, and many different shapes of functions exist for representing the same finite data. (even if it’s huge) The Rashomon Effect In many practical cases, we have many equally-accurate but different ML models. (the choice of ML methods or the design of NN architectures doesn’t really matter) Note: The Rashomon Effect in ML is attributed to Leo Breiman’s very influential “The Two Cultures” paper published in 2001, but obviously “Rashomon” itself originates from a classic Japanese movie in 1950 by Kurosawa, where four witnesses to a murder describe entirely different contradictory perspectives, but all of them sound true. We often see this in ML competitions. Top ranking solutions are very competitive in performance (equally accurate in practice) but can be very different approaches. 5-CV RMSE: 0.12016 5-CV RMSE: 0.13209 5-CV RMSE: 0.11976 5-CV RMSE: 0.12432 5-CV RMSE: 0.20899 5-CV RMSE: 0.17446 Neural Network Random Forest ExtraTrees GBDT Gaussian Process Kernel Ridge
  • 10. / 35 8 We see differences in underspecified cases right data scarce/underspecified + outliers Neural Networks (ReLU) Random Forest Extra Trees (bootstrap) Neural Networks (ReLU) Random Forest Extra Trees (bootstrap) Neural Networks (Tanh) Linear Regression Kernel Ridge (RBF) Kernel Ridge (Laplacian) Extra Trees (no bootstrap) Gradient Boosting
  • 11. / 35 8 We see differences in underspecified cases right data scarce/underspecified + outliers Neural Networks (ReLU) Random Forest Extra Trees (bootstrap) Neural Networks (ReLU) Random Forest Extra Trees (bootstrap) Neural Networks (Tanh) Linear Regression Kernel Ridge (RBF) Kernel Ridge (Laplacian) Extra Trees (no bootstrap) Gradient Boosting some apparently underfitted?
  • 12. / 35 8 We see differences in underspecified cases right data scarce/underspecified + outliers Neural Networks (ReLU) Random Forest Extra Trees (bootstrap) Neural Networks (ReLU) Random Forest Extra Trees (bootstrap) Neural Networks (Tanh) Linear Regression Kernel Ridge (RBF) Kernel Ridge (Laplacian) Extra Trees (no bootstrap) Gradient Boosting some apparently underfitted? But we often still see the Rashomon (i.e. similar CV performances) and these can predict very differently for further test cases. (in particular, out-of- distribution cases)
  • 13. / 35 9 Designing relevant “inductive biases” Use heuristic assumptions, domain knowledge to constrain/regularize the model space. Prediction Input variables Classifier or Regressor <latexit sha1_base64="Ill3Als4zZd947f5Xm9sW99d0QA=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTomJcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkI/HxK1YPL0RSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVA6Qmg==</latexit> x1 <latexit sha1_base64="QFtMwnKe2I12XGZu0bNJbdnDaaE=">AAAChnichVG7TgJBFD2sL8QHqI2JDZFgrMhAVIwV0caShzwSJGR3HXHDvrK7EJH4Aya2UlhpYmH8AD/Axh+w4BOMJSY2Fl6WTYwS8W5m58yZe+6cmSuZqmI7jHV9wtj4xOSUfzowMzs3HwwtLBZso2HJPC8bqmGVJNHmqqLzvKM4Ki+ZFhc1SeVFqb7X3y82uWUrhn7gtExe0cSarhwrsugQlTutJqqhCIsxN8LDIO6BCLxIG6FHHOIIBmQ0oIFDh0NYhQibvjLiYDCJq6BNnEVIcfc5zhEgbYOyOGWIxNbpX6NV2WN1Wvdr2q5aplNUGhYpw4iyF3bPeuyZPbBX9vlnrbZbo++lRbM00HKzGrxYzn38q9JodnDyrRrp2cExtl2vCnk3XaZ/C3mgb551ermdbLS9xm7ZG/m/YV32RDfQm+/yXYZnr0f4kcgLvRg1KP67HcOgkIjFt2KJzEYkteu1yo8VrGKd+pFECvtII0/1a7jEFTqCX4gJm0JykCr4PM0SfoSQ+gJWLpCb</latexit> x2 <latexit sha1_base64="lFhRrRrVTrFR31ebbMgRp5myJpc=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqcljfKgRCLMCeCwyDqghDcSOqBRxzhGDpkNFAHhwabsAoRFn1FRMFgEFdCmziTkOLsc5zDR9oGZXHKEImt0b9Kq6LLarTu17QctUynqDRMUgYRZi/snvXYM3tgr+zzz1ptp0bfS4tmaaDlRtl/sZz5+FdVp9nGybdqpGcbFew4XhXybjhM/xbyQN886/Qyu+lwe43dsjfyf8O67IluoDXf5bsUT1+P8CORF3oxalD0dzuGQS4WiW5HYqnNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFWE6QnA==</latexit> x3 <latexit sha1_base64="0IPXcU0UIDvzZlYURjV2A/THv9U=">AAACiXichVG7SgNBFD2ur/hM1EawEYNiFWZFNKQKprGMj0TBBNndTHR0X+xOFmLwB6zsRK0ULMQP8ANs/AELP0EsFWwsvNksiAbjXWbnzJl77pyZq7um8CVjz11Kd09vX39sYHBoeGQ0nhgbL/pOzTN4wXBMx9vWNZ+bwuYFKaTJt12Pa5Zu8i39MNfc3wq45wvH3pR1l5ctbc8WVWFokqhiKag40t9NJFmKhTHdDtQIJBFF3knco4QKHBiowQKHDUnYhAafvh2oYHCJK6NBnEdIhPscxxgkbY2yOGVoxB7Sf49WOxFr07pZ0w/VBp1i0vBIOY1Z9sRu2Rt7ZHfshX3+WasR1mh6qdOst7Tc3Y2fTG58/KuyaJbY/1Z19CxRRTr0Ksi7GzLNWxgtfXB09raRWZ9tzLFr9kr+r9gze6Ab2MG7cbPG1y87+NHJC70YNUj93Y52UFxIqUuphbXFZHYlalUMU5jBPPVjGVmsIo8C1T/AKc5xoQwpqpJWMq1UpSvSTOBHKLkvAi+SPA==</latexit> . . . Input representation design, selection, and its engineering (descriptors + feature engineering) Function model vs “Kitchen-sink” models (feeding every possible descriptor) Simple model is enough whenever we can have determining input variables necessary and sufficient to fully define the desired output. Every requirement should be explicitly encoded into model, otherwise we need to provide it through examples. (symmetry, invariance, etc)
  • 14. / 35 10 Designing relevant “inductive biases” Prediction Input variables Function model <latexit sha1_base64="QFtMwnKe2I12XGZu0bNJbdnDaaE=">AAAChnichVG7TgJBFD2sL8QHqI2JDZFgrMhAVIwV0caShzwSJGR3HXHDvrK7EJH4Aya2UlhpYmH8AD/Axh+w4BOMJSY2Fl6WTYwS8W5m58yZe+6cmSuZqmI7jHV9wtj4xOSUfzowMzs3HwwtLBZso2HJPC8bqmGVJNHmqqLzvKM4Ki+ZFhc1SeVFqb7X3y82uWUrhn7gtExe0cSarhwrsugQlTutJqqhCIsxN8LDIO6BCLxIG6FHHOIIBmQ0oIFDh0NYhQibvjLiYDCJq6BNnEVIcfc5zhEgbYOyOGWIxNbpX6NV2WN1Wvdr2q5aplNUGhYpw4iyF3bPeuyZPbBX9vlnrbZbo++lRbM00HKzGrxYzn38q9JodnDyrRrp2cExtl2vCnk3XaZ/C3mgb551ermdbLS9xm7ZG/m/YV32RDfQm+/yXYZnr0f4kcgLvRg1KP67HcOgkIjFt2KJzEYkteu1yo8VrGKd+pFECvtII0/1a7jEFTqCX4gJm0JykCr4PM0SfoSQ+gJWLpCb</latexit> x2 <latexit sha1_base64="lFhRrRrVTrFR31ebbMgRp5myJpc=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqcljfKgRCLMCeCwyDqghDcSOqBRxzhGDpkNFAHhwabsAoRFn1FRMFgEFdCmziTkOLsc5zDR9oGZXHKEImt0b9Kq6LLarTu17QctUynqDRMUgYRZi/snvXYM3tgr+zzz1ptp0bfS4tmaaDlRtl/sZz5+FdVp9nGybdqpGcbFew4XhXybjhM/xbyQN886/Qyu+lwe43dsjfyf8O67IluoDXf5bsUT1+P8CORF3oxalD0dzuGQS4WiW5HYqnNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFWE6QnA==</latexit> x3 <latexit sha1_base64="0IPXcU0UIDvzZlYURjV2A/THv9U=">AAACiXichVG7SgNBFD2ur/hM1EawEYNiFWZFNKQKprGMj0TBBNndTHR0X+xOFmLwB6zsRK0ULMQP8ANs/AELP0EsFWwsvNksiAbjXWbnzJl77pyZq7um8CVjz11Kd09vX39sYHBoeGQ0nhgbL/pOzTN4wXBMx9vWNZ+bwuYFKaTJt12Pa5Zu8i39MNfc3wq45wvH3pR1l5ctbc8WVWFokqhiKag40t9NJFmKhTHdDtQIJBFF3knco4QKHBiowQKHDUnYhAafvh2oYHCJK6NBnEdIhPscxxgkbY2yOGVoxB7Sf49WOxFr07pZ0w/VBp1i0vBIOY1Z9sRu2Rt7ZHfshX3+WasR1mh6qdOst7Tc3Y2fTG58/KuyaJbY/1Z19CxRRTr0Ksi7GzLNWxgtfXB09raRWZ9tzLFr9kr+r9gze6Ab2MG7cbPG1y87+NHJC70YNUj93Y52UFxIqUuphbXFZHYlalUMU5jBPPVjGVmsIo8C1T/AKc5xoQwpqpJWMq1UpSvSTOBHKLkvAi+SPA==</latexit> . . . Latent variables Learnable variable transformation Representation learning Classifier or Regressor <latexit sha1_base64="Ill3Als4zZd947f5Xm9sW99d0QA=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTomJcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkI/HxK1YPL0RSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVA6Qmg==</latexit> x1 Architecture design when we go for representation learning “Kitchen-sink” (raw) inputs Use heuristic assumptions, domain knowledge to constrain/regularize the model space.
  • 15. / 35 10 Designing relevant “inductive biases” Prediction Input variables Function model <latexit sha1_base64="QFtMwnKe2I12XGZu0bNJbdnDaaE=">AAAChnichVG7TgJBFD2sL8QHqI2JDZFgrMhAVIwV0caShzwSJGR3HXHDvrK7EJH4Aya2UlhpYmH8AD/Axh+w4BOMJSY2Fl6WTYwS8W5m58yZe+6cmSuZqmI7jHV9wtj4xOSUfzowMzs3HwwtLBZso2HJPC8bqmGVJNHmqqLzvKM4Ki+ZFhc1SeVFqb7X3y82uWUrhn7gtExe0cSarhwrsugQlTutJqqhCIsxN8LDIO6BCLxIG6FHHOIIBmQ0oIFDh0NYhQibvjLiYDCJq6BNnEVIcfc5zhEgbYOyOGWIxNbpX6NV2WN1Wvdr2q5aplNUGhYpw4iyF3bPeuyZPbBX9vlnrbZbo++lRbM00HKzGrxYzn38q9JodnDyrRrp2cExtl2vCnk3XaZ/C3mgb551ermdbLS9xm7ZG/m/YV32RDfQm+/yXYZnr0f4kcgLvRg1KP67HcOgkIjFt2KJzEYkteu1yo8VrGKd+pFECvtII0/1a7jEFTqCX4gJm0JykCr4PM0SfoSQ+gJWLpCb</latexit> x2 <latexit sha1_base64="lFhRrRrVTrFR31ebbMgRp5myJpc=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqcljfKgRCLMCeCwyDqghDcSOqBRxzhGDpkNFAHhwabsAoRFn1FRMFgEFdCmziTkOLsc5zDR9oGZXHKEImt0b9Kq6LLarTu17QctUynqDRMUgYRZi/snvXYM3tgr+zzz1ptp0bfS4tmaaDlRtl/sZz5+FdVp9nGybdqpGcbFew4XhXybjhM/xbyQN886/Qyu+lwe43dsjfyf8O67IluoDXf5bsUT1+P8CORF3oxalD0dzuGQS4WiW5HYqnNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFWE6QnA==</latexit> x3 <latexit sha1_base64="0IPXcU0UIDvzZlYURjV2A/THv9U=">AAACiXichVG7SgNBFD2ur/hM1EawEYNiFWZFNKQKprGMj0TBBNndTHR0X+xOFmLwB6zsRK0ULMQP8ANs/AELP0EsFWwsvNksiAbjXWbnzJl77pyZq7um8CVjz11Kd09vX39sYHBoeGQ0nhgbL/pOzTN4wXBMx9vWNZ+bwuYFKaTJt12Pa5Zu8i39MNfc3wq45wvH3pR1l5ctbc8WVWFokqhiKag40t9NJFmKhTHdDtQIJBFF3knco4QKHBiowQKHDUnYhAafvh2oYHCJK6NBnEdIhPscxxgkbY2yOGVoxB7Sf49WOxFr07pZ0w/VBp1i0vBIOY1Z9sRu2Rt7ZHfshX3+WasR1mh6qdOst7Tc3Y2fTG58/KuyaJbY/1Z19CxRRTr0Ksi7GzLNWxgtfXB09raRWZ9tzLFr9kr+r9gze6Ab2MG7cbPG1y87+NHJC70YNUj93Y52UFxIqUuphbXFZHYlalUMU5jBPPVjGVmsIo8C1T/AKc5xoQwpqpJWMq1UpSvSTOBHKLkvAi+SPA==</latexit> . . . Latent variables Learnable variable transformation Representation learning Classifier or Regressor <latexit sha1_base64="Ill3Als4zZd947f5Xm9sW99d0QA=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTomJcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkI/HxK1YPL0RSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVA6Qmg==</latexit> x1 Architecture design when we go for representation learning “Kitchen-sink” (raw) inputs Use heuristic assumptions, domain knowledge to constrain/regularize the model space.
  • 16. / 35 10 Designing relevant “inductive biases” Prediction Input variables Function model <latexit sha1_base64="QFtMwnKe2I12XGZu0bNJbdnDaaE=">AAAChnichVG7TgJBFD2sL8QHqI2JDZFgrMhAVIwV0caShzwSJGR3HXHDvrK7EJH4Aya2UlhpYmH8AD/Axh+w4BOMJSY2Fl6WTYwS8W5m58yZe+6cmSuZqmI7jHV9wtj4xOSUfzowMzs3HwwtLBZso2HJPC8bqmGVJNHmqqLzvKM4Ki+ZFhc1SeVFqb7X3y82uWUrhn7gtExe0cSarhwrsugQlTutJqqhCIsxN8LDIO6BCLxIG6FHHOIIBmQ0oIFDh0NYhQibvjLiYDCJq6BNnEVIcfc5zhEgbYOyOGWIxNbpX6NV2WN1Wvdr2q5aplNUGhYpw4iyF3bPeuyZPbBX9vlnrbZbo++lRbM00HKzGrxYzn38q9JodnDyrRrp2cExtl2vCnk3XaZ/C3mgb551ermdbLS9xm7ZG/m/YV32RDfQm+/yXYZnr0f4kcgLvRg1KP67HcOgkIjFt2KJzEYkteu1yo8VrGKd+pFECvtII0/1a7jEFTqCX4gJm0JykCr4PM0SfoSQ+gJWLpCb</latexit> x2 <latexit sha1_base64="lFhRrRrVTrFR31ebbMgRp5myJpc=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqcljfKgRCLMCeCwyDqghDcSOqBRxzhGDpkNFAHhwabsAoRFn1FRMFgEFdCmziTkOLsc5zDR9oGZXHKEImt0b9Kq6LLarTu17QctUynqDRMUgYRZi/snvXYM3tgr+zzz1ptp0bfS4tmaaDlRtl/sZz5+FdVp9nGybdqpGcbFew4XhXybjhM/xbyQN886/Qyu+lwe43dsjfyf8O67IluoDXf5bsUT1+P8CORF3oxalD0dzuGQS4WiW5HYqnNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFWE6QnA==</latexit> x3 <latexit sha1_base64="0IPXcU0UIDvzZlYURjV2A/THv9U=">AAACiXichVG7SgNBFD2ur/hM1EawEYNiFWZFNKQKprGMj0TBBNndTHR0X+xOFmLwB6zsRK0ULMQP8ANs/AELP0EsFWwsvNksiAbjXWbnzJl77pyZq7um8CVjz11Kd09vX39sYHBoeGQ0nhgbL/pOzTN4wXBMx9vWNZ+bwuYFKaTJt12Pa5Zu8i39MNfc3wq45wvH3pR1l5ctbc8WVWFokqhiKag40t9NJFmKhTHdDtQIJBFF3knco4QKHBiowQKHDUnYhAafvh2oYHCJK6NBnEdIhPscxxgkbY2yOGVoxB7Sf49WOxFr07pZ0w/VBp1i0vBIOY1Z9sRu2Rt7ZHfshX3+WasR1mh6qdOst7Tc3Y2fTG58/KuyaJbY/1Z19CxRRTr0Ksi7GzLNWxgtfXB09raRWZ9tzLFr9kr+r9gze6Ab2MG7cbPG1y87+NHJC70YNUj93Y52UFxIqUuphbXFZHYlalUMU5jBPPVjGVmsIo8C1T/AKc5xoQwpqpJWMq1UpSvSTOBHKLkvAi+SPA==</latexit> . . . Latent variables Learnable variable transformation Representation learning Classifier or Regressor <latexit sha1_base64="Ill3Als4zZd947f5Xm9sW99d0QA=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTomJcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkI/HxK1YPL0RSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVA6Qmg==</latexit> x1 Architecture design when we go for representation learning “Kitchen-sink” (raw) inputs Use heuristic assumptions, domain knowledge to constrain/regularize the model space.
  • 17. / 35 10 Designing relevant “inductive biases” Prediction Input variables Function model <latexit sha1_base64="QFtMwnKe2I12XGZu0bNJbdnDaaE=">AAAChnichVG7TgJBFD2sL8QHqI2JDZFgrMhAVIwV0caShzwSJGR3HXHDvrK7EJH4Aya2UlhpYmH8AD/Axh+w4BOMJSY2Fl6WTYwS8W5m58yZe+6cmSuZqmI7jHV9wtj4xOSUfzowMzs3HwwtLBZso2HJPC8bqmGVJNHmqqLzvKM4Ki+ZFhc1SeVFqb7X3y82uWUrhn7gtExe0cSarhwrsugQlTutJqqhCIsxN8LDIO6BCLxIG6FHHOIIBmQ0oIFDh0NYhQibvjLiYDCJq6BNnEVIcfc5zhEgbYOyOGWIxNbpX6NV2WN1Wvdr2q5aplNUGhYpw4iyF3bPeuyZPbBX9vlnrbZbo++lRbM00HKzGrxYzn38q9JodnDyrRrp2cExtl2vCnk3XaZ/C3mgb551ermdbLS9xm7ZG/m/YV32RDfQm+/yXYZnr0f4kcgLvRg1KP67HcOgkIjFt2KJzEYkteu1yo8VrGKd+pFECvtII0/1a7jEFTqCX4gJm0JykCr4PM0SfoSQ+gJWLpCb</latexit> x2 <latexit sha1_base64="lFhRrRrVTrFR31ebbMgRp5myJpc=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqcljfKgRCLMCeCwyDqghDcSOqBRxzhGDpkNFAHhwabsAoRFn1FRMFgEFdCmziTkOLsc5zDR9oGZXHKEImt0b9Kq6LLarTu17QctUynqDRMUgYRZi/snvXYM3tgr+zzz1ptp0bfS4tmaaDlRtl/sZz5+FdVp9nGybdqpGcbFew4XhXybjhM/xbyQN886/Qyu+lwe43dsjfyf8O67IluoDXf5bsUT1+P8CORF3oxalD0dzuGQS4WiW5HYqnNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFWE6QnA==</latexit> x3 <latexit sha1_base64="0IPXcU0UIDvzZlYURjV2A/THv9U=">AAACiXichVG7SgNBFD2ur/hM1EawEYNiFWZFNKQKprGMj0TBBNndTHR0X+xOFmLwB6zsRK0ULMQP8ANs/AELP0EsFWwsvNksiAbjXWbnzJl77pyZq7um8CVjz11Kd09vX39sYHBoeGQ0nhgbL/pOzTN4wXBMx9vWNZ+bwuYFKaTJt12Pa5Zu8i39MNfc3wq45wvH3pR1l5ctbc8WVWFokqhiKag40t9NJFmKhTHdDtQIJBFF3knco4QKHBiowQKHDUnYhAafvh2oYHCJK6NBnEdIhPscxxgkbY2yOGVoxB7Sf49WOxFr07pZ0w/VBp1i0vBIOY1Z9sRu2Rt7ZHfshX3+WasR1mh6qdOst7Tc3Y2fTG58/KuyaJbY/1Z19CxRRTr0Ksi7GzLNWxgtfXB09raRWZ9tzLFr9kr+r9gze6Ab2MG7cbPG1y87+NHJC70YNUj93Y52UFxIqUuphbXFZHYlalUMU5jBPPVjGVmsIo8C1T/AKc5xoQwpqpJWMq1UpSvSTOBHKLkvAi+SPA==</latexit> . . . Latent variables Learnable variable transformation Representation learning Classifier or Regressor <latexit sha1_base64="Ill3Als4zZd947f5Xm9sW99d0QA=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTomJcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkI/HxK1YPL0RSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVA6Qmg==</latexit> x1 Architecture design when we go for representation learning “Kitchen-sink” (raw) inputs Use heuristic assumptions, domain knowledge to constrain/regularize the model space.
  • 18. / 35 10 Designing relevant “inductive biases” Prediction Input variables Function model <latexit sha1_base64="QFtMwnKe2I12XGZu0bNJbdnDaaE=">AAAChnichVG7TgJBFD2sL8QHqI2JDZFgrMhAVIwV0caShzwSJGR3HXHDvrK7EJH4Aya2UlhpYmH8AD/Axh+w4BOMJSY2Fl6WTYwS8W5m58yZe+6cmSuZqmI7jHV9wtj4xOSUfzowMzs3HwwtLBZso2HJPC8bqmGVJNHmqqLzvKM4Ki+ZFhc1SeVFqb7X3y82uWUrhn7gtExe0cSarhwrsugQlTutJqqhCIsxN8LDIO6BCLxIG6FHHOIIBmQ0oIFDh0NYhQibvjLiYDCJq6BNnEVIcfc5zhEgbYOyOGWIxNbpX6NV2WN1Wvdr2q5aplNUGhYpw4iyF3bPeuyZPbBX9vlnrbZbo++lRbM00HKzGrxYzn38q9JodnDyrRrp2cExtl2vCnk3XaZ/C3mgb551ermdbLS9xm7ZG/m/YV32RDfQm+/yXYZnr0f4kcgLvRg1KP67HcOgkIjFt2KJzEYkteu1yo8VrGKd+pFECvtII0/1a7jEFTqCX4gJm0JykCr4PM0SfoSQ+gJWLpCb</latexit> x2 <latexit sha1_base64="lFhRrRrVTrFR31ebbMgRp5myJpc=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqcljfKgRCLMCeCwyDqghDcSOqBRxzhGDpkNFAHhwabsAoRFn1FRMFgEFdCmziTkOLsc5zDR9oGZXHKEImt0b9Kq6LLarTu17QctUynqDRMUgYRZi/snvXYM3tgr+zzz1ptp0bfS4tmaaDlRtl/sZz5+FdVp9nGybdqpGcbFew4XhXybjhM/xbyQN886/Qyu+lwe43dsjfyf8O67IluoDXf5bsUT1+P8CORF3oxalD0dzuGQS4WiW5HYqnNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFWE6QnA==</latexit> x3 <latexit sha1_base64="0IPXcU0UIDvzZlYURjV2A/THv9U=">AAACiXichVG7SgNBFD2ur/hM1EawEYNiFWZFNKQKprGMj0TBBNndTHR0X+xOFmLwB6zsRK0ULMQP8ANs/AELP0EsFWwsvNksiAbjXWbnzJl77pyZq7um8CVjz11Kd09vX39sYHBoeGQ0nhgbL/pOzTN4wXBMx9vWNZ+bwuYFKaTJt12Pa5Zu8i39MNfc3wq45wvH3pR1l5ctbc8WVWFokqhiKag40t9NJFmKhTHdDtQIJBFF3knco4QKHBiowQKHDUnYhAafvh2oYHCJK6NBnEdIhPscxxgkbY2yOGVoxB7Sf49WOxFr07pZ0w/VBp1i0vBIOY1Z9sRu2Rt7ZHfshX3+WasR1mh6qdOst7Tc3Y2fTG58/KuyaJbY/1Z19CxRRTr0Ksi7GzLNWxgtfXB09raRWZ9tzLFr9kr+r9gze6Ab2MG7cbPG1y87+NHJC70YNUj93Y52UFxIqUuphbXFZHYlalUMU5jBPPVjGVmsIo8C1T/AKc5xoQwpqpJWMq1UpSvSTOBHKLkvAi+SPA==</latexit> . . . Latent variables Learnable variable transformation Representation learning Classifier or Regressor <latexit sha1_base64="Ill3Als4zZd947f5Xm9sW99d0QA=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTomJcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkI/HxK1YPL0RSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVA6Qmg==</latexit> x1 Architecture design when we go for representation learning “Kitchen-sink” (raw) inputs Use heuristic assumptions, domain knowledge to constrain/regularize the model space.
  • 19. / 35 10 Designing relevant “inductive biases” Prediction Input variables Function model <latexit sha1_base64="QFtMwnKe2I12XGZu0bNJbdnDaaE=">AAAChnichVG7TgJBFD2sL8QHqI2JDZFgrMhAVIwV0caShzwSJGR3HXHDvrK7EJH4Aya2UlhpYmH8AD/Axh+w4BOMJSY2Fl6WTYwS8W5m58yZe+6cmSuZqmI7jHV9wtj4xOSUfzowMzs3HwwtLBZso2HJPC8bqmGVJNHmqqLzvKM4Ki+ZFhc1SeVFqb7X3y82uWUrhn7gtExe0cSarhwrsugQlTutJqqhCIsxN8LDIO6BCLxIG6FHHOIIBmQ0oIFDh0NYhQibvjLiYDCJq6BNnEVIcfc5zhEgbYOyOGWIxNbpX6NV2WN1Wvdr2q5aplNUGhYpw4iyF3bPeuyZPbBX9vlnrbZbo++lRbM00HKzGrxYzn38q9JodnDyrRrp2cExtl2vCnk3XaZ/C3mgb551ermdbLS9xm7ZG/m/YV32RDfQm+/yXYZnr0f4kcgLvRg1KP67HcOgkIjFt2KJzEYkteu1yo8VrGKd+pFECvtII0/1a7jEFTqCX4gJm0JykCr4PM0SfoSQ+gJWLpCb</latexit> x2 <latexit sha1_base64="lFhRrRrVTrFR31ebbMgRp5myJpc=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqcljfKgRCLMCeCwyDqghDcSOqBRxzhGDpkNFAHhwabsAoRFn1FRMFgEFdCmziTkOLsc5zDR9oGZXHKEImt0b9Kq6LLarTu17QctUynqDRMUgYRZi/snvXYM3tgr+zzz1ptp0bfS4tmaaDlRtl/sZz5+FdVp9nGybdqpGcbFew4XhXybjhM/xbyQN886/Qyu+lwe43dsjfyf8O67IluoDXf5bsUT1+P8CORF3oxalD0dzuGQS4WiW5HYqnNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFWE6QnA==</latexit> x3 <latexit sha1_base64="0IPXcU0UIDvzZlYURjV2A/THv9U=">AAACiXichVG7SgNBFD2ur/hM1EawEYNiFWZFNKQKprGMj0TBBNndTHR0X+xOFmLwB6zsRK0ULMQP8ANs/AELP0EsFWwsvNksiAbjXWbnzJl77pyZq7um8CVjz11Kd09vX39sYHBoeGQ0nhgbL/pOzTN4wXBMx9vWNZ+bwuYFKaTJt12Pa5Zu8i39MNfc3wq45wvH3pR1l5ctbc8WVWFokqhiKag40t9NJFmKhTHdDtQIJBFF3knco4QKHBiowQKHDUnYhAafvh2oYHCJK6NBnEdIhPscxxgkbY2yOGVoxB7Sf49WOxFr07pZ0w/VBp1i0vBIOY1Z9sRu2Rt7ZHfshX3+WasR1mh6qdOst7Tc3Y2fTG58/KuyaJbY/1Z19CxRRTr0Ksi7GzLNWxgtfXB09raRWZ9tzLFr9kr+r9gze6Ab2MG7cbPG1y87+NHJC70YNUj93Y52UFxIqUuphbXFZHYlalUMU5jBPPVjGVmsIo8C1T/AKc5xoQwpqpJWMq1UpSvSTOBHKLkvAi+SPA==</latexit> . . . Latent variables Learnable variable transformation Representation learning Classifier or Regressor <latexit sha1_base64="Ill3Als4zZd947f5Xm9sW99d0QA=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTomJcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkI/HxK1YPL0RSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVA6Qmg==</latexit> x1 Architecture design when we go for representation learning “Kitchen-sink” (raw) inputs Use heuristic assumptions, domain knowledge to constrain/regularize the model space.
  • 20. / 35 10 Designing relevant “inductive biases” Prediction Input variables Function model <latexit sha1_base64="QFtMwnKe2I12XGZu0bNJbdnDaaE=">AAAChnichVG7TgJBFD2sL8QHqI2JDZFgrMhAVIwV0caShzwSJGR3HXHDvrK7EJH4Aya2UlhpYmH8AD/Axh+w4BOMJSY2Fl6WTYwS8W5m58yZe+6cmSuZqmI7jHV9wtj4xOSUfzowMzs3HwwtLBZso2HJPC8bqmGVJNHmqqLzvKM4Ki+ZFhc1SeVFqb7X3y82uWUrhn7gtExe0cSarhwrsugQlTutJqqhCIsxN8LDIO6BCLxIG6FHHOIIBmQ0oIFDh0NYhQibvjLiYDCJq6BNnEVIcfc5zhEgbYOyOGWIxNbpX6NV2WN1Wvdr2q5aplNUGhYpw4iyF3bPeuyZPbBX9vlnrbZbo++lRbM00HKzGrxYzn38q9JodnDyrRrp2cExtl2vCnk3XaZ/C3mgb551ermdbLS9xm7ZG/m/YV32RDfQm+/yXYZnr0f4kcgLvRg1KP67HcOgkIjFt2KJzEYkteu1yo8VrGKd+pFECvtII0/1a7jEFTqCX4gJm0JykCr4PM0SfoSQ+gJWLpCb</latexit> x2 <latexit sha1_base64="lFhRrRrVTrFR31ebbMgRp5myJpc=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqcljfKgRCLMCeCwyDqghDcSOqBRxzhGDpkNFAHhwabsAoRFn1FRMFgEFdCmziTkOLsc5zDR9oGZXHKEImt0b9Kq6LLarTu17QctUynqDRMUgYRZi/snvXYM3tgr+zzz1ptp0bfS4tmaaDlRtl/sZz5+FdVp9nGybdqpGcbFew4XhXybjhM/xbyQN886/Qyu+lwe43dsjfyf8O67IluoDXf5bsUT1+P8CORF3oxalD0dzuGQS4WiW5HYqnNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFWE6QnA==</latexit> x3 <latexit sha1_base64="0IPXcU0UIDvzZlYURjV2A/THv9U=">AAACiXichVG7SgNBFD2ur/hM1EawEYNiFWZFNKQKprGMj0TBBNndTHR0X+xOFmLwB6zsRK0ULMQP8ANs/AELP0EsFWwsvNksiAbjXWbnzJl77pyZq7um8CVjz11Kd09vX39sYHBoeGQ0nhgbL/pOzTN4wXBMx9vWNZ+bwuYFKaTJt12Pa5Zu8i39MNfc3wq45wvH3pR1l5ctbc8WVWFokqhiKag40t9NJFmKhTHdDtQIJBFF3knco4QKHBiowQKHDUnYhAafvh2oYHCJK6NBnEdIhPscxxgkbY2yOGVoxB7Sf49WOxFr07pZ0w/VBp1i0vBIOY1Z9sRu2Rt7ZHfshX3+WasR1mh6qdOst7Tc3Y2fTG58/KuyaJbY/1Z19CxRRTr0Ksi7GzLNWxgtfXB09raRWZ9tzLFr9kr+r9gze6Ab2MG7cbPG1y87+NHJC70YNUj93Y52UFxIqUuphbXFZHYlalUMU5jBPPVjGVmsIo8C1T/AKc5xoQwpqpJWMq1UpSvSTOBHKLkvAi+SPA==</latexit> . . . Latent variables Learnable variable transformation Representation learning Classifier or Regressor Linear <latexit sha1_base64="Ill3Als4zZd947f5Xm9sW99d0QA=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTomJcEd245CGPBAlp64gNpW3aQkTiD5i4lYUrTVwYP8APcOMPuOATjEtM3LjwUpoYJeJtpnPmzD13zsyVTU21Hca6PmFsfGJyyj8dmJmdmw+GFhbzttGwFJ5TDM2wirJkc03Vec5RHY0XTYtLdVnjBbm2198vNLllq4Z+4LRMXq5LVV09VhXJISp7WhEroQiLMTfCw0D0QARepIzQIw5xBAMKGqiDQ4dDWIMEm74SRDCYxJXRJs4ipLr7HOcIkLZBWZwyJGJr9K/SquSxOq37NW1XrdApGg2LlGFE2Qu7Zz32zB7YK/v8s1bbrdH30qJZHmi5WQleLGc//lXVaXZw8q0a6dnBMbZdryp5N12mfwtloG+edXrZnUy0vcZu2Rv5v2Fd9kQ30Jvvyl2aZ65H+JHJC70YNUj83Y5hkI/HxK1YPL0RSe56rfJjBatYp34kkMQ+UshR/SoucYWO4BdiwqaQGKQKPk+zhB8hJL8AVA6Qmg==</latexit> x1 Architecture design when we go for representation learning “Kitchen-sink” (raw) inputs Again, simple model is enough when we have good features. Use heuristic assumptions, domain knowledge to constrain/regularize the model space.
  • 21. / 35 11 A toy example: approximate adders Try to teach ML “arithmetic addition” only by examples. We can also add both 5+6 and 6+5 to tell ML by examples that addition is commutative. adder <latexit sha1_base64="tiacEhQgmTkomNeV5LHmrY6hmbk=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTXxhXRDcuecgjQULaOmJDaZu2EJH4AyZuZeFKExfGD/AD3PgDLvgE4xITNy68lCZGiXib6Zw5c8+dM3NlU1Nth7GOTxgZHRuf8E8GpqZnZoOhufmcbdQthWcVQzOsgizZXFN1nnVUR+MF0+JSTdZ4Xq7u9fbzDW7ZqqEfOE2Tl2pSRVePVUVyiMqclsVyKMJizI3wIBA9EIEXSSP0iEMcwYCCOmrg0OEQ1iDBpq8IEQwmcSW0iLMIqe4+xzkCpK1TFqcMidgq/Su0KnqsTuteTdtVK3SKRsMiZRhR9sLuWZc9swf2yj7/rNVya/S8NGmW+1puloMXi5mPf1U1mh2cfKuGenZwjG3Xq0reTZfp3ULp6xtn7W5mJx1trbBb9kb+b1iHPdEN9Ma7cpfi6eshfmTyQi9GDRJ/t2MQ5NZi4lZsPbURSex6rfJjCctYpX7EkcA+kshS/QoucYW24BdiwqYQ76cKPk+zgB8hJL4AVGCQmw==</latexit> x1 <latexit sha1_base64="4Sn0JXQ8Nli9zYaRMiYfd4a9JHg=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqclmPlQIhFmBPBYRB1QQhuJPXAI45wDB0yGqiDQ4NNWIUIi74iomAwiCuhTZxJSHH2Oc7hI22DsjhliMTW6F+lVdFlNVr3a1qOWqZTVBomKYMIsxd2z3rsmT2wV/b5Z622U6PvpUWzNNByo+y/WM58/Kuq02zj5Fs10rONCnYcrwp5Nxymfwt5oG+edXqZ3XS4vcZu2Rv5v2Fd9kQ30Jrv8l2Kp69H+JHIC70YNSj6ux3DIBeLRLcjG6nNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFVoCQnA==</latexit> x2 <latexit sha1_base64="SKy45aVsIvNNIc9wr1Q6tiMY1uI=">AAACinichVHLSsNAFL2Nr1qrrboR3BRLRRDKpIrPTVEXLvuwD6glJHFah+ZFkpbW4g+4cyXYlYIL8QP8ADf+gIt+gris4MaFN2lAtFhvmMyZM/fcOTNXMhRm2YR0fdzI6Nj4hH8yMBWcngmFZ+fyll43ZZqTdUU3i5JoUYVpNGczW6FFw6SiKim0INX2nf1Cg5oW07Uju2XQsipWNVZhsmgjVWgK/GpTSAjhKIkTNyKDgPdAFLxI6eFHOIYT0EGGOqhAQQMbsQIiWPiVgAcCBnJlaCNnImLuPoVzCKC2jlkUM0Rka/iv4qrksRqunZqWq5bxFAWHicoIxMgLuSc98kweyCv5/LNW263heGnhLPW11BBCFwvZj39VKs42nH6rhnq2oQJbrleG3g2XcW4h9/WNs6tedicTay+TW/KG/m9IlzzhDbTGu3yXppnOED8SesEXwwbxv9sxCPKJOL8RX0uvR5N7Xqv8sAhLsIL92IQkHEIKcm79S7iGDhfkEtw2t9tP5XyeZh5+BHfwBX8Zkfc=</latexit> x1 + x2 <latexit sha1_base64="1coS+Mt9eL/r4jEoYDkZ5NYfoeE=">AAACiHichVHLSsNAFD3Gd3206kZwUywVQSg3KlYFQerGZVutCiqSxGkdTJOQpIVa/AE3LlVcKbgQP8APcOMPuPATxKWCGxfepgFRUW+YzJkz99w5M1d3TOn5RI8tSmtbe0dnV3ekp7evPxobGFzz7IpriIJhm7a7oWueMKUlCr70TbHhuEIr66ZY1/eXGvvrVeF60rZW/ZojtstayZJFaWg+UwV1YmpheieWoBQFEf8J1BAkEEbWjt1iC7uwYaCCMgQs+IxNaPD424QKgsPcNurMuYxksC9wiAhrK5wlOENjdp//JV5thqzF60ZNL1AbfIrJw2VlHEl6oGt6oXu6oSd6/7VWPajR8FLjWW9qhbMTPRpeeftXVebZx96n6k/PPoqYDbxK9u4ETOMWRlNfPTh5WZnPJ+tjdEnP7P+CHumOb2BVX42rnMif/+FHZy/8Ytwg9Xs7foK1yZQ6k5rKTScWM2GrujCCUYxzP9JYxDKyKHB9iWOc4kyJKKSklblmqtISaobwJZTMB48DkKc=</latexit> 1 + 3 = 4 <latexit sha1_base64="Jl1LVcl+mtrFJMn2AKjNmRINEM4=">AAACiHichVHLSsNAFD3GV62vqhvBjVgUQSi39VEVhFI3LtVaW1CRJE7rYJqEJC3U4g+4caniSsGF+AF+gBt/wIWfIC4ruHHhbRoQFfWGyZw5c8+dM3M125CuR/TUorS2tXd0hrrC3T29ff2RgcFN1yo7usjqlmE5eU11hSFNkfWkZ4i87Qi1pBkipx0sN/ZzFeG40jI3vKotdkpq0ZQFqaseU9nE1OxScjcSpRj5MfoTxAMQRRCrVuQO29iDBR1llCBgwmNsQIXL3xbiINjM7aDGnMNI+vsCRwiztsxZgjNUZg/4X+TVVsCavG7UdH21zqcYPBxWjmKcHumG6vRAt/RM77/Wqvk1Gl6qPGtNrbB3+4+HM2//qko8e9j/VP3p2UMB875Xyd5tn2ncQm/qK4en9czi+nhtgq7ohf1f0hPd8w3Myqt+vSbWL/7wo7EXfjFuUPx7O36CzUQsPhebXpuJptJBq0IYwRgmuR9JpLCCVWS5vsQJznCuhBVSkspCM1VpCTRD+BJK+gOby5Ct</latexit> 2 + 5 = 7 <latexit sha1_base64="NRtmyWkgZ5nlm1ETxVkZxPMO8Rc=">AAACiXichVHNLgNRGD0df6V+io3ERjREImnuUJREIrqxpNWSIM3MuGV0/jJz24TGC1jZCVYkFuIBPICNF7DwCGJZiY2Fb6aTCKK+yZ177rnf+e6591MdQ/cEY88RqaW1rb0j2tkV6+7p7Yv3DxQ8u+JqPK/Zhu1uqorHDd3ieaELg286LldM1eAbajnj729UuevptrUuDh2+Yyp7ll7SNUUQVZiZnF+UU8V4giVZECO/gRyCBMJYteP32MYubGiowASHBUHYgAKPvi3IYHCI20GNOJeQHuxzHKOLtBXK4pShEFum/x6ttkLWorVf0wvUGp1i0HBJOYIx9sRuWZ09sjv2wj7+rFULavheDmlWG1ruFPtOhnLv/6pMmgX2v1RNPQuUkA686uTdCRj/FlpDXz06q+cWsmO1cXbNXsn/FXtmD3QDq/qm3azx7GUTPyp5oRejBsk/2/EbFKaS8mxyei2VWFoOWxXFMEYxQf2YwxJWsIo81T/AKc5xIcUkWUpLC41UKRJqBvEtpMwnMx2Q7A==</latexit> 5 + 9 = 14 <latexit sha1_base64="wFMJb33bMt0hW8th8BMIqvUdNU8=">AAACinichVFLSwJRFD5OLzNLq03QRhIjCOSMRk8CqRYtfeQDTGRmutrgvJgZBZP+QLtWQa4KWkQ/oB/Qpj/Qwp8QLQ3atOg4DkRJdoY797vfPd+5371HNBTZshE7Hm5kdGx8wjvpm/JPzwSCs3M5S6+bEstKuqKbBVGwmCJrLGvLtsIKhskEVVRYXqzt9/bzDWZasq4d2U2DlVShqskVWRJsovLxVR53+Xg5GMYoOhEaBLwLwuBGUg8+wjGcgA4S1EEFBhrYhBUQwKKvCDwgGMSVoEWcSUh29hmcg4+0dcpilCEQW6N/lVZFl9Vo3atpOWqJTlFomKQMQQRf8B67+IwP+Iqff9ZqOTV6Xpo0i30tM8qBi4XMx78qlWYbTr9VQz3bUIFNx6tM3g2H6d1C6usbZ1fdzHY60lrGW3wj/zfYwSe6gdZ4l+5SLN0e4kckL/Ri1CD+dzsGQS4W5dej8dRaOLHntsoLi7AEK9SPDUjAISQh69S/hGtoc34uxm1xO/1UzuNq5uFHcAdfqESRGw==</latexit> 3 + 10 = 13 <latexit sha1_base64="FoI7hqDrtQtFjlgLPgriDwtw1iU=">AAACiXichVHLSsNAFD2Nr1pfVTeCm2JRBKFMfNQiCKIbl33YVlApSRx1NE1CMi1o8QdcuRN1peBC/AA/wI0/4MJPEJcV3LjwNg2IFvWGyZw5c8+dM3N1xxSeZOw5pLS1d3R2hbsjPb19/QPRwaGCZ1dcg+cN27TddV3zuCksnpdCmnzdcblW1k1e1A9WGvvFKnc9YVtr8tDhW2Vt1xI7wtAkUYW5qeSiqpaicZZgfsRagRqAOIJI29F7bGIbNgxUUAaHBUnYhAaPvg2oYHCI20KNOJeQ8Pc5jhEhbYWyOGVoxB7Qf5dWGwFr0bpR0/PVBp1i0nBJGcM4e2K3rM4e2R17YR+/1qr5NRpeDmnWm1rulAZORnLv/6rKNEvsfan+9Cyxg5TvVZB3x2catzCa+urRWT23kB2vTbBr9kr+r9gze6AbWNU34ybDs5d/+NHJC70YNUj92Y5WUJhOqMnETGY2vrQctCqMUYxhkvoxjyWsIo081d/HKc5xofQoqpJSFpqpSijQDONbKCufJlSQ5g==</latexit> 5 + 6 = 11 <latexit sha1_base64="n3Yy/9dJfdSB5yYDzUvImVPJv/g=">AAACiHichVHLSsNAFD3Gd3206kZwIxZFEMqNii8QRTcu1VotVClJnNahaRKStKDFH3DjUsWVggvxA/wAN/6Ai36CuFRw48LbNCAq1hsmc+bMPXfOzNUdU3o+UbVJaW5pbWvv6Ix0dff0RmN9/dueXXINkTJs03bTuuYJU1oi5UvfFGnHFVpRN8WOXlit7e+UhetJ29ryDx2xV9TylsxJQ/OZSqkT6uJSNhanBAUx/BuoIYgjjHU7do9d7MOGgRKKELDgMzahweMvAxUEh7k9VJhzGclgX+AYEdaWOEtwhsZsgf95XmVC1uJ1raYXqA0+xeThsnIYo/REt/RKj3RHz/TxZ61KUKPm5ZBnva4VTjZ6Mph8/1dV5NnHwZeqoWcfOcwFXiV7dwKmdgujri8fnb0mFzZHK2N0TS/s/4qq9MA3sMpvxs2G2Lxs4EdnL/xi3CD1Zzt+g+3JhDqTmNqYji+vhK3qwBBGMM79mMUy1rCOFNeXOMU5LpSIQsqsMl9PVZpCzQC+hbLyCaIfkLA=</latexit> 1 + 1 =? <latexit sha1_base64="hRdVP+e2y4bjP1zOby3ZyPytH4w=">AAACi3icSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKRRhqa+gaatraxwsoG+gZgIECJsMQylBmgIKAfIHtDDEMKQz5DMkMpQy5DKkMeQwlQHYOQyJDMRBGMxgyGDAUAMViGaqBYkVAViZYPpWhloELqLcUqCoVqCIRKJoNJNOBvGioaB6QDzKzGKw7GWhLDhAXAXUqMKgaXDVYafDZ4ITBaoOXBn9wmlUNNgPklkognQTRm1oQz98lEfydoK5cIF3CkIHQhdfNJQxpDBZgt2YC3V4AFgH5Ihmiv6xq+udgqyDVajWDRQavge5faHDT4DDQB3llX5KXBqYGzcbjniSgW4AhBowgQ/TowGSEGekZmukZB5ooOzhBo4qDQZpBiUEDGB/mDA4MHgwBDKHgeJjEMJthDhMvkzGTFZMNRCkTI1SPMAMKYHIFACGukUw=</latexit> 1 + ( 1) =? <latexit sha1_base64="iSckyhI7u8UoVI74y32YMTkgc7c=">AAACj3ichVHLSsNAFD3Gd3201Y3gRiwVQSiTVmwrqEU3umutVUFFkjitoWkSkmlBiz/gB+jChQ9wIX6AH+DGH3DhJ4jLCm5ceJsGREW9YTJnztxz58xc1TZ0VzD21Ca1d3R2dff0Bvr6BwaDofDQumtVHY0XNMuwnE1Vcbmhm7wgdGHwTdvhSkU1+IZaXmrub9S44+qWuSYObL5TUUqmXtQ1RRC1LcdT6fhUOpVIzi3shiIsxrwY+wlkH0TgR9YK3WEbe7CgoYoKOEwIwgYUuPRtQQaDTdwO6sQ5hHRvn+MIAdJWKYtThkJsmf4lWm35rEnrZk3XU2t0ikHDIeUYouyR3bAGe2C37Jm9/1qr7tVoejmgWW1pub0bPB7Jv/2rqtAssP+p+tOzQBEpz6tO3m2Pad5Ca+lrh6eN/OxqtD7BrtgL+b9kT+yebmDWXrXrHF89+8OPSl7oxahB8vd2/ATr8Zg8E0vkpiOZRb9VPRjFOCapH0lksIwsClTfxgnOcSGFpaQ0L2VaqVKbrxnGl5BWPgDiqZJ1</latexit> 12892 + 9837 =? <latexit sha1_base64="3cCCvxejuSwhH3gAGZntIRJA/Ck=">AAAChHichVHNLgNRFP46/uunxUZi02iIhTRnWtWOhTRsLFsUCSIz42LS6cxkZtqExguwJRZWJBbiATyAjRew8AhiSWJj4cy0IhY4N/fec79zvnO/e4/mmIbnEz1FpLb2js6u7p5ob1//QCw+OLTq2TVXF2XdNm13XVM9YRqWKPuGb4p1xxVqVTPFmlZZCOJrdeF6hm2t+AeO2Kqqe5axa+iqz1ApvR1PUkrJZ7OZfIJSREpaybGjKIqckxMyI4El0bKiHb/DJnZgQ0cNVQhY8Nk3ocLjsQEZBIexLTQYc9kzwrjAEaLMrXGW4AyV0Qqve3zaaKEWn4OaXsjW+RaTp8vMBMbpkW7olR7olp7p49dajbBGoOWAd63JFc527Hhk+f1fVpV3H/vfrD81+9hFPtRqsHYnRIJX6E1+/fD8dXl2abwxQVf0wvov6Ynu+QVW/U2/Lomliz/0aKyFf4wb9NWFxO/Oajolz6QypelkYb7Vqm6MYgyT3I8cClhEEWWuL3CCU5xJndKUlJGyzVQp0uIM44dJc58RFJAW</latexit> 2 <latexit sha1_base64="dtxzgykiOKrKKToFg2z7LT9XiS0=">AAAChHichVHNLgNRFP6Mv/ovNhKbRkMspDnTqnYsRNhYaikSRGbGbU1MZyYz0ybVeAG2xMKKxEI8gAew8QIWfQSxJLGxcGZaEQucm3vvud8537nfvUdzTMPziRptUntHZ1d3pKe3r39gcCg6PLLh2RVXFwXdNm13S1M9YRqWKPiGb4otxxVqWTPFpna4HMQ3q8L1DNta92uO2C2rJcsoGrrqM5SjvWicEko2nU5lY5QgUpJKhh1FUeSMHJMZCSyOlq3a0XvsYB82dFRQhoAFn30TKjwe25BBcBjbRZ0xlz0jjAsco5e5Fc4SnKEyeshriU/bLdTic1DTC9k632LydJkZwyQ90S290iPd0TN9/FqrHtYItNR415pc4ewNnYytvf/LKvPu4+Cb9admH0VkQ60Ga3dCJHiF3uRXjy5e1+bzk/UpuqYX1n9FDXrgF1jVN/0mJ/KXf+jRWAv/GDfoqwux352NZEKeS6Rys/HFpVarIhjHBKa5HxksYgWrKHB9gVOc4VzqkmaklJRupkptLc4ofpi08AkM1JAU</latexit> 0 <latexit sha1_base64="P9nwiNSxLZKIKI1oebJys0uGCoU=">AAACiHichVHLLgRBFD3ae7wGG4nNxIRYTW63R09bydhYjscgQaS7FSp6ujvdPZMw8QM2logViYX4AB9g4wcsfIJYkthYuN0zIha4laq6de49t07VtXxHhhHRU5PS3NLa1t7Rmerq7untS/cPrIReJbBFyfYcL1izzFA40hWlSEaOWPMDYZYtR6xa+3NxfLUqglB67nJ04IvNsrnryh1pmxFDJU3TNWMrnaWckZ+amshnKEdkaIbOjmEYqq5mVEZiy6JhRS99hw1sw4ONCsoQcBGx78BEyGMdKgg+Y5uoMRawJ5O4wBFSzK1wluAMk9F9Xnf5tN5AXT7HNcOEbfMtDs+AmRmM0iPd0Cs90C0908evtWpJjVjLAe9WnSv8rb7joaX3f1ll3iPsfbP+1BxhB/lEq2TtfoLEr7Dr/Orh6evSzOJobYyu6IX1X9IT3fML3Oqbfb0gFi/+0GOxFv4xbtBXFzK/OytaTp3OTSxMZmcLjVZ1YBgjGOd+6JjFPIoocX2JE5zhXEkppOiKUU9VmhqcQfwwpfAJa7yREg==</latexit> 22729 train test (the case where a clear answer and underlying logic exist)
  • 22. / 35 12 A toy example: approximate adders RF says 1 + 1 = 5.15 and 1 - 1 = 5.15 and 12892 + 9837 = 12.75 MLP better? But anyway it’s totally wrong. 2-10-5-1 Feed Forward NN (MLP, Multi-Layer Perceptron) adder <latexit sha1_base64="tiacEhQgmTkomNeV5LHmrY6hmbk=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTXxhXRDcuecgjQULaOmJDaZu2EJH4AyZuZeFKExfGD/AD3PgDLvgE4xITNy68lCZGiXib6Zw5c8+dM3NlU1Nth7GOTxgZHRuf8E8GpqZnZoOhufmcbdQthWcVQzOsgizZXFN1nnVUR+MF0+JSTdZ4Xq7u9fbzDW7ZqqEfOE2Tl2pSRVePVUVyiMqclsVyKMJizI3wIBA9EIEXSSP0iEMcwYCCOmrg0OEQ1iDBpq8IEQwmcSW0iLMIqe4+xzkCpK1TFqcMidgq/Su0KnqsTuteTdtVK3SKRsMiZRhR9sLuWZc9swf2yj7/rNVya/S8NGmW+1puloMXi5mPf1U1mh2cfKuGenZwjG3Xq0reTZfp3ULp6xtn7W5mJx1trbBb9kb+b1iHPdEN9Ma7cpfi6eshfmTyQi9GDRJ/t2MQ5NZi4lZsPbURSex6rfJjCctYpX7EkcA+kshS/QoucYW24BdiwqYQ76cKPk+zgB8hJL4AVGCQmw==</latexit> x1 <latexit sha1_base64="4Sn0JXQ8Nli9zYaRMiYfd4a9JHg=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqclmPlQIhFmBPBYRB1QQhuJPXAI45wDB0yGqiDQ4NNWIUIi74iomAwiCuhTZxJSHH2Oc7hI22DsjhliMTW6F+lVdFlNVr3a1qOWqZTVBomKYMIsxd2z3rsmT2wV/b5Z622U6PvpUWzNNByo+y/WM58/Kuq02zj5Fs10rONCnYcrwp5Nxymfwt5oG+edXqZ3XS4vcZu2Rv5v2Fd9kQ30Jrv8l2Kp69H+JHIC70YNSj6ux3DIBeLRLcjG6nNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFVoCQnA==</latexit> x2 <latexit sha1_base64="SKy45aVsIvNNIc9wr1Q6tiMY1uI=">AAACinichVHLSsNAFL2Nr1qrrboR3BRLRRDKpIrPTVEXLvuwD6glJHFah+ZFkpbW4g+4cyXYlYIL8QP8ADf+gIt+gris4MaFN2lAtFhvmMyZM/fcOTNXMhRm2YR0fdzI6Nj4hH8yMBWcngmFZ+fyll43ZZqTdUU3i5JoUYVpNGczW6FFw6SiKim0INX2nf1Cg5oW07Uju2XQsipWNVZhsmgjVWgK/GpTSAjhKIkTNyKDgPdAFLxI6eFHOIYT0EGGOqhAQQMbsQIiWPiVgAcCBnJlaCNnImLuPoVzCKC2jlkUM0Rka/iv4qrksRqunZqWq5bxFAWHicoIxMgLuSc98kweyCv5/LNW263heGnhLPW11BBCFwvZj39VKs42nH6rhnq2oQJbrleG3g2XcW4h9/WNs6tedicTay+TW/KG/m9IlzzhDbTGu3yXppnOED8SesEXwwbxv9sxCPKJOL8RX0uvR5N7Xqv8sAhLsIL92IQkHEIKcm79S7iGDhfkEtw2t9tP5XyeZh5+BHfwBX8Zkfc=</latexit> x1 + x2 <latexit sha1_base64="1coS+Mt9eL/r4jEoYDkZ5NYfoeE=">AAACiHichVHLSsNAFD3Gd3206kZwUywVQSg3KlYFQerGZVutCiqSxGkdTJOQpIVa/AE3LlVcKbgQP8APcOMPuPATxKWCGxfepgFRUW+YzJkz99w5M1d3TOn5RI8tSmtbe0dnV3ekp7evPxobGFzz7IpriIJhm7a7oWueMKUlCr70TbHhuEIr66ZY1/eXGvvrVeF60rZW/ZojtstayZJFaWg+UwV1YmpheieWoBQFEf8J1BAkEEbWjt1iC7uwYaCCMgQs+IxNaPD424QKgsPcNurMuYxksC9wiAhrK5wlOENjdp//JV5thqzF60ZNL1AbfIrJw2VlHEl6oGt6oXu6oSd6/7VWPajR8FLjWW9qhbMTPRpeeftXVebZx96n6k/PPoqYDbxK9u4ETOMWRlNfPTh5WZnPJ+tjdEnP7P+CHumOb2BVX42rnMif/+FHZy/8Ytwg9Xs7foK1yZQ6k5rKTScWM2GrujCCUYxzP9JYxDKyKHB9iWOc4kyJKKSklblmqtISaobwJZTMB48DkKc=</latexit> 1 + 3 = 4 <latexit sha1_base64="Jl1LVcl+mtrFJMn2AKjNmRINEM4=">AAACiHichVHLSsNAFD3GV62vqhvBjVgUQSi39VEVhFI3LtVaW1CRJE7rYJqEJC3U4g+4caniSsGF+AF+gBt/wIWfIC4ruHHhbRoQFfWGyZw5c8+dM3M125CuR/TUorS2tXd0hrrC3T29ff2RgcFN1yo7usjqlmE5eU11hSFNkfWkZ4i87Qi1pBkipx0sN/ZzFeG40jI3vKotdkpq0ZQFqaseU9nE1OxScjcSpRj5MfoTxAMQRRCrVuQO29iDBR1llCBgwmNsQIXL3xbiINjM7aDGnMNI+vsCRwiztsxZgjNUZg/4X+TVVsCavG7UdH21zqcYPBxWjmKcHumG6vRAt/RM77/Wqvk1Gl6qPGtNrbB3+4+HM2//qko8e9j/VP3p2UMB875Xyd5tn2ncQm/qK4en9czi+nhtgq7ohf1f0hPd8w3Myqt+vSbWL/7wo7EXfjFuUPx7O36CzUQsPhebXpuJptJBq0IYwRgmuR9JpLCCVWS5vsQJznCuhBVSkspCM1VpCTRD+BJK+gOby5Ct</latexit> 2 + 5 = 7 <latexit sha1_base64="NRtmyWkgZ5nlm1ETxVkZxPMO8Rc=">AAACiXichVHNLgNRGD0df6V+io3ERjREImnuUJREIrqxpNWSIM3MuGV0/jJz24TGC1jZCVYkFuIBPICNF7DwCGJZiY2Fb6aTCKK+yZ177rnf+e6591MdQ/cEY88RqaW1rb0j2tkV6+7p7Yv3DxQ8u+JqPK/Zhu1uqorHDd3ieaELg286LldM1eAbajnj729UuevptrUuDh2+Yyp7ll7SNUUQVZiZnF+UU8V4giVZECO/gRyCBMJYteP32MYubGiowASHBUHYgAKPvi3IYHCI20GNOJeQHuxzHKOLtBXK4pShEFum/x6ttkLWorVf0wvUGp1i0HBJOYIx9sRuWZ09sjv2wj7+rFULavheDmlWG1ruFPtOhnLv/6pMmgX2v1RNPQuUkA686uTdCRj/FlpDXz06q+cWsmO1cXbNXsn/FXtmD3QDq/qm3azx7GUTPyp5oRejBsk/2/EbFKaS8mxyei2VWFoOWxXFMEYxQf2YwxJWsIo81T/AKc5xIcUkWUpLC41UKRJqBvEtpMwnMx2Q7A==</latexit> 5 + 9 = 14 <latexit sha1_base64="wFMJb33bMt0hW8th8BMIqvUdNU8=">AAACinichVFLSwJRFD5OLzNLq03QRhIjCOSMRk8CqRYtfeQDTGRmutrgvJgZBZP+QLtWQa4KWkQ/oB/Qpj/Qwp8QLQ3atOg4DkRJdoY797vfPd+5371HNBTZshE7Hm5kdGx8wjvpm/JPzwSCs3M5S6+bEstKuqKbBVGwmCJrLGvLtsIKhskEVVRYXqzt9/bzDWZasq4d2U2DlVShqskVWRJsovLxVR53+Xg5GMYoOhEaBLwLwuBGUg8+wjGcgA4S1EEFBhrYhBUQwKKvCDwgGMSVoEWcSUh29hmcg4+0dcpilCEQW6N/lVZFl9Vo3atpOWqJTlFomKQMQQRf8B67+IwP+Iqff9ZqOTV6Xpo0i30tM8qBi4XMx78qlWYbTr9VQz3bUIFNx6tM3g2H6d1C6usbZ1fdzHY60lrGW3wj/zfYwSe6gdZ4l+5SLN0e4kckL/Ri1CD+dzsGQS4W5dej8dRaOLHntsoLi7AEK9SPDUjAISQh69S/hGtoc34uxm1xO/1UzuNq5uFHcAdfqESRGw==</latexit> 3 + 10 = 13 <latexit sha1_base64="FoI7hqDrtQtFjlgLPgriDwtw1iU=">AAACiXichVHLSsNAFD2Nr1pfVTeCm2JRBKFMfNQiCKIbl33YVlApSRx1NE1CMi1o8QdcuRN1peBC/AA/wI0/4MJPEJcV3LjwNg2IFvWGyZw5c8+dM3N1xxSeZOw5pLS1d3R2hbsjPb19/QPRwaGCZ1dcg+cN27TddV3zuCksnpdCmnzdcblW1k1e1A9WGvvFKnc9YVtr8tDhW2Vt1xI7wtAkUYW5qeSiqpaicZZgfsRagRqAOIJI29F7bGIbNgxUUAaHBUnYhAaPvg2oYHCI20KNOJeQ8Pc5jhEhbYWyOGVoxB7Qf5dWGwFr0bpR0/PVBp1i0nBJGcM4e2K3rM4e2R17YR+/1qr5NRpeDmnWm1rulAZORnLv/6rKNEvsfan+9Cyxg5TvVZB3x2catzCa+urRWT23kB2vTbBr9kr+r9gze6AbWNU34ybDs5d/+NHJC70YNUj92Y5WUJhOqMnETGY2vrQctCqMUYxhkvoxjyWsIo081d/HKc5xofQoqpJSFpqpSijQDONbKCufJlSQ5g==</latexit> 5 + 6 = 11 <latexit sha1_base64="n3Yy/9dJfdSB5yYDzUvImVPJv/g=">AAACiHichVHLSsNAFD3Gd3206kZwIxZFEMqNii8QRTcu1VotVClJnNahaRKStKDFH3DjUsWVggvxA/wAN/6Ai36CuFRw48LbNCAq1hsmc+bMPXfOzNUdU3o+UbVJaW5pbWvv6Ix0dff0RmN9/dueXXINkTJs03bTuuYJU1oi5UvfFGnHFVpRN8WOXlit7e+UhetJ29ryDx2xV9TylsxJQ/OZSqkT6uJSNhanBAUx/BuoIYgjjHU7do9d7MOGgRKKELDgMzahweMvAxUEh7k9VJhzGclgX+AYEdaWOEtwhsZsgf95XmVC1uJ1raYXqA0+xeThsnIYo/REt/RKj3RHz/TxZ61KUKPm5ZBnva4VTjZ6Mph8/1dV5NnHwZeqoWcfOcwFXiV7dwKmdgujri8fnb0mFzZHK2N0TS/s/4qq9MA3sMpvxs2G2Lxs4EdnL/xi3CD1Zzt+g+3JhDqTmNqYji+vhK3qwBBGMM79mMUy1rCOFNeXOMU5LpSIQsqsMl9PVZpCzQC+hbLyCaIfkLA=</latexit> 1 + 1 =? <latexit sha1_base64="hRdVP+e2y4bjP1zOby3ZyPytH4w=">AAACi3icSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKRRhqa+gaatraxwsoG+gZgIECJsMQylBmgIKAfIHtDDEMKQz5DMkMpQy5DKkMeQwlQHYOQyJDMRBGMxgyGDAUAMViGaqBYkVAViZYPpWhloELqLcUqCoVqCIRKJoNJNOBvGioaB6QDzKzGKw7GWhLDhAXAXUqMKgaXDVYafDZ4ITBaoOXBn9wmlUNNgPklkognQTRm1oQz98lEfydoK5cIF3CkIHQhdfNJQxpDBZgt2YC3V4AFgH5Ihmiv6xq+udgqyDVajWDRQavge5faHDT4DDQB3llX5KXBqYGzcbjniSgW4AhBowgQ/TowGSEGekZmukZB5ooOzhBo4qDQZpBiUEDGB/mDA4MHgwBDKHgeJjEMJthDhMvkzGTFZMNRCkTI1SPMAMKYHIFACGukUw=</latexit> 1 + ( 1) =? <latexit sha1_base64="iSckyhI7u8UoVI74y32YMTkgc7c=">AAACj3ichVHLSsNAFD3Gd3201Y3gRiwVQSiTVmwrqEU3umutVUFFkjitoWkSkmlBiz/gB+jChQ9wIX6AH+DGH3DhJ4jLCm5ceJsGREW9YTJnztxz58xc1TZ0VzD21Ca1d3R2dff0Bvr6BwaDofDQumtVHY0XNMuwnE1Vcbmhm7wgdGHwTdvhSkU1+IZaXmrub9S44+qWuSYObL5TUUqmXtQ1RRC1LcdT6fhUOpVIzi3shiIsxrwY+wlkH0TgR9YK3WEbe7CgoYoKOEwIwgYUuPRtQQaDTdwO6sQ5hHRvn+MIAdJWKYtThkJsmf4lWm35rEnrZk3XU2t0ikHDIeUYouyR3bAGe2C37Jm9/1qr7tVoejmgWW1pub0bPB7Jv/2rqtAssP+p+tOzQBEpz6tO3m2Pad5Ca+lrh6eN/OxqtD7BrtgL+b9kT+yebmDWXrXrHF89+8OPSl7oxahB8vd2/ATr8Zg8E0vkpiOZRb9VPRjFOCapH0lksIwsClTfxgnOcSGFpaQ0L2VaqVKbrxnGl5BWPgDiqZJ1</latexit> 12892 + 9837 =? <latexit sha1_base64="3cCCvxejuSwhH3gAGZntIRJA/Ck=">AAAChHichVHNLgNRFP46/uunxUZi02iIhTRnWtWOhTRsLFsUCSIz42LS6cxkZtqExguwJRZWJBbiATyAjRew8AhiSWJj4cy0IhY4N/fec79zvnO/e4/mmIbnEz1FpLb2js6u7p5ob1//QCw+OLTq2TVXF2XdNm13XVM9YRqWKPuGb4p1xxVqVTPFmlZZCOJrdeF6hm2t+AeO2Kqqe5axa+iqz1ApvR1PUkrJZ7OZfIJSREpaybGjKIqckxMyI4El0bKiHb/DJnZgQ0cNVQhY8Nk3ocLjsQEZBIexLTQYc9kzwrjAEaLMrXGW4AyV0Qqve3zaaKEWn4OaXsjW+RaTp8vMBMbpkW7olR7olp7p49dajbBGoOWAd63JFc527Hhk+f1fVpV3H/vfrD81+9hFPtRqsHYnRIJX6E1+/fD8dXl2abwxQVf0wvov6Ynu+QVW/U2/Lomliz/0aKyFf4wb9NWFxO/Oajolz6QypelkYb7Vqm6MYgyT3I8cClhEEWWuL3CCU5xJndKUlJGyzVQp0uIM44dJc58RFJAW</latexit> 2 <latexit sha1_base64="dtxzgykiOKrKKToFg2z7LT9XiS0=">AAAChHichVHNLgNRFP6Mv/ovNhKbRkMspDnTqnYsRNhYaikSRGbGbU1MZyYz0ybVeAG2xMKKxEI8gAew8QIWfQSxJLGxcGZaEQucm3vvud8537nfvUdzTMPziRptUntHZ1d3pKe3r39gcCg6PLLh2RVXFwXdNm13S1M9YRqWKPiGb4otxxVqWTPFpna4HMQ3q8L1DNta92uO2C2rJcsoGrrqM5SjvWicEko2nU5lY5QgUpJKhh1FUeSMHJMZCSyOlq3a0XvsYB82dFRQhoAFn30TKjwe25BBcBjbRZ0xlz0jjAsco5e5Fc4SnKEyeshriU/bLdTic1DTC9k632LydJkZwyQ90S290iPd0TN9/FqrHtYItNR415pc4ewNnYytvf/LKvPu4+Cb9admH0VkQ60Ga3dCJHiF3uRXjy5e1+bzk/UpuqYX1n9FDXrgF1jVN/0mJ/KXf+jRWAv/GDfoqwux352NZEKeS6Rys/HFpVarIhjHBKa5HxksYgWrKHB9gVOc4VzqkmaklJRupkptLc4ofpi08AkM1JAU</latexit> 0 <latexit sha1_base64="P9nwiNSxLZKIKI1oebJys0uGCoU=">AAACiHichVHLLgRBFD3ae7wGG4nNxIRYTW63R09bydhYjscgQaS7FSp6ujvdPZMw8QM2logViYX4AB9g4wcsfIJYkthYuN0zIha4laq6de49t07VtXxHhhHRU5PS3NLa1t7Rmerq7untS/cPrIReJbBFyfYcL1izzFA40hWlSEaOWPMDYZYtR6xa+3NxfLUqglB67nJ04IvNsrnryh1pmxFDJU3TNWMrnaWckZ+amshnKEdkaIbOjmEYqq5mVEZiy6JhRS99hw1sw4ONCsoQcBGx78BEyGMdKgg+Y5uoMRawJ5O4wBFSzK1wluAMk9F9Xnf5tN5AXT7HNcOEbfMtDs+AmRmM0iPd0Cs90C0908evtWpJjVjLAe9WnSv8rb7joaX3f1ll3iPsfbP+1BxhB/lEq2TtfoLEr7Dr/Orh6evSzOJobYyu6IX1X9IT3fML3Oqbfb0gFi/+0GOxFv4xbtBXFzK/OytaTp3OTSxMZmcLjVZ1YBgjGOd+6JjFPIoocX2JE5zhXEkppOiKUU9VmhqcQfwwpfAJa7yREg==</latexit> 22729 train test (the case where a clear answer and inductive logic exist) Try to teach ML “arithmetic addition” only by examples.
  • 23. / 35 12 A toy example: approximate adders RF says 1 + 1 = 5.15 and 1 - 1 = 5.15 and 12892 + 9837 = 12.75 MLP better? But anyway it’s totally wrong. 2-10-5-1 Feed Forward NN (MLP, Multi-Layer Perceptron) adder <latexit sha1_base64="tiacEhQgmTkomNeV5LHmrY6hmbk=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTXxhXRDcuecgjQULaOmJDaZu2EJH4AyZuZeFKExfGD/AD3PgDLvgE4xITNy68lCZGiXib6Zw5c8+dM3NlU1Nth7GOTxgZHRuf8E8GpqZnZoOhufmcbdQthWcVQzOsgizZXFN1nnVUR+MF0+JSTdZ4Xq7u9fbzDW7ZqqEfOE2Tl2pSRVePVUVyiMqclsVyKMJizI3wIBA9EIEXSSP0iEMcwYCCOmrg0OEQ1iDBpq8IEQwmcSW0iLMIqe4+xzkCpK1TFqcMidgq/Su0KnqsTuteTdtVK3SKRsMiZRhR9sLuWZc9swf2yj7/rNVya/S8NGmW+1puloMXi5mPf1U1mh2cfKuGenZwjG3Xq0reTZfp3ULp6xtn7W5mJx1trbBb9kb+b1iHPdEN9Ma7cpfi6eshfmTyQi9GDRJ/t2MQ5NZi4lZsPbURSex6rfJjCctYpX7EkcA+kshS/QoucYW24BdiwqYQ76cKPk+zgB8hJL4AVGCQmw==</latexit> x1 <latexit sha1_base64="4Sn0JXQ8Nli9zYaRMiYfd4a9JHg=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqclmPlQIhFmBPBYRB1QQhuJPXAI45wDB0yGqiDQ4NNWIUIi74iomAwiCuhTZxJSHH2Oc7hI22DsjhliMTW6F+lVdFlNVr3a1qOWqZTVBomKYMIsxd2z3rsmT2wV/b5Z622U6PvpUWzNNByo+y/WM58/Kuq02zj5Fs10rONCnYcrwp5Nxymfwt5oG+edXqZ3XS4vcZu2Rv5v2Fd9kQ30Jrv8l2Kp69H+JHIC70YNSj6ux3DIBeLRLcjG6nNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFVoCQnA==</latexit> x2 <latexit sha1_base64="SKy45aVsIvNNIc9wr1Q6tiMY1uI=">AAACinichVHLSsNAFL2Nr1qrrboR3BRLRRDKpIrPTVEXLvuwD6glJHFah+ZFkpbW4g+4cyXYlYIL8QP8ADf+gIt+gris4MaFN2lAtFhvmMyZM/fcOTNXMhRm2YR0fdzI6Nj4hH8yMBWcngmFZ+fyll43ZZqTdUU3i5JoUYVpNGczW6FFw6SiKim0INX2nf1Cg5oW07Uju2XQsipWNVZhsmgjVWgK/GpTSAjhKIkTNyKDgPdAFLxI6eFHOIYT0EGGOqhAQQMbsQIiWPiVgAcCBnJlaCNnImLuPoVzCKC2jlkUM0Rka/iv4qrksRqunZqWq5bxFAWHicoIxMgLuSc98kweyCv5/LNW263heGnhLPW11BBCFwvZj39VKs42nH6rhnq2oQJbrleG3g2XcW4h9/WNs6tedicTay+TW/KG/m9IlzzhDbTGu3yXppnOED8SesEXwwbxv9sxCPKJOL8RX0uvR5N7Xqv8sAhLsIL92IQkHEIKcm79S7iGDhfkEtw2t9tP5XyeZh5+BHfwBX8Zkfc=</latexit> x1 + x2 <latexit sha1_base64="1coS+Mt9eL/r4jEoYDkZ5NYfoeE=">AAACiHichVHLSsNAFD3Gd3206kZwUywVQSg3KlYFQerGZVutCiqSxGkdTJOQpIVa/AE3LlVcKbgQP8APcOMPuPATxKWCGxfepgFRUW+YzJkz99w5M1d3TOn5RI8tSmtbe0dnV3ekp7evPxobGFzz7IpriIJhm7a7oWueMKUlCr70TbHhuEIr66ZY1/eXGvvrVeF60rZW/ZojtstayZJFaWg+UwV1YmpheieWoBQFEf8J1BAkEEbWjt1iC7uwYaCCMgQs+IxNaPD424QKgsPcNurMuYxksC9wiAhrK5wlOENjdp//JV5thqzF60ZNL1AbfIrJw2VlHEl6oGt6oXu6oSd6/7VWPajR8FLjWW9qhbMTPRpeeftXVebZx96n6k/PPoqYDbxK9u4ETOMWRlNfPTh5WZnPJ+tjdEnP7P+CHumOb2BVX42rnMif/+FHZy/8Ytwg9Xs7foK1yZQ6k5rKTScWM2GrujCCUYxzP9JYxDKyKHB9iWOc4kyJKKSklblmqtISaobwJZTMB48DkKc=</latexit> 1 + 3 = 4 <latexit sha1_base64="Jl1LVcl+mtrFJMn2AKjNmRINEM4=">AAACiHichVHLSsNAFD3GV62vqhvBjVgUQSi39VEVhFI3LtVaW1CRJE7rYJqEJC3U4g+4caniSsGF+AF+gBt/wIWfIC4ruHHhbRoQFfWGyZw5c8+dM3M125CuR/TUorS2tXd0hrrC3T29ff2RgcFN1yo7usjqlmE5eU11hSFNkfWkZ4i87Qi1pBkipx0sN/ZzFeG40jI3vKotdkpq0ZQFqaseU9nE1OxScjcSpRj5MfoTxAMQRRCrVuQO29iDBR1llCBgwmNsQIXL3xbiINjM7aDGnMNI+vsCRwiztsxZgjNUZg/4X+TVVsCavG7UdH21zqcYPBxWjmKcHumG6vRAt/RM77/Wqvk1Gl6qPGtNrbB3+4+HM2//qko8e9j/VP3p2UMB875Xyd5tn2ncQm/qK4en9czi+nhtgq7ohf1f0hPd8w3Myqt+vSbWL/7wo7EXfjFuUPx7O36CzUQsPhebXpuJptJBq0IYwRgmuR9JpLCCVWS5vsQJznCuhBVSkspCM1VpCTRD+BJK+gOby5Ct</latexit> 2 + 5 = 7 <latexit sha1_base64="NRtmyWkgZ5nlm1ETxVkZxPMO8Rc=">AAACiXichVHNLgNRGD0df6V+io3ERjREImnuUJREIrqxpNWSIM3MuGV0/jJz24TGC1jZCVYkFuIBPICNF7DwCGJZiY2Fb6aTCKK+yZ177rnf+e6591MdQ/cEY88RqaW1rb0j2tkV6+7p7Yv3DxQ8u+JqPK/Zhu1uqorHDd3ieaELg286LldM1eAbajnj729UuevptrUuDh2+Yyp7ll7SNUUQVZiZnF+UU8V4giVZECO/gRyCBMJYteP32MYubGiowASHBUHYgAKPvi3IYHCI20GNOJeQHuxzHKOLtBXK4pShEFum/x6ttkLWorVf0wvUGp1i0HBJOYIx9sRuWZ09sjv2wj7+rFULavheDmlWG1ruFPtOhnLv/6pMmgX2v1RNPQuUkA686uTdCRj/FlpDXz06q+cWsmO1cXbNXsn/FXtmD3QDq/qm3azx7GUTPyp5oRejBsk/2/EbFKaS8mxyei2VWFoOWxXFMEYxQf2YwxJWsIo81T/AKc5xIcUkWUpLC41UKRJqBvEtpMwnMx2Q7A==</latexit> 5 + 9 = 14 <latexit sha1_base64="wFMJb33bMt0hW8th8BMIqvUdNU8=">AAACinichVFLSwJRFD5OLzNLq03QRhIjCOSMRk8CqRYtfeQDTGRmutrgvJgZBZP+QLtWQa4KWkQ/oB/Qpj/Qwp8QLQ3atOg4DkRJdoY797vfPd+5371HNBTZshE7Hm5kdGx8wjvpm/JPzwSCs3M5S6+bEstKuqKbBVGwmCJrLGvLtsIKhskEVVRYXqzt9/bzDWZasq4d2U2DlVShqskVWRJsovLxVR53+Xg5GMYoOhEaBLwLwuBGUg8+wjGcgA4S1EEFBhrYhBUQwKKvCDwgGMSVoEWcSUh29hmcg4+0dcpilCEQW6N/lVZFl9Vo3atpOWqJTlFomKQMQQRf8B67+IwP+Iqff9ZqOTV6Xpo0i30tM8qBi4XMx78qlWYbTr9VQz3bUIFNx6tM3g2H6d1C6usbZ1fdzHY60lrGW3wj/zfYwSe6gdZ4l+5SLN0e4kckL/Ri1CD+dzsGQS4W5dej8dRaOLHntsoLi7AEK9SPDUjAISQh69S/hGtoc34uxm1xO/1UzuNq5uFHcAdfqESRGw==</latexit> 3 + 10 = 13 <latexit sha1_base64="FoI7hqDrtQtFjlgLPgriDwtw1iU=">AAACiXichVHLSsNAFD2Nr1pfVTeCm2JRBKFMfNQiCKIbl33YVlApSRx1NE1CMi1o8QdcuRN1peBC/AA/wI0/4MJPEJcV3LjwNg2IFvWGyZw5c8+dM3N1xxSeZOw5pLS1d3R2hbsjPb19/QPRwaGCZ1dcg+cN27TddV3zuCksnpdCmnzdcblW1k1e1A9WGvvFKnc9YVtr8tDhW2Vt1xI7wtAkUYW5qeSiqpaicZZgfsRagRqAOIJI29F7bGIbNgxUUAaHBUnYhAaPvg2oYHCI20KNOJeQ8Pc5jhEhbYWyOGVoxB7Qf5dWGwFr0bpR0/PVBp1i0nBJGcM4e2K3rM4e2R17YR+/1qr5NRpeDmnWm1rulAZORnLv/6rKNEvsfan+9Cyxg5TvVZB3x2catzCa+urRWT23kB2vTbBr9kr+r9gze6AbWNU34ybDs5d/+NHJC70YNUj92Y5WUJhOqMnETGY2vrQctCqMUYxhkvoxjyWsIo081d/HKc5xofQoqpJSFpqpSijQDONbKCufJlSQ5g==</latexit> 5 + 6 = 11 <latexit sha1_base64="n3Yy/9dJfdSB5yYDzUvImVPJv/g=">AAACiHichVHLSsNAFD3Gd3206kZwIxZFEMqNii8QRTcu1VotVClJnNahaRKStKDFH3DjUsWVggvxA/wAN/6Ai36CuFRw48LbNCAq1hsmc+bMPXfOzNUdU3o+UbVJaW5pbWvv6Ix0dff0RmN9/dueXXINkTJs03bTuuYJU1oi5UvfFGnHFVpRN8WOXlit7e+UhetJ29ryDx2xV9TylsxJQ/OZSqkT6uJSNhanBAUx/BuoIYgjjHU7do9d7MOGgRKKELDgMzahweMvAxUEh7k9VJhzGclgX+AYEdaWOEtwhsZsgf95XmVC1uJ1raYXqA0+xeThsnIYo/REt/RKj3RHz/TxZ61KUKPm5ZBnva4VTjZ6Mph8/1dV5NnHwZeqoWcfOcwFXiV7dwKmdgujri8fnb0mFzZHK2N0TS/s/4qq9MA3sMpvxs2G2Lxs4EdnL/xi3CD1Zzt+g+3JhDqTmNqYji+vhK3qwBBGMM79mMUy1rCOFNeXOMU5LpSIQsqsMl9PVZpCzQC+hbLyCaIfkLA=</latexit> 1 + 1 =? <latexit sha1_base64="hRdVP+e2y4bjP1zOby3ZyPytH4w=">AAACi3icSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKRRhqa+gaatraxwsoG+gZgIECJsMQylBmgIKAfIHtDDEMKQz5DMkMpQy5DKkMeQwlQHYOQyJDMRBGMxgyGDAUAMViGaqBYkVAViZYPpWhloELqLcUqCoVqCIRKJoNJNOBvGioaB6QDzKzGKw7GWhLDhAXAXUqMKgaXDVYafDZ4ITBaoOXBn9wmlUNNgPklkognQTRm1oQz98lEfydoK5cIF3CkIHQhdfNJQxpDBZgt2YC3V4AFgH5Ihmiv6xq+udgqyDVajWDRQavge5faHDT4DDQB3llX5KXBqYGzcbjniSgW4AhBowgQ/TowGSEGekZmukZB5ooOzhBo4qDQZpBiUEDGB/mDA4MHgwBDKHgeJjEMJthDhMvkzGTFZMNRCkTI1SPMAMKYHIFACGukUw=</latexit> 1 + ( 1) =? <latexit sha1_base64="iSckyhI7u8UoVI74y32YMTkgc7c=">AAACj3ichVHLSsNAFD3Gd3201Y3gRiwVQSiTVmwrqEU3umutVUFFkjitoWkSkmlBiz/gB+jChQ9wIX6AH+DGH3DhJ4jLCm5ceJsGREW9YTJnztxz58xc1TZ0VzD21Ca1d3R2dff0Bvr6BwaDofDQumtVHY0XNMuwnE1Vcbmhm7wgdGHwTdvhSkU1+IZaXmrub9S44+qWuSYObL5TUUqmXtQ1RRC1LcdT6fhUOpVIzi3shiIsxrwY+wlkH0TgR9YK3WEbe7CgoYoKOEwIwgYUuPRtQQaDTdwO6sQ5hHRvn+MIAdJWKYtThkJsmf4lWm35rEnrZk3XU2t0ikHDIeUYouyR3bAGe2C37Jm9/1qr7tVoejmgWW1pub0bPB7Jv/2rqtAssP+p+tOzQBEpz6tO3m2Pad5Ca+lrh6eN/OxqtD7BrtgL+b9kT+yebmDWXrXrHF89+8OPSl7oxahB8vd2/ATr8Zg8E0vkpiOZRb9VPRjFOCapH0lksIwsClTfxgnOcSGFpaQ0L2VaqVKbrxnGl5BWPgDiqZJ1</latexit> 12892 + 9837 =? <latexit sha1_base64="3cCCvxejuSwhH3gAGZntIRJA/Ck=">AAAChHichVHNLgNRFP46/uunxUZi02iIhTRnWtWOhTRsLFsUCSIz42LS6cxkZtqExguwJRZWJBbiATyAjRew8AhiSWJj4cy0IhY4N/fec79zvnO/e4/mmIbnEz1FpLb2js6u7p5ob1//QCw+OLTq2TVXF2XdNm13XVM9YRqWKPuGb4p1xxVqVTPFmlZZCOJrdeF6hm2t+AeO2Kqqe5axa+iqz1ApvR1PUkrJZ7OZfIJSREpaybGjKIqckxMyI4El0bKiHb/DJnZgQ0cNVQhY8Nk3ocLjsQEZBIexLTQYc9kzwrjAEaLMrXGW4AyV0Qqve3zaaKEWn4OaXsjW+RaTp8vMBMbpkW7olR7olp7p49dajbBGoOWAd63JFc527Hhk+f1fVpV3H/vfrD81+9hFPtRqsHYnRIJX6E1+/fD8dXl2abwxQVf0wvov6Ynu+QVW/U2/Lomliz/0aKyFf4wb9NWFxO/Oajolz6QypelkYb7Vqm6MYgyT3I8cClhEEWWuL3CCU5xJndKUlJGyzVQp0uIM44dJc58RFJAW</latexit> 2 <latexit sha1_base64="dtxzgykiOKrKKToFg2z7LT9XiS0=">AAAChHichVHNLgNRFP6Mv/ovNhKbRkMspDnTqnYsRNhYaikSRGbGbU1MZyYz0ybVeAG2xMKKxEI8gAew8QIWfQSxJLGxcGZaEQucm3vvud8537nfvUdzTMPziRptUntHZ1d3pKe3r39gcCg6PLLh2RVXFwXdNm13S1M9YRqWKPiGb4otxxVqWTPFpna4HMQ3q8L1DNta92uO2C2rJcsoGrrqM5SjvWicEko2nU5lY5QgUpJKhh1FUeSMHJMZCSyOlq3a0XvsYB82dFRQhoAFn30TKjwe25BBcBjbRZ0xlz0jjAsco5e5Fc4SnKEyeshriU/bLdTic1DTC9k632LydJkZwyQ90S290iPd0TN9/FqrHtYItNR415pc4ewNnYytvf/LKvPu4+Cb9admH0VkQ60Ga3dCJHiF3uRXjy5e1+bzk/UpuqYX1n9FDXrgF1jVN/0mJ/KXf+jRWAv/GDfoqwux352NZEKeS6Rys/HFpVarIhjHBKa5HxksYgWrKHB9gVOc4VzqkmaklJRupkptLc4ofpi08AkM1JAU</latexit> 0 <latexit sha1_base64="P9nwiNSxLZKIKI1oebJys0uGCoU=">AAACiHichVHLLgRBFD3ae7wGG4nNxIRYTW63R09bydhYjscgQaS7FSp6ujvdPZMw8QM2logViYX4AB9g4wcsfIJYkthYuN0zIha4laq6de49t07VtXxHhhHRU5PS3NLa1t7Rmerq7untS/cPrIReJbBFyfYcL1izzFA40hWlSEaOWPMDYZYtR6xa+3NxfLUqglB67nJ04IvNsrnryh1pmxFDJU3TNWMrnaWckZ+amshnKEdkaIbOjmEYqq5mVEZiy6JhRS99hw1sw4ONCsoQcBGx78BEyGMdKgg+Y5uoMRawJ5O4wBFSzK1wluAMk9F9Xnf5tN5AXT7HNcOEbfMtDs+AmRmM0iPd0Cs90C0908evtWpJjVjLAe9WnSv8rb7joaX3f1ll3iPsfbP+1BxhB/lEq2TtfoLEr7Dr/Orh6evSzOJobYyu6IX1X9IT3fML3Oqbfb0gFi/+0GOxFv4xbtBXFzK/OytaTp3OTSxMZmcLjVZ1YBgjGOd+6JjFPIoocX2JE5zhXEkppOiKUU9VmhqcQfwwpfAJa7yREg==</latexit> 22729 train test (the case where a clear answer and inductive logic exist) Try to teach ML “arithmetic addition” only by examples.
  • 24. / 35 13 A toy example: approximate adders Linear regression rocks! 😆 LR says 1 + 1 = 2 and 1 - 1 = 0 and 12892 + 9837 = 22729 adder <latexit sha1_base64="tiacEhQgmTkomNeV5LHmrY6hmbk=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTXxhXRDcuecgjQULaOmJDaZu2EJH4AyZuZeFKExfGD/AD3PgDLvgE4xITNy68lCZGiXib6Zw5c8+dM3NlU1Nth7GOTxgZHRuf8E8GpqZnZoOhufmcbdQthWcVQzOsgizZXFN1nnVUR+MF0+JSTdZ4Xq7u9fbzDW7ZqqEfOE2Tl2pSRVePVUVyiMqclsVyKMJizI3wIBA9EIEXSSP0iEMcwYCCOmrg0OEQ1iDBpq8IEQwmcSW0iLMIqe4+xzkCpK1TFqcMidgq/Su0KnqsTuteTdtVK3SKRsMiZRhR9sLuWZc9swf2yj7/rNVya/S8NGmW+1puloMXi5mPf1U1mh2cfKuGenZwjG3Xq0reTZfp3ULp6xtn7W5mJx1trbBb9kb+b1iHPdEN9Ma7cpfi6eshfmTyQi9GDRJ/t2MQ5NZi4lZsPbURSex6rfJjCctYpX7EkcA+kshS/QoucYW24BdiwqYQ76cKPk+zgB8hJL4AVGCQmw==</latexit> x1 <latexit sha1_base64="4Sn0JXQ8Nli9zYaRMiYfd4a9JHg=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqclmPlQIhFmBPBYRB1QQhuJPXAI45wDB0yGqiDQ4NNWIUIi74iomAwiCuhTZxJSHH2Oc7hI22DsjhliMTW6F+lVdFlNVr3a1qOWqZTVBomKYMIsxd2z3rsmT2wV/b5Z622U6PvpUWzNNByo+y/WM58/Kuq02zj5Fs10rONCnYcrwp5Nxymfwt5oG+edXqZ3XS4vcZu2Rv5v2Fd9kQ30Jrv8l2Kp69H+JHIC70YNSj6ux3DIBeLRLcjG6nNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFVoCQnA==</latexit> x2 <latexit sha1_base64="SKy45aVsIvNNIc9wr1Q6tiMY1uI=">AAACinichVHLSsNAFL2Nr1qrrboR3BRLRRDKpIrPTVEXLvuwD6glJHFah+ZFkpbW4g+4cyXYlYIL8QP8ADf+gIt+gris4MaFN2lAtFhvmMyZM/fcOTNXMhRm2YR0fdzI6Nj4hH8yMBWcngmFZ+fyll43ZZqTdUU3i5JoUYVpNGczW6FFw6SiKim0INX2nf1Cg5oW07Uju2XQsipWNVZhsmgjVWgK/GpTSAjhKIkTNyKDgPdAFLxI6eFHOIYT0EGGOqhAQQMbsQIiWPiVgAcCBnJlaCNnImLuPoVzCKC2jlkUM0Rka/iv4qrksRqunZqWq5bxFAWHicoIxMgLuSc98kweyCv5/LNW263heGnhLPW11BBCFwvZj39VKs42nH6rhnq2oQJbrleG3g2XcW4h9/WNs6tedicTay+TW/KG/m9IlzzhDbTGu3yXppnOED8SesEXwwbxv9sxCPKJOL8RX0uvR5N7Xqv8sAhLsIL92IQkHEIKcm79S7iGDhfkEtw2t9tP5XyeZh5+BHfwBX8Zkfc=</latexit> x1 + x2 <latexit sha1_base64="1coS+Mt9eL/r4jEoYDkZ5NYfoeE=">AAACiHichVHLSsNAFD3Gd3206kZwUywVQSg3KlYFQerGZVutCiqSxGkdTJOQpIVa/AE3LlVcKbgQP8APcOMPuPATxKWCGxfepgFRUW+YzJkz99w5M1d3TOn5RI8tSmtbe0dnV3ekp7evPxobGFzz7IpriIJhm7a7oWueMKUlCr70TbHhuEIr66ZY1/eXGvvrVeF60rZW/ZojtstayZJFaWg+UwV1YmpheieWoBQFEf8J1BAkEEbWjt1iC7uwYaCCMgQs+IxNaPD424QKgsPcNurMuYxksC9wiAhrK5wlOENjdp//JV5thqzF60ZNL1AbfIrJw2VlHEl6oGt6oXu6oSd6/7VWPajR8FLjWW9qhbMTPRpeeftXVebZx96n6k/PPoqYDbxK9u4ETOMWRlNfPTh5WZnPJ+tjdEnP7P+CHumOb2BVX42rnMif/+FHZy/8Ytwg9Xs7foK1yZQ6k5rKTScWM2GrujCCUYxzP9JYxDKyKHB9iWOc4kyJKKSklblmqtISaobwJZTMB48DkKc=</latexit> 1 + 3 = 4 <latexit sha1_base64="Jl1LVcl+mtrFJMn2AKjNmRINEM4=">AAACiHichVHLSsNAFD3GV62vqhvBjVgUQSi39VEVhFI3LtVaW1CRJE7rYJqEJC3U4g+4caniSsGF+AF+gBt/wIWfIC4ruHHhbRoQFfWGyZw5c8+dM3M125CuR/TUorS2tXd0hrrC3T29ff2RgcFN1yo7usjqlmE5eU11hSFNkfWkZ4i87Qi1pBkipx0sN/ZzFeG40jI3vKotdkpq0ZQFqaseU9nE1OxScjcSpRj5MfoTxAMQRRCrVuQO29iDBR1llCBgwmNsQIXL3xbiINjM7aDGnMNI+vsCRwiztsxZgjNUZg/4X+TVVsCavG7UdH21zqcYPBxWjmKcHumG6vRAt/RM77/Wqvk1Gl6qPGtNrbB3+4+HM2//qko8e9j/VP3p2UMB875Xyd5tn2ncQm/qK4en9czi+nhtgq7ohf1f0hPd8w3Myqt+vSbWL/7wo7EXfjFuUPx7O36CzUQsPhebXpuJptJBq0IYwRgmuR9JpLCCVWS5vsQJznCuhBVSkspCM1VpCTRD+BJK+gOby5Ct</latexit> 2 + 5 = 7 <latexit sha1_base64="NRtmyWkgZ5nlm1ETxVkZxPMO8Rc=">AAACiXichVHNLgNRGD0df6V+io3ERjREImnuUJREIrqxpNWSIM3MuGV0/jJz24TGC1jZCVYkFuIBPICNF7DwCGJZiY2Fb6aTCKK+yZ177rnf+e6591MdQ/cEY88RqaW1rb0j2tkV6+7p7Yv3DxQ8u+JqPK/Zhu1uqorHDd3ieaELg286LldM1eAbajnj729UuevptrUuDh2+Yyp7ll7SNUUQVZiZnF+UU8V4giVZECO/gRyCBMJYteP32MYubGiowASHBUHYgAKPvi3IYHCI20GNOJeQHuxzHKOLtBXK4pShEFum/x6ttkLWorVf0wvUGp1i0HBJOYIx9sRuWZ09sjv2wj7+rFULavheDmlWG1ruFPtOhnLv/6pMmgX2v1RNPQuUkA686uTdCRj/FlpDXz06q+cWsmO1cXbNXsn/FXtmD3QDq/qm3azx7GUTPyp5oRejBsk/2/EbFKaS8mxyei2VWFoOWxXFMEYxQf2YwxJWsIo81T/AKc5xIcUkWUpLC41UKRJqBvEtpMwnMx2Q7A==</latexit> 5 + 9 = 14 <latexit sha1_base64="wFMJb33bMt0hW8th8BMIqvUdNU8=">AAACinichVFLSwJRFD5OLzNLq03QRhIjCOSMRk8CqRYtfeQDTGRmutrgvJgZBZP+QLtWQa4KWkQ/oB/Qpj/Qwp8QLQ3atOg4DkRJdoY797vfPd+5371HNBTZshE7Hm5kdGx8wjvpm/JPzwSCs3M5S6+bEstKuqKbBVGwmCJrLGvLtsIKhskEVVRYXqzt9/bzDWZasq4d2U2DlVShqskVWRJsovLxVR53+Xg5GMYoOhEaBLwLwuBGUg8+wjGcgA4S1EEFBhrYhBUQwKKvCDwgGMSVoEWcSUh29hmcg4+0dcpilCEQW6N/lVZFl9Vo3atpOWqJTlFomKQMQQRf8B67+IwP+Iqff9ZqOTV6Xpo0i30tM8qBi4XMx78qlWYbTr9VQz3bUIFNx6tM3g2H6d1C6usbZ1fdzHY60lrGW3wj/zfYwSe6gdZ4l+5SLN0e4kckL/Ri1CD+dzsGQS4W5dej8dRaOLHntsoLi7AEK9SPDUjAISQh69S/hGtoc34uxm1xO/1UzuNq5uFHcAdfqESRGw==</latexit> 3 + 10 = 13 <latexit sha1_base64="FoI7hqDrtQtFjlgLPgriDwtw1iU=">AAACiXichVHLSsNAFD2Nr1pfVTeCm2JRBKFMfNQiCKIbl33YVlApSRx1NE1CMi1o8QdcuRN1peBC/AA/wI0/4MJPEJcV3LjwNg2IFvWGyZw5c8+dM3N1xxSeZOw5pLS1d3R2hbsjPb19/QPRwaGCZ1dcg+cN27TddV3zuCksnpdCmnzdcblW1k1e1A9WGvvFKnc9YVtr8tDhW2Vt1xI7wtAkUYW5qeSiqpaicZZgfsRagRqAOIJI29F7bGIbNgxUUAaHBUnYhAaPvg2oYHCI20KNOJeQ8Pc5jhEhbYWyOGVoxB7Qf5dWGwFr0bpR0/PVBp1i0nBJGcM4e2K3rM4e2R17YR+/1qr5NRpeDmnWm1rulAZORnLv/6rKNEvsfan+9Cyxg5TvVZB3x2catzCa+urRWT23kB2vTbBr9kr+r9gze6AbWNU34ybDs5d/+NHJC70YNUj92Y5WUJhOqMnETGY2vrQctCqMUYxhkvoxjyWsIo081d/HKc5xofQoqpJSFpqpSijQDONbKCufJlSQ5g==</latexit> 5 + 6 = 11 <latexit sha1_base64="n3Yy/9dJfdSB5yYDzUvImVPJv/g=">AAACiHichVHLSsNAFD3Gd3206kZwIxZFEMqNii8QRTcu1VotVClJnNahaRKStKDFH3DjUsWVggvxA/wAN/6Ai36CuFRw48LbNCAq1hsmc+bMPXfOzNUdU3o+UbVJaW5pbWvv6Ix0dff0RmN9/dueXXINkTJs03bTuuYJU1oi5UvfFGnHFVpRN8WOXlit7e+UhetJ29ryDx2xV9TylsxJQ/OZSqkT6uJSNhanBAUx/BuoIYgjjHU7do9d7MOGgRKKELDgMzahweMvAxUEh7k9VJhzGclgX+AYEdaWOEtwhsZsgf95XmVC1uJ1raYXqA0+xeThsnIYo/REt/RKj3RHz/TxZ61KUKPm5ZBnva4VTjZ6Mph8/1dV5NnHwZeqoWcfOcwFXiV7dwKmdgujri8fnb0mFzZHK2N0TS/s/4qq9MA3sMpvxs2G2Lxs4EdnL/xi3CD1Zzt+g+3JhDqTmNqYji+vhK3qwBBGMM79mMUy1rCOFNeXOMU5LpSIQsqsMl9PVZpCzQC+hbLyCaIfkLA=</latexit> 1 + 1 =? <latexit sha1_base64="hRdVP+e2y4bjP1zOby3ZyPytH4w=">AAACi3icSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKRRhqa+gaatraxwsoG+gZgIECJsMQylBmgIKAfIHtDDEMKQz5DMkMpQy5DKkMeQwlQHYOQyJDMRBGMxgyGDAUAMViGaqBYkVAViZYPpWhloELqLcUqCoVqCIRKJoNJNOBvGioaB6QDzKzGKw7GWhLDhAXAXUqMKgaXDVYafDZ4ITBaoOXBn9wmlUNNgPklkognQTRm1oQz98lEfydoK5cIF3CkIHQhdfNJQxpDBZgt2YC3V4AFgH5Ihmiv6xq+udgqyDVajWDRQavge5faHDT4DDQB3llX5KXBqYGzcbjniSgW4AhBowgQ/TowGSEGekZmukZB5ooOzhBo4qDQZpBiUEDGB/mDA4MHgwBDKHgeJjEMJthDhMvkzGTFZMNRCkTI1SPMAMKYHIFACGukUw=</latexit> 1 + ( 1) =? <latexit sha1_base64="iSckyhI7u8UoVI74y32YMTkgc7c=">AAACj3ichVHLSsNAFD3Gd3201Y3gRiwVQSiTVmwrqEU3umutVUFFkjitoWkSkmlBiz/gB+jChQ9wIX6AH+DGH3DhJ4jLCm5ceJsGREW9YTJnztxz58xc1TZ0VzD21Ca1d3R2dff0Bvr6BwaDofDQumtVHY0XNMuwnE1Vcbmhm7wgdGHwTdvhSkU1+IZaXmrub9S44+qWuSYObL5TUUqmXtQ1RRC1LcdT6fhUOpVIzi3shiIsxrwY+wlkH0TgR9YK3WEbe7CgoYoKOEwIwgYUuPRtQQaDTdwO6sQ5hHRvn+MIAdJWKYtThkJsmf4lWm35rEnrZk3XU2t0ikHDIeUYouyR3bAGe2C37Jm9/1qr7tVoejmgWW1pub0bPB7Jv/2rqtAssP+p+tOzQBEpz6tO3m2Pad5Ca+lrh6eN/OxqtD7BrtgL+b9kT+yebmDWXrXrHF89+8OPSl7oxahB8vd2/ATr8Zg8E0vkpiOZRb9VPRjFOCapH0lksIwsClTfxgnOcSGFpaQ0L2VaqVKbrxnGl5BWPgDiqZJ1</latexit> 12892 + 9837 =? <latexit sha1_base64="3cCCvxejuSwhH3gAGZntIRJA/Ck=">AAAChHichVHNLgNRFP46/uunxUZi02iIhTRnWtWOhTRsLFsUCSIz42LS6cxkZtqExguwJRZWJBbiATyAjRew8AhiSWJj4cy0IhY4N/fec79zvnO/e4/mmIbnEz1FpLb2js6u7p5ob1//QCw+OLTq2TVXF2XdNm13XVM9YRqWKPuGb4p1xxVqVTPFmlZZCOJrdeF6hm2t+AeO2Kqqe5axa+iqz1ApvR1PUkrJZ7OZfIJSREpaybGjKIqckxMyI4El0bKiHb/DJnZgQ0cNVQhY8Nk3ocLjsQEZBIexLTQYc9kzwrjAEaLMrXGW4AyV0Qqve3zaaKEWn4OaXsjW+RaTp8vMBMbpkW7olR7olp7p49dajbBGoOWAd63JFc527Hhk+f1fVpV3H/vfrD81+9hFPtRqsHYnRIJX6E1+/fD8dXl2abwxQVf0wvov6Ynu+QVW/U2/Lomliz/0aKyFf4wb9NWFxO/Oajolz6QypelkYb7Vqm6MYgyT3I8cClhEEWWuL3CCU5xJndKUlJGyzVQp0uIM44dJc58RFJAW</latexit> 2 <latexit sha1_base64="dtxzgykiOKrKKToFg2z7LT9XiS0=">AAAChHichVHNLgNRFP6Mv/ovNhKbRkMspDnTqnYsRNhYaikSRGbGbU1MZyYz0ybVeAG2xMKKxEI8gAew8QIWfQSxJLGxcGZaEQucm3vvud8537nfvUdzTMPziRptUntHZ1d3pKe3r39gcCg6PLLh2RVXFwXdNm13S1M9YRqWKPiGb4otxxVqWTPFpna4HMQ3q8L1DNta92uO2C2rJcsoGrrqM5SjvWicEko2nU5lY5QgUpJKhh1FUeSMHJMZCSyOlq3a0XvsYB82dFRQhoAFn30TKjwe25BBcBjbRZ0xlz0jjAsco5e5Fc4SnKEyeshriU/bLdTic1DTC9k632LydJkZwyQ90S290iPd0TN9/FqrHtYItNR415pc4ewNnYytvf/LKvPu4+Cb9admH0VkQ60Ga3dCJHiF3uRXjy5e1+bzk/UpuqYX1n9FDXrgF1jVN/0mJ/KXf+jRWAv/GDfoqwux352NZEKeS6Rys/HFpVarIhjHBKa5HxksYgWrKHB9gVOc4VzqkmaklJRupkptLc4ofpi08AkM1JAU</latexit> 0 <latexit sha1_base64="P9nwiNSxLZKIKI1oebJys0uGCoU=">AAACiHichVHLLgRBFD3ae7wGG4nNxIRYTW63R09bydhYjscgQaS7FSp6ujvdPZMw8QM2logViYX4AB9g4wcsfIJYkthYuN0zIha4laq6de49t07VtXxHhhHRU5PS3NLa1t7Rmerq7untS/cPrIReJbBFyfYcL1izzFA40hWlSEaOWPMDYZYtR6xa+3NxfLUqglB67nJ04IvNsrnryh1pmxFDJU3TNWMrnaWckZ+amshnKEdkaIbOjmEYqq5mVEZiy6JhRS99hw1sw4ONCsoQcBGx78BEyGMdKgg+Y5uoMRawJ5O4wBFSzK1wluAMk9F9Xnf5tN5AXT7HNcOEbfMtDs+AmRmM0iPd0Cs90C0908evtWpJjVjLAe9WnSv8rb7joaX3f1ll3iPsfbP+1BxhB/lEq2TtfoLEr7Dr/Orh6evSzOJobYyu6IX1X9IT3fML3Oqbfb0gFi/+0GOxFv4xbtBXFzK/OytaTp3OTSxMZmcLjVZ1YBgjGOd+6JjFPIoocX2JE5zhXEkppOiKUU9VmhqcQfwwpfAJa7yREg==</latexit> 22729 train test (Perfect Answers!!)
  • 25. / 35 13 A toy example: approximate adders Linear regression rocks! 😆 LR says 1 + 1 = 2 and 1 - 1 = 0 and 12892 + 9837 = 22729 All are because of “inductive bias” intrinsically encoded in the model. LR with two input variables is just fitting a plane <latexit sha1_base64="iFKbOGXhRe3/O37wsq+JtGPu+ec=">AAAClnichVHLSsNAFD2Nr1pfrW4EN8FSEYQyUVFxIaKILvuwraBSkjitoWkSkrRaiz/gD7gQFwoq4gf4AW78ARf9BHFZwY0Lb9OAqKg3JPfMmXtuzsxVLF1zXMYaAaGjs6u7J9gb6usfGBwKR4azjlmxVZ5RTd20txTZ4bpm8IyruTrfsmwulxWd55TSams/V+W2o5nGpluz+G5ZLhpaQVNll6h8OCKLh3lJnBIVytOU1Xw4yuLMC/EnkHwQhR8JM3yPHezBhIoKyuAw4BLWIcOhZxsSGCzidlEnziakefscxwiRtkJVnCpkYkv0LdJq22cNWrd6Op5apb/o9NqkFBFjT+yWNdkju2PP7P3XXnWvR8tLjbLS1nIrP3Qymn77V1Wm7GL/U/WnZxcFLHheNfJueUzrFGpbXz06baYXU7H6BLtkL+T/gjXYA53AqL6qV0meOvvDj0Je6MZoQNL3cfwE2em4NBefSc5Gl1f8UQUxhnFM0jzmsYwNJJCh/gc4xzVuhFFhSVgT1tulQsDXjOBLCIkPAxKUnQ==</latexit> ax1 + bx2 + c Any three instances are enough to have <latexit sha1_base64="57verNgszw6m8+AhOWc3Hu105bk=">AAACp3ichVFNS9xQFD2mftX6MW03BTfBwaIow42WtgiC6MadOjrjgMrwEp/jw0wSkjdT7eBe/AMuXCm4KAW3unfjH+jCn1C6VHDjojeZgKioN+S+88675+a8XDtwVaSJrlqMN61t7R2db7vedff09mXefyhGfi10ZMHxXT8s2SKSrvJkQSvtylIQSlG1Xblsb83E58t1GUbK95b0TiDXqqLiqQ3lCM1UOTMgJq1R046TM0mreVXZ1CIM/R/mdtkyRziPlTNZylES5lNgpSCLNOb9zBlWsQ4fDmqoQsKDZuxCIOJnBRYIAXNraDAXMlLJucQuulhb4yrJFYLZLc4V3q2krMf7uGeUqB3+istvyEoTg/SHftE1XdJv+kt3z/ZqJD1iLzu82k2tDMp9+58Wb19VVXnV2LxXvehZYwPfE6+KvQcJE9/CaerrPw+uFyfyg43PdEz/2P8RXdEF38Cr3zgnCzJ/+IIfm73wH+MBWY/H8RQUx3LW19z4wpfs1HQ6qk70YwBDPI9vmMIs5lHg/ns4xRnOjWFjzigapWap0ZJqPuJBGOI/dKSbIg==</latexit> a = 1, b = 1, c = 0 ) x1 + x2 MLP has partial “linearity” inside and that’s why MLP is better than RF is. RF is “piecewise constant” and only returns values between sample min and max. to points in 3D adder <latexit sha1_base64="tiacEhQgmTkomNeV5LHmrY6hmbk=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCJTXxhXRDcuecgjQULaOmJDaZu2EJH4AyZuZeFKExfGD/AD3PgDLvgE4xITNy68lCZGiXib6Zw5c8+dM3NlU1Nth7GOTxgZHRuf8E8GpqZnZoOhufmcbdQthWcVQzOsgizZXFN1nnVUR+MF0+JSTdZ4Xq7u9fbzDW7ZqqEfOE2Tl2pSRVePVUVyiMqclsVyKMJizI3wIBA9EIEXSSP0iEMcwYCCOmrg0OEQ1iDBpq8IEQwmcSW0iLMIqe4+xzkCpK1TFqcMidgq/Su0KnqsTuteTdtVK3SKRsMiZRhR9sLuWZc9swf2yj7/rNVya/S8NGmW+1puloMXi5mPf1U1mh2cfKuGenZwjG3Xq0reTZfp3ULp6xtn7W5mJx1trbBb9kb+b1iHPdEN9Ma7cpfi6eshfmTyQi9GDRJ/t2MQ5NZi4lZsPbURSex6rfJjCctYpX7EkcA+kshS/QoucYW24BdiwqYQ76cKPk+zgB8hJL4AVGCQmw==</latexit> x1 <latexit sha1_base64="4Sn0JXQ8Nli9zYaRMiYfd4a9JHg=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBuCIDPjCuiG5c8pBHgoS0dcCG0jZtISLxB0zcysKVJi6MH+AHuPEHXPAJxiUmblx4KU2MEvE20zlz5p47Z+ZKhqpYNmNdjzA2PjE55Z32zczOzfsDC4s5S2+YMs/KuqqbBUm0uKpoPGsrtsoLhsnFuqTyvFTb7+/nm9y0FF07tFsGL9XFqqZUFFm0icqclmPlQIhFmBPBYRB1QQhuJPXAI45wDB0yGqiDQ4NNWIUIi74iomAwiCuhTZxJSHH2Oc7hI22DsjhliMTW6F+lVdFlNVr3a1qOWqZTVBomKYMIsxd2z3rsmT2wV/b5Z622U6PvpUWzNNByo+y/WM58/Kuq02zj5Fs10rONCnYcrwp5Nxymfwt5oG+edXqZ3XS4vcZu2Rv5v2Fd9kQ30Jrv8l2Kp69H+JHIC70YNSj6ux3DIBeLRLcjG6nNUGLPbZUXK1jFOvUjjgQOkESW6ldxiSt0BK8QEbaE+CBV8LiaJfwIIfEFVoCQnA==</latexit> x2 <latexit sha1_base64="SKy45aVsIvNNIc9wr1Q6tiMY1uI=">AAACinichVHLSsNAFL2Nr1qrrboR3BRLRRDKpIrPTVEXLvuwD6glJHFah+ZFkpbW4g+4cyXYlYIL8QP8ADf+gIt+gris4MaFN2lAtFhvmMyZM/fcOTNXMhRm2YR0fdzI6Nj4hH8yMBWcngmFZ+fyll43ZZqTdUU3i5JoUYVpNGczW6FFw6SiKim0INX2nf1Cg5oW07Uju2XQsipWNVZhsmgjVWgK/GpTSAjhKIkTNyKDgPdAFLxI6eFHOIYT0EGGOqhAQQMbsQIiWPiVgAcCBnJlaCNnImLuPoVzCKC2jlkUM0Rka/iv4qrksRqunZqWq5bxFAWHicoIxMgLuSc98kweyCv5/LNW263heGnhLPW11BBCFwvZj39VKs42nH6rhnq2oQJbrleG3g2XcW4h9/WNs6tedicTay+TW/KG/m9IlzzhDbTGu3yXppnOED8SesEXwwbxv9sxCPKJOL8RX0uvR5N7Xqv8sAhLsIL92IQkHEIKcm79S7iGDhfkEtw2t9tP5XyeZh5+BHfwBX8Zkfc=</latexit> x1 + x2 <latexit sha1_base64="1coS+Mt9eL/r4jEoYDkZ5NYfoeE=">AAACiHichVHLSsNAFD3Gd3206kZwUywVQSg3KlYFQerGZVutCiqSxGkdTJOQpIVa/AE3LlVcKbgQP8APcOMPuPATxKWCGxfepgFRUW+YzJkz99w5M1d3TOn5RI8tSmtbe0dnV3ekp7evPxobGFzz7IpriIJhm7a7oWueMKUlCr70TbHhuEIr66ZY1/eXGvvrVeF60rZW/ZojtstayZJFaWg+UwV1YmpheieWoBQFEf8J1BAkEEbWjt1iC7uwYaCCMgQs+IxNaPD424QKgsPcNurMuYxksC9wiAhrK5wlOENjdp//JV5thqzF60ZNL1AbfIrJw2VlHEl6oGt6oXu6oSd6/7VWPajR8FLjWW9qhbMTPRpeeftXVebZx96n6k/PPoqYDbxK9u4ETOMWRlNfPTh5WZnPJ+tjdEnP7P+CHumOb2BVX42rnMif/+FHZy/8Ytwg9Xs7foK1yZQ6k5rKTScWM2GrujCCUYxzP9JYxDKyKHB9iWOc4kyJKKSklblmqtISaobwJZTMB48DkKc=</latexit> 1 + 3 = 4 <latexit sha1_base64="Jl1LVcl+mtrFJMn2AKjNmRINEM4=">AAACiHichVHLSsNAFD3GV62vqhvBjVgUQSi39VEVhFI3LtVaW1CRJE7rYJqEJC3U4g+4caniSsGF+AF+gBt/wIWfIC4ruHHhbRoQFfWGyZw5c8+dM3M125CuR/TUorS2tXd0hrrC3T29ff2RgcFN1yo7usjqlmE5eU11hSFNkfWkZ4i87Qi1pBkipx0sN/ZzFeG40jI3vKotdkpq0ZQFqaseU9nE1OxScjcSpRj5MfoTxAMQRRCrVuQO29iDBR1llCBgwmNsQIXL3xbiINjM7aDGnMNI+vsCRwiztsxZgjNUZg/4X+TVVsCavG7UdH21zqcYPBxWjmKcHumG6vRAt/RM77/Wqvk1Gl6qPGtNrbB3+4+HM2//qko8e9j/VP3p2UMB875Xyd5tn2ncQm/qK4en9czi+nhtgq7ohf1f0hPd8w3Myqt+vSbWL/7wo7EXfjFuUPx7O36CzUQsPhebXpuJptJBq0IYwRgmuR9JpLCCVWS5vsQJznCuhBVSkspCM1VpCTRD+BJK+gOby5Ct</latexit> 2 + 5 = 7 <latexit sha1_base64="NRtmyWkgZ5nlm1ETxVkZxPMO8Rc=">AAACiXichVHNLgNRGD0df6V+io3ERjREImnuUJREIrqxpNWSIM3MuGV0/jJz24TGC1jZCVYkFuIBPICNF7DwCGJZiY2Fb6aTCKK+yZ177rnf+e6591MdQ/cEY88RqaW1rb0j2tkV6+7p7Yv3DxQ8u+JqPK/Zhu1uqorHDd3ieaELg286LldM1eAbajnj729UuevptrUuDh2+Yyp7ll7SNUUQVZiZnF+UU8V4giVZECO/gRyCBMJYteP32MYubGiowASHBUHYgAKPvi3IYHCI20GNOJeQHuxzHKOLtBXK4pShEFum/x6ttkLWorVf0wvUGp1i0HBJOYIx9sRuWZ09sjv2wj7+rFULavheDmlWG1ruFPtOhnLv/6pMmgX2v1RNPQuUkA686uTdCRj/FlpDXz06q+cWsmO1cXbNXsn/FXtmD3QDq/qm3azx7GUTPyp5oRejBsk/2/EbFKaS8mxyei2VWFoOWxXFMEYxQf2YwxJWsIo81T/AKc5xIcUkWUpLC41UKRJqBvEtpMwnMx2Q7A==</latexit> 5 + 9 = 14 <latexit sha1_base64="wFMJb33bMt0hW8th8BMIqvUdNU8=">AAACinichVFLSwJRFD5OLzNLq03QRhIjCOSMRk8CqRYtfeQDTGRmutrgvJgZBZP+QLtWQa4KWkQ/oB/Qpj/Qwp8QLQ3atOg4DkRJdoY797vfPd+5371HNBTZshE7Hm5kdGx8wjvpm/JPzwSCs3M5S6+bEstKuqKbBVGwmCJrLGvLtsIKhskEVVRYXqzt9/bzDWZasq4d2U2DlVShqskVWRJsovLxVR53+Xg5GMYoOhEaBLwLwuBGUg8+wjGcgA4S1EEFBhrYhBUQwKKvCDwgGMSVoEWcSUh29hmcg4+0dcpilCEQW6N/lVZFl9Vo3atpOWqJTlFomKQMQQRf8B67+IwP+Iqff9ZqOTV6Xpo0i30tM8qBi4XMx78qlWYbTr9VQz3bUIFNx6tM3g2H6d1C6usbZ1fdzHY60lrGW3wj/zfYwSe6gdZ4l+5SLN0e4kckL/Ri1CD+dzsGQS4W5dej8dRaOLHntsoLi7AEK9SPDUjAISQh69S/hGtoc34uxm1xO/1UzuNq5uFHcAdfqESRGw==</latexit> 3 + 10 = 13 <latexit sha1_base64="FoI7hqDrtQtFjlgLPgriDwtw1iU=">AAACiXichVHLSsNAFD2Nr1pfVTeCm2JRBKFMfNQiCKIbl33YVlApSRx1NE1CMi1o8QdcuRN1peBC/AA/wI0/4MJPEJcV3LjwNg2IFvWGyZw5c8+dM3N1xxSeZOw5pLS1d3R2hbsjPb19/QPRwaGCZ1dcg+cN27TddV3zuCksnpdCmnzdcblW1k1e1A9WGvvFKnc9YVtr8tDhW2Vt1xI7wtAkUYW5qeSiqpaicZZgfsRagRqAOIJI29F7bGIbNgxUUAaHBUnYhAaPvg2oYHCI20KNOJeQ8Pc5jhEhbYWyOGVoxB7Qf5dWGwFr0bpR0/PVBp1i0nBJGcM4e2K3rM4e2R17YR+/1qr5NRpeDmnWm1rulAZORnLv/6rKNEvsfan+9Cyxg5TvVZB3x2catzCa+urRWT23kB2vTbBr9kr+r9gze6AbWNU34ybDs5d/+NHJC70YNUj92Y5WUJhOqMnETGY2vrQctCqMUYxhkvoxjyWsIo081d/HKc5xofQoqpJSFpqpSijQDONbKCufJlSQ5g==</latexit> 5 + 6 = 11 <latexit sha1_base64="n3Yy/9dJfdSB5yYDzUvImVPJv/g=">AAACiHichVHLSsNAFD3Gd3206kZwIxZFEMqNii8QRTcu1VotVClJnNahaRKStKDFH3DjUsWVggvxA/wAN/6Ai36CuFRw48LbNCAq1hsmc+bMPXfOzNUdU3o+UbVJaW5pbWvv6Ix0dff0RmN9/dueXXINkTJs03bTuuYJU1oi5UvfFGnHFVpRN8WOXlit7e+UhetJ29ryDx2xV9TylsxJQ/OZSqkT6uJSNhanBAUx/BuoIYgjjHU7do9d7MOGgRKKELDgMzahweMvAxUEh7k9VJhzGclgX+AYEdaWOEtwhsZsgf95XmVC1uJ1raYXqA0+xeThsnIYo/REt/RKj3RHz/TxZ61KUKPm5ZBnva4VTjZ6Mph8/1dV5NnHwZeqoWcfOcwFXiV7dwKmdgujri8fnb0mFzZHK2N0TS/s/4qq9MA3sMpvxs2G2Lxs4EdnL/xi3CD1Zzt+g+3JhDqTmNqYji+vhK3qwBBGMM79mMUy1rCOFNeXOMU5LpSIQsqsMl9PVZpCzQC+hbLyCaIfkLA=</latexit> 1 + 1 =? <latexit sha1_base64="hRdVP+e2y4bjP1zOby3ZyPytH4w=">AAACi3icSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKRRhqa+gaatraxwsoG+gZgIECJsMQylBmgIKAfIHtDDEMKQz5DMkMpQy5DKkMeQwlQHYOQyJDMRBGMxgyGDAUAMViGaqBYkVAViZYPpWhloELqLcUqCoVqCIRKJoNJNOBvGioaB6QDzKzGKw7GWhLDhAXAXUqMKgaXDVYafDZ4ITBaoOXBn9wmlUNNgPklkognQTRm1oQz98lEfydoK5cIF3CkIHQhdfNJQxpDBZgt2YC3V4AFgH5Ihmiv6xq+udgqyDVajWDRQavge5faHDT4DDQB3llX5KXBqYGzcbjniSgW4AhBowgQ/TowGSEGekZmukZB5ooOzhBo4qDQZpBiUEDGB/mDA4MHgwBDKHgeJjEMJthDhMvkzGTFZMNRCkTI1SPMAMKYHIFACGukUw=</latexit> 1 + ( 1) =? <latexit sha1_base64="iSckyhI7u8UoVI74y32YMTkgc7c=">AAACj3ichVHLSsNAFD3Gd3201Y3gRiwVQSiTVmwrqEU3umutVUFFkjitoWkSkmlBiz/gB+jChQ9wIX6AH+DGH3DhJ4jLCm5ceJsGREW9YTJnztxz58xc1TZ0VzD21Ca1d3R2dff0Bvr6BwaDofDQumtVHY0XNMuwnE1Vcbmhm7wgdGHwTdvhSkU1+IZaXmrub9S44+qWuSYObL5TUUqmXtQ1RRC1LcdT6fhUOpVIzi3shiIsxrwY+wlkH0TgR9YK3WEbe7CgoYoKOEwIwgYUuPRtQQaDTdwO6sQ5hHRvn+MIAdJWKYtThkJsmf4lWm35rEnrZk3XU2t0ikHDIeUYouyR3bAGe2C37Jm9/1qr7tVoejmgWW1pub0bPB7Jv/2rqtAssP+p+tOzQBEpz6tO3m2Pad5Ca+lrh6eN/OxqtD7BrtgL+b9kT+yebmDWXrXrHF89+8OPSl7oxahB8vd2/ATr8Zg8E0vkpiOZRb9VPRjFOCapH0lksIwsClTfxgnOcSGFpaQ0L2VaqVKbrxnGl5BWPgDiqZJ1</latexit> 12892 + 9837 =? <latexit sha1_base64="3cCCvxejuSwhH3gAGZntIRJA/Ck=">AAAChHichVHNLgNRFP46/uunxUZi02iIhTRnWtWOhTRsLFsUCSIz42LS6cxkZtqExguwJRZWJBbiATyAjRew8AhiSWJj4cy0IhY4N/fec79zvnO/e4/mmIbnEz1FpLb2js6u7p5ob1//QCw+OLTq2TVXF2XdNm13XVM9YRqWKPuGb4p1xxVqVTPFmlZZCOJrdeF6hm2t+AeO2Kqqe5axa+iqz1ApvR1PUkrJZ7OZfIJSREpaybGjKIqckxMyI4El0bKiHb/DJnZgQ0cNVQhY8Nk3ocLjsQEZBIexLTQYc9kzwrjAEaLMrXGW4AyV0Qqve3zaaKEWn4OaXsjW+RaTp8vMBMbpkW7olR7olp7p49dajbBGoOWAd63JFc527Hhk+f1fVpV3H/vfrD81+9hFPtRqsHYnRIJX6E1+/fD8dXl2abwxQVf0wvov6Ynu+QVW/U2/Lomliz/0aKyFf4wb9NWFxO/Oajolz6QypelkYb7Vqm6MYgyT3I8cClhEEWWuL3CCU5xJndKUlJGyzVQp0uIM44dJc58RFJAW</latexit> 2 <latexit sha1_base64="dtxzgykiOKrKKToFg2z7LT9XiS0=">AAAChHichVHNLgNRFP6Mv/ovNhKbRkMspDnTqnYsRNhYaikSRGbGbU1MZyYz0ybVeAG2xMKKxEI8gAew8QIWfQSxJLGxcGZaEQucm3vvud8537nfvUdzTMPziRptUntHZ1d3pKe3r39gcCg6PLLh2RVXFwXdNm13S1M9YRqWKPiGb4otxxVqWTPFpna4HMQ3q8L1DNta92uO2C2rJcsoGrrqM5SjvWicEko2nU5lY5QgUpJKhh1FUeSMHJMZCSyOlq3a0XvsYB82dFRQhoAFn30TKjwe25BBcBjbRZ0xlz0jjAsco5e5Fc4SnKEyeshriU/bLdTic1DTC9k632LydJkZwyQ90S290iPd0TN9/FqrHtYItNR415pc4ewNnYytvf/LKvPu4+Cb9admH0VkQ60Ga3dCJHiF3uRXjy5e1+bzk/UpuqYX1n9FDXrgF1jVN/0mJ/KXf+jRWAv/GDfoqwux352NZEKeS6Rys/HFpVarIhjHBKa5HxksYgWrKHB9gVOc4VzqkmaklJRupkptLc4ofpi08AkM1JAU</latexit> 0 <latexit sha1_base64="P9nwiNSxLZKIKI1oebJys0uGCoU=">AAACiHichVHLLgRBFD3ae7wGG4nNxIRYTW63R09bydhYjscgQaS7FSp6ujvdPZMw8QM2logViYX4AB9g4wcsfIJYkthYuN0zIha4laq6de49t07VtXxHhhHRU5PS3NLa1t7Rmerq7untS/cPrIReJbBFyfYcL1izzFA40hWlSEaOWPMDYZYtR6xa+3NxfLUqglB67nJ04IvNsrnryh1pmxFDJU3TNWMrnaWckZ+amshnKEdkaIbOjmEYqq5mVEZiy6JhRS99hw1sw4ONCsoQcBGx78BEyGMdKgg+Y5uoMRawJ5O4wBFSzK1wluAMk9F9Xnf5tN5AXT7HNcOEbfMtDs+AmRmM0iPd0Cs90C0908evtWpJjVjLAe9WnSv8rb7joaX3f1ll3iPsfbP+1BxhB/lEq2TtfoLEr7Dr/Orh6evSzOJobYyu6IX1X9IT3fML3Oqbfb0gFi/+0GOxFv4xbtBXFzK/OytaTp3OTSxMZmcLjVZ1YBgjGOd+6JjFPIoocX2JE5zhXEkppOiKUU9VmhqcQfwwpfAJa7yREg==</latexit> 22729 train test (Perfect Answers!!)
  • 26. / 35 14 Designing relevant “inductive biases” “Inductive biases” (often unintendedly) defines the interspace of instances, and then also defines the prediction for unseen areas (crucial for out-of-distribution predictions). Neural Networks (ReLU) Random Forest Linear Regression Extra Trees (no bootstrap) Carefully designed inputs (input only confidently relevant info into ML) Conservative models + Strong inductive biases that best fit to the given problem General models having a large number of parameters + Generalizable inductive biases (enables zero-shot/few-shot transfer?) Kitchen-sink inputs (input all potentially relevant info into ML) Use any “physics-informed” conditions to further constrain or regularize the model space sounds a good idea indeed Complex Simple Small Large Input-Output Correlation for Target Data Required To Make ML Work
  • 27. / 35 15 A recent news: OGB Large-Scale Challenge @ KDDCup 2021 Current ML is too data-hungry (and purportedly vulnerable to any data bias) Gaps between technical interests and reality Modern ML can learn any input-output mappings in theory, but more data is needed when the input-output correlation is weak. PCQM4M-LSC predicting DFT-calculated HOMO-LUMO energy gap of molecules given their 2D molecular graphs. (3,803,453 graphs from PubChemQC; cf. 133,885 graphs for QM9) 1st place: 10 GNNs (12-Layer Graphormer) + 8 ExpC*s (5-Layer ExpandingConv) 73 GNNs (11-Layer LiteGEMConv with Self-Supervised Pretraining) 20 GNNs (32-Layer GN with Noisy Nodes) Test MAE 0.1200 (eV) 2nd place: Test MAE 0.1204 (eV) 3rd place: Test MAE 0.1205 (eV) Our reality. Practical “open-end” cases we can only have very limited data relative to the astronomically vast search space. Our technical interests. we’re very excited to explore ML over large data (for pretraining + transfer) with generalizable modular structures: CNNs vs Transformers vs GNNs vs MLPs
  • 28. / 35 16 Today’s talk Gas-phase reactions on sold-phase catalyst surface (Heterogeneous catalysis) Industrial Synthesis (e.g. Haber-Bosch), Automobile Exhaust Gas Purification, Methane Conversion, etc. Reactants (Gas) Catalysts (Solid) Nano-particle surface High Temperature, High Pressure Adsorption Diffusion Dissociation Recombination Desorption God made the bulk; the surface was invented by the devil Devilishly complex too-many-factor process!! —— Wolfgang Pauli Our struggles for better ML practices with underspecified, sparse, biased observational data (i.e. a collection of experimental facts from literature)
  • 29. / 35 17 The base dataset http://www.fhi-berlin.mpg.de/acnew/department/pages/ocmdata.html https://www.nature.com/articles/s41467-019-08325-8#Sec19 Oxidative coupling of methane (OCM) reactions Methane (CH4) is partially oxidized to C2 hydrocarbons such as ethane (C2H6) and ethylene (C2H4) in a single step Elemental composition of catalyst (mol%) Process parameters + Preparation Catalytic performance • Zavyalova, U.; Holena, M.; Schlögl, R.; Baerns, ChemCatChem 2011. • Followup: Kondratenko, E. V.; Schlüter, M.; Baerns, M.; Linke, D.; Holena, M. Catal. Sci. Technol. 2015. • Renalysis with Corrections & Outlier Removal Schmack, R.; Friedrich, A.; Kondratenko, E. V.; Polte, J.; Werwatz, A.; Kraehnert, R. Nat Commun 2019. 1866 catalyst records from 421 reports
  • 30. / 35 18 Problem #1: It’s underspecified • Each catalyst was mostly measured at different reaction conditions. • Only a few are measured under multiple conditions 158 compositions > 2 conditions 60 compositions > 3 conditions 26 compositions > 4 conditions La:100.0 x 24 Mg:100.0 x 18 Ca:100.0 x 18 Sm:100.0 x 13 Nd:100.0 x 10 Ba:100.0 x 9 Y:100.0 x 9 Ce:100.0 x 9 Zr:100.0 x 9 Sr:100.0 x 7 Si:100.0 x 7 Gd:100.0 x 7 Na:8.9 Si:83.1 Mn:3.5 W:4.5 x 7 Pr:100.0 x 6 Eu:100.0 x 6 Yb:100.0 x 5 Al:100.0 x 4 Li:10.0 Mg:90.0 x 4 Mg:90.9 La:9.1 x 4 Li:9.1 Mg:90.9 x 4 Tb:100.0 x 4 Li:20.0 Cl:20.0 Zr:60.0 x 4 Na:20.0 Cl:20.0 Zr:60.0 x 4 Cl:20.0 K:20.0 Zr:60.0 x 4 Cl:20.0 Rb:20.0 Zr:60.0 x 4 Cl:20.0 Zr:60.0 Cs:20.0 x 4 • No replicates in the same conditions • But as we see later, reaction conditions are quite influential. Because of this, “no generally valid correlation between a catalyst’s composition, its structure and its OCM performance has been established yet.” Strong limitation of observational data (just passively acquired) Observational study Interventional study
  • 31. / 35 19 Problem #2: It’s sparse 74 elements All pairwise comparisons Mostly, arbitrary pairs of catalysts don’t even have any common elements. Can we meaningfully compare 'Na:33.2 Ti:0.5 Mn:66.3’ and 'Zn:77.8 Ce:22.2’ …? ['Na:33.2 Ti:0.5 Mn:66.3', 'Zn:77.8 Ce:22.2'] ['C:32.7 K:65.4 Pb:1.9', 'Y:100.0'] ['Na:66.7 Mo:33.3', 'Al:94.5 Mo:5.5'] ['C:4.0 Na:4.0 Ce:92.0', 'Y:70.0 Bi:30.0'] ['Si:98.2 Cs:1.8', 'Ti:50.0 Gd:50.0'] ['Na:9.1 Si:82.8 Cr:3.6 W:4.5', 'Na:20.0 Mg:80.0'] ['Y:66.7 Ba:33.3', 'Al:77.0 Ag:18.0 Ba:5.0'] ['Al:87.0 Cl:8.0 Fe:1.0 Sr:4.0', 'Na:33.2 Mn:66.3 Ta:0.5'] ['Na:1.0 La:99.0', 'Li:9.1 Ca:90.9'] ['Fe:100.0', 'Sr:50.0 Nd:50.0’] ['Al:75.0 Cl:16.0 Sr:8.0 Rh:1.0', 'Na:4.5 Si:79.2 Mn:16.3'] ['S:2.9 K:5.7 Ca:91.4', 'Sm:100.0'] ['P:34.5 Sr:65.5', 'Na:58.3 Cl:25.0 Mo:16.7'] ['Li:23.0 Si:73.2 W:3.8', 'Si:33.3 Ca:66.6 Pb:0.1'] ['Al:90.5 Ag:8.5 Pr:1.0', 'Na:66.7 Mo:33.3'] ['Cl:20.0 Ba:10.0 Nd:70.0', 'Mg:90.9 La:9.1'] ['Gd:100.0', 'Mn:50.0 Mo:50.0'] ['Na:76.9 Nb:23.1', 'La:90.0 Pb:10.0'] ['Li:6.5 S:3.2 Ca:90.3', 'P:34.5 Sr:65.5'] ['Na:5.0 Si:72.0 Cl:5.0 Mn:18.0', 'P:34.0 S:7.5 Ca:51.0 Pb:7.5']
  • 32. / 35 20 Problem #3: It’s biased Unavoidable Human-Caused Biases “most chemical experiments are planned by human scientists and therefore are subject to a variety of human cognitive biases, heuristics and social influences.” Jia, X.; Lynch, A.; Huang, Y.; Danielson, M.; Lang’at, I.; Milder, A.; Ruby, A. E.; Wang, H.; Friedler, S. A.; Norquist, A. J.; Schrier, J. Nature 2019, 573 (7773), 251–255. Catalyst such as LaO3, Li/MgO, and Mn/Na2WO4/SiO2 extensively studied.
  • 33. / 35 21 Our solutions Solution to Problem #1 (Underspecification) Tree ensemble regressors with prediction variances are used to make robust and less risky prediction as well as to quantify how uncertain each ML prediction is. Solution to Problem #2 (Sparsity) The catalyst representation called SWED (Sorted Weighted Elemental Descriptors) is developed to represent catalysts not in a one-hot fashion but by elemental descriptors. Solution to Problem #3 (Strong Bias) On the top of the above two, sequential model-based optimization with SWED only by 3 descriptors (electronegativity, density, and ΔHfus) as well as 8 descriptors are explored. Also, for suggested candidates to be worth testing, SHAP interpretations are provided. OCM Dataset Update, Reanalysis, Exploration The original dataset (1866 catalyst records from 421 reports until 2009) is extended to 4559 catalyst records from 542 reports from 2010 to 2019, and reanalyzed.
  • 34. / 35 22 #1. Tree ensemble regression with uncertainty Tree ensemble regressors with prediction variances are used to make robust and less risky prediction as well as to quantify how uncertain each ML prediction is. Gradient Boosted Trees Extra Trees (no bootstrap) Random Forest Extra Trees (bootstrap) sample max sample min GradientBoostingRegressor LGBMRegressor RandomForestRegressor ExtraTreesRegressor By quantile regression to .16, .5, .84 quantiles Naturally by the law of total variance bounded prediction Avoid the risk of unintended extrapolation? (High-dimensional feature spaces can be counterintuitive…)
  • 35. / 35 23 #2. SWED representation of catalysts The catalyst representation called SWED (Sorted Weighted Elemental Descriptors) is developed to represent catalysts not in a one-hot fashion but by elemental descriptors. Key Idea one-hot-like features below are statistically incomparable so represent catalysts instead by any elemental descriptors to represent arbitrary (used/unused) elements in a common ground, considering chemical similarities.
  • 36. / 35 24 SWED (Sorted Weighted Elemental Descriptors) • Product terms can represent interaction effects between variables (e.g. probabilistic gating, attention, …) and furthermore, they can zero out the feature when the corresponding element is 0%. • Sorted concatenation is lossless, and was better than weighted sum or weighted max. • SWED lose the exact composition. To compensate, we also developed a SWED→composition estimator. • We tried many other things (matrix decomposition, Aitchison geometry, GNN, etc) that didn’t work. +
  • 37. / 35 25 #3. Optimism in the face of uncertainty <latexit sha1_base64="Nr2ImZk9Gvp+/1cBWPwAK6yswp0=">AAACiXichVFNLwNRFD0dX1VfxUZi02iIVXNHBOmq0Y1lP7QkiMyMh9H5ysy0UU3/gJWdYEViIX6AH2DjD1j0J4gliY2F2+kkguBO3rzzzrvnvvPeVR1D93yiVkTq6u7p7Yv2xwYGh4ZH4qNjZc+uupooabZhu+uq4glDt0TJ131DrDuuUEzVEGtqJdveX6sJ19Nta9WvO2LLVPYsfVfXFJ+p8qZqNg6b2/EkpSiIxE8ghyCJMHJ2/A6b2IENDVWYELDgMzagwONvAzIIDnNbaDDnMtKDfYEmYqytcpbgDIXZCv/3eLURshav2zW9QK3xKQYPl5UJTNMj3dALPdAtPdH7r7UaQY22lzrPakcrnO2R44ni278qk2cf+5+qPz372MVS4FVn707AtG+hdfS1o9OXYrow3ZihK3pm/5fUonu+gVV71a7zonDxhx+VvfCLcYPk7+34CcpzKXkhRfn5ZGY5bFUUk5jCLPdjERmsIIcS1z/ACc5wLg1IsrQkpTupUiTUjONLSNkPIVKSSQ==</latexit> x <latexit sha1_base64="Qqfga3YaBoUI0Yb7fQVzumPP1Sw=">AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U=</latexit> y sample max sample min We would like to find X better than (hopefully) the currently known best . <latexit sha1_base64="g1U7Tzgl+Lj3TSOL2Mnl/fuxw90=">AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVW5UVEpLooiuOzDPqAtJYljDc2LJC3W0B9w6cZF3Si4ED/AD3DjD7joJ4jLCm5ceJsGRIv1hsmcOXPPnTNzRUORLRux6+PGxicmp/zTgZnZ4FwoPL+Qt/SGKbGcpCu6WRQFiymyxnK2bCusaJhMUEWFFcT6fn+/0GSmJevakd0yWEUVapp8IkuCTVSxLKrOWbvKV8NRjKMbkWHAeyAKXqT08COU4Rh0kKABKjDQwCasgAAWfSXgAcEgrgIOcSYh2d1n0IYAaRuUxShDILZO/xqtSh6r0bpf03LVEp2i0DBJGYEYvuA99vAZH/AVP/+s5bg1+l5aNIsDLTOqoYul7Me/KpVmG06/VSM923ACO65XmbwbLtO/hTTQN8+vetlEJuas4i2+kf8b7OIT3UBrvkt3aZbpjPAjkhd6MWoQ/7sdwyC/Hue34pjejCb3vFb5YRlWYI36sQ1JOIQU5Nw+XEIHrrkgt8EluN1BKufzNIvwI7iDL6QMku0=</latexit> x1 <latexit sha1_base64="HrABz/ySZPgA1Ybj81k3XV8tH68=">AAACi3ichVHNSgJRFD5Of2aZVpugjSRGKzlaVEgLKYKW/uQPqMjMdLXB+WNmlGzwBVq2aWGbghbRA/QAbXqBFj5CtDRo06LjOBAl2Rnu3O9+93znfvceQZcl00LsebiJyanpGe+sb27evxAILi7lTa1piCwnarJmFAXeZLKkspwlWTIr6gbjFUFmBaFxMNgvtJhhSpp6bLV1VlH4uirVJJG3iCqWBcU+61Tj1WAYo+hEaBTEXBAGN1Ja8BHKcAIaiNAEBRioYBGWgQeTvhLEAEEnrgI2cQYhydln0AEfaZuUxSiDJ7ZB/zqtSi6r0npQ03TUIp0i0zBIGYIIvuA99vEZH/AVP/+sZTs1Bl7aNAtDLdOrgYuV7Me/KoVmC06/VWM9W1CDXcerRN51hxncQhzqW+dX/WwiE7HX8RbfyP8N9vCJbqC23sW7NMt0x/gRyAu9GDUo9rsdoyAfj8a2o5jeCif33VZ5YRXWYIP6sQNJOIIU5Jw+XEIXrjk/t8kluL1hKudxNcvwI7jDL6Ysku4=</latexit> x2 <latexit sha1_base64="qj6YHRPaHOekeYfY3235sFbWBxQ=">AAAChHichVHNLgNRFP6M/98WG4lNoyEW0pzpn9YCYWOpqDYpkZlxMel0ZjIzbULjBdgSCysSC/EAHsDGC1h4BLEksbFwZloRi3Ju7r3nfud85373HtU2dNcjem6T2js6u7p7evv6BwaHQuHhkU3XqjqayGuWYTlFVXGFoZsi7+meIYq2I5SKaoiCWl7244WacFzdMje8Q1tsV5R9U9/TNcVjKLewE45SLJtJUzIeoRhRJk5pdlIkZ+VsRGbEtyiatmqF77GFXVjQUEUFAiY89g0ocHmUIINgM7aNOmMOe3oQFzhGH3OrnCU4Q2G0zOs+n0pN1OSzX9MN2BrfYvB0mBnBJD3RLb3RI93RC322rFUPavhaDnlXG1xh74ROxtY//mVVePdw8MP6U7OHPWQCrTprtwPEf4XW4NeOLt7W59Ym61N0Ta+s/4qe6YFfYNbetZucWLv8Q4/KWvjHuEHfXYi0djbjMTkdS+SS0cWlZqt6MI4JTHM/ZrGIFawiz/UFTnGGc6lLmpESUqqRKrU1OaP4ZdL8F+zrkAQ=</latexit> ? <latexit sha1_base64="qj6YHRPaHOekeYfY3235sFbWBxQ=">AAAChHichVHNLgNRFP6M/98WG4lNoyEW0pzpn9YCYWOpqDYpkZlxMel0ZjIzbULjBdgSCysSC/EAHsDGC1h4BLEksbFwZloRi3Ju7r3nfud85373HtU2dNcjem6T2js6u7p7evv6BwaHQuHhkU3XqjqayGuWYTlFVXGFoZsi7+meIYq2I5SKaoiCWl7244WacFzdMje8Q1tsV5R9U9/TNcVjKLewE45SLJtJUzIeoRhRJk5pdlIkZ+VsRGbEtyiatmqF77GFXVjQUEUFAiY89g0ocHmUIINgM7aNOmMOe3oQFzhGH3OrnCU4Q2G0zOs+n0pN1OSzX9MN2BrfYvB0mBnBJD3RLb3RI93RC322rFUPavhaDnlXG1xh74ROxtY//mVVePdw8MP6U7OHPWQCrTprtwPEf4XW4NeOLt7W59Ym61N0Ta+s/4qe6YFfYNbetZucWLv8Q4/KWvjHuEHfXYi0djbjMTkdS+SS0cWlZqt6MI4JTHM/ZrGIFawiz/UFTnGGc6lLmpESUqqRKrU1OaP4ZdL8F+zrkAQ=</latexit> ? <latexit sha1_base64="qj6YHRPaHOekeYfY3235sFbWBxQ=">AAAChHichVHNLgNRFP6M/98WG4lNoyEW0pzpn9YCYWOpqDYpkZlxMel0ZjIzbULjBdgSCysSC/EAHsDGC1h4BLEksbFwZloRi3Ju7r3nfud85373HtU2dNcjem6T2js6u7p7evv6BwaHQuHhkU3XqjqayGuWYTlFVXGFoZsi7+meIYq2I5SKaoiCWl7244WacFzdMje8Q1tsV5R9U9/TNcVjKLewE45SLJtJUzIeoRhRJk5pdlIkZ+VsRGbEtyiatmqF77GFXVjQUEUFAiY89g0ocHmUIINgM7aNOmMOe3oQFzhGH3OrnCU4Q2G0zOs+n0pN1OSzX9MN2BrfYvB0mBnBJD3RLb3RI93RC322rFUPavhaDnlXG1xh74ROxtY//mVVePdw8MP6U7OHPWQCrTprtwPEf4XW4NeOLt7W59Ym61N0Ta+s/4qe6YFfYNbetZucWLv8Q4/KWvjHuEHfXYi0djbjMTkdS+SS0cWlZqt6MI4JTHM/ZrGIFawiz/UFTnGGc6lLmpESUqqRKrU1OaP4ZdL8F+zrkAQ=</latexit> ? <latexit sha1_base64="qj6YHRPaHOekeYfY3235sFbWBxQ=">AAAChHichVHNLgNRFP6M/98WG4lNoyEW0pzpn9YCYWOpqDYpkZlxMel0ZjIzbULjBdgSCysSC/EAHsDGC1h4BLEksbFwZloRi3Ju7r3nfud85373HtU2dNcjem6T2js6u7p7evv6BwaHQuHhkU3XqjqayGuWYTlFVXGFoZsi7+meIYq2I5SKaoiCWl7244WacFzdMje8Q1tsV5R9U9/TNcVjKLewE45SLJtJUzIeoRhRJk5pdlIkZ+VsRGbEtyiatmqF77GFXVjQUEUFAiY89g0ocHmUIINgM7aNOmMOe3oQFzhGH3OrnCU4Q2G0zOs+n0pN1OSzX9MN2BrfYvB0mBnBJD3RLb3RI93RC322rFUPavhaDnlXG1xh74ROxtY//mVVePdw8MP6U7OHPWQCrTprtwPEf4XW4NeOLt7W59Ym61N0Ta+s/4qe6YFfYNbetZucWLv8Q4/KWvjHuEHfXYi0djbjMTkdS+SS0cWlZqt6MI4JTHM/ZrGIFawiz/UFTnGGc6lLmpESUqqRKrU1OaP4ZdL8F+zrkAQ=</latexit> ? <latexit sha1_base64="qj6YHRPaHOekeYfY3235sFbWBxQ=">AAAChHichVHNLgNRFP6M/98WG4lNoyEW0pzpn9YCYWOpqDYpkZlxMel0ZjIzbULjBdgSCysSC/EAHsDGC1h4BLEksbFwZloRi3Ju7r3nfud85373HtU2dNcjem6T2js6u7p7evv6BwaHQuHhkU3XqjqayGuWYTlFVXGFoZsi7+meIYq2I5SKaoiCWl7244WacFzdMje8Q1tsV5R9U9/TNcVjKLewE45SLJtJUzIeoRhRJk5pdlIkZ+VsRGbEtyiatmqF77GFXVjQUEUFAiY89g0ocHmUIINgM7aNOmMOe3oQFzhGH3OrnCU4Q2G0zOs+n0pN1OSzX9MN2BrfYvB0mBnBJD3RLb3RI93RC322rFUPavhaDnlXG1xh74ROxtY//mVVePdw8MP6U7OHPWQCrTprtwPEf4XW4NeOLt7W59Ym61N0Ta+s/4qe6YFfYNbetZucWLv8Q4/KWvjHuEHfXYi0djbjMTkdS+SS0cWlZqt6MI4JTHM/ZrGIFawiz/UFTnGGc6lLmpESUqqRKrU1OaP4ZdL8F+zrkAQ=</latexit> ? What next location of is likely to give higher ? <latexit sha1_base64="GizvUUdXn2Kx+/exfuoNL7eSBEo=">AAACiXichVG7TgJBFD2sL8QHqI2JDZFgrMgsEh5WRBtLHgImYMzuOuDqvrK7EJX4A1Z2Rq00sTB+gB9g4w9Y8AnGEhMbCy8LxliodzM7Z87cc+fMXNnSVMdlrOMThoZHRsf844GJyanpYGhmtuyYTVvhJcXUTHtLlhyuqQYvuaqr8S3L5pIua7wiH6z39istbjuqaWy6Rxbf1qWGodZVRXKJKtdkvX14shOKsFg8kxRTK2EPJFKiB+JiOhMWY8yLCAaRM0MPqGEXJhQ0oYPDgEtYgwSHvipEMFjEbaNNnE1I9fY5ThAgbZOyOGVIxB7Qv0Gr6oA1aN2r6XhqhU7RaNikDCPKntkd67Inds9e2MevtdpejZ6XI5rlvpZbO8HT+eL7vyqdZhd736o/PbuoI+15Vcm75TG9Wyh9fev4vFtcLUTbS+yGvZL/a9Zhj3QDo/Wm3OZ54eoPPzJ5oRejBn11Ifw7KMdjYjK2kk9EsmuDVvmxgEUsUz9SyGIDOZSo/j7OcIFLYUIQhbSw2k8VfAPNHH6EsP4J1yOSpA==</latexit> x <latexit sha1_base64="fNJj/X2guXDQcypavSpjd2rZHL0=">AAAChHichVG7SgNBFD1ZXzG+ojaCzWJQLGSZTWISLUS0sczDqKAiu+skLu6L3U0gBn9AW8XCSsFC/AA/wMYfsMgniKWCjYV3NxGxUO8yO2fO3HPnzFzVMXTPZ6wVEbq6e3r7ov2xgcGh4ZH46NiGZ9dcjZc127DdLVXxuKFbvOzrvsG3HJcrpmrwTfVwNdjfrHPX021r3W84fNdUqpZe0TXFJ6rQ2IsnmJRcyMjZlBiCdFYOQVLOLYiyxMJIoBN5O36PHezDhoYaTHBY8AkbUODRtw0ZDA5xu2gS5xLSw32OY8RIW6MsThkKsYf0r9Jqu8NatA5qeqFao1MMGi4pRUyzJ3bLXtkju2PP7OPXWs2wRuClQbPa1nJnb+RkovT+r8qk2cfBt+pPzz4qyIVedfLuhExwC62trx9dvJYWi9PNGXbNXsj/FWuxB7qBVX/Tbgq8ePmHH5W80ItRg766IP4ONpKSnJFShXRieaXTqigmMYVZ6kcWy1hDHmWqz3GKM5wLvcKckBLm26lCpKMZx48Qlj4BjPuQUA==</latexit> y Exploitation Make the best decision given current information Exploration Gather more information by probing uncertain areas A fundamental choice: exploitation-exploration tradeoff <latexit sha1_base64="g1U7Tzgl+Lj3TSOL2Mnl/fuxw90=">AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVW5UVEpLooiuOzDPqAtJYljDc2LJC3W0B9w6cZF3Si4ED/AD3DjD7joJ4jLCm5ceJsGRIv1hsmcOXPPnTNzRUORLRux6+PGxicmp/zTgZnZ4FwoPL+Qt/SGKbGcpCu6WRQFiymyxnK2bCusaJhMUEWFFcT6fn+/0GSmJevakd0yWEUVapp8IkuCTVSxLKrOWbvKV8NRjKMbkWHAeyAKXqT08COU4Rh0kKABKjDQwCasgAAWfSXgAcEgrgIOcSYh2d1n0IYAaRuUxShDILZO/xqtSh6r0bpf03LVEp2i0DBJGYEYvuA99vAZH/AVP/+s5bg1+l5aNIsDLTOqoYul7Me/KpVmG06/VSM923ACO65XmbwbLtO/hTTQN8+vetlEJuas4i2+kf8b7OIT3UBrvkt3aZbpjPAjkhd6MWoQ/7sdwyC/Hue34pjejCb3vFb5YRlWYI36sQ1JOIQU5Nw+XEIHrrkgt8EluN1BKufzNIvwI7iDL6QMku0=</latexit> x1 <latexit sha1_base64="HrABz/ySZPgA1Ybj81k3XV8tH68=">AAACi3ichVHNSgJRFD5Of2aZVpugjSRGKzlaVEgLKYKW/uQPqMjMdLXB+WNmlGzwBVq2aWGbghbRA/QAbXqBFj5CtDRo06LjOBAl2Rnu3O9+93znfvceQZcl00LsebiJyanpGe+sb27evxAILi7lTa1piCwnarJmFAXeZLKkspwlWTIr6gbjFUFmBaFxMNgvtJhhSpp6bLV1VlH4uirVJJG3iCqWBcU+61Tj1WAYo+hEaBTEXBAGN1Ja8BHKcAIaiNAEBRioYBGWgQeTvhLEAEEnrgI2cQYhydln0AEfaZuUxSiDJ7ZB/zqtSi6r0npQ03TUIp0i0zBIGYIIvuA99vEZH/AVP/+sZTs1Bl7aNAtDLdOrgYuV7Me/KoVmC06/VWM9W1CDXcerRN51hxncQhzqW+dX/WwiE7HX8RbfyP8N9vCJbqC23sW7NMt0x/gRyAu9GDUo9rsdoyAfj8a2o5jeCif33VZ5YRXWYIP6sQNJOIIU5Jw+XEIXrjk/t8kluL1hKudxNcvwI7jDL6Ysku4=</latexit> x2 exploitative choice explorative choice <latexit sha1_base64="TEyxI6Ffe+b+OEFRulxYJ0sUB8w=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBGBdk8IVxRXTjkoc8EkTS1gEbStu0hQSJP2DiVhauNHFh/AA/wI0/4IJPMC4xcePCS2lilIi3mc6ZM/fcOTNXMlTFshnreISR0bHxCe+kb2p6ZtYfmJvPWnrdlHlG1lXdzEuixVVF4xlbsVWeN0wu1iSV56Tqfm8/1+Cmpejaod00eLEmVjSlrMiiTVS6ebxWCoRYhDkRHARRF4TgRkIPPOIIJ9Aho44aODTYhFWIsOgrIAoGg7giWsSZhBRnn+McPtLWKYtThkhslf4VWhVcVqN1r6blqGU6RaVhkjKIMHth96zLntkDe2Wff9ZqOTV6Xpo0S30tN0r+i8X0x7+qGs02Tr9VQz3bKGPH8aqQd8NhereQ+/rGWbub3k2FWyvslr2R/xvWYU90A63xLt8leep6iB+JvNCLUYOiv9sxCLLrkeh2ZCO5GYrvua3yYgnLWKV+xBDHARLIUP0KLnGFtuAVIsKWEOunCh5Xs4AfIcS/AEWBkJQ=</latexit> y⇤ <latexit sha1_base64="ivVWRQUyNt8f9PjHjZnGRvohU5E=">AAAChnichVG5TsNAEH2YK9wBGiSaiCgIUURjbqgiaChDQg6JS7ZZgoVjW7YTKUT8ABItFFQgUSA+gA+g4Qco8gmIMkg0FEwcI6BImNXuzr6ZN/t2R7UN3fWIah1SZ1d3T2+or39gcGh4JDw6lnWtkqOJjGYZlpNXFVcYuikynu4ZIm87QimqhsipJxuNeK4sHFe3zG2vYou9olIw9SNdUzyG0pX92YNwlOLkW+SXs0jy6pIckQMkisCSVvgRuziEBQ0lFCFgwmPfgAKXxw5kEGzG9lBlzGFP9+MCZ+hnbomzBGcojJ7wWuDTToCafG7UdH22xrcYPB1mRhCjF7qnOj3TA73SZ8taVb9GQ0uFd7XJFfbByPlE+uNfVpF3D8c/rLaaPRxhxdeqs3bbRxqv0Jr88ulVPb2WilWn6ZbeWP8N1eiJX2CW37W7LZG6bqNHZS38Y9yg7y5EWjvZubi8FJ/fWogm1oNWhTCJKcxwP5aRwCaSyHD9Ai5wiSspJMWlRWm5mSp1BJxx/DEp8QVx95Cq</latexit> y⇤ Random choice (e.g. random design) or evenly spaced sampling (e.g. full factorial design) can also work for lower dimensional exploration.
  • 38. / 35 25 #3. Optimism in the face of uncertainty <latexit sha1_base64="Nr2ImZk9Gvp+/1cBWPwAK6yswp0=">AAACiXichVFNLwNRFD0dX1VfxUZi02iIVXNHBOmq0Y1lP7QkiMyMh9H5ysy0UU3/gJWdYEViIX6AH2DjD1j0J4gliY2F2+kkguBO3rzzzrvnvvPeVR1D93yiVkTq6u7p7Yv2xwYGh4ZH4qNjZc+uupooabZhu+uq4glDt0TJ131DrDuuUEzVEGtqJdveX6sJ19Nta9WvO2LLVPYsfVfXFJ+p8qZqNg6b2/EkpSiIxE8ghyCJMHJ2/A6b2IENDVWYELDgMzagwONvAzIIDnNbaDDnMtKDfYEmYqytcpbgDIXZCv/3eLURshav2zW9QK3xKQYPl5UJTNMj3dALPdAtPdH7r7UaQY22lzrPakcrnO2R44ni278qk2cf+5+qPz372MVS4FVn707AtG+hdfS1o9OXYrow3ZihK3pm/5fUonu+gVV71a7zonDxhx+VvfCLcYPk7+34CcpzKXkhRfn5ZGY5bFUUk5jCLPdjERmsIIcS1z/ACc5wLg1IsrQkpTupUiTUjONLSNkPIVKSSQ==</latexit> x <latexit sha1_base64="Qqfga3YaBoUI0Yb7fQVzumPP1Sw=">AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U=</latexit> y sample max sample min We would like to find X better than (hopefully) the currently known best . <latexit sha1_base64="g1U7Tzgl+Lj3TSOL2Mnl/fuxw90=">AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVW5UVEpLooiuOzDPqAtJYljDc2LJC3W0B9w6cZF3Si4ED/AD3DjD7joJ4jLCm5ceJsGRIv1hsmcOXPPnTNzRUORLRux6+PGxicmp/zTgZnZ4FwoPL+Qt/SGKbGcpCu6WRQFiymyxnK2bCusaJhMUEWFFcT6fn+/0GSmJevakd0yWEUVapp8IkuCTVSxLKrOWbvKV8NRjKMbkWHAeyAKXqT08COU4Rh0kKABKjDQwCasgAAWfSXgAcEgrgIOcSYh2d1n0IYAaRuUxShDILZO/xqtSh6r0bpf03LVEp2i0DBJGYEYvuA99vAZH/AVP/+s5bg1+l5aNIsDLTOqoYul7Me/KpVmG06/VSM923ACO65XmbwbLtO/hTTQN8+vetlEJuas4i2+kf8b7OIT3UBrvkt3aZbpjPAjkhd6MWoQ/7sdwyC/Hue34pjejCb3vFb5YRlWYI36sQ1JOIQU5Nw+XEIHrrkgt8EluN1BKufzNIvwI7iDL6QMku0=</latexit> x1 <latexit sha1_base64="HrABz/ySZPgA1Ybj81k3XV8tH68=">AAACi3ichVHNSgJRFD5Of2aZVpugjSRGKzlaVEgLKYKW/uQPqMjMdLXB+WNmlGzwBVq2aWGbghbRA/QAbXqBFj5CtDRo06LjOBAl2Rnu3O9+93znfvceQZcl00LsebiJyanpGe+sb27evxAILi7lTa1piCwnarJmFAXeZLKkspwlWTIr6gbjFUFmBaFxMNgvtJhhSpp6bLV1VlH4uirVJJG3iCqWBcU+61Tj1WAYo+hEaBTEXBAGN1Ja8BHKcAIaiNAEBRioYBGWgQeTvhLEAEEnrgI2cQYhydln0AEfaZuUxSiDJ7ZB/zqtSi6r0npQ03TUIp0i0zBIGYIIvuA99vEZH/AVP/+sZTs1Bl7aNAtDLdOrgYuV7Me/KoVmC06/VWM9W1CDXcerRN51hxncQhzqW+dX/WwiE7HX8RbfyP8N9vCJbqC23sW7NMt0x/gRyAu9GDUo9rsdoyAfj8a2o5jeCif33VZ5YRXWYIP6sQNJOIIU5Jw+XEIXrjk/t8kluL1hKudxNcvwI7jDL6Ysku4=</latexit> x2 <latexit sha1_base64="qj6YHRPaHOekeYfY3235sFbWBxQ=">AAAChHichVHNLgNRFP6M/98WG4lNoyEW0pzpn9YCYWOpqDYpkZlxMel0ZjIzbULjBdgSCysSC/EAHsDGC1h4BLEksbFwZloRi3Ju7r3nfud85373HtU2dNcjem6T2js6u7p7evv6BwaHQuHhkU3XqjqayGuWYTlFVXGFoZsi7+meIYq2I5SKaoiCWl7244WacFzdMje8Q1tsV5R9U9/TNcVjKLewE45SLJtJUzIeoRhRJk5pdlIkZ+VsRGbEtyiatmqF77GFXVjQUEUFAiY89g0ocHmUIINgM7aNOmMOe3oQFzhGH3OrnCU4Q2G0zOs+n0pN1OSzX9MN2BrfYvB0mBnBJD3RLb3RI93RC322rFUPavhaDnlXG1xh74ROxtY//mVVePdw8MP6U7OHPWQCrTprtwPEf4XW4NeOLt7W59Ym61N0Ta+s/4qe6YFfYNbetZucWLv8Q4/KWvjHuEHfXYi0djbjMTkdS+SS0cWlZqt6MI4JTHM/ZrGIFawiz/UFTnGGc6lLmpESUqqRKrU1OaP4ZdL8F+zrkAQ=</latexit> ? <latexit sha1_base64="qj6YHRPaHOekeYfY3235sFbWBxQ=">AAAChHichVHNLgNRFP6M/98WG4lNoyEW0pzpn9YCYWOpqDYpkZlxMel0ZjIzbULjBdgSCysSC/EAHsDGC1h4BLEksbFwZloRi3Ju7r3nfud85373HtU2dNcjem6T2js6u7p7evv6BwaHQuHhkU3XqjqayGuWYTlFVXGFoZsi7+meIYq2I5SKaoiCWl7244WacFzdMje8Q1tsV5R9U9/TNcVjKLewE45SLJtJUzIeoRhRJk5pdlIkZ+VsRGbEtyiatmqF77GFXVjQUEUFAiY89g0ocHmUIINgM7aNOmMOe3oQFzhGH3OrnCU4Q2G0zOs+n0pN1OSzX9MN2BrfYvB0mBnBJD3RLb3RI93RC322rFUPavhaDnlXG1xh74ROxtY//mVVePdw8MP6U7OHPWQCrTprtwPEf4XW4NeOLt7W59Ym61N0Ta+s/4qe6YFfYNbetZucWLv8Q4/KWvjHuEHfXYi0djbjMTkdS+SS0cWlZqt6MI4JTHM/ZrGIFawiz/UFTnGGc6lLmpESUqqRKrU1OaP4ZdL8F+zrkAQ=</latexit> ? <latexit sha1_base64="qj6YHRPaHOekeYfY3235sFbWBxQ=">AAAChHichVHNLgNRFP6M/98WG4lNoyEW0pzpn9YCYWOpqDYpkZlxMel0ZjIzbULjBdgSCysSC/EAHsDGC1h4BLEksbFwZloRi3Ju7r3nfud85373HtU2dNcjem6T2js6u7p7evv6BwaHQuHhkU3XqjqayGuWYTlFVXGFoZsi7+meIYq2I5SKaoiCWl7244WacFzdMje8Q1tsV5R9U9/TNcVjKLewE45SLJtJUzIeoRhRJk5pdlIkZ+VsRGbEtyiatmqF77GFXVjQUEUFAiY89g0ocHmUIINgM7aNOmMOe3oQFzhGH3OrnCU4Q2G0zOs+n0pN1OSzX9MN2BrfYvB0mBnBJD3RLb3RI93RC322rFUPavhaDnlXG1xh74ROxtY//mVVePdw8MP6U7OHPWQCrTprtwPEf4XW4NeOLt7W59Ym61N0Ta+s/4qe6YFfYNbetZucWLv8Q4/KWvjHuEHfXYi0djbjMTkdS+SS0cWlZqt6MI4JTHM/ZrGIFawiz/UFTnGGc6lLmpESUqqRKrU1OaP4ZdL8F+zrkAQ=</latexit> ? <latexit sha1_base64="qj6YHRPaHOekeYfY3235sFbWBxQ=">AAAChHichVHNLgNRFP6M/98WG4lNoyEW0pzpn9YCYWOpqDYpkZlxMel0ZjIzbULjBdgSCysSC/EAHsDGC1h4BLEksbFwZloRi3Ju7r3nfud85373HtU2dNcjem6T2js6u7p7evv6BwaHQuHhkU3XqjqayGuWYTlFVXGFoZsi7+meIYq2I5SKaoiCWl7244WacFzdMje8Q1tsV5R9U9/TNcVjKLewE45SLJtJUzIeoRhRJk5pdlIkZ+VsRGbEtyiatmqF77GFXVjQUEUFAiY89g0ocHmUIINgM7aNOmMOe3oQFzhGH3OrnCU4Q2G0zOs+n0pN1OSzX9MN2BrfYvB0mBnBJD3RLb3RI93RC322rFUPavhaDnlXG1xh74ROxtY//mVVePdw8MP6U7OHPWQCrTprtwPEf4XW4NeOLt7W59Ym61N0Ta+s/4qe6YFfYNbetZucWLv8Q4/KWvjHuEHfXYi0djbjMTkdS+SS0cWlZqt6MI4JTHM/ZrGIFawiz/UFTnGGc6lLmpESUqqRKrU1OaP4ZdL8F+zrkAQ=</latexit> ? <latexit sha1_base64="qj6YHRPaHOekeYfY3235sFbWBxQ=">AAAChHichVHNLgNRFP6M/98WG4lNoyEW0pzpn9YCYWOpqDYpkZlxMel0ZjIzbULjBdgSCysSC/EAHsDGC1h4BLEksbFwZloRi3Ju7r3nfud85373HtU2dNcjem6T2js6u7p7evv6BwaHQuHhkU3XqjqayGuWYTlFVXGFoZsi7+meIYq2I5SKaoiCWl7244WacFzdMje8Q1tsV5R9U9/TNcVjKLewE45SLJtJUzIeoRhRJk5pdlIkZ+VsRGbEtyiatmqF77GFXVjQUEUFAiY89g0ocHmUIINgM7aNOmMOe3oQFzhGH3OrnCU4Q2G0zOs+n0pN1OSzX9MN2BrfYvB0mBnBJD3RLb3RI93RC322rFUPavhaDnlXG1xh74ROxtY//mVVePdw8MP6U7OHPWQCrTprtwPEf4XW4NeOLt7W59Ym61N0Ta+s/4qe6YFfYNbetZucWLv8Q4/KWvjHuEHfXYi0djbjMTkdS+SS0cWlZqt6MI4JTHM/ZrGIFawiz/UFTnGGc6lLmpESUqqRKrU1OaP4ZdL8F+zrkAQ=</latexit> ? What next location of is likely to give higher ? <latexit sha1_base64="GizvUUdXn2Kx+/exfuoNL7eSBEo=">AAACiXichVG7TgJBFD2sL8QHqI2JDZFgrMgsEh5WRBtLHgImYMzuOuDqvrK7EJX4A1Z2Rq00sTB+gB9g4w9Y8AnGEhMbCy8LxliodzM7Z87cc+fMXNnSVMdlrOMThoZHRsf844GJyanpYGhmtuyYTVvhJcXUTHtLlhyuqQYvuaqr8S3L5pIua7wiH6z39istbjuqaWy6Rxbf1qWGodZVRXKJKtdkvX14shOKsFg8kxRTK2EPJFKiB+JiOhMWY8yLCAaRM0MPqGEXJhQ0oYPDgEtYgwSHvipEMFjEbaNNnE1I9fY5ThAgbZOyOGVIxB7Qv0Gr6oA1aN2r6XhqhU7RaNikDCPKntkd67Inds9e2MevtdpejZ6XI5rlvpZbO8HT+eL7vyqdZhd736o/PbuoI+15Vcm75TG9Wyh9fev4vFtcLUTbS+yGvZL/a9Zhj3QDo/Wm3OZ54eoPPzJ5oRejBn11Ifw7KMdjYjK2kk9EsmuDVvmxgEUsUz9SyGIDOZSo/j7OcIFLYUIQhbSw2k8VfAPNHH6EsP4J1yOSpA==</latexit> x <latexit sha1_base64="fNJj/X2guXDQcypavSpjd2rZHL0=">AAAChHichVG7SgNBFD1ZXzG+ojaCzWJQLGSZTWISLUS0sczDqKAiu+skLu6L3U0gBn9AW8XCSsFC/AA/wMYfsMgniKWCjYV3NxGxUO8yO2fO3HPnzFzVMXTPZ6wVEbq6e3r7ov2xgcGh4ZH46NiGZ9dcjZc127DdLVXxuKFbvOzrvsG3HJcrpmrwTfVwNdjfrHPX021r3W84fNdUqpZe0TXFJ6rQ2IsnmJRcyMjZlBiCdFYOQVLOLYiyxMJIoBN5O36PHezDhoYaTHBY8AkbUODRtw0ZDA5xu2gS5xLSw32OY8RIW6MsThkKsYf0r9Jqu8NatA5qeqFao1MMGi4pRUyzJ3bLXtkju2PP7OPXWs2wRuClQbPa1nJnb+RkovT+r8qk2cfBt+pPzz4qyIVedfLuhExwC62trx9dvJYWi9PNGXbNXsj/FWuxB7qBVX/Tbgq8ePmHH5W80ItRg766IP4ONpKSnJFShXRieaXTqigmMYVZ6kcWy1hDHmWqz3GKM5wLvcKckBLm26lCpKMZx48Qlj4BjPuQUA==</latexit> y Exploitation Make the best decision given current information Exploration Gather more information by probing uncertain areas A fundamental choice: exploitation-exploration tradeoff <latexit sha1_base64="g1U7Tzgl+Lj3TSOL2Mnl/fuxw90=">AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVW5UVEpLooiuOzDPqAtJYljDc2LJC3W0B9w6cZF3Si4ED/AD3DjD7joJ4jLCm5ceJsGRIv1hsmcOXPPnTNzRUORLRux6+PGxicmp/zTgZnZ4FwoPL+Qt/SGKbGcpCu6WRQFiymyxnK2bCusaJhMUEWFFcT6fn+/0GSmJevakd0yWEUVapp8IkuCTVSxLKrOWbvKV8NRjKMbkWHAeyAKXqT08COU4Rh0kKABKjDQwCasgAAWfSXgAcEgrgIOcSYh2d1n0IYAaRuUxShDILZO/xqtSh6r0bpf03LVEp2i0DBJGYEYvuA99vAZH/AVP/+s5bg1+l5aNIsDLTOqoYul7Me/KpVmG06/VSM923ACO65XmbwbLtO/hTTQN8+vetlEJuas4i2+kf8b7OIT3UBrvkt3aZbpjPAjkhd6MWoQ/7sdwyC/Hue34pjejCb3vFb5YRlWYI36sQ1JOIQU5Nw+XEIHrrkgt8EluN1BKufzNIvwI7iDL6QMku0=</latexit> x1 <latexit sha1_base64="HrABz/ySZPgA1Ybj81k3XV8tH68=">AAACi3ichVHNSgJRFD5Of2aZVpugjSRGKzlaVEgLKYKW/uQPqMjMdLXB+WNmlGzwBVq2aWGbghbRA/QAbXqBFj5CtDRo06LjOBAl2Rnu3O9+93znfvceQZcl00LsebiJyanpGe+sb27evxAILi7lTa1piCwnarJmFAXeZLKkspwlWTIr6gbjFUFmBaFxMNgvtJhhSpp6bLV1VlH4uirVJJG3iCqWBcU+61Tj1WAYo+hEaBTEXBAGN1Ja8BHKcAIaiNAEBRioYBGWgQeTvhLEAEEnrgI2cQYhydln0AEfaZuUxSiDJ7ZB/zqtSi6r0npQ03TUIp0i0zBIGYIIvuA99vEZH/AVP/+sZTs1Bl7aNAtDLdOrgYuV7Me/KoVmC06/VWM9W1CDXcerRN51hxncQhzqW+dX/WwiE7HX8RbfyP8N9vCJbqC23sW7NMt0x/gRyAu9GDUo9rsdoyAfj8a2o5jeCif33VZ5YRXWYIP6sQNJOIIU5Jw+XEIXrjk/t8kluL1hKudxNcvwI7jDL6Ysku4=</latexit> x2 exploitative choice explorative choice <latexit sha1_base64="TEyxI6Ffe+b+OEFRulxYJ0sUB8w=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBGBdk8IVxRXTjkoc8EkTS1gEbStu0hQSJP2DiVhauNHFh/AA/wI0/4IJPMC4xcePCS2lilIi3mc6ZM/fcOTNXMlTFshnreISR0bHxCe+kb2p6ZtYfmJvPWnrdlHlG1lXdzEuixVVF4xlbsVWeN0wu1iSV56Tqfm8/1+Cmpejaod00eLEmVjSlrMiiTVS6ebxWCoRYhDkRHARRF4TgRkIPPOIIJ9Aho44aODTYhFWIsOgrIAoGg7giWsSZhBRnn+McPtLWKYtThkhslf4VWhVcVqN1r6blqGU6RaVhkjKIMHth96zLntkDe2Wff9ZqOTV6Xpo0S30tN0r+i8X0x7+qGs02Tr9VQz3bKGPH8aqQd8NhereQ+/rGWbub3k2FWyvslr2R/xvWYU90A63xLt8leep6iB+JvNCLUYOiv9sxCLLrkeh2ZCO5GYrvua3yYgnLWKV+xBDHARLIUP0KLnGFtuAVIsKWEOunCh5Xs4AfIcS/AEWBkJQ=</latexit> y⇤ <latexit sha1_base64="ivVWRQUyNt8f9PjHjZnGRvohU5E=">AAAChnichVG5TsNAEH2YK9wBGiSaiCgIUURjbqgiaChDQg6JS7ZZgoVjW7YTKUT8ABItFFQgUSA+gA+g4Qco8gmIMkg0FEwcI6BImNXuzr6ZN/t2R7UN3fWIah1SZ1d3T2+or39gcGh4JDw6lnWtkqOJjGYZlpNXFVcYuikynu4ZIm87QimqhsipJxuNeK4sHFe3zG2vYou9olIw9SNdUzyG0pX92YNwlOLkW+SXs0jy6pIckQMkisCSVvgRuziEBQ0lFCFgwmPfgAKXxw5kEGzG9lBlzGFP9+MCZ+hnbomzBGcojJ7wWuDTToCafG7UdH22xrcYPB1mRhCjF7qnOj3TA73SZ8taVb9GQ0uFd7XJFfbByPlE+uNfVpF3D8c/rLaaPRxhxdeqs3bbRxqv0Jr88ulVPb2WilWn6ZbeWP8N1eiJX2CW37W7LZG6bqNHZS38Y9yg7y5EWjvZubi8FJ/fWogm1oNWhTCJKcxwP5aRwCaSyHD9Ai5wiSspJMWlRWm5mSp1BJxx/DEp8QVx95Cq</latexit> y⇤ Random choice (e.g. random design) or evenly spaced sampling (e.g. full factorial design) can also work for lower dimensional exploration.
  • 39. / 35 26 #3. Optimism in the face of uncertainty <latexit sha1_base64="Nr2ImZk9Gvp+/1cBWPwAK6yswp0=">AAACiXichVFNLwNRFD0dX1VfxUZi02iIVXNHBOmq0Y1lP7QkiMyMh9H5ysy0UU3/gJWdYEViIX6AH2DjD1j0J4gliY2F2+kkguBO3rzzzrvnvvPeVR1D93yiVkTq6u7p7Yv2xwYGh4ZH4qNjZc+uupooabZhu+uq4glDt0TJ131DrDuuUEzVEGtqJdveX6sJ19Nta9WvO2LLVPYsfVfXFJ+p8qZqNg6b2/EkpSiIxE8ghyCJMHJ2/A6b2IENDVWYELDgMzagwONvAzIIDnNbaDDnMtKDfYEmYqytcpbgDIXZCv/3eLURshav2zW9QK3xKQYPl5UJTNMj3dALPdAtPdH7r7UaQY22lzrPakcrnO2R44ni278qk2cf+5+qPz372MVS4FVn707AtG+hdfS1o9OXYrow3ZihK3pm/5fUonu+gVV71a7zonDxhx+VvfCLcYPk7+34CcpzKXkhRfn5ZGY5bFUUk5jCLPdjERmsIIcS1z/ACc5wLg1IsrQkpTupUiTUjONLSNkPIVKSSQ==</latexit> x <latexit sha1_base64="Qqfga3YaBoUI0Yb7fQVzumPP1Sw=">AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U=</latexit> y sample max sample min ML fits a function to minimize the average errors, and as a result, ML functions go through the center (mean) of sample output values. the currently known best We would like to find X better than (hopefully) the currently known best. Now we would like to use ML for the goal. <latexit sha1_base64="TEyxI6Ffe+b+OEFRulxYJ0sUB8w=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBGBdk8IVxRXTjkoc8EkTS1gEbStu0hQSJP2DiVhauNHFh/AA/wI0/4IJPMC4xcePCS2lilIi3mc6ZM/fcOTNXMlTFshnreISR0bHxCe+kb2p6ZtYfmJvPWnrdlHlG1lXdzEuixVVF4xlbsVWeN0wu1iSV56Tqfm8/1+Cmpejaod00eLEmVjSlrMiiTVS6ebxWCoRYhDkRHARRF4TgRkIPPOIIJ9Aho44aODTYhFWIsOgrIAoGg7giWsSZhBRnn+McPtLWKYtThkhslf4VWhVcVqN1r6blqGU6RaVhkjKIMHth96zLntkDe2Wff9ZqOTV6Xpo0S30tN0r+i8X0x7+qGs02Tr9VQz3bKGPH8aqQd8NhereQ+/rGWbub3k2FWyvslr2R/xvWYU90A63xLt8leep6iB+JvNCLUYOiv9sxCLLrkeh2ZCO5GYrvua3yYgnLWKV+xBDHARLIUP0KLnGFtuAVIsKWEOunCh5Xs4AfIcS/AEWBkJQ=</latexit> y⇤ goes through here predictions will be groundless when it goes beyond this area unintended extrapolation When ML is rightly fitted, the predicted values are never larger than the known best, which is inconsistent with the goal.
  • 40. / 35 26 #3. Optimism in the face of uncertainty <latexit sha1_base64="Nr2ImZk9Gvp+/1cBWPwAK6yswp0=">AAACiXichVFNLwNRFD0dX1VfxUZi02iIVXNHBOmq0Y1lP7QkiMyMh9H5ysy0UU3/gJWdYEViIX6AH2DjD1j0J4gliY2F2+kkguBO3rzzzrvnvvPeVR1D93yiVkTq6u7p7Yv2xwYGh4ZH4qNjZc+uupooabZhu+uq4glDt0TJ131DrDuuUEzVEGtqJdveX6sJ19Nta9WvO2LLVPYsfVfXFJ+p8qZqNg6b2/EkpSiIxE8ghyCJMHJ2/A6b2IENDVWYELDgMzagwONvAzIIDnNbaDDnMtKDfYEmYqytcpbgDIXZCv/3eLURshav2zW9QK3xKQYPl5UJTNMj3dALPdAtPdH7r7UaQY22lzrPakcrnO2R44ni278qk2cf+5+qPz372MVS4FVn707AtG+hdfS1o9OXYrow3ZihK3pm/5fUonu+gVV71a7zonDxhx+VvfCLcYPk7+34CcpzKXkhRfn5ZGY5bFUUk5jCLPdjERmsIIcS1z/ACc5wLg1IsrQkpTupUiTUjONLSNkPIVKSSQ==</latexit> x <latexit sha1_base64="g1U7Tzgl+Lj3TSOL2Mnl/fuxw90=">AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVW5UVEpLooiuOzDPqAtJYljDc2LJC3W0B9w6cZF3Si4ED/AD3DjD7joJ4jLCm5ceJsGRIv1hsmcOXPPnTNzRUORLRux6+PGxicmp/zTgZnZ4FwoPL+Qt/SGKbGcpCu6WRQFiymyxnK2bCusaJhMUEWFFcT6fn+/0GSmJevakd0yWEUVapp8IkuCTVSxLKrOWbvKV8NRjKMbkWHAeyAKXqT08COU4Rh0kKABKjDQwCasgAAWfSXgAcEgrgIOcSYh2d1n0IYAaRuUxShDILZO/xqtSh6r0bpf03LVEp2i0DBJGYEYvuA99vAZH/AVP/+s5bg1+l5aNIsDLTOqoYul7Me/KpVmG06/VSM923ACO65XmbwbLtO/hTTQN8+vetlEJuas4i2+kf8b7OIT3UBrvkt3aZbpjPAjkhd6MWoQ/7sdwyC/Hue34pjejCb3vFb5YRlWYI36sQ1JOIQU5Nw+XEIHrrkgt8EluN1BKufzNIvwI7iDL6QMku0=</latexit> x1 <latexit sha1_base64="HrABz/ySZPgA1Ybj81k3XV8tH68=">AAACi3ichVHNSgJRFD5Of2aZVpugjSRGKzlaVEgLKYKW/uQPqMjMdLXB+WNmlGzwBVq2aWGbghbRA/QAbXqBFj5CtDRo06LjOBAl2Rnu3O9+93znfvceQZcl00LsebiJyanpGe+sb27evxAILi7lTa1piCwnarJmFAXeZLKkspwlWTIr6gbjFUFmBaFxMNgvtJhhSpp6bLV1VlH4uirVJJG3iCqWBcU+61Tj1WAYo+hEaBTEXBAGN1Ja8BHKcAIaiNAEBRioYBGWgQeTvhLEAEEnrgI2cQYhydln0AEfaZuUxSiDJ7ZB/zqtSi6r0npQ03TUIp0i0zBIGYIIvuA99vEZH/AVP/+sZTs1Bl7aNAtDLdOrgYuV7Me/KoVmC06/VWM9W1CDXcerRN51hxncQhzqW+dX/WwiE7HX8RbfyP8N9vCJbqC23sW7NMt0x/gRyAu9GDUo9rsdoyAfj8a2o5jeCif33VZ5YRXWYIP6sQNJOIIU5Jw+XEIXrjk/t8kluL1hKudxNcvwI7jDL6Ysku4=</latexit> x2 <latexit sha1_base64="Qqfga3YaBoUI0Yb7fQVzumPP1Sw=">AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U=</latexit> y sample max sample min ML fits a function to minimize the average errors, and as a result, ML functions go through the center (mean) of sample output values. the currently known best We would like to find X better than (hopefully) the currently known best. Now we would like to use ML for the goal. <latexit sha1_base64="TEyxI6Ffe+b+OEFRulxYJ0sUB8w=">AAAChnichVHLTsJAFD3UF+ID1I2JGyLBGBdk8IVxRXTjkoc8EkTS1gEbStu0hQSJP2DiVhauNHFh/AA/wI0/4IJPMC4xcePCS2lilIi3mc6ZM/fcOTNXMlTFshnreISR0bHxCe+kb2p6ZtYfmJvPWnrdlHlG1lXdzEuixVVF4xlbsVWeN0wu1iSV56Tqfm8/1+Cmpejaod00eLEmVjSlrMiiTVS6ebxWCoRYhDkRHARRF4TgRkIPPOIIJ9Aho44aODTYhFWIsOgrIAoGg7giWsSZhBRnn+McPtLWKYtThkhslf4VWhVcVqN1r6blqGU6RaVhkjKIMHth96zLntkDe2Wff9ZqOTV6Xpo0S30tN0r+i8X0x7+qGs02Tr9VQz3bKGPH8aqQd8NhereQ+/rGWbub3k2FWyvslr2R/xvWYU90A63xLt8leep6iB+JvNCLUYOiv9sxCLLrkeh2ZCO5GYrvua3yYgnLWKV+xBDHARLIUP0KLnGFtuAVIsKWEOunCh5Xs4AfIcS/AEWBkJQ=</latexit> y⇤ goes through here predictions will be groundless when it goes beyond this area unintended extrapolation When ML is rightly fitted, the predicted values are never larger than the known best, which is inconsistent with the goal.
  • 41. / 35 27 #3. Optimism in the face of uncertainty <latexit sha1_base64="Nr2ImZk9Gvp+/1cBWPwAK6yswp0=">AAACiXichVFNLwNRFD0dX1VfxUZi02iIVXNHBOmq0Y1lP7QkiMyMh9H5ysy0UU3/gJWdYEViIX6AH2DjD1j0J4gliY2F2+kkguBO3rzzzrvnvvPeVR1D93yiVkTq6u7p7Yv2xwYGh4ZH4qNjZc+uupooabZhu+uq4glDt0TJ131DrDuuUEzVEGtqJdveX6sJ19Nta9WvO2LLVPYsfVfXFJ+p8qZqNg6b2/EkpSiIxE8ghyCJMHJ2/A6b2IENDVWYELDgMzagwONvAzIIDnNbaDDnMtKDfYEmYqytcpbgDIXZCv/3eLURshav2zW9QK3xKQYPl5UJTNMj3dALPdAtPdH7r7UaQY22lzrPakcrnO2R44ni278qk2cf+5+qPz372MVS4FVn707AtG+hdfS1o9OXYrow3ZihK3pm/5fUonu+gVV71a7zonDxhx+VvfCLcYPk7+34CcpzKXkhRfn5ZGY5bFUUk5jCLPdjERmsIIcS1z/ACc5wLg1IsrQkpTupUiTUjONLSNkPIVKSSQ==</latexit> x <latexit sha1_base64="g1U7Tzgl+Lj3TSOL2Mnl/fuxw90=">AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVW5UVEpLooiuOzDPqAtJYljDc2LJC3W0B9w6cZF3Si4ED/AD3DjD7joJ4jLCm5ceJsGRIv1hsmcOXPPnTNzRUORLRux6+PGxicmp/zTgZnZ4FwoPL+Qt/SGKbGcpCu6WRQFiymyxnK2bCusaJhMUEWFFcT6fn+/0GSmJevakd0yWEUVapp8IkuCTVSxLKrOWbvKV8NRjKMbkWHAeyAKXqT08COU4Rh0kKABKjDQwCasgAAWfSXgAcEgrgIOcSYh2d1n0IYAaRuUxShDILZO/xqtSh6r0bpf03LVEp2i0DBJGYEYvuA99vAZH/AVP/+s5bg1+l5aNIsDLTOqoYul7Me/KpVmG06/VSM923ACO65XmbwbLtO/hTTQN8+vetlEJuas4i2+kf8b7OIT3UBrvkt3aZbpjPAjkhd6MWoQ/7sdwyC/Hue34pjejCb3vFb5YRlWYI36sQ1JOIQU5Nw+XEIHrrkgt8EluN1BKufzNIvwI7iDL6QMku0=</latexit> x1 <latexit sha1_base64="HrABz/ySZPgA1Ybj81k3XV8tH68=">AAACi3ichVHNSgJRFD5Of2aZVpugjSRGKzlaVEgLKYKW/uQPqMjMdLXB+WNmlGzwBVq2aWGbghbRA/QAbXqBFj5CtDRo06LjOBAl2Rnu3O9+93znfvceQZcl00LsebiJyanpGe+sb27evxAILi7lTa1piCwnarJmFAXeZLKkspwlWTIr6gbjFUFmBaFxMNgvtJhhSpp6bLV1VlH4uirVJJG3iCqWBcU+61Tj1WAYo+hEaBTEXBAGN1Ja8BHKcAIaiNAEBRioYBGWgQeTvhLEAEEnrgI2cQYhydln0AEfaZuUxSiDJ7ZB/zqtSi6r0npQ03TUIp0i0zBIGYIIvuA99vEZH/AVP/+sZTs1Bl7aNAtDLdOrgYuV7Me/KoVmC06/VWM9W1CDXcerRN51hxncQhzqW+dX/WwiE7HX8RbfyP8N9vCJbqC23sW7NMt0x/gRyAu9GDUo9rsdoyAfj8a2o5jeCif33VZ5YRXWYIP6sQNJOIIU5Jw+XEIXrjk/t8kluL1hKudxNcvwI7jDL6Ysku4=</latexit> x2 <latexit sha1_base64="Qqfga3YaBoUI0Yb7fQVzumPP1Sw=">AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U=</latexit> y sample max sample min This is why we need a criterion taking uncertainty into consideration instead of direct use of ML predicted values to guide exploration. It’ll be nice to gather more information around here even though the mean is not so high (the predictions have a large variance) <latexit sha1_base64="i+Yum6tkJlYfyXr5MYELEoyKzkM=">AAAChHichVFNLwNRFD3GV3222EhsGk3FQpo7rZZaSMPGUlGVIDIzHiadzkxmpk2q8QfYEgsrEgvxA/wAG3/Awk8QSxIbC3dmKmKBO3nzzjvvnvvOe1e1Dd31iJ7apPaOzq7uSE9vX//AYDQ2NLzuWjVHEyXNMixnQ1VcYeimKHm6Z4gN2xFKVTVEWa0s+vvlunBc3TLXvIYttqvKvqnv6ZriMVVs7MQSlErnc2nKx0OQzYVAzqfjcoqCSKAVy1bsDlvYhQUNNVQhYMJjbECBy98mZBBs5rbRZM5hpAf7AkfoZW2NswRnKMxW+L/Pq80Wa/Lar+kGao1PMXg4rIwjSY90Q6/0QLf0TB+/1moGNXwvDZ7VUCvsnejx6Or7v6oqzx4OvlV/evawh9nAq87e7YDxb6GF+vrh+evq3EqyOUFX9ML+L+mJ7vkGZv1Nuy6KlYs//KjshV+MG/TVhfjvYD2dknOpTHE6UVhotSqCMYxjkvsxgwKWsIwS1xc4wSnOpC5pSspI2TBVamtpRvAjpPlPiwOQTw==</latexit> y
  • 42. / 35 27 #3. Optimism in the face of uncertainty <latexit sha1_base64="Nr2ImZk9Gvp+/1cBWPwAK6yswp0=">AAACiXichVFNLwNRFD0dX1VfxUZi02iIVXNHBOmq0Y1lP7QkiMyMh9H5ysy0UU3/gJWdYEViIX6AH2DjD1j0J4gliY2F2+kkguBO3rzzzrvnvvPeVR1D93yiVkTq6u7p7Yv2xwYGh4ZH4qNjZc+uupooabZhu+uq4glDt0TJ131DrDuuUEzVEGtqJdveX6sJ19Nta9WvO2LLVPYsfVfXFJ+p8qZqNg6b2/EkpSiIxE8ghyCJMHJ2/A6b2IENDVWYELDgMzagwONvAzIIDnNbaDDnMtKDfYEmYqytcpbgDIXZCv/3eLURshav2zW9QK3xKQYPl5UJTNMj3dALPdAtPdH7r7UaQY22lzrPakcrnO2R44ni278qk2cf+5+qPz372MVS4FVn707AtG+hdfS1o9OXYrow3ZihK3pm/5fUonu+gVV71a7zonDxhx+VvfCLcYPk7+34CcpzKXkhRfn5ZGY5bFUUk5jCLPdjERmsIIcS1z/ACc5wLg1IsrQkpTupUiTUjONLSNkPIVKSSQ==</latexit> x <latexit sha1_base64="g1U7Tzgl+Lj3TSOL2Mnl/fuxw90=">AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVW5UVEpLooiuOzDPqAtJYljDc2LJC3W0B9w6cZF3Si4ED/AD3DjD7joJ4jLCm5ceJsGRIv1hsmcOXPPnTNzRUORLRux6+PGxicmp/zTgZnZ4FwoPL+Qt/SGKbGcpCu6WRQFiymyxnK2bCusaJhMUEWFFcT6fn+/0GSmJevakd0yWEUVapp8IkuCTVSxLKrOWbvKV8NRjKMbkWHAeyAKXqT08COU4Rh0kKABKjDQwCasgAAWfSXgAcEgrgIOcSYh2d1n0IYAaRuUxShDILZO/xqtSh6r0bpf03LVEp2i0DBJGYEYvuA99vAZH/AVP/+s5bg1+l5aNIsDLTOqoYul7Me/KpVmG06/VSM923ACO65XmbwbLtO/hTTQN8+vetlEJuas4i2+kf8b7OIT3UBrvkt3aZbpjPAjkhd6MWoQ/7sdwyC/Hue34pjejCb3vFb5YRlWYI36sQ1JOIQU5Nw+XEIHrrkgt8EluN1BKufzNIvwI7iDL6QMku0=</latexit> x1 <latexit sha1_base64="HrABz/ySZPgA1Ybj81k3XV8tH68=">AAACi3ichVHNSgJRFD5Of2aZVpugjSRGKzlaVEgLKYKW/uQPqMjMdLXB+WNmlGzwBVq2aWGbghbRA/QAbXqBFj5CtDRo06LjOBAl2Rnu3O9+93znfvceQZcl00LsebiJyanpGe+sb27evxAILi7lTa1piCwnarJmFAXeZLKkspwlWTIr6gbjFUFmBaFxMNgvtJhhSpp6bLV1VlH4uirVJJG3iCqWBcU+61Tj1WAYo+hEaBTEXBAGN1Ja8BHKcAIaiNAEBRioYBGWgQeTvhLEAEEnrgI2cQYhydln0AEfaZuUxSiDJ7ZB/zqtSi6r0npQ03TUIp0i0zBIGYIIvuA99vEZH/AVP/+sZTs1Bl7aNAtDLdOrgYuV7Me/KoVmC06/VWM9W1CDXcerRN51hxncQhzqW+dX/WwiE7HX8RbfyP8N9vCJbqC23sW7NMt0x/gRyAu9GDUo9rsdoyAfj8a2o5jeCif33VZ5YRXWYIP6sQNJOIIU5Jw+XEIXrjk/t8kluL1hKudxNcvwI7jDL6Ysku4=</latexit> x2 <latexit sha1_base64="Qqfga3YaBoUI0Yb7fQVzumPP1Sw=">AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U=</latexit> y sample max sample min This is why we need a criterion taking uncertainty into consideration instead of direct use of ML predicted values to guide exploration. It’ll be nice to gather more information around here even though the mean is not so high (the predictions have a large variance) <latexit sha1_base64="i+Yum6tkJlYfyXr5MYELEoyKzkM=">AAAChHichVFNLwNRFD3GV3222EhsGk3FQpo7rZZaSMPGUlGVIDIzHiadzkxmpk2q8QfYEgsrEgvxA/wAG3/Awk8QSxIbC3dmKmKBO3nzzjvvnvvOe1e1Dd31iJ7apPaOzq7uSE9vX//AYDQ2NLzuWjVHEyXNMixnQ1VcYeimKHm6Z4gN2xFKVTVEWa0s+vvlunBc3TLXvIYttqvKvqnv6ZriMVVs7MQSlErnc2nKx0OQzYVAzqfjcoqCSKAVy1bsDlvYhQUNNVQhYMJjbECBy98mZBBs5rbRZM5hpAf7AkfoZW2NswRnKMxW+L/Pq80Wa/Lar+kGao1PMXg4rIwjSY90Q6/0QLf0TB+/1moGNXwvDZ7VUCvsnejx6Or7v6oqzx4OvlV/evawh9nAq87e7YDxb6GF+vrh+evq3EqyOUFX9ML+L+mJ7vkGZv1Nuy6KlYs//KjshV+MG/TVhfjvYD2dknOpTHE6UVhotSqCMYxjkvsxgwKWsIwS1xc4wSnOpC5pSspI2TBVamtpRvAjpPlPiwOQTw==</latexit> y
  • 43. / 35 27 #3. Optimism in the face of uncertainty <latexit sha1_base64="Nr2ImZk9Gvp+/1cBWPwAK6yswp0=">AAACiXichVFNLwNRFD0dX1VfxUZi02iIVXNHBOmq0Y1lP7QkiMyMh9H5ysy0UU3/gJWdYEViIX6AH2DjD1j0J4gliY2F2+kkguBO3rzzzrvnvvPeVR1D93yiVkTq6u7p7Yv2xwYGh4ZH4qNjZc+uupooabZhu+uq4glDt0TJ131DrDuuUEzVEGtqJdveX6sJ19Nta9WvO2LLVPYsfVfXFJ+p8qZqNg6b2/EkpSiIxE8ghyCJMHJ2/A6b2IENDVWYELDgMzagwONvAzIIDnNbaDDnMtKDfYEmYqytcpbgDIXZCv/3eLURshav2zW9QK3xKQYPl5UJTNMj3dALPdAtPdH7r7UaQY22lzrPakcrnO2R44ni278qk2cf+5+qPz372MVS4FVn707AtG+hdfS1o9OXYrow3ZihK3pm/5fUonu+gVV71a7zonDxhx+VvfCLcYPk7+34CcpzKXkhRfn5ZGY5bFUUk5jCLPdjERmsIIcS1z/ACc5wLg1IsrQkpTupUiTUjONLSNkPIVKSSQ==</latexit> x <latexit sha1_base64="g1U7Tzgl+Lj3TSOL2Mnl/fuxw90=">AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVW5UVEpLooiuOzDPqAtJYljDc2LJC3W0B9w6cZF3Si4ED/AD3DjD7joJ4jLCm5ceJsGRIv1hsmcOXPPnTNzRUORLRux6+PGxicmp/zTgZnZ4FwoPL+Qt/SGKbGcpCu6WRQFiymyxnK2bCusaJhMUEWFFcT6fn+/0GSmJevakd0yWEUVapp8IkuCTVSxLKrOWbvKV8NRjKMbkWHAeyAKXqT08COU4Rh0kKABKjDQwCasgAAWfSXgAcEgrgIOcSYh2d1n0IYAaRuUxShDILZO/xqtSh6r0bpf03LVEp2i0DBJGYEYvuA99vAZH/AVP/+s5bg1+l5aNIsDLTOqoYul7Me/KpVmG06/VSM923ACO65XmbwbLtO/hTTQN8+vetlEJuas4i2+kf8b7OIT3UBrvkt3aZbpjPAjkhd6MWoQ/7sdwyC/Hue34pjejCb3vFb5YRlWYI36sQ1JOIQU5Nw+XEIHrrkgt8EluN1BKufzNIvwI7iDL6QMku0=</latexit> x1 <latexit sha1_base64="HrABz/ySZPgA1Ybj81k3XV8tH68=">AAACi3ichVHNSgJRFD5Of2aZVpugjSRGKzlaVEgLKYKW/uQPqMjMdLXB+WNmlGzwBVq2aWGbghbRA/QAbXqBFj5CtDRo06LjOBAl2Rnu3O9+93znfvceQZcl00LsebiJyanpGe+sb27evxAILi7lTa1piCwnarJmFAXeZLKkspwlWTIr6gbjFUFmBaFxMNgvtJhhSpp6bLV1VlH4uirVJJG3iCqWBcU+61Tj1WAYo+hEaBTEXBAGN1Ja8BHKcAIaiNAEBRioYBGWgQeTvhLEAEEnrgI2cQYhydln0AEfaZuUxSiDJ7ZB/zqtSi6r0npQ03TUIp0i0zBIGYIIvuA99vEZH/AVP/+sZTs1Bl7aNAtDLdOrgYuV7Me/KoVmC06/VWM9W1CDXcerRN51hxncQhzqW+dX/WwiE7HX8RbfyP8N9vCJbqC23sW7NMt0x/gRyAu9GDUo9rsdoyAfj8a2o5jeCif33VZ5YRXWYIP6sQNJOIIU5Jw+XEIXrjk/t8kluL1hKudxNcvwI7jDL6Ysku4=</latexit> x2 <latexit sha1_base64="Qqfga3YaBoUI0Yb7fQVzumPP1Sw=">AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U=</latexit> y sample max sample min This is why we need a criterion taking uncertainty into consideration instead of direct use of ML predicted values to guide exploration. It’ll be nice to gather more information around here even though the mean is not so high (the predictions have a large variance) <latexit sha1_base64="i+Yum6tkJlYfyXr5MYELEoyKzkM=">AAAChHichVFNLwNRFD3GV3222EhsGk3FQpo7rZZaSMPGUlGVIDIzHiadzkxmpk2q8QfYEgsrEgvxA/wAG3/Awk8QSxIbC3dmKmKBO3nzzjvvnvvOe1e1Dd31iJ7apPaOzq7uSE9vX//AYDQ2NLzuWjVHEyXNMixnQ1VcYeimKHm6Z4gN2xFKVTVEWa0s+vvlunBc3TLXvIYttqvKvqnv6ZriMVVs7MQSlErnc2nKx0OQzYVAzqfjcoqCSKAVy1bsDlvYhQUNNVQhYMJjbECBy98mZBBs5rbRZM5hpAf7AkfoZW2NswRnKMxW+L/Pq80Wa/Lar+kGao1PMXg4rIwjSY90Q6/0QLf0TB+/1moGNXwvDZ7VUCvsnejx6Or7v6oqzx4OvlV/evawh9nAq87e7YDxb6GF+vrh+evq3EqyOUFX9ML+L+mJ7vkGZv1Nuy6KlYs//KjshV+MG/TVhfjvYD2dknOpTHE6UVhotSqCMYxjkvsxgwKWsIwS1xc4wSnOpC5pSspI2TBVamtpRvAjpPlPiwOQTw==</latexit> y
  • 44. / 35 27 #3. Optimism in the face of uncertainty <latexit sha1_base64="Nr2ImZk9Gvp+/1cBWPwAK6yswp0=">AAACiXichVFNLwNRFD0dX1VfxUZi02iIVXNHBOmq0Y1lP7QkiMyMh9H5ysy0UU3/gJWdYEViIX6AH2DjD1j0J4gliY2F2+kkguBO3rzzzrvnvvPeVR1D93yiVkTq6u7p7Yv2xwYGh4ZH4qNjZc+uupooabZhu+uq4glDt0TJ131DrDuuUEzVEGtqJdveX6sJ19Nta9WvO2LLVPYsfVfXFJ+p8qZqNg6b2/EkpSiIxE8ghyCJMHJ2/A6b2IENDVWYELDgMzagwONvAzIIDnNbaDDnMtKDfYEmYqytcpbgDIXZCv/3eLURshav2zW9QK3xKQYPl5UJTNMj3dALPdAtPdH7r7UaQY22lzrPakcrnO2R44ni278qk2cf+5+qPz372MVS4FVn707AtG+hdfS1o9OXYrow3ZihK3pm/5fUonu+gVV71a7zonDxhx+VvfCLcYPk7+34CcpzKXkhRfn5ZGY5bFUUk5jCLPdjERmsIIcS1z/ACc5wLg1IsrQkpTupUiTUjONLSNkPIVKSSQ==</latexit> x <latexit sha1_base64="g1U7Tzgl+Lj3TSOL2Mnl/fuxw90=">AAACi3ichVHLSsNAFL2Nr1qtrboR3BRLxVW5UVEpLooiuOzDPqAtJYljDc2LJC3W0B9w6cZF3Si4ED/AD3DjD7joJ4jLCm5ceJsGRIv1hsmcOXPPnTNzRUORLRux6+PGxicmp/zTgZnZ4FwoPL+Qt/SGKbGcpCu6WRQFiymyxnK2bCusaJhMUEWFFcT6fn+/0GSmJevakd0yWEUVapp8IkuCTVSxLKrOWbvKV8NRjKMbkWHAeyAKXqT08COU4Rh0kKABKjDQwCasgAAWfSXgAcEgrgIOcSYh2d1n0IYAaRuUxShDILZO/xqtSh6r0bpf03LVEp2i0DBJGYEYvuA99vAZH/AVP/+s5bg1+l5aNIsDLTOqoYul7Me/KpVmG06/VSM923ACO65XmbwbLtO/hTTQN8+vetlEJuas4i2+kf8b7OIT3UBrvkt3aZbpjPAjkhd6MWoQ/7sdwyC/Hue34pjejCb3vFb5YRlWYI36sQ1JOIQU5Nw+XEIHrrkgt8EluN1BKufzNIvwI7iDL6QMku0=</latexit> x1 <latexit sha1_base64="HrABz/ySZPgA1Ybj81k3XV8tH68=">AAACi3ichVHNSgJRFD5Of2aZVpugjSRGKzlaVEgLKYKW/uQPqMjMdLXB+WNmlGzwBVq2aWGbghbRA/QAbXqBFj5CtDRo06LjOBAl2Rnu3O9+93znfvceQZcl00LsebiJyanpGe+sb27evxAILi7lTa1piCwnarJmFAXeZLKkspwlWTIr6gbjFUFmBaFxMNgvtJhhSpp6bLV1VlH4uirVJJG3iCqWBcU+61Tj1WAYo+hEaBTEXBAGN1Ja8BHKcAIaiNAEBRioYBGWgQeTvhLEAEEnrgI2cQYhydln0AEfaZuUxSiDJ7ZB/zqtSi6r0npQ03TUIp0i0zBIGYIIvuA99vEZH/AVP/+sZTs1Bl7aNAtDLdOrgYuV7Me/KoVmC06/VWM9W1CDXcerRN51hxncQhzqW+dX/WwiE7HX8RbfyP8N9vCJbqC23sW7NMt0x/gRyAu9GDUo9rsdoyAfj8a2o5jeCif33VZ5YRXWYIP6sQNJOIIU5Jw+XEIXrjk/t8kluL1hKudxNcvwI7jDL6Ysku4=</latexit> x2 <latexit sha1_base64="Qqfga3YaBoUI0Yb7fQVzumPP1Sw=">AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U=</latexit> y sample max sample min This is why we need a criterion taking uncertainty into consideration instead of direct use of ML predicted values to guide exploration. <latexit sha1_base64="Qqfga3YaBoUI0Yb7fQVzumPP1Sw=">AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U=</latexit> y <latexit sha1_base64="Qqfga3YaBoUI0Yb7fQVzumPP1Sw=">AAAChHichVHLSsNAFD1GrbW+qm4EN8WiuJBy6xsXUnTjsg9rC1VKEqc1mCYhSQu1+AO6VVy4UnAhfoAf4MYfcNFPEJcKblx4mwZEi3rDZM6cuefOmbmKpWuOS9Tskrp7egN9wf7QwODQ8Eh4dGzHMau2KrKqqZt2XpEdoWuGyLqaq4u8ZQu5ougipxxutvZzNWE7mmlsu3VL7FXksqGVNFV2mUrVi+EoxciLSCeI+yAKP5Jm+B672IcJFVVUIGDAZaxDhsNfAXEQLOb20GDOZqR5+wLHCLG2ylmCM2RmD/lf5lXBZw1et2o6nlrlU3QeNisjmKYnuqVXeqQ7eqaPX2s1vBotL3WelbZWWMWRk4nM+7+qCs8uDr5Uf3p2UcKq51Vj75bHtG6htvW1o4vXzFp6ujFD1/TC/q+oSQ98A6P2pt6kRPryDz8Ke+EX4wbFf7ajE+zMx+LLMUotRhMbfquCmMQUZrkfK0hgC0lkub7AKc5wLgWkOWlBWmqnSl2+ZhzfQlr/BNcbj/U=</latexit> y <latexit sha1_base64="uHwbcp1I7cfAojOCGzVZ2+fOJ7M=">AAACh3ichVE7TsNAEH2Yb/glQINEExGBoAnjACGh4tNQQiCAFKLINhuwcGzLdiKFiAtQ0AaJCiQKxAE4AA0XoMgRECVINBSMnSBEEZjV7s6+mTf7dke1Dd31iBodUmdXd09vX6h/YHBoOBwZGd11rbKjiaxmGZazryquMHRTZD3dM8S+7QilpBpiTz1Z9+N7FeG4umXueFVb5EvKkakXdU3xfMieqc4WIjGKp1NJWkhEKU6USlCSnUWS03I6KjPiWwwt27QiDzjAISxoKKMEARMe+wYUuDxykEGwGcujxpjDnh7EBc7Qz9wyZwnOUBg94fWIT7kWavLZr+kGbI1vMXg6zIxiip7pjt7oie7phT7b1qoFNXwtVd7VJlfYhfD5+PbHv6wS7x6Of1h/avZQRCrQqrN2O0D8V2hNfuW0/ra9nJmqTdMNvbL+a2rQI7/ArLxrt1sic/WHHpW18I9xg767EG3v7CbicjI+v7UQW1lrtaoPE5jEDPdjCSvYwCayXP8YF6jjUgpJc1JSSjVTpY4WZwy/TFr9AnUXkR0=</latexit> p(y) <latexit sha1_base64="xAYAr5eatCRkt85fJM86k8bLQd0=">AAAChnichVE7TsNAEH2YXwi/AA0STUQEQhTWOCQhoYqgoSSEABI/2WYTLBzbsp1IIeICSLRQUIFEgTgAB6DhAhQcAVGCREPB2AlCFMCsdnf2zbzZtzuaYxqeT/TUIXV2dff0Rvqi/QODQ8OxkdF1z665uijptmm7m5rqCdOwRMk3fFNsOq5Qq5opNrTDpSC+UReuZ9jWmt9wxE5VrVhG2dBVn6FiY3d2L5YgOZfNUCoZJ5kom6QMO2lSckourjASWAJtW7Fjd9jGPmzoqKEKAQs++yZUeDy2oIDgMLaDJmMue0YYFzhGlLk1zhKcoTJ6yGuFT1tt1OJzUNML2TrfYvJ0mRnHFD3SDb3SA93SM338WqsZ1gi0NHjXWlzh7A2fjBff/2VVefdx8M36U7OPMrKhVoO1OyESvEJv8etH56/FhdWp5jRd0Qvrv6QnuucXWPU3/bogVi/+0KOxFv4xbtBXF+K/O+tJWcnIc4VUIr/YblUEE5jEDPdjHnksYwUlrl/BKc5wLkUkWUpL861UqaPNGcMPk/Kf1ZuQ2g==</latexit> y⇤ <latexit sha1_base64="Cx8vtQI6wD6rFemnJtzP0VxR74M=">AAACp3ichVE9T9tQFD0Y2vJRSqALUheLiCphiK5TGhIkKlSWboSPhEh8RLbzQp9wbMt+ieRG7FX/QIdOrdQBIXWFnYU/wMBPqDqCxMLQaydVxQBc6/mdd9499533ruU7MlRElwPa4NCTp8+GR0bHno+/mEhNTlVDrx3YomJ7jhfULDMUjnRFRUnliJofCLNlOWLLOliJ97c6Igil526qyBe7LXPflU1pm4qpemqmnIneRXtz2aUd6ap6l+HhHsOminQ/E2X1RlRPpSlXKhZoPq9TjqiYpwKDt2SUjJJuMBNHGv0oe6kT7KABDzbaaEHAhWLswETI3zYMEHzmdtFlLmAkk32BQ4yyts1ZgjNMZg/4v8+r7T7r8jquGSZqm09xeASs1DFLF3REV3ROx/Sbbu+t1U1qxF4inq2eVvj1iS/TGzePqlo8K3z8r3rQs0ITxcSrZO9+wsS3sHv6zqevVxuL67Pd1/SD/rD/73RJZ3wDt3Nt/1wT698e8GOxF34xbtC/Luj3g2o+ZxRyb9bm08vv+60axivMIMP9WMAyPqCMCtf/jF84wamW1Va1qlbrpWoDfc1L3AnN/AuqB50Q</latexit> P(y > y⇤ ) = Z 1 y⇤ p(y)dy <latexit sha1_base64="svoh2wRjAJ9IgkLWLNY4QZ6NPX0=">AAACwnichVHLTttAFL24vMsjlA0Sm1EjKlpF0XWANEECIWilLnk0gBSHyHYmMOBX7UkkY/ID/AALVi3qouoH9AO6abetWPAJqEsqsWHRayeoYgFcazxnztxz58xcw7NEIBEvupQn3T29ff0Dg0+HhkdGU2PPNgO34Zu8ZLqW628besAt4fCSFNLi257Pdduw+JZxsBLvbzW5HwjXeS9Dj1dsfdcRdWHqkqhqakGzdblnGNHbVlnLhEzLHGkZFi6GO68qC5pwZDUi2NohWJchowSz5krmTYcvWS2sptKYLRbyOJtjmEUs5DBPYA7VolpkKjFxpKETq27qG2hQAxdMaIANHByQhC3QIaCvDCogeMRVICLOJySSfQ4tGCRtg7I4ZejEHtB/l1blDuvQOq4ZJGqTTrFo+KRkMIXn+AWv8Ad+xUu8ubdWlNSIvYQ0G20t96qjxxMb14+qbJol7P1XPehZQh0KiVdB3r2EiW9htvXNw5Orjfn1qegFfsI/5P8jXuB3uoHT/Gt+XuPrpw/4McgLvRg16LYL7H6wmcuq+ezM2mx6abnTqn6YhOcwTf14DUvwDlahRPXP4Cf8gt/KG2Vf+aAE7VSlq6MZhzuhHP0DArmnyA==</latexit> E[ y | y > y⇤ ] = Z 1 y⇤ y · p(y)dy Probability of improvement (PI) Expected Improvement (EI) Upper Confidence Bound (UCB) Optimization objectives under uncertainty (aka acquisition function) It’ll be nice to gather more information around here even though the mean is not so high (the predictions have a large variance) <latexit sha1_base64="i+Yum6tkJlYfyXr5MYELEoyKzkM=">AAAChHichVFNLwNRFD3GV3222EhsGk3FQpo7rZZaSMPGUlGVIDIzHiadzkxmpk2q8QfYEgsrEgvxA/wAG3/Awk8QSxIbC3dmKmKBO3nzzjvvnvvOe1e1Dd31iJ7apPaOzq7uSE9vX//AYDQ2NLzuWjVHEyXNMixnQ1VcYeimKHm6Z4gN2xFKVTVEWa0s+vvlunBc3TLXvIYttqvKvqnv6ZriMVVs7MQSlErnc2nKx0OQzYVAzqfjcoqCSKAVy1bsDlvYhQUNNVQhYMJjbECBy98mZBBs5rbRZM5hpAf7AkfoZW2NswRnKMxW+L/Pq80Wa/Lar+kGao1PMXg4rIwjSY90Q6/0QLf0TB+/1moGNXwvDZ7VUCvsnejx6Or7v6oqzx4OvlV/evawh9nAq87e7YDxb6GF+vrh+evq3EqyOUFX9ML+L+mJ7vkGZv1Nuy6KlYs//KjshV+MG/TVhfjvYD2dknOpTHE6UVhotSqCMYxjkvsxgwKWsIwS1xc4wSnOpC5pSspI2TBVamtpRvAjpPlPiwOQTw==</latexit> y
  • 45. / 35 28 Identifying local peaks of EI of the ML model Expected improvement Local peaks of EI would be nice candidates having locally maximal EIs. But they are not at given sample points, and the following local search is designed. multistart from given sample points adding small random perturbation, and update position when EI increases stop when local perturbation doesn’t change the EI value any more. run clustering over final candidates, and suggest K candidates having locally maximal EI values. Every time SWED is changed, the corresponding composition is estimated by our algorithm, and then recalculate valid SWED from it. Partly because tree ensemble regression functions are locally bumpy, this clustering is effective <latexit sha1_base64="Nr2ImZk9Gvp+/1cBWPwAK6yswp0=">AAACiXichVFNLwNRFD0dX1VfxUZi02iIVXNHBOmq0Y1lP7QkiMyMh9H5ysy0UU3/gJWdYEViIX6AH2DjD1j0J4gliY2F2+kkguBO3rzzzrvnvvPeVR1D93yiVkTq6u7p7Yv2xwYGh4ZH4qNjZc+uupooabZhu+uq4glDt0TJ131DrDuuUEzVEGtqJdveX6sJ19Nta9WvO2LLVPYsfVfXFJ+p8qZqNg6b2/EkpSiIxE8ghyCJMHJ2/A6b2IENDVWYELDgMzagwONvAzIIDnNbaDDnMtKDfYEmYqytcpbgDIXZCv/3eLURshav2zW9QK3xKQYPl5UJTNMj3dALPdAtPdH7r7UaQY22lzrPakcrnO2R44ni278qk2cf+5+qPz372MVS4FVn707AtG+hdfS1o9OXYrow3ZihK3pm/5fUonu+gVV71a7zonDxhx+VvfCLcYPk7+34CcpzKXkhRfn5ZGY5bFUUk5jCLPdjERmsIIcS1z/ACc5wLg1IsrQkpTupUiTUjONLSNkPIVKSSQ==</latexit> x
  • 46. / 35 29 Explorative Search with SWED SWED represent every element with respect to a given set of elemental descriptors. So we can focus only on the selected elemental properties to explore catalysts. 74 elements Compositional (onehot-like) Catalyst: Mg 83.46, Li 16.53 SWED-8 83.46 × 16.53 × 0.00 0.00 … SWED-3 83.46 × 16.53 × 0.00 0.00 … SWED-3 features: electronegativity, density, enthalpy of fusion SWED-8 features: SWED-3 features + atomic weight, atomic radius, m.p., b.p., ionization enegy Each user’s intention and focus for catalyst exploration can be design through the elemental descriptor choice. can control specificity & focus
  • 47. / 35 30 Our updated dataset The original dataset: 1866 catalyst records from 421 reports (1982 - 2009) Mine, S.; Takao, M.; Yamaguchi, T.; Toyao, T.*; Maeno, Z.; Hakim Siddiki, S. M. A.; Takakusagi, S.; Shimizu, K.*; Takigawa, I.* ChemCatChem 2021. https://doi.org/10.1002/cctc.202100495. 4559 catalyst records from 542 reports The update dataset: 4559 catalyst records from 542 reports (2010 - 2019)
  • 48. / 35 31 ML Predictions of C2 yields 1. Conventional: composition + condition 2. Proposed(Exploitative): composition + SWED + condition 3. Proposed(Explorative): SWED + condition w/ SWED→composition estimator RFR (Random Forest); ETR (ExtraTrees); XGB (XGBoost) SWED-3 features: electronegativity, density, enthalpy of fusion SWED-8 features: SWED-3 features + atomic weight, atomic radius, m.p., b.p., ionization enegy
  • 49. / 35 32 Top 20 highest-EI candidates based on SWED-3 As appeared not included in the data Fs, Se, Os, Bm infrequent elements also observed though these are toxic and impractical but explorative suggestions were able be made
  • 50. / 35 33 Post analysis for models and suggested catalysts 1st: (1) Mn: 72.3 (2) Li: 27.7 2nd: (1) Sr:50.0 (2) Ce:45.0 (3) Yb:5.0 With SHAP, feature importance/permutation importance, dependency plot, etc.
  • 51. / 35 34 Today’s talk Gas-phase reactions on sold-phase catalyst surface (Heterogeneous catalysis) Industrial Synthesis (e.g. Haber-Bosch), Automobile Exhaust Gas Purification, Methane Conversion, etc. Reactants (Gas) Catalysts (Solid) Nano-particle surface High Temperature, High Pressure Adsorption Diffusion Dissociation Recombination Desorption God made the bulk; the surface was invented by the devil Devilishly complex too-many-factor process!! —— Wolfgang Pauli Our struggles for better ML practices with underspecified, sparse, biased observational data (i.e. a collection of experimental facts from literature)