SlideShare a Scribd company logo
A proof of an equation containing improper gamma distribution
Tomonari MASADA @ Nagasaki University
January 21, 2013
We’d like to prove the following equation:
exp −
∞
0
a(1 − e−tz
)z−1
e−z
dz = (1 + t)−a
. (1)
This equation appears on page 92 of Poisson Processes by J. F. C. Kingman, where we replace µ(A) by a.
By taking the logarithm of both sides, we obtain
∞
0
(1 − e−tz
)z−1
e−z
dz = ln(1 + t) (2)
and would like to prove this.
e−tz
can be expanded as follows:
e−tz
= 1 −
t
1!
z +
t2
2!
z2
−
t3
3!
z3
+
t4
4!
z4
− · · · . (3)
Therefore, we can rewrite the integral
∞
0
(1 − e−tz
)z−1
e−z
dz as follows:
∞
0
(1 − e−tz
)z−1
e−z
dz
=
∞
0
t
1!
z −
t2
2!
z2
+
t3
3!
z3
−
t4
4!
z4
+ · · · z−1
e−z
dz
=
t
1!
∞
0
z1−1
e−z
dz −
t2
2!
∞
0
z2−1
e−z
dz +
t3
3!
∞
0
z3−1
e−z
dz −
t4
4!
∞
0
z4−1
e−z
dz + · · ·
=
t
1!
Γ(1) −
t2
2!
Γ(2) +
t3
3!
Γ(3) −
t4
4!
Γ(4) + · · ·
=
t
1
−
t2
2
+
t3
3
−
t4
4
+ · · · , (4)
where we use the gamma integral formula, i.e.,
∞
0
zb−1
e−az
dz = Γ(b)
ab .
On the other hand, ln(1 + t) can be expanded as follows:
ln(1 + t) = 0 +
1
1 + t 0
·
t
1!
−
1!
(1 + t)2
0
·
t2
2!
+
2!
(1 + t)3
0
·
t3
3!
−
3!
(1 + t)4
0
·
t4
4!
+ · · ·
=
t
1
−
t2
2
+
t3
3
−
t4
4
+ · · · . (5)
Therefore,
∞
0
(1 − e−tz
)z−1
e−z
dz = ln(1 + t) . (6)
1

More Related Content

PDF
Mit2 092 f09_lec06
PDF
Mit2 092 f09_lec07
PDF
Mit2 092 f09_lec05
PPTX
The Golden Ladder
PDF
PDF
Systems of congruence
Mit2 092 f09_lec06
Mit2 092 f09_lec07
Mit2 092 f09_lec05
The Golden Ladder
Systems of congruence

What's hot (16)

PDF
H03702061062
PDF
Mit2 092 f09_lec15
DOCX
Question 1c Math 1
PPTX
Geoobs leassons proofs for smart board with answers
PDF
PPTX
Inverse variation word problem
PDF
Bisection theorem proof and convergence analysis
PDF
Trig substitution
PDF
Hw3sol
PDF
Sw2gr1 set a
PDF
Geodesicsokmope 1
PDF
Mit2 092 f09_lec16
PPTX
Ley de composicion_interna
DOCX
Geodesic bh sqrd
PDF
Topology and Electrostatics
PDF
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold
H03702061062
Mit2 092 f09_lec15
Question 1c Math 1
Geoobs leassons proofs for smart board with answers
Inverse variation word problem
Bisection theorem proof and convergence analysis
Trig substitution
Hw3sol
Sw2gr1 set a
Geodesicsokmope 1
Mit2 092 f09_lec16
Ley de composicion_interna
Geodesic bh sqrd
Topology and Electrostatics
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold
Ad

Viewers also liked (6)

PPT
Operations research
PPTX
Gamma, Expoential, Poisson And Chi Squared Distributions
PPTX
Gamma, Expoential, Poisson And Chi Squared Distributions
PPT
Supply chain management
PDF
Basics of Supply Chain Managment
PPT
Supply Chain Management
Operations research
Gamma, Expoential, Poisson And Chi Squared Distributions
Gamma, Expoential, Poisson And Chi Squared Distributions
Supply chain management
Basics of Supply Chain Managment
Supply Chain Management
Ad

More from Tomonari Masada (20)

PDF
Learning Latent Space Energy Based Prior Modelの解説
PDF
Denoising Diffusion Probabilistic Modelsの重要な式の解説
PDF
Context-dependent Token-wise Variational Autoencoder for Topic Modeling
PDF
A note on the density of Gumbel-softmax
PPTX
トピックモデルの基礎と応用
PDF
Expectation propagation for latent Dirichlet allocation
PDF
Mini-batch Variational Inference for Time-Aware Topic Modeling
PDF
A note on variational inference for the univariate Gaussian
PDF
Document Modeling with Implicit Approximate Posterior Distributions
PDF
LDA-Based Scoring of Sequences Generated by RNN for Automatic Tanka Composition
PDF
A Note on ZINB-VAE
PDF
A Note on Latent LSTM Allocation
PDF
A Note on TopicRNN
PDF
Topic modeling with Poisson factorization (2)
PDF
Poisson factorization
PPTX
A Simple Stochastic Gradient Variational Bayes for the Correlated Topic Model
PPTX
A Simple Stochastic Gradient Variational Bayes for Latent Dirichlet Allocation
TXT
Word count in Husserliana Volumes 1 to 28
PDF
A Simple Stochastic Gradient Variational Bayes for Latent Dirichlet Allocation
PDF
FDSE2015
Learning Latent Space Energy Based Prior Modelの解説
Denoising Diffusion Probabilistic Modelsの重要な式の解説
Context-dependent Token-wise Variational Autoencoder for Topic Modeling
A note on the density of Gumbel-softmax
トピックモデルの基礎と応用
Expectation propagation for latent Dirichlet allocation
Mini-batch Variational Inference for Time-Aware Topic Modeling
A note on variational inference for the univariate Gaussian
Document Modeling with Implicit Approximate Posterior Distributions
LDA-Based Scoring of Sequences Generated by RNN for Automatic Tanka Composition
A Note on ZINB-VAE
A Note on Latent LSTM Allocation
A Note on TopicRNN
Topic modeling with Poisson factorization (2)
Poisson factorization
A Simple Stochastic Gradient Variational Bayes for the Correlated Topic Model
A Simple Stochastic Gradient Variational Bayes for Latent Dirichlet Allocation
Word count in Husserliana Volumes 1 to 28
A Simple Stochastic Gradient Variational Bayes for Latent Dirichlet Allocation
FDSE2015

Recently uploaded (20)

PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
A novel scalable deep ensemble learning framework for big data classification...
PPTX
1. Introduction to Computer Programming.pptx
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
A comparative study of natural language inference in Swahili using monolingua...
PDF
Web App vs Mobile App What Should You Build First.pdf
PDF
August Patch Tuesday
PDF
Approach and Philosophy of On baking technology
PDF
project resource management chapter-09.pdf
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PDF
Enhancing emotion recognition model for a student engagement use case through...
PDF
Encapsulation theory and applications.pdf
PDF
1 - Historical Antecedents, Social Consideration.pdf
PDF
Zenith AI: Advanced Artificial Intelligence
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
NewMind AI Weekly Chronicles - August'25-Week II
Unlocking AI with Model Context Protocol (MCP)
A novel scalable deep ensemble learning framework for big data classification...
1. Introduction to Computer Programming.pptx
Encapsulation_ Review paper, used for researhc scholars
A comparative study of natural language inference in Swahili using monolingua...
Web App vs Mobile App What Should You Build First.pdf
August Patch Tuesday
Approach and Philosophy of On baking technology
project resource management chapter-09.pdf
Digital-Transformation-Roadmap-for-Companies.pptx
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
gpt5_lecture_notes_comprehensive_20250812015547.pdf
Enhancing emotion recognition model for a student engagement use case through...
Encapsulation theory and applications.pdf
1 - Historical Antecedents, Social Consideration.pdf
Zenith AI: Advanced Artificial Intelligence
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
NewMind AI Weekly Chronicles - August'25-Week II

A proof of an equation containing improper gamma distribution

  • 1. A proof of an equation containing improper gamma distribution Tomonari MASADA @ Nagasaki University January 21, 2013 We’d like to prove the following equation: exp − ∞ 0 a(1 − e−tz )z−1 e−z dz = (1 + t)−a . (1) This equation appears on page 92 of Poisson Processes by J. F. C. Kingman, where we replace µ(A) by a. By taking the logarithm of both sides, we obtain ∞ 0 (1 − e−tz )z−1 e−z dz = ln(1 + t) (2) and would like to prove this. e−tz can be expanded as follows: e−tz = 1 − t 1! z + t2 2! z2 − t3 3! z3 + t4 4! z4 − · · · . (3) Therefore, we can rewrite the integral ∞ 0 (1 − e−tz )z−1 e−z dz as follows: ∞ 0 (1 − e−tz )z−1 e−z dz = ∞ 0 t 1! z − t2 2! z2 + t3 3! z3 − t4 4! z4 + · · · z−1 e−z dz = t 1! ∞ 0 z1−1 e−z dz − t2 2! ∞ 0 z2−1 e−z dz + t3 3! ∞ 0 z3−1 e−z dz − t4 4! ∞ 0 z4−1 e−z dz + · · · = t 1! Γ(1) − t2 2! Γ(2) + t3 3! Γ(3) − t4 4! Γ(4) + · · · = t 1 − t2 2 + t3 3 − t4 4 + · · · , (4) where we use the gamma integral formula, i.e., ∞ 0 zb−1 e−az dz = Γ(b) ab . On the other hand, ln(1 + t) can be expanded as follows: ln(1 + t) = 0 + 1 1 + t 0 · t 1! − 1! (1 + t)2 0 · t2 2! + 2! (1 + t)3 0 · t3 3! − 3! (1 + t)4 0 · t4 4! + · · · = t 1 − t2 2 + t3 3 − t4 4 + · · · . (5) Therefore, ∞ 0 (1 − e−tz )z−1 e−z dz = ln(1 + t) . (6) 1