SlideShare a Scribd company logo
A	
  Scalable	
  and	
  Distributed	
  	
  
Electrical	
  Power	
  Monitoring	
  System	
  
	
  U:lizing	
  Cloud	
  Compu:ng	
  
Ryousei	
  Takano,	
  Hidemoto	
  Nakada,	
  
Toshiyuki	
  Shimizu,	
  Tomohiro	
  Kudoh	
  
	
  
Informa(on	
  Technology	
  Research	
  Ins(tute,	
  	
  
Na(onal	
  Ins(tute	
  of	
  Advanced	
  Industrial	
  Science	
  and	
  Technology	
  (AIST),	
  Japan	
  
CUTE2013@Da	
  Nang,	
  Vietnam,	
  Dec.	
  19	
  2013	
  
Outline	
  
•  Background	
  
•  System	
  overview	
  
•  Design	
  of	
  hardware	
  and	
  soKware	
  
•  Deployment	
  at	
  AIST	
  campus	
  
•  Summary	
  

2	
  
Background	
  
•  The	
  power	
  consumpPon	
  of	
  data	
  
centers	
  and	
  networks	
  becomes	
  
an	
  issue	
  of	
  vital	
  importance	
  to	
  	
  
IT	
  industries.	
  
Google	
  data	
  center	
  in	
  the	
  Dalles,	
  Oregon	
  	
  
	
  
•  In	
  Japan,	
  there	
  is	
  an	
  urgent	
  
need	
  for	
  green	
  IT	
  technologies	
  
aKer	
  March	
  11th,	
  2011.	
  

Fukushima	
  Daiichi	
  Nuclear	
  Power	
  Plant	
  
3	
  
Mo:va:on	
  
•  VisualizaPon	
  is	
  key	
  to	
  plan	
  power	
  savings.	
  
•  The	
  total	
  system	
  cost	
  and	
  scalability	
  are	
  problem.	
  
–  Our	
  server	
  room	
  has	
  over	
  100	
  racks.	
  
–  Our	
  campus	
  are	
  geographically	
  distributed	
  in	
  Japan.	
  

•  The	
  system	
  has	
  to	
  be	
  low-­‐cost,	
  scalable,	
  and	
  also	
  ease	
  
to	
  develop	
  applicaPons.	
  
➡ Cheap	
  power	
  monitoring	
  hardware	
  
➡ Power	
  monitoring	
  soKware	
  uPlizing	
  cloud	
  compuPng	
  
➡ A	
  simple	
  REST	
  API	
  
4	
  
System	
  overview	
  
Data collecting
unit Data collecting
unit

2 Data collecting unit	

…	
…	

Update power usage
using REST w/ JSON 	

3 Data store
Google App Engine	
Data store	

Retrieve data using
REST w/ JSON	

Alert	

4 Applications	
1 Power measuring unit	

Viewer	

Observe the state of power consumption
Plan power saving	
5	
  
Small	
  start	
  Go	
  big	
  
Google	
  App	
  Engine	
  
Data	
  store	
  

4	
  sensors	
  

32	
  ports	
  

=	
  128	
  sensors	
  

Data	
  store	
  

Sensors	
  can	
  be	
  incrementally	
  installed.	
  
...	
  
6	
  
Low-­‐cost	
  power	
  measuring	
  unit	
  	
  
•  Send	
  data	
  to	
  data	
  collecPng	
  unit	
  every	
  second.	
  
•  The	
  producPon	
  cost	
  is	
  approximately	
  120	
  USD,	
  
including	
  the	
  cost	
  of	
  4	
  current	
  sensors.	
  
Clamp-­‐on	
  current	
  sensor	
  (max:	
  4)	
  

RJ-­‐45	
  port	
  

Signal	
  processing	
  board	
  
(dsPIC30F3013)	
  
7	
  
Data	
  collec:ng	
  unit	
  (1/2)	
  
•  Gather	
  data	
  from	
  up	
  to	
  32	
  power	
  measuring	
  unit	
  
•  Push	
  data	
  to	
  GAE	
  
–  Can	
  be	
  placed	
  behind	
  NAT	
  

To	
  power	
  measuring	
  unit	
  
(Not	
  Ethernet,	
  data	
  transfer	
  and	
  power	
  supply)	
  

To	
  GAE	
  via	
  the	
  Internet	
  
(Ethernet/100BaseT)	
  
8	
  
Data	
  collec:ng	
  unit	
  (2/2)	
  
Power
Measuring Unit	

data store	
RJ-45 ports x 32	

CPU board (T-SH7706LSR)
-  SH3 Linux
-  Buildroot 2011.05
-  pmon.py	

Serial/Parallel converter
(Xilinx Spartan-3E)	
9	
  
Data	
  store	
  and	
  REST	
  protocol	
  
data store	

config
DB	

Configuration	

power
logging DB	

Data collecting
unit “unit”

Get, query	

Update	
Application	

pmon.py
pmon.py
pmon.py
Power measuring
unit “sensor”
Current sensor
“probe”	

Application	

…	
…	
10	
  
Google	
  App	
  Engine	
  
•  PaaS	
  cloud	
  service	
  for	
  web	
  applicaPons	
  
–  Java,	
  Python,	
  and	
  Go	
  are	
  supported	
  
–  Your	
  applicaPon	
  will	
  have	
  URL	
  like	
  	
  
hgp://XXXX.appspot.com	
  

•  Scalable	
  and	
  stable	
  data	
  storage	
  
–  Data	
  are	
  replicated	
  to	
  5	
  different	
  datacenters	
  
–  Allows	
  2	
  of	
  them	
  to	
  be	
  lost	
  during	
  operaPon	
  

•  Maintenance	
  free	
  
–  No	
  need	
  to	
  manage,	
  almost	
  

•  Cost	
  effecPve	
  
–  Almost	
  free	
  of	
  charge	
  
11	
  
REST	
  API	
  
path	
  

method	
  

descrip:on	
  

/update	
  

POST	
  

Upload	
  data	
  

/latest	
  

GET	
  

Get	
  all	
  data	
  for	
  the	
  last	
  minute	
  

/latest,N	
  

GET	
  

Get	
  all	
  data	
  for	
  the	
  last	
  N	
  minutes	
  

/summary.s/YYYYmmDDHHMMSS,N	
  

GET	
  

Get	
  all	
  data	
  for	
  each	
  second	
  start	
  from	
  
YYYYmmDDHHMMSS,	
  for	
  N	
  seconds	
  

/summary.m/YYYYmmDDHHMM,N	
  

GET	
  

Get	
  all	
  data	
  for	
  each	
  minute	
  start	
  from	
  
YYYYmmDDHHMM,	
  for	
  N	
  minutes	
  

/summary.h/YYYYmmDDHH,N	
  

GET	
  

Get	
  all	
  data	
  for	
  each	
  hour	
  start	
  from	
  YYYYmmDDHH,	
  
for	
  N	
  hours	
  

/summary.d/YYYYmmDD,N	
  

GET	
  

Get	
  all	
  data	
  for	
  each	
  day	
  start	
  from	
  YYYYmmDD,	
  for	
  
N	
  days	
  

/query.s/LOC/YYYYmmDDHHMMSS,N	
  

GET	
  

Get	
  data	
  for	
  locaPons	
  that	
  name	
  start	
  with	
  LOC	
  

/query.m/LOC/YYYYmmDDHHMM,N	
  

GET	
  

/unit-­‐config/UNIT_ID	
  

GET	
  

Get	
  configuraPon	
  data	
  

/unit-­‐config/UNIT_ID	
  

PUT	
  

Set	
  configuraPon	
  data	
  
12	
  
Update	
  from	
  Data	
  collec:ng	
  unit	
  
Each	
  data	
  collecPon	
  unit	
  sends	
  
data	
  every	
  20	
  seconds	
  

GAE	
  
xxx.appspot.com/update	
  

–  POST	
  the	
  following	
  JSON	
  string	
  

{	
  
	
  	
  	
  	
  	
  "id":	
  	
  	
  "UNIT_ID"	
  
	
  	
  	
  	
  	
  "Pme":	
  "1319837460”	
  	
  /*	
  elapsed	
  seconds	
  from	
  the	
  UNIX	
  epoch	
  Pme	
  */	
  
	
  	
  	
  	
  	
  "power":	
  	
  {	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  /*	
  data	
  for	
  the	
  last	
  20	
  seconds	
  per	
  measurement	
  point	
  */	
  
	
  	
  	
  	
  	
  	
  	
  	
  "sensor0.0":	
  [VAL0,	
  VAL1,	
  VAL2,	
  VA3,	
  ...,	
  VAL19],	
  
	
  	
  	
  	
  	
  	
  	
  	
  "sensor0.1":	
  [VAL0,	
  VAL1,	
  VAL2,	
  VA3,	
  ...,	
  VAL19],	
  
	
  	
  	
  	
  	
  	
  	
  	
  "sensor1.0":	
  [VAL0,	
  VAL1,	
  VAL2,	
  VA3,	
  ...,	
  VAL19],	
  
	
  	
  	
  	
  	
  	
  	
  	
  ....	
  
	
  	
  	
  	
  	
  }	
  
}	
  
13	
  
Data	
  retrieval	
  
An	
  applicaPon	
  periodically	
  (e.g.,	
  1	
  
min)	
  gets	
  data	
  from	
  GAE	
  

GAE	
  
xxx.appspot.com/latest,N	
  

–  GET	
  the	
  following	
  JSON	
  string	
  
{	
  
	
  	
  	
  	
  "Pme":	
  “1319837460”	
  /*	
  epoch	
  Pme	
  */	
  
	
  	
  	
  	
  "PmeStr":	
  “201110290631”	
  /*	
  human	
  readable	
  
Pme	
  in	
  JST	
  */	
  
	
  	
  	
  	
  "power":	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  "LOCATION0":	
  [1234]	
  
	
  	
  	
  	
  	
  	
  	
  	
  "LOCATION1":	
  [1234]	
  
	
  	
  	
  	
  	
  	
  	
  	
  "LOCATION2":	
  [1234]	
  
	
  	
  	
  	
  	
  	
  	
  	
  "LOCATION3":	
  [1234]	
  
	
  	
  	
  	
  	
  	
  	
  	
  "LOCATION4":	
  [1234]	
  
	
  	
  	
  	
  	
  	
  	
  	
  ...	
  
	
  	
  	
  	
  }	
  
}	
  

Viewer	
  applicaPon	
  
14	
  
Deployment	
  at	
  AIST	
  campus	
  
Server	
  room	
  

10	
  data	
  collecPng	
  units	
  
177	
  power	
  measuring	
  units	
  
620	
  measurement	
  points	
  

Data	
  collecPng	
  
unit	
   Data	
  collecPng	
  
unit	
  
1

1
2

…	
  

Sensor	
  module	
  
Clamp-­‐on	
  
current	
  transformer	
  

Update	
  power	
  usage	
  
using	
  REST	
  w/	
  JSON	
  	
  

2

store	
  

3

…	
  

gather	
  

view	
  

Google	
  App	
  Engine	
  

Retrieve	
  data	
  using	
  
REST	
  w/	
  JSON	
  

Datastore	
  

Clean	
  room	
  

1

Data	
  collecPon	
  
unit	
  

2

3

billing	
  service	
  
Viewer	
  

15	
  
Installa:on	
  in	
  AIST	
  server	
  room	
  

Data collecting unit
in free access floor	

Clamp-on
current sensor	

Power distribution board	

data store	

Power measuring unit	
16	
  
Summary	
  
•  Our	
  proposed	
  system	
  helps	
  reduce	
  total	
  system	
  cost	
  and	
  
improve	
  scalability	
  by	
  employing	
  low-­‐cost	
  power	
  measuring	
  
units	
  (30	
  USD	
  per	
  measurement	
  point),	
  and	
  uPlizing	
  cloud	
  
compuPng.	
  
–  The	
  development	
  of	
  the	
  system	
  was	
  completed	
  within	
  3	
  months.	
  
–  We	
  have	
  successfully	
  operated	
  it	
  over	
  2	
  years	
  for	
  to	
  provide	
  an	
  
electricity	
  billing	
  service	
  and	
  evaluate	
  the	
  power	
  efficiency	
  of	
  data	
  
processing	
  middleware.	
  

•  Future	
  work	
  
–  Tolerance	
  for	
  network	
  failures.	
  
–  More	
  applicaPons:	
  e.g.,	
  server	
  consolidaPon	
  on	
  a	
  private	
  cloud	
  to	
  
reduce	
  power	
  consumpPon.	
  
17	
  
Q&A	
  

Thanks	
  for	
  your	
  agenPon!	
  

This	
  research	
  was	
  parPally	
  supported	
  by	
  the	
  NEDO	
  research	
  project	
  
enPtled	
  “Research	
  and	
  Development	
  Project	
  for	
  Green	
  Network/
System	
  Technology	
  (Green	
  IT	
  Project).”	
  

18	
  
Visualiza:on	
  Applica:ons	
  
less	
  than	
  90%	
  of	
  the	
  upper	
  limit	
  
less	
  than	
  95%	
  of	
  the	
  upper	
  limit	
  
more	
  than	
  95%	
  of	
  the	
  upper	
  limit	
  
Offline	
  

(a)	
  Web	
  applicaPon	
  

(b)	
  Desktop	
  applicaPon	
  
19	
  

More Related Content

PDF
A Low-cost and Scalable Visualization System for Electricity Consumption
PDF
HYPPO - NECSTTechTalk 23/04/2020
PDF
Run-time power management in cloud and containerized environments
PDF
Synchrophasor Applications Facilitating Interactions between Transmission and...
PDF
Monitoring of Transmission and Distribution Grids using PMUs
PPTX
Model-Simulation-and-Measurement-Based Systems Engineering of Power System Sy...
PDF
Impact of GPS Signal Loss and Spoofing on Power System Synchrophasor Applicat...
PDF
GSE Case Study
A Low-cost and Scalable Visualization System for Electricity Consumption
HYPPO - NECSTTechTalk 23/04/2020
Run-time power management in cloud and containerized environments
Synchrophasor Applications Facilitating Interactions between Transmission and...
Monitoring of Transmission and Distribution Grids using PMUs
Model-Simulation-and-Measurement-Based Systems Engineering of Power System Sy...
Impact of GPS Signal Loss and Spoofing on Power System Synchrophasor Applicat...
GSE Case Study

What's hot (18)

PDF
RT15 Berkeley | Multi-Terminal Power Hardware-in-the-Loop Test-Bench for Powe...
PPTX
IEEE International Conference Presentation
PDF
Design and Implementation of High Resolution Data Acquisition System
PDF
Tdtd-Edr: Time Orient Delay Tolerant Density Estimation Technique Based Data ...
PPTX
Virtualización para la Eficiencia
PPTX
Urban Plant watering
PDF
RT15 Berkeley | Grid Intergration Group - Lawrence Berkeley National Lab
PPT
H.brotherton student sustainabilitysummit
PPTX
Phasor measurement unit and it's application ppt
PDF
Short term power forecasting Awea 2014
PDF
RT15 Berkeley | Power Grid Simulation and Beyond at PNNL
PPTX
PPTX
Modeling and Simulation of Electrical Power Systems using OpenIPSL.org and Gr...
PDF
C13_GaugeKeeper_englisch
PDF
2017 Atlanta Regional User Seminar - Real-Time Volt/Var Optimization Scheme f...
PDF
OPAL-RT Smart transmission grid applications for real-time monitoring
PDF
RT15 Berkeley | HYPERSIM - OPAL-RT
PPTX
WIDE AREA PROTECTION IN POWER SYSTEMS
RT15 Berkeley | Multi-Terminal Power Hardware-in-the-Loop Test-Bench for Powe...
IEEE International Conference Presentation
Design and Implementation of High Resolution Data Acquisition System
Tdtd-Edr: Time Orient Delay Tolerant Density Estimation Technique Based Data ...
Virtualización para la Eficiencia
Urban Plant watering
RT15 Berkeley | Grid Intergration Group - Lawrence Berkeley National Lab
H.brotherton student sustainabilitysummit
Phasor measurement unit and it's application ppt
Short term power forecasting Awea 2014
RT15 Berkeley | Power Grid Simulation and Beyond at PNNL
Modeling and Simulation of Electrical Power Systems using OpenIPSL.org and Gr...
C13_GaugeKeeper_englisch
2017 Atlanta Regional User Seminar - Real-Time Volt/Var Optimization Scheme f...
OPAL-RT Smart transmission grid applications for real-time monitoring
RT15 Berkeley | HYPERSIM - OPAL-RT
WIDE AREA PROTECTION IN POWER SYSTEMS
Ad

Viewers also liked (16)

PPTX
Smart Grid
PPTX
Benefits of Grid Computing in the Cloud
PPTX
Presentation grid cloud computing
PDF
g Eclipse @ Eclipse Summit Europe 2008
PDF
UCGEC Smart Grid Seminar Ii
PPT
Cloud Computing: The Green Grid
PPT
Cloud computing vs grid computing
PPTX
A secure cloud computing based framework for big information management syste...
PPTX
Cloud computing and Grid Computing
PPT
Grid computing [2005]
KEY
Cloud Computing and your Data Warehouse
PPT
Distributed computing ).ppt him
PPTX
Grid computing Seminar PPT
PPT
Virtualization in cloud computing ppt
PPT
Seminar on cloud computing by Prashant Gupta
PDF
LinkedIn SlideShare: Knowledge, Well-Presented
Smart Grid
Benefits of Grid Computing in the Cloud
Presentation grid cloud computing
g Eclipse @ Eclipse Summit Europe 2008
UCGEC Smart Grid Seminar Ii
Cloud Computing: The Green Grid
Cloud computing vs grid computing
A secure cloud computing based framework for big information management syste...
Cloud computing and Grid Computing
Grid computing [2005]
Cloud Computing and your Data Warehouse
Distributed computing ).ppt him
Grid computing Seminar PPT
Virtualization in cloud computing ppt
Seminar on cloud computing by Prashant Gupta
LinkedIn SlideShare: Knowledge, Well-Presented
Ad

Similar to A Scalable and Distributed Electrical Power Monitoring System Utilizing Cloud Computing (20)

PPTX
Indonesia JCM
PPTX
インドネシア JCM事業 FS報告会
PDF
ATS SmartWAMS
PDF
IoT Based Control and Monitoring of Smart Grid and Power Theft Detection by L...
PDF
Ijsetr vol-4-issue-12-4320-4324
PDF
Integrating wireless sensor network into cloud services for real time data co...
PDF
Computer Applications in Power Systems 2023 SECOND.pdf
PPTX
Introduction of wide area mesurement syatem
PPTX
Masters Thesis
DOCX
Guide To Data Acquisition Systems (Daq Systems) - TMCS.docx
PPTX
Phasor data concentrator
PDF
Zigbee based weather monitoring system
PDF
Zigbee based weather monitoring system
PDF
PDF
Real Time E-metering and Automation of KCT College Campus using an Android Mo...
PPT
Green ICT
PPT
Nagios Conference 2011 - Dave Williams - Nagios In The Real World - The Datac...
PDF
PosterPresentation
PDF
Development of Software for Estimation of Structural Dynamic Characteristics ...
PDF
Revisiting Sensor MAC for Periodic Monitoring: Why Should Transmitters Be Ear...
Indonesia JCM
インドネシア JCM事業 FS報告会
ATS SmartWAMS
IoT Based Control and Monitoring of Smart Grid and Power Theft Detection by L...
Ijsetr vol-4-issue-12-4320-4324
Integrating wireless sensor network into cloud services for real time data co...
Computer Applications in Power Systems 2023 SECOND.pdf
Introduction of wide area mesurement syatem
Masters Thesis
Guide To Data Acquisition Systems (Daq Systems) - TMCS.docx
Phasor data concentrator
Zigbee based weather monitoring system
Zigbee based weather monitoring system
Real Time E-metering and Automation of KCT College Campus using an Android Mo...
Green ICT
Nagios Conference 2011 - Dave Williams - Nagios In The Real World - The Datac...
PosterPresentation
Development of Software for Estimation of Structural Dynamic Characteristics ...
Revisiting Sensor MAC for Periodic Monitoring: Why Should Transmitters Be Ear...

More from Ryousei Takano (20)

PDF
Error Permissive Computing
PDF
Opportunities of ML-based data analytics in ABCI
PDF
ABCI: An Open Innovation Platform for Advancing AI Research and Deployment
PDF
ABCI Data Center
PDF
クラウド環境におけるキャッシュメモリQoS制御の評価
PDF
USENIX NSDI 2016 (Session: Resource Sharing)
PDF
User-space Network Processing
PDF
Flow-centric Computing - A Datacenter Architecture in the Post Moore Era
PDF
A Look Inside Google’s Data Center Networks
PDF
クラウド時代の半導体メモリー技術
PDF
AIST Super Green Cloud: lessons learned from the operation and the performanc...
PDF
IEEE CloudCom 2014参加報告
PDF
Expectations for optical network from the viewpoint of system software research
PDF
Exploring the Performance Impact of Virtualization on an HPC Cloud
PDF
不揮発メモリとOS研究にまつわる何か
PDF
High-resolution Timer-based Packet Pacing Mechanism on the Linux Operating Sy...
PDF
クラウドの垣根を超えた高性能計算に向けて~AIST Super Green Cloudでの試み~
PDF
From Rack scale computers to Warehouse scale computers
PDF
高性能かつスケールアウト可能なHPCクラウド AIST Super Green Cloud
PDF
Iris: Inter-cloud Resource Integration System for Elastic Cloud Data Center
Error Permissive Computing
Opportunities of ML-based data analytics in ABCI
ABCI: An Open Innovation Platform for Advancing AI Research and Deployment
ABCI Data Center
クラウド環境におけるキャッシュメモリQoS制御の評価
USENIX NSDI 2016 (Session: Resource Sharing)
User-space Network Processing
Flow-centric Computing - A Datacenter Architecture in the Post Moore Era
A Look Inside Google’s Data Center Networks
クラウド時代の半導体メモリー技術
AIST Super Green Cloud: lessons learned from the operation and the performanc...
IEEE CloudCom 2014参加報告
Expectations for optical network from the viewpoint of system software research
Exploring the Performance Impact of Virtualization on an HPC Cloud
不揮発メモリとOS研究にまつわる何か
High-resolution Timer-based Packet Pacing Mechanism on the Linux Operating Sy...
クラウドの垣根を超えた高性能計算に向けて~AIST Super Green Cloudでの試み~
From Rack scale computers to Warehouse scale computers
高性能かつスケールアウト可能なHPCクラウド AIST Super Green Cloud
Iris: Inter-cloud Resource Integration System for Elastic Cloud Data Center

Recently uploaded (20)

PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Unlocking AI with Model Context Protocol (MCP)
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PPT
Teaching material agriculture food technology
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PPTX
Machine Learning_overview_presentation.pptx
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
Spectral efficient network and resource selection model in 5G networks
Unlocking AI with Model Context Protocol (MCP)
The AUB Centre for AI in Media Proposal.docx
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Chapter 3 Spatial Domain Image Processing.pdf
Assigned Numbers - 2025 - Bluetooth® Document
Teaching material agriculture food technology
Encapsulation_ Review paper, used for researhc scholars
Mobile App Security Testing_ A Comprehensive Guide.pdf
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
MIND Revenue Release Quarter 2 2025 Press Release
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
Building Integrated photovoltaic BIPV_UPV.pdf
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
20250228 LYD VKU AI Blended-Learning.pptx
Machine Learning_overview_presentation.pptx
The Rise and Fall of 3GPP – Time for a Sabbatical?

A Scalable and Distributed Electrical Power Monitoring System Utilizing Cloud Computing

  • 1. A  Scalable  and  Distributed     Electrical  Power  Monitoring  System    U:lizing  Cloud  Compu:ng   Ryousei  Takano,  Hidemoto  Nakada,   Toshiyuki  Shimizu,  Tomohiro  Kudoh     Informa(on  Technology  Research  Ins(tute,     Na(onal  Ins(tute  of  Advanced  Industrial  Science  and  Technology  (AIST),  Japan   CUTE2013@Da  Nang,  Vietnam,  Dec.  19  2013  
  • 2. Outline   •  Background   •  System  overview   •  Design  of  hardware  and  soKware   •  Deployment  at  AIST  campus   •  Summary   2  
  • 3. Background   •  The  power  consumpPon  of  data   centers  and  networks  becomes   an  issue  of  vital  importance  to     IT  industries.   Google  data  center  in  the  Dalles,  Oregon       •  In  Japan,  there  is  an  urgent   need  for  green  IT  technologies   aKer  March  11th,  2011.   Fukushima  Daiichi  Nuclear  Power  Plant   3  
  • 4. Mo:va:on   •  VisualizaPon  is  key  to  plan  power  savings.   •  The  total  system  cost  and  scalability  are  problem.   –  Our  server  room  has  over  100  racks.   –  Our  campus  are  geographically  distributed  in  Japan.   •  The  system  has  to  be  low-­‐cost,  scalable,  and  also  ease   to  develop  applicaPons.   ➡ Cheap  power  monitoring  hardware   ➡ Power  monitoring  soKware  uPlizing  cloud  compuPng   ➡ A  simple  REST  API   4  
  • 5. System  overview   Data collecting unit Data collecting unit 2 Data collecting unit … … Update power usage using REST w/ JSON 3 Data store Google App Engine Data store Retrieve data using REST w/ JSON Alert 4 Applications 1 Power measuring unit Viewer Observe the state of power consumption Plan power saving 5  
  • 6. Small  start  Go  big   Google  App  Engine   Data  store   4  sensors   32  ports   =  128  sensors   Data  store   Sensors  can  be  incrementally  installed.   ...   6  
  • 7. Low-­‐cost  power  measuring  unit     •  Send  data  to  data  collecPng  unit  every  second.   •  The  producPon  cost  is  approximately  120  USD,   including  the  cost  of  4  current  sensors.   Clamp-­‐on  current  sensor  (max:  4)   RJ-­‐45  port   Signal  processing  board   (dsPIC30F3013)   7  
  • 8. Data  collec:ng  unit  (1/2)   •  Gather  data  from  up  to  32  power  measuring  unit   •  Push  data  to  GAE   –  Can  be  placed  behind  NAT   To  power  measuring  unit   (Not  Ethernet,  data  transfer  and  power  supply)   To  GAE  via  the  Internet   (Ethernet/100BaseT)   8  
  • 9. Data  collec:ng  unit  (2/2)   Power Measuring Unit data store RJ-45 ports x 32 CPU board (T-SH7706LSR) -  SH3 Linux -  Buildroot 2011.05 -  pmon.py Serial/Parallel converter (Xilinx Spartan-3E) 9  
  • 10. Data  store  and  REST  protocol   data store config DB Configuration power logging DB Data collecting unit “unit” Get, query Update Application pmon.py pmon.py pmon.py Power measuring unit “sensor” Current sensor “probe” Application … … 10  
  • 11. Google  App  Engine   •  PaaS  cloud  service  for  web  applicaPons   –  Java,  Python,  and  Go  are  supported   –  Your  applicaPon  will  have  URL  like     hgp://XXXX.appspot.com   •  Scalable  and  stable  data  storage   –  Data  are  replicated  to  5  different  datacenters   –  Allows  2  of  them  to  be  lost  during  operaPon   •  Maintenance  free   –  No  need  to  manage,  almost   •  Cost  effecPve   –  Almost  free  of  charge   11  
  • 12. REST  API   path   method   descrip:on   /update   POST   Upload  data   /latest   GET   Get  all  data  for  the  last  minute   /latest,N   GET   Get  all  data  for  the  last  N  minutes   /summary.s/YYYYmmDDHHMMSS,N   GET   Get  all  data  for  each  second  start  from   YYYYmmDDHHMMSS,  for  N  seconds   /summary.m/YYYYmmDDHHMM,N   GET   Get  all  data  for  each  minute  start  from   YYYYmmDDHHMM,  for  N  minutes   /summary.h/YYYYmmDDHH,N   GET   Get  all  data  for  each  hour  start  from  YYYYmmDDHH,   for  N  hours   /summary.d/YYYYmmDD,N   GET   Get  all  data  for  each  day  start  from  YYYYmmDD,  for   N  days   /query.s/LOC/YYYYmmDDHHMMSS,N   GET   Get  data  for  locaPons  that  name  start  with  LOC   /query.m/LOC/YYYYmmDDHHMM,N   GET   /unit-­‐config/UNIT_ID   GET   Get  configuraPon  data   /unit-­‐config/UNIT_ID   PUT   Set  configuraPon  data   12  
  • 13. Update  from  Data  collec:ng  unit   Each  data  collecPon  unit  sends   data  every  20  seconds   GAE   xxx.appspot.com/update   –  POST  the  following  JSON  string   {            "id":      "UNIT_ID"            "Pme":  "1319837460”    /*  elapsed  seconds  from  the  UNIX  epoch  Pme  */            "power":    {                                      /*  data  for  the  last  20  seconds  per  measurement  point  */                  "sensor0.0":  [VAL0,  VAL1,  VAL2,  VA3,  ...,  VAL19],                  "sensor0.1":  [VAL0,  VAL1,  VAL2,  VA3,  ...,  VAL19],                  "sensor1.0":  [VAL0,  VAL1,  VAL2,  VA3,  ...,  VAL19],                  ....            }   }   13  
  • 14. Data  retrieval   An  applicaPon  periodically  (e.g.,  1   min)  gets  data  from  GAE   GAE   xxx.appspot.com/latest,N   –  GET  the  following  JSON  string   {          "Pme":  “1319837460”  /*  epoch  Pme  */          "PmeStr":  “201110290631”  /*  human  readable   Pme  in  JST  */          "power":  {                  "LOCATION0":  [1234]                  "LOCATION1":  [1234]                  "LOCATION2":  [1234]                  "LOCATION3":  [1234]                  "LOCATION4":  [1234]                  ...          }   }   Viewer  applicaPon   14  
  • 15. Deployment  at  AIST  campus   Server  room   10  data  collecPng  units   177  power  measuring  units   620  measurement  points   Data  collecPng   unit   Data  collecPng   unit   1 1 2 …   Sensor  module   Clamp-­‐on   current  transformer   Update  power  usage   using  REST  w/  JSON     2 store   3 …   gather   view   Google  App  Engine   Retrieve  data  using   REST  w/  JSON   Datastore   Clean  room   1 Data  collecPon   unit   2 3 billing  service   Viewer   15  
  • 16. Installa:on  in  AIST  server  room   Data collecting unit in free access floor Clamp-on current sensor Power distribution board data store Power measuring unit 16  
  • 17. Summary   •  Our  proposed  system  helps  reduce  total  system  cost  and   improve  scalability  by  employing  low-­‐cost  power  measuring   units  (30  USD  per  measurement  point),  and  uPlizing  cloud   compuPng.   –  The  development  of  the  system  was  completed  within  3  months.   –  We  have  successfully  operated  it  over  2  years  for  to  provide  an   electricity  billing  service  and  evaluate  the  power  efficiency  of  data   processing  middleware.   •  Future  work   –  Tolerance  for  network  failures.   –  More  applicaPons:  e.g.,  server  consolidaPon  on  a  private  cloud  to   reduce  power  consumpPon.   17  
  • 18. Q&A   Thanks  for  your  agenPon!   This  research  was  parPally  supported  by  the  NEDO  research  project   enPtled  “Research  and  Development  Project  for  Green  Network/ System  Technology  (Green  IT  Project).”   18  
  • 19. Visualiza:on  Applica:ons   less  than  90%  of  the  upper  limit   less  than  95%  of  the  upper  limit   more  than  95%  of  the  upper  limit   Offline   (a)  Web  applicaPon   (b)  Desktop  applicaPon   19