SlideShare a Scribd company logo
A SCC Recursive 
Meta-Algorithm for Computing 
Preferred Labellings in Abstract 
Argumentation 
Federico Cerutti, Massimiliano Giacomin, Mauro Vallati, Marina Zanella 
KR-2014 — Monday 21st July, 2014
Background on Dung’s AF 
SCC-Recursiveness 
Exploiting the SCC-Recursiveness 
Empirical Results 
Conclusions
Background 
Definition 
Given an AF  = hA;Ri, with R  A  A: 
- a set S  A is conflict–free if @ a; b 2 S s.t. a ! b; 
- an argument a 2 A is acceptable with respect to a set S  A if 8b 2 A s.t. b ! a, 9 c 2 S s.t. c ! b; 
- a set S  A is admissible if S is conflict–free and every element of S is 
acceptable with respect to S; 
- a set S  A is a complete extension, i.e. S 2 ECO(), iff S is admissible 
and 8a 2 A s.t. a is acceptable w.r.t. S, a 2 S; 
- a set S  A is the grounded extensions, i.e. S 2 EGR(), iff S is the 
minimal (w.r.t. set inclusion) complete set; 
- a set S  A is a preferred extension, i.e. S 2 EPR(), iff S is a maximal 
(w.r.t. set inclusion) complete set.
Background 
Definition 
Let hA;Ri be an AF: Lab : A7! fin; out; undecg is a complete labelling iff 
8a 2 A: 
- Lab(a) = in , 8b 2 aLab(b) = out; 
- Lab(a) = out , 9b 2 a : Lab(b) = in. 
Let S  A a conflict–free set: the corresponding labelling is 
Ext2Lab(S)  Lab, where 
- Lab(a) = in , a 2 S 
- Lab(a) = out , 9 b 2 S s.t. b ! a 
- Lab(a) = undec , a =2 S ^ @ b 2 S s.t. b ! a 
Proposition ([Caminada, 2006]) 
Given an an AF  = hA;Ri, Lab is a complete (grounded, preferred) 
labelling of  if and only if there is a complete (grounded, preferred) 
extension S of  such that Lab = Ext2Lab(S).
An Example
An Example
Background on Dung’s AF 
SCC-Recursiveness 
Exploiting the SCC-Recursiveness 
Empirical Results 
Conclusions
SCC-Recursiveness: Path-Equivalence
SCC-Recursiveness: Partial Order of the SCCs
SCC-Recursiveness: Recursiveness of the 
approach
SCC-Recursiveness 
Definition 
A given argumentation semantics  is SCC-recursive if for any 
argumentation framework  = hA;Ri, E() = GF(;A)  2A. For 
any  = hA;Ri and for any set C  A, E 2 GF(;C) if and only if 
- E 2 BF(;C) if jSCCj = 1 
- 8S 2 SCC (E  S) 2 GF(#Sn(EnS)+;U(S;E)  C) otherwise 
where 
- BF(;C) is a function, called base function, that, given an 
argumentation framework  = hA;Ri such that jSCCj = 1 and 
a set C  A, gives a subset of 2A 
- U(S;E) = fa 2 S n (E n S)+ j 8b 2 (a n S); b 2 E+g
SCC-Recursiveness and semantics restricted to 
a set of arguments 
Definition 
Given an AF  = hA;Ri and a set C  A, a set E  A is: 
- an admissible set of  in C if and only if E is an admissible set of 
 and E  C 
- a complete extension of  in C if and only if E is an admissible 
set of  in C, and every argument a 2 C which is acceptable with 
respect to E belongs to E 
- the grounded extension of  in C if and only if it is the least 
(with respect to set inclusion) complete extension of  in C 
- a preferred extension of  in C if and only if it is a maximal 
(with respect to set inclusion) complete extension of  in C.
Research Questions 
How can we exploit the SCC-Recursiveness in an algorithm? 
Is it worth doing it?
Background on Dung’s AF 
SCC-Recursiveness 
Exploiting the 
SCC-Recursiveness 
Empirical Results 
Conclusions
The Starting Point
The Meta-Algorithm
The Meta-Algorithm
The Meta-Algorithm
The Meta-Algorithm 
Proposition 
Let hA;Ri be an argumentation 
framework and let C  A a set of 
arguments. Considering the grounded 
labelling Lab of  in C and the set U 
including the undec-labelled arguments 
according to Lab, it holds that 
LPR(;C) = fLab [ E j E 2 
LPR(#U;C  U)g.
The Meta-Algorithm
The Meta-Algorithm
The Meta-Algorithm
The Meta-Algorithm
The Meta-Algorithm
The Meta-Algorithm
The Meta-Algorithm 
I = ff ; gg 
O = ;
The Meta-Algorithm
The Base Case: Complete Labelling in C 
Definition 
Let  = hA;Ri be an argumentation framework and C  A be a set of arguments. A 
total function Lab : A7! fin; out; undecg is a complete labelling of  in C iff it satisfies 
the following conditions for any a 2 C: 
C: Lab(a) = in , 8b 2 aLab(b) = out; 
L2 
L1 
C: Lab(a) = out , 9b 2 (a  C) : Lab(b) = in; 
L3 
C: Lab(a) = undec , 8b 2 (a  C);Lab(b)6= in ^ 9c 2 a : 
Lab(c) = undec; 
and the following conditions for any a 2 (A n C): 
L1 
: Lab(a) = out , 9b 2 (a  C) : Lab(b) = in; 
AnCL2 
AnC: Lab(a) = undec , 8b 2 (a  C);Lab(b)6= in. 
Proposition 
Given an an AF  = hA;Ri and a set C  A, Lab satisfies the above conditions if and 
only if there is a complete extension S of  in C such that Lab = Ext2Lab(S).
Complete Labelling in C and CNF 
^ 
i21(C) 
 
(Ii _ Oi _ Ui) ^ (:Ii _ :Oi)^(:Ii _ :Ui) ^ (:Oi _ :Ui) 
 
^ 
^ 
i21(C) 
0 
@Ii _ 
0 
@ 
_ 
(:Oj ) 
fjj(j)!(i)g 
1 
A 
1 
A ^ 
^ 
i21(C) 
0 
@ 
^ 
fjj(j)!(i)g 
:Ii _ Oj 
1 
A^ 
^ 
i21(C) 
0 
B@ 
^ 
fj21(C)j(j)!(i)g 
:Ij _ Oi 
1 
CA 
^ 
^ 
i21(C) 
0 
B@ 
:Oi _ 
0 
B@ 
_ 
fj21(C)j(j)!(i)g 
Ij 
1 
CA 
1 
CA 
^ 
^ 
 ^ 
 ^ 
i21(C) 
fkj(k)!(i)g 
 
Ui _ :Uk _ 
 _ 
 
fj21(C)j(j)!(i)g 
Ij 
 
^ 
^ 
i21(C) 
fj21(C)j(j)!(i)g 
(:Ui _ :Ij ) 
^ 
 
:Ui _ 
 _ 
fkj(k)!(i)g 
Uk 
 
^ 
^ 
 
:Ii ^ (Oi _ Ui) ^ (:Oi _ :Ui) 
i21(AnC) 
 
^ 
^ 
i21(AnC) 
0 
B@ 
^ 
fj21(C)j(j)!(i)g 
:Ij _ Oi 
1 
CA 
^ 
i21(AnC) 
0 
B@:Oi _ 
0 
B@ 
_ 
fj21(C)j(j)!(i)g 
Ij 
1 
CA 
1 
C A^ 
^ 
i21(AnC) 
0 
B @Ui _ 
0 
B@ 
_ 
fj21(C)j(j)!(i)g 
Ij 
1 
CA 
1 
CA 
^ 
^ 
i21(AnC) 
0 
B@ 
^ 
fj21(C)j(j)!(i)g 
:Ui _ :Ij 
1 
CA
Complete Labelling in C and CNF 
Proposition 
Let hA;Ri be an argumentation framework and C  A be a set of 
arguments. If Lab is a complete labelling of  in C, then the 
assignment V()  f(Ii;) j Lab((i)) = ing [ f(Oi;) j Lab((i)) = 
outg [ f(Ui;) j Lab((i)) = undecg satisfies the ENCall encoding 
shown before. Conversely, if V() is a satisfying assignment of the 
ENCall encoding, then the labelling Lab  f(a; in) j I1(a) 2 
V()g [ f(b; out) j O1(b) 2 V()g [ f(c; undec) j U1(c) 2 V()g is a complete labelling of  in C.
The Base-Case
The Base-Case
The Meta-Algorithm
Background on Dung’s AF 
SCC-Recursiveness 
Exploiting the SCC-Recursiveness 
Empirical Results 
Conclusions
Analysis Using the International Planning 
Competition (IPC) Score 
- For each test case (in our case, each test AF) let T be the best 
execution time among the compared systems (if no system 
produces the solution within the time limit, the test case is not 
considered valid and ignored). 
- For each valid case, each system gets a score of 
1=(1 + log10(T=T )), where T is its execution time, or a score of 0 
if it fails in that case. 
- The (non normalized) IPC score for a system is the sum of its 
scores over all the valid test cases. The normalised IPC score 
ranges from 0 to 100 and is defined as 
(IPC=# of valid cases)  100.
The Experiment 
- SAT approach optimized ([Cerutti et al., 2014] SAT-P) vs 
SCC-Recursiveness using SAT for the base case (SCC-P); 
- I1: on  s.t. jSCCj = 1, SCC-P performs worse than SAT-P; 
- I2: there exists a value  such that on  where jSCCj  , 
SCC-P performs better that SAT-P; 
- I3: on  s.t. jSCCj  , the greater jEPR()j, the more SAT-P 
performs worse than SCC-P.
First Hypothesis 
790 AFs (), s.t. jSCCj = 1 and A = 25 : 25 : 250 
IPC value (normalised) for SCC-P and SAT-P when |SCC| = 1, varying || 
100 
90 
80 
70 
60 
50 
40 
0 50 100 150 200 250 
|| 
SCC-P SAT-P
Second Hypothesis 
720 AFs varying jSCCj in 5:5:45. Size of SCCs N( = 20 : 5 : 40,  = 5); 
attacks among SCCs N( = 20 : 5 : 40,  = 5) 
100 
90 
80 
70 
60 
50 
40 
IPC value (normalised) for SCC-P and SAT-P when 5  |SCC|  45 
0 10 20 30 40 50 
|SCC| 
SCC-P SAT-P
Second Hypothesis 
720 AFs varying jSCCj in 5:5:45. Size of SCCs N( = 20 : 5 : 40,  = 5); 
attacks among SCCs N( = 20 : 5 : 40,  = 5) 
100 
90 
80 
70 
60 
50 
40 
IPC value (normalised) for SCC-P and SAT-P when 5  |SCC|  45 
Remark 
For jSCCj = 35, Md(SCC-P) = 8:81, 
Md(SAT-P) = 8:53, z = 0:35, p = 0:73; 
0 10 20 30 40 50 
|SCC| 
SCC-P SAT-P
Third Hypothesis 
2800 AFs (as before) s.t. jSCCj = 50 : 5 : 80 
Median of times for SCC-P and SAT-P when 50  |SCC|  80 varying |EPR()| 
900 
800 
700 
600 
500 
400 
300 
200 
100 
0 
0 50 100 150 200 250 300 
s 
|EPR()| 
SCC-P SAT-P
Third Hypothesis 
2800 AFs (as before) s.t. jSCCj = 50 : 5 : 80 
Remark 
Regression to the function f(x) = a x+b: 
SCC-P, a = 0:43, b = 31:33; 
SAT-P, a = 2:40, b = 87:53 
Median of times for SCC-P and SAT-P when 50  |SCC|  80 varying |EPR()| 
900 
800 
700 
600 
500 
400 
300 
200 
100 
0 
0 50 100 150 200 250 300 
s 
|EPR()| 
SCC-P SAT-P
Background on Dung’s AF 
SCC-Recursiveness 
Exploiting the SCC-Recursiveness 
Empirical Results 
Conclusions
Conclusions 
1. Efficient algorithmic implementation of the SCC-recursiveness 
schema 
- [Liao et al., 2013] decomposition but not the recursiveness 
- Other [Baumann et al., 2012, Dvorák et al., 2012b, 
Baroni et al., 2012] 
2. Generalisation of [Cerutti et al., 2014] for the computation of 
labellings in sub-frameworks 
- [Besnard and Doutre, 2004, Dvorák et al., 2012a, 
Arieli and Caminada, 2013]. . . 
3. Empirical evaluation: 
-  with jSCCj   = 35 statistical evidence that the 
SCC-recursive schema reduces the computational effort of 
enumerating the preferred labellings; 
- Execution time of the SCC-recursive implementation is less 
sensible to the number of labellings
Future Works 
- Exploiting and comparing different equivalent encodings of 
complete labellings in C including the redundant ones 
- Different B-PR algorithm for computing labellings in 
sub-frameworks 
[Egly et al., 2010, Nofal et al., 2014, Dvorák et al., 2014] 
- Meta-algorithm to stable and CF2 semantics (directly fit the 
SCC-recursive schema [Baroni et al., 2005]) and to semi-stable 
and ideal semantics (relationship with preferred semantics)
References I 
[Arieli and Caminada, 2013] Arieli, O. and Caminada, M. W. (2013). 
A QBF-based formalization of abstract argumentation semantics. 
Journal of Applied Logic, 11(2):229–252. 
[Baroni et al., 2012] Baroni, P., Boella, G., Cerutti, F., Giacomin, M., van der Torre, L., and Villata, 
S. (2012). 
On Input/Output Argumentation Frameworks. 
In Proceedings of the 4th International Conference on Computational Models of Arguments 
(COMMA 2012), pages 358–365. 
[Baroni et al., 2005] Baroni, P., Giacomin, M., and Guida, G. (2005). 
SCC-recursiveness: a general schema for argumentation semantics. 
Artificial Intelligence, 168(1-2):165–210. 
[Baumann et al., 2012] Baumann, R., Brewka, G., Dvorák, W., and Woltran, S. (2012). 
Parameterized Splitting: A Simple Modification-Based Approach. 
In Erdem, E., Lee, J., Lierler, Y., and Pearce, D., editors, Correct Reasoning, volume 7265 of 
Lecture Notes in Computer Science, pages 57–71. Springer Berlin Heidelberg.
References II 
[Besnard and Doutre, 2004] Besnard, P. and Doutre, S. (2004). 
Checking the acceptability of a set of arguments. 
In Proceedings of the 10th International Workshop on Non-Monotonic Reasoning (NMR 2004), 
pages 59–64. 
[Caminada, 2006] Caminada, M. (2006). 
On the Issue of Reinstatement in Argumentation. 
In Proceedings of the 10th European Conference on Logics in Artificial Intelligence (JELIA 
2006), pages 111–123. 
[Cerutti et al., 2014] Cerutti, F., Dunne, P. E., Giacomin, M., and Vallati, M. (2014). 
Computing Preferred Extensions in Abstract Argumentation: A SAT-Based Approach. 
In Black, E., Modgil, S., and Oren, N., editors, TAFA 2013, volume 8306 of Lecture Notes in 
Computer Science, pages 176–193. Springer-Verlag Berlin Heidelberg. 
[Dvorák et al., 2012a] Dvorák, W., Järvisalo, M., Wallner, J. P., and Woltran, S. (2012a). 
Complexity-Sensitive Decision Procedures for Abstract Argumentation. 
In Proceedings of 13th International Conference on Principles of Knowledge Representation 
and Reasoning (KR 2012), pages 54–64.
References III 
[Dvorák et al., 2014] Dvorák, W., Järvisalo, M., Wallner, J. P., and Woltran, S. (2014). 
Complexity-sensitive decision procedures for abstract argumentation. 
Artificial Intelligence, 206:53–78. 
[Dvorák et al., 2012b] Dvorák, W., Pichler, R., and Woltran, S. (2012b). 
Towards fixed-parameter tractable algorithms for abstract argumentation. 
Artificial Intelligence, 186:1–37. 
[Egly et al., 2010] Egly, U., Alice Gaggl, S., and Woltran, S. (2010). 
Answer-set programming encodings for argumentation frameworks. 
Argument  Computation, 1(2):147–177. 
[Liao et al., 2013] Liao, B., Lei, L., and Dai, J. (2013). 
Computing Preferred Labellings by Exploiting SCCs and Most Sceptically Rejected Arguments. 
In Second International Workshop on Theory and Applications of Formal Argumentation 
(TAFA-13). 
[Nofal et al., 2014] Nofal, S., Atkinson, K., and Dunne, P. E. (2014). 
Algorithms for decision problems in argument systems under preferred semantics. 
Artificial Intelligence, 207:23–51.

More Related Content

PDF
Argumentation Extensions Enumeration as a Constraint Satisfaction Problem: a ...
PDF
Cerutti -- TAFA2013
PDF
Algorithm Selection for Preferred Extensions Enumeration
PDF
20320140501020
PDF
Sep logic slide
PDF
Crabs dataset GLM Poisson and Logistic model
PPT
PDF
Representing and comparing probabilities: Part 2
Argumentation Extensions Enumeration as a Constraint Satisfaction Problem: a ...
Cerutti -- TAFA2013
Algorithm Selection for Preferred Extensions Enumeration
20320140501020
Sep logic slide
Crabs dataset GLM Poisson and Logistic model
Representing and comparing probabilities: Part 2

What's hot (20)

PDF
Representing and comparing probabilities
PDF
Volume and edge skeleton computation in high dimensions
PDF
TMPA-2017: Generating Cost Aware Covering Arrays For Free
PPT
On Resolution Proofs for Combinational Equivalence
PDF
SPU Optimizations - Part 2
PDF
Polynomial Kernel for Interval Vertex Deletion
PPT
Reducing Structural Bias in Technology Mapping
PPTX
How to add an optimization for C# to RyuJIT
PDF
Gate 2013 complete solutions of ec electronics and communication engineering
PDF
Practical Spherical Harmonics Based PRT Methods
DOCX
Lab 3 nust control
PDF
Biconnectivity
PDF
MarcoCeze_defense
PDF
L03-ajc-C-arrays
PDF
GTC16 - S6510 - Targeting GPUs with OpenMP 4.5
PDF
Performance Portability Through Descriptive Parallelism
PDF
Early Results of OpenMP 4.5 Portability on NVIDIA GPUs & CPUs
PDF
Phase Responce of Pole zero
PDF
Archipelagos
PDF
A first order hyperbolic framework for large strain computational computation...
Representing and comparing probabilities
Volume and edge skeleton computation in high dimensions
TMPA-2017: Generating Cost Aware Covering Arrays For Free
On Resolution Proofs for Combinational Equivalence
SPU Optimizations - Part 2
Polynomial Kernel for Interval Vertex Deletion
Reducing Structural Bias in Technology Mapping
How to add an optimization for C# to RyuJIT
Gate 2013 complete solutions of ec electronics and communication engineering
Practical Spherical Harmonics Based PRT Methods
Lab 3 nust control
Biconnectivity
MarcoCeze_defense
L03-ajc-C-arrays
GTC16 - S6510 - Targeting GPUs with OpenMP 4.5
Performance Portability Through Descriptive Parallelism
Early Results of OpenMP 4.5 Portability on NVIDIA GPUs & CPUs
Phase Responce of Pole zero
Archipelagos
A first order hyperbolic framework for large strain computational computation...
Ad

Viewers also liked (13)

PDF
Formal Arguments, Preferences, and Natural Language Interfaces to Humans: an ...
PDF
Cerutti-AT2013-Graphical Subjective Logic
PDF
Cerutti--ARGAIP 2010
PDF
Cerutti--ECSQARU 2009
PDF
Cerutti--NMR 2010
PDF
Cerutti--AAAI Fall Symposia 2009
PDF
Cerutti--PhD viva voce defence
PDF
Cerutti--Web Information Systems (postgrad seminar @ University of Brescia)
PDF
Cerutti--TAFA 2011
PDF
Cerutti--Verification of Crypto Protocols (postgrad seminar @ University of B...
PDF
Cerutti--Knowledge Representation and Reasoning (postgrad seminar @ Universit...
PDF
Cerutti-AT2013-Trust and Risk
PDF
Cerutti--Introduction to Argumentation (seminar @ University of Aberdeen)
Formal Arguments, Preferences, and Natural Language Interfaces to Humans: an ...
Cerutti-AT2013-Graphical Subjective Logic
Cerutti--ARGAIP 2010
Cerutti--ECSQARU 2009
Cerutti--NMR 2010
Cerutti--AAAI Fall Symposia 2009
Cerutti--PhD viva voce defence
Cerutti--Web Information Systems (postgrad seminar @ University of Brescia)
Cerutti--TAFA 2011
Cerutti--Verification of Crypto Protocols (postgrad seminar @ University of B...
Cerutti--Knowledge Representation and Reasoning (postgrad seminar @ Universit...
Cerutti-AT2013-Trust and Risk
Cerutti--Introduction to Argumentation (seminar @ University of Aberdeen)
Ad

Similar to A SCC Recursive Meta-Algorithm for Computing Preferred Labellings in Abstract Argumentation (20)

PDF
CutFEM on hierarchical B-Spline Cartesian grids with applications to fluid-st...
PDF
Iterative methods with special structures
PDF
Polesrootlocus_IISC.pdf
PDF
TMPA-2015: Implementing the MetaVCG Approach in the C-light System
PDF
ADAPTIVE FUZZY KERNEL CLUSTERING ALGORITHM
PDF
ADAPTIVE FUZZY KERNEL CLUSTERING ALGORITHM
PDF
Time Series for FRAM-Second_Sem_2021-22 (1).pdf
PDF
Kk2518251830
PDF
Kk2518251830
PDF
Combinational & Sequential ATPG.pdf
PDF
922214 e002013
PPT
Raices de ecuaciones
PPT
Raices de ecuaciones
PPTX
Signals and Systems Assignment Help
PDF
MUMS: Transition & SPUQ Workshop - Gradient-Free Construction of Active Subsp...
PDF
FPGA Implementation of A New Chien Search Block for Reed-Solomon Codes RS (25...
PPTX
APSEC2020 Keynote
PDF
MLMM_16_08_2022.pdf
PDF
On Selection of Periodic Kernels Parameters in Time Series Prediction
PDF
ON SELECTION OF PERIODIC KERNELS PARAMETERS IN TIME SERIES PREDICTION
CutFEM on hierarchical B-Spline Cartesian grids with applications to fluid-st...
Iterative methods with special structures
Polesrootlocus_IISC.pdf
TMPA-2015: Implementing the MetaVCG Approach in the C-light System
ADAPTIVE FUZZY KERNEL CLUSTERING ALGORITHM
ADAPTIVE FUZZY KERNEL CLUSTERING ALGORITHM
Time Series for FRAM-Second_Sem_2021-22 (1).pdf
Kk2518251830
Kk2518251830
Combinational & Sequential ATPG.pdf
922214 e002013
Raices de ecuaciones
Raices de ecuaciones
Signals and Systems Assignment Help
MUMS: Transition & SPUQ Workshop - Gradient-Free Construction of Active Subsp...
FPGA Implementation of A New Chien Search Block for Reed-Solomon Codes RS (25...
APSEC2020 Keynote
MLMM_16_08_2022.pdf
On Selection of Periodic Kernels Parameters in Time Series Prediction
ON SELECTION OF PERIODIC KERNELS PARAMETERS IN TIME SERIES PREDICTION

More from Federico Cerutti (13)

PDF
Security of Artificial Intelligence
PDF
Introduction to Evidential Neural Networks
PDF
Argumentation and Machine Learning: When the Whole is Greater than the Sum of...
PDF
Human-Argumentation Experiment Pilot 2013: Technical Material
PDF
Probabilistic Logic Programming with Beta-Distributed Random Variables
PDF
Supporting Scientific Enquiry with Uncertain Sources
PDF
Introduction to Formal Argumentation Theory
PDF
Handout: Argumentation in Artificial Intelligence: From Theory to Practice
PDF
Argumentation in Artificial Intelligence: From Theory to Practice
PDF
Handout for the course Abstract Argumentation and Interfaces to Argumentative...
PDF
Argumentation in Artificial Intelligence: 20 years after Dung's work. Left ma...
PDF
Argumentation in Artificial Intelligence: 20 years after Dung's work. Right m...
PDF
Argumentation in Artificial Intelligence
Security of Artificial Intelligence
Introduction to Evidential Neural Networks
Argumentation and Machine Learning: When the Whole is Greater than the Sum of...
Human-Argumentation Experiment Pilot 2013: Technical Material
Probabilistic Logic Programming with Beta-Distributed Random Variables
Supporting Scientific Enquiry with Uncertain Sources
Introduction to Formal Argumentation Theory
Handout: Argumentation in Artificial Intelligence: From Theory to Practice
Argumentation in Artificial Intelligence: From Theory to Practice
Handout for the course Abstract Argumentation and Interfaces to Argumentative...
Argumentation in Artificial Intelligence: 20 years after Dung's work. Left ma...
Argumentation in Artificial Intelligence: 20 years after Dung's work. Right m...
Argumentation in Artificial Intelligence

Recently uploaded (20)

PDF
01-Introduction-to-Information-Management.pdf
PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
Pre independence Education in Inndia.pdf
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
Computing-Curriculum for Schools in Ghana
PPTX
PPH.pptx obstetrics and gynecology in nursing
PPTX
Lesson notes of climatology university.
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
01-Introduction-to-Information-Management.pdf
Microbial disease of the cardiovascular and lymphatic systems
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
STATICS OF THE RIGID BODIES Hibbelers.pdf
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Final Presentation General Medicine 03-08-2024.pptx
Module 4: Burden of Disease Tutorial Slides S2 2025
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
102 student loan defaulters named and shamed – Is someone you know on the list?
Pre independence Education in Inndia.pdf
TR - Agricultural Crops Production NC III.pdf
Anesthesia in Laparoscopic Surgery in India
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Abdominal Access Techniques with Prof. Dr. R K Mishra
2.FourierTransform-ShortQuestionswithAnswers.pdf
Computing-Curriculum for Schools in Ghana
PPH.pptx obstetrics and gynecology in nursing
Lesson notes of climatology university.
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student

A SCC Recursive Meta-Algorithm for Computing Preferred Labellings in Abstract Argumentation

  • 1. A SCC Recursive Meta-Algorithm for Computing Preferred Labellings in Abstract Argumentation Federico Cerutti, Massimiliano Giacomin, Mauro Vallati, Marina Zanella KR-2014 — Monday 21st July, 2014
  • 2. Background on Dung’s AF SCC-Recursiveness Exploiting the SCC-Recursiveness Empirical Results Conclusions
  • 3. Background Definition Given an AF = hA;Ri, with R A A: - a set S A is conflict–free if @ a; b 2 S s.t. a ! b; - an argument a 2 A is acceptable with respect to a set S A if 8b 2 A s.t. b ! a, 9 c 2 S s.t. c ! b; - a set S A is admissible if S is conflict–free and every element of S is acceptable with respect to S; - a set S A is a complete extension, i.e. S 2 ECO(), iff S is admissible and 8a 2 A s.t. a is acceptable w.r.t. S, a 2 S; - a set S A is the grounded extensions, i.e. S 2 EGR(), iff S is the minimal (w.r.t. set inclusion) complete set; - a set S A is a preferred extension, i.e. S 2 EPR(), iff S is a maximal (w.r.t. set inclusion) complete set.
  • 4. Background Definition Let hA;Ri be an AF: Lab : A7! fin; out; undecg is a complete labelling iff 8a 2 A: - Lab(a) = in , 8b 2 aLab(b) = out; - Lab(a) = out , 9b 2 a : Lab(b) = in. Let S A a conflict–free set: the corresponding labelling is Ext2Lab(S) Lab, where - Lab(a) = in , a 2 S - Lab(a) = out , 9 b 2 S s.t. b ! a - Lab(a) = undec , a =2 S ^ @ b 2 S s.t. b ! a Proposition ([Caminada, 2006]) Given an an AF = hA;Ri, Lab is a complete (grounded, preferred) labelling of if and only if there is a complete (grounded, preferred) extension S of such that Lab = Ext2Lab(S).
  • 7. Background on Dung’s AF SCC-Recursiveness Exploiting the SCC-Recursiveness Empirical Results Conclusions
  • 11. SCC-Recursiveness Definition A given argumentation semantics is SCC-recursive if for any argumentation framework = hA;Ri, E() = GF(;A) 2A. For any = hA;Ri and for any set C A, E 2 GF(;C) if and only if - E 2 BF(;C) if jSCCj = 1 - 8S 2 SCC (E S) 2 GF(#Sn(EnS)+;U(S;E) C) otherwise where - BF(;C) is a function, called base function, that, given an argumentation framework = hA;Ri such that jSCCj = 1 and a set C A, gives a subset of 2A - U(S;E) = fa 2 S n (E n S)+ j 8b 2 (a n S); b 2 E+g
  • 12. SCC-Recursiveness and semantics restricted to a set of arguments Definition Given an AF = hA;Ri and a set C A, a set E A is: - an admissible set of in C if and only if E is an admissible set of and E C - a complete extension of in C if and only if E is an admissible set of in C, and every argument a 2 C which is acceptable with respect to E belongs to E - the grounded extension of in C if and only if it is the least (with respect to set inclusion) complete extension of in C - a preferred extension of in C if and only if it is a maximal (with respect to set inclusion) complete extension of in C.
  • 13. Research Questions How can we exploit the SCC-Recursiveness in an algorithm? Is it worth doing it?
  • 14. Background on Dung’s AF SCC-Recursiveness Exploiting the SCC-Recursiveness Empirical Results Conclusions
  • 19. The Meta-Algorithm Proposition Let hA;Ri be an argumentation framework and let C A a set of arguments. Considering the grounded labelling Lab of in C and the set U including the undec-labelled arguments according to Lab, it holds that LPR(;C) = fLab [ E j E 2 LPR(#U;C U)g.
  • 26. The Meta-Algorithm I = ff ; gg O = ;
  • 28. The Base Case: Complete Labelling in C Definition Let = hA;Ri be an argumentation framework and C A be a set of arguments. A total function Lab : A7! fin; out; undecg is a complete labelling of in C iff it satisfies the following conditions for any a 2 C: C: Lab(a) = in , 8b 2 aLab(b) = out; L2 L1 C: Lab(a) = out , 9b 2 (a C) : Lab(b) = in; L3 C: Lab(a) = undec , 8b 2 (a C);Lab(b)6= in ^ 9c 2 a : Lab(c) = undec; and the following conditions for any a 2 (A n C): L1 : Lab(a) = out , 9b 2 (a C) : Lab(b) = in; AnCL2 AnC: Lab(a) = undec , 8b 2 (a C);Lab(b)6= in. Proposition Given an an AF = hA;Ri and a set C A, Lab satisfies the above conditions if and only if there is a complete extension S of in C such that Lab = Ext2Lab(S).
  • 29. Complete Labelling in C and CNF ^ i21(C) (Ii _ Oi _ Ui) ^ (:Ii _ :Oi)^(:Ii _ :Ui) ^ (:Oi _ :Ui) ^ ^ i21(C) 0 @Ii _ 0 @ _ (:Oj ) fjj(j)!(i)g 1 A 1 A ^ ^ i21(C) 0 @ ^ fjj(j)!(i)g :Ii _ Oj 1 A^ ^ i21(C) 0 B@ ^ fj21(C)j(j)!(i)g :Ij _ Oi 1 CA ^ ^ i21(C) 0 B@ :Oi _ 0 B@ _ fj21(C)j(j)!(i)g Ij 1 CA 1 CA ^ ^ ^ ^ i21(C) fkj(k)!(i)g Ui _ :Uk _ _ fj21(C)j(j)!(i)g Ij ^ ^ i21(C) fj21(C)j(j)!(i)g (:Ui _ :Ij ) ^ :Ui _ _ fkj(k)!(i)g Uk ^ ^ :Ii ^ (Oi _ Ui) ^ (:Oi _ :Ui) i21(AnC) ^ ^ i21(AnC) 0 B@ ^ fj21(C)j(j)!(i)g :Ij _ Oi 1 CA ^ i21(AnC) 0 B@:Oi _ 0 B@ _ fj21(C)j(j)!(i)g Ij 1 CA 1 C A^ ^ i21(AnC) 0 B @Ui _ 0 B@ _ fj21(C)j(j)!(i)g Ij 1 CA 1 CA ^ ^ i21(AnC) 0 B@ ^ fj21(C)j(j)!(i)g :Ui _ :Ij 1 CA
  • 30. Complete Labelling in C and CNF Proposition Let hA;Ri be an argumentation framework and C A be a set of arguments. If Lab is a complete labelling of in C, then the assignment V() f(Ii;) j Lab((i)) = ing [ f(Oi;) j Lab((i)) = outg [ f(Ui;) j Lab((i)) = undecg satisfies the ENCall encoding shown before. Conversely, if V() is a satisfying assignment of the ENCall encoding, then the labelling Lab f(a; in) j I1(a) 2 V()g [ f(b; out) j O1(b) 2 V()g [ f(c; undec) j U1(c) 2 V()g is a complete labelling of in C.
  • 34. Background on Dung’s AF SCC-Recursiveness Exploiting the SCC-Recursiveness Empirical Results Conclusions
  • 35. Analysis Using the International Planning Competition (IPC) Score - For each test case (in our case, each test AF) let T be the best execution time among the compared systems (if no system produces the solution within the time limit, the test case is not considered valid and ignored). - For each valid case, each system gets a score of 1=(1 + log10(T=T )), where T is its execution time, or a score of 0 if it fails in that case. - The (non normalized) IPC score for a system is the sum of its scores over all the valid test cases. The normalised IPC score ranges from 0 to 100 and is defined as (IPC=# of valid cases) 100.
  • 36. The Experiment - SAT approach optimized ([Cerutti et al., 2014] SAT-P) vs SCC-Recursiveness using SAT for the base case (SCC-P); - I1: on s.t. jSCCj = 1, SCC-P performs worse than SAT-P; - I2: there exists a value such that on where jSCCj , SCC-P performs better that SAT-P; - I3: on s.t. jSCCj , the greater jEPR()j, the more SAT-P performs worse than SCC-P.
  • 37. First Hypothesis 790 AFs (), s.t. jSCCj = 1 and A = 25 : 25 : 250 IPC value (normalised) for SCC-P and SAT-P when |SCC| = 1, varying || 100 90 80 70 60 50 40 0 50 100 150 200 250 || SCC-P SAT-P
  • 38. Second Hypothesis 720 AFs varying jSCCj in 5:5:45. Size of SCCs N( = 20 : 5 : 40, = 5); attacks among SCCs N( = 20 : 5 : 40, = 5) 100 90 80 70 60 50 40 IPC value (normalised) for SCC-P and SAT-P when 5 |SCC| 45 0 10 20 30 40 50 |SCC| SCC-P SAT-P
  • 39. Second Hypothesis 720 AFs varying jSCCj in 5:5:45. Size of SCCs N( = 20 : 5 : 40, = 5); attacks among SCCs N( = 20 : 5 : 40, = 5) 100 90 80 70 60 50 40 IPC value (normalised) for SCC-P and SAT-P when 5 |SCC| 45 Remark For jSCCj = 35, Md(SCC-P) = 8:81, Md(SAT-P) = 8:53, z = 0:35, p = 0:73; 0 10 20 30 40 50 |SCC| SCC-P SAT-P
  • 40. Third Hypothesis 2800 AFs (as before) s.t. jSCCj = 50 : 5 : 80 Median of times for SCC-P and SAT-P when 50 |SCC| 80 varying |EPR()| 900 800 700 600 500 400 300 200 100 0 0 50 100 150 200 250 300 s |EPR()| SCC-P SAT-P
  • 41. Third Hypothesis 2800 AFs (as before) s.t. jSCCj = 50 : 5 : 80 Remark Regression to the function f(x) = a x+b: SCC-P, a = 0:43, b = 31:33; SAT-P, a = 2:40, b = 87:53 Median of times for SCC-P and SAT-P when 50 |SCC| 80 varying |EPR()| 900 800 700 600 500 400 300 200 100 0 0 50 100 150 200 250 300 s |EPR()| SCC-P SAT-P
  • 42. Background on Dung’s AF SCC-Recursiveness Exploiting the SCC-Recursiveness Empirical Results Conclusions
  • 43. Conclusions 1. Efficient algorithmic implementation of the SCC-recursiveness schema - [Liao et al., 2013] decomposition but not the recursiveness - Other [Baumann et al., 2012, Dvorák et al., 2012b, Baroni et al., 2012] 2. Generalisation of [Cerutti et al., 2014] for the computation of labellings in sub-frameworks - [Besnard and Doutre, 2004, Dvorák et al., 2012a, Arieli and Caminada, 2013]. . . 3. Empirical evaluation: - with jSCCj = 35 statistical evidence that the SCC-recursive schema reduces the computational effort of enumerating the preferred labellings; - Execution time of the SCC-recursive implementation is less sensible to the number of labellings
  • 44. Future Works - Exploiting and comparing different equivalent encodings of complete labellings in C including the redundant ones - Different B-PR algorithm for computing labellings in sub-frameworks [Egly et al., 2010, Nofal et al., 2014, Dvorák et al., 2014] - Meta-algorithm to stable and CF2 semantics (directly fit the SCC-recursive schema [Baroni et al., 2005]) and to semi-stable and ideal semantics (relationship with preferred semantics)
  • 45. References I [Arieli and Caminada, 2013] Arieli, O. and Caminada, M. W. (2013). A QBF-based formalization of abstract argumentation semantics. Journal of Applied Logic, 11(2):229–252. [Baroni et al., 2012] Baroni, P., Boella, G., Cerutti, F., Giacomin, M., van der Torre, L., and Villata, S. (2012). On Input/Output Argumentation Frameworks. In Proceedings of the 4th International Conference on Computational Models of Arguments (COMMA 2012), pages 358–365. [Baroni et al., 2005] Baroni, P., Giacomin, M., and Guida, G. (2005). SCC-recursiveness: a general schema for argumentation semantics. Artificial Intelligence, 168(1-2):165–210. [Baumann et al., 2012] Baumann, R., Brewka, G., Dvorák, W., and Woltran, S. (2012). Parameterized Splitting: A Simple Modification-Based Approach. In Erdem, E., Lee, J., Lierler, Y., and Pearce, D., editors, Correct Reasoning, volume 7265 of Lecture Notes in Computer Science, pages 57–71. Springer Berlin Heidelberg.
  • 46. References II [Besnard and Doutre, 2004] Besnard, P. and Doutre, S. (2004). Checking the acceptability of a set of arguments. In Proceedings of the 10th International Workshop on Non-Monotonic Reasoning (NMR 2004), pages 59–64. [Caminada, 2006] Caminada, M. (2006). On the Issue of Reinstatement in Argumentation. In Proceedings of the 10th European Conference on Logics in Artificial Intelligence (JELIA 2006), pages 111–123. [Cerutti et al., 2014] Cerutti, F., Dunne, P. E., Giacomin, M., and Vallati, M. (2014). Computing Preferred Extensions in Abstract Argumentation: A SAT-Based Approach. In Black, E., Modgil, S., and Oren, N., editors, TAFA 2013, volume 8306 of Lecture Notes in Computer Science, pages 176–193. Springer-Verlag Berlin Heidelberg. [Dvorák et al., 2012a] Dvorák, W., Järvisalo, M., Wallner, J. P., and Woltran, S. (2012a). Complexity-Sensitive Decision Procedures for Abstract Argumentation. In Proceedings of 13th International Conference on Principles of Knowledge Representation and Reasoning (KR 2012), pages 54–64.
  • 47. References III [Dvorák et al., 2014] Dvorák, W., Järvisalo, M., Wallner, J. P., and Woltran, S. (2014). Complexity-sensitive decision procedures for abstract argumentation. Artificial Intelligence, 206:53–78. [Dvorák et al., 2012b] Dvorák, W., Pichler, R., and Woltran, S. (2012b). Towards fixed-parameter tractable algorithms for abstract argumentation. Artificial Intelligence, 186:1–37. [Egly et al., 2010] Egly, U., Alice Gaggl, S., and Woltran, S. (2010). Answer-set programming encodings for argumentation frameworks. Argument Computation, 1(2):147–177. [Liao et al., 2013] Liao, B., Lei, L., and Dai, J. (2013). Computing Preferred Labellings by Exploiting SCCs and Most Sceptically Rejected Arguments. In Second International Workshop on Theory and Applications of Formal Argumentation (TAFA-13). [Nofal et al., 2014] Nofal, S., Atkinson, K., and Dunne, P. E. (2014). Algorithms for decision problems in argument systems under preferred semantics. Artificial Intelligence, 207:23–51.