This document proposes a soft set-based approach for clustering web user transactions to achieve lower computational complexity and higher clustering purity compared to previous rough set approaches. Unlike rough set approaches that use similarity, the proposed approach uses a co-occurrence approach based on soft set theory. The soft set representation of web user transactions allows modeling as a binary-valued information system. The approach is evaluated in comparison to two previous rough set-based approaches, demonstrating better performance with over 100% lower computational complexity and higher cluster purity.