The document discusses feature subset selection for high dimensional data using clustering techniques. It proposes the FAST algorithm which has three steps: 1) remove irrelevant features, 2) divide features into clusters using DBSCAN, and 3) select the most representative feature from each cluster. DBSCAN is a density-based clustering algorithm that can identify clusters of varying densities and detect outliers. The FAST algorithm is evaluated to select a small number of discriminative features from high dimensional data in an efficient manner. It aims to remove irrelevant and redundant features to improve predictive accuracy while handling large feature sets.