This document discusses various methods for customer segmentation through analysis of massive customer transaction data, including K-Means clustering, PAM clustering, agglomerative clustering, divisive clustering, and density-based clustering. It finds that K-Means is the most commonly used partitioning method. The document also reviews related work on customer segmentation and clustering algorithms like CLARA, CLARANS, BIRCH, ROCK, CHAMELEON, CURE, DHCC, DBSCAN, and LOF. It proposes a framework for an online shopping site that would apply these techniques to group customers based on their product preferences in transaction data.