Action Theory Contraction and Minimal Change

                                      Ivan Jos´ Varzinczak
                                              e

                                      Knowledge Systems Group
                                           Meraka Institute
                                      CSIR Pretoria, South Africa


                                              KR’2008




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                Action Theory Contraction   KR’2008   1 / 24
Motivation




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   2 / 24
Motivation


                                                         Knowledge Base
                                                         ‘A coffee is a hot drink’
                                                         ‘With a token I can buy coffee’
                                                         ‘After buying I have a hot
                                                         drink”
                                                                       ...




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction                KR’2008   2 / 24
Motivation


                                                                            ¬t, c, h
                                                                       b               b

                                                                  t, c, h           t, ¬c, h
                                                                                b

                                                         ¬t, ¬c, ¬h     t, ¬c, ¬h           ¬t, ¬c, h




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction                        KR’2008   2 / 24
Motivation



                                                         Observations
                                                         ‘I have a cold coffee’
                                                         ‘I cannot buy’
                                                         ‘I bought and got no hot drink’




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction                  KR’2008   2 / 24
Motivation



                                                         Observations
                                                         ‘I have a cold coffee’
                                                         ‘I cannot buy’
                                                         ‘I bought and got no hot drink’




               Need for change the laws about the behavior of actions




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction                  KR’2008   2 / 24
Motivation


                                                                            ¬t, c, h
                                                                       b               b

                                                                  t, c, h           t, ¬c, h
                                                                                b

                                                         ¬t, ¬c, ¬h     t, ¬c, ¬h           ¬t, ¬c, h



               Need for change the laws about the behavior of actions




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction                        KR’2008   2 / 24
Motivation


                                                                            ¬t, c, h             c, ¬h
                                                                       b               b

                                                                  t, c, h           t, ¬c, h
                                                                                b

                                                         ¬t, ¬c, ¬h     t, ¬c, ¬h           ¬t, ¬c, h



               Need for change the laws about the behavior of actions




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction                        KR’2008     2 / 24
Motivation


                                                                            ¬t, c, h
                                                                       b               b

                                                                  t, c, h           t, ¬c, h
                                                                                b

                                                         ¬t, ¬c, ¬h     t, ¬c, ¬h           ¬t, ¬c, h



               Need for change the laws about the behavior of actions




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction                        KR’2008   2 / 24
Motivation


                                                                            ¬t, c, h
                                                                                       b

                                                                  t, c, h           t, ¬c, h
                                                                                b

                                                         ¬t, ¬c, ¬h     t, ¬c, ¬h           ¬t, ¬c, h



               Need for change the laws about the behavior of actions




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction                        KR’2008   2 / 24
Motivation


                                                                            ¬t, c, h
                                                                       b               b

                                                                  t, c, h           t, ¬c, h
                                                                                b

                                                         ¬t, ¬c, ¬h     t, ¬c, ¬h           ¬t, ¬c, h



               Need for change the laws about the behavior of actions




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction                        KR’2008   2 / 24
Motivation


                                                                              ¬t, c, h
                                                                          b              b

                                                                  t, c, h             t, ¬c, h
                                                                                  b

                                                         ¬t, ¬c, ¬h       t, ¬c, ¬h           ¬t, ¬c, h

                                                                      b

               Need for change the laws about the behavior of actions




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction                          KR’2008   2 / 24
Outline


 1   Preliminaries
       Action Theories in Dynamic Logic



 2   Contraction of Laws
       Semantic Contraction
       Postulates



 3   Conclusion




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   3 / 24
Outline


 1   Preliminaries
       Action Theories in Dynamic Logic



 2   Contraction of Laws
       Semantic Contraction
       Postulates



 3   Conclusion




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   3 / 24
Outline


 1   Preliminaries
       Action Theories in Dynamic Logic



 2   Contraction of Laws
       Semantic Contraction
       Postulates



 3   Conclusion




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   3 / 24
Outline


 1   Preliminaries
       Action Theories in Dynamic Logic



 2   Contraction of Laws
       Semantic Contraction
       Postulates



 3   Conclusion




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   4 / 24
Action Theories in Dynamic Logic
 Dynamic Logic
        Well defined semantics
           ◮   Possible worlds models
        Expressive
           ◮   Actions, state constraints, nondeterminism
        Decidable
           ◮   exptime or pspace-complete, though




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   5 / 24
Action Theories in Dynamic Logic
 Dynamic Logic
        Well defined semantics
           ◮   Possible worlds models
        Expressive
           ◮   Actions, state constraints, nondeterminism
        Decidable
           ◮   exptime or pspace-complete, though




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   5 / 24
Action Theories in Dynamic Logic
 Dynamic Logic
        Well defined semantics
           ◮   Possible worlds models
        Expressive
           ◮   Actions, state constraints, nondeterminism
        Decidable
           ◮   exptime or pspace-complete, though




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   5 / 24
Action Theories in Dynamic Logic
 Dynamic Logic
        Well defined semantics
           ◮   Possible worlds models
        Expressive
           ◮   Actions, state constraints, nondeterminism
        Decidable
           ◮   exptime or pspace-complete, though




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   5 / 24
Action Theories in Dynamic Logic
 Possible worlds semantics: Transition Systems M = W , R
        W : possible worlds
        R : accessibility relation

                                                     a1
                                      p1 , ¬p2                   p1 , p2   a2


                      M :             a2
                                                       a1


                                      ¬p1 , p2




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                    Action Theory Contraction          KR’2008   6 / 24
Action Theories in Dynamic Logic
 Formulas that hold in M

                             a1
           p1 , ¬p2                   p1 , p2          a2

                                                                     p1 ∨ p2
M :         a2
                               a1                                    p1 → [a1 ]p2

                                                                     p2 → a 2 ⊤
           ¬p1 , p2
                                                                     ¬p1 → a1 ⊤




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                Action Theory Contraction                  KR’2008   7 / 24
Action Theories in Dynamic Logic
 Formulas that hold in M

                             a1
           p1 , ¬p2                   p1 , p2          a2

                                                                     p1 ∨ p2
M :         a2
                               a1                                    p1 → [a1 ]p2

                                                                     p2 → a 2 ⊤
           ¬p1 , p2
                                                                     ¬p1 → a1 ⊤




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                Action Theory Contraction                  KR’2008   7 / 24
Action Theories in Dynamic Logic
 Formulas that hold in M

                             a1
           p1 , ¬p2                   p1 , p2          a2

                                                                     p1 ∨ p2
M :         a2
                               a1                                    p1 → [a1 ]p2

                                                                     p2 → a 2 ⊤
           ¬p1 , p2
                                                                     ¬p1 → a1 ⊤




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                Action Theory Contraction                  KR’2008   7 / 24
Action Theories in Dynamic Logic
 Formulas that hold in M

                             a1
           p1 , ¬p2                   p1 , p2          a2

                                                                     p1 ∨ p2
M :         a2
                               a1                                    p1 → [a1 ]p2

                                                                     p2 → a 2 ⊤
           ¬p1 , p2
                                                                     ¬p1 → a1 ⊤




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                Action Theory Contraction                  KR’2008   7 / 24
Action Theories in Dynamic Logic
 Formulas that hold in M

                             a1
           p1 , ¬p2                   p1 , p2          a2

                                                                     p1 ∨ p2
M :         a2
                               a1                                    p1 → [a1 ]p2

                                                                     p2 → a 2 ⊤
           ¬p1 , p2
                                                                     ¬p1 → a1 ⊤      ±



Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                Action Theory Contraction                  KR’2008   7 / 24
Action Theories in Dynamic Logic
 Describing Laws
 In RAA: 3 types of laws
        Static Laws: ϕ
           ◮   coffee → hot

        Executability Laws: ϕ → a ⊤
           ◮   token → buy ⊤

        Effect Laws: ϕ → [a]ψ
           ◮   ¬coffee → [buy]coffee




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   8 / 24
Action Theories in Dynamic Logic
 Describing Laws
 In RAA: 3 types of laws
        Static Laws: ϕ
           ◮   coffee → hot

        Executability Laws: ϕ → a ⊤
           ◮   token → buy ⊤

        Effect Laws: ϕ → [a]ψ
           ◮   ¬coffee → [buy]coffee




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   8 / 24
Action Theories in Dynamic Logic
 Describing Laws
 In RAA: 3 types of laws
        Static Laws: ϕ
           ◮   coffee → hot

        Executability Laws: ϕ → a ⊤
           ◮   token → buy ⊤

        Effect Laws: ϕ → [a]ψ
           ◮   ¬coffee → [buy]coffee




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   8 / 24
Action Theories in Dynamic Logic
 One model of our scenario example

                                                    ¬t, c, h
                                                b              b
                       M :
                                          t, c, h            t, ¬c, h
                                                         b

                                  ¬t, ¬c, ¬h     t, ¬c, ¬h          ¬t, ¬c, h




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               Action Theory Contraction               KR’2008   9 / 24
Outline


 1   Preliminaries
       Action Theories in Dynamic Logic



 2   Contraction of Laws
       Semantic Contraction
       Postulates



 3   Conclusion




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   10 / 24
Intuitions About Contraction
 Contracting laws

                                                   ¬t, c, h
                                               b              b

                                         t, c, h           t, ¬c, h
                                                       b

                                 ¬t, ¬c, ¬h     t, ¬c, ¬h           ¬t, ¬c, h




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               Action Theory Contraction               KR’2008   11 / 24
Intuitions About Contraction
 Contracting coffee → hot

                                                   ¬t, c, h
                                               b              b

                                         t, c, h           t, ¬c, h
                                                       b

                                 ¬t, ¬c, ¬h     t, ¬c, ¬h           ¬t, ¬c, h




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               Action Theory Contraction               KR’2008   11 / 24
Intuitions About Contraction
 Contracting coffee → hot

                                                   ¬t, c, h         t, c, ¬h
                                               b              b

                                         t, c, h           t, ¬c, h
                                                       b

                                 ¬t, ¬c, ¬h     t, ¬c, ¬h           ¬t, ¬c, h




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               Action Theory Contraction               KR’2008   11 / 24
Intuitions About Contraction
 Contracting coffee → hot

                                  ¬t, c, ¬h         ¬t, c, h
                                                b              b

                                          t, c, h           t, ¬c, h
                                                        b

                                 ¬t, ¬c, ¬h      t, ¬c, ¬h           ¬t, ¬c, h




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                Action Theory Contraction               KR’2008   11 / 24
Intuitions About Contraction
 Contracting coffee → hot

                                  ¬t, c, ¬h         ¬t, c, h         t, c, ¬h
                                                b              b

                                          t, c, h           t, ¬c, h
                                                        b

                                 ¬t, ¬c, ¬h      t, ¬c, ¬h           ¬t, ¬c, h




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                Action Theory Contraction               KR’2008   11 / 24
Intuitions About Contraction
 Contracting laws

                                                   ¬t, c, h
                                               b              b

                                         t, c, h           t, ¬c, h
                                                       b

                                 ¬t, ¬c, ¬h     t, ¬c, ¬h           ¬t, ¬c, h




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               Action Theory Contraction               KR’2008   11 / 24
Intuitions About Contraction
 Contracting token → buy ⊤

                                                   ¬t, c, h
                                               b              b

                                         t, c, h           t, ¬c, h
                                                       b

                                 ¬t, ¬c, ¬h     t, ¬c, ¬h           ¬t, ¬c, h




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               Action Theory Contraction               KR’2008   11 / 24
Intuitions About Contraction
 Contracting token → buy ⊤

                                                   ¬t, c, h
                                                              b

                                         t, c, h           t, ¬c, h
                                                       b

                                 ¬t, ¬c, ¬h     t, ¬c, ¬h           ¬t, ¬c, h




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               Action Theory Contraction               KR’2008   11 / 24
Intuitions About Contraction
 Contracting token → buy ⊤

                                                   ¬t, c, h
                                               b              b

                                         t, c, h           t, ¬c, h


                                 ¬t, ¬c, ¬h     t, ¬c, ¬h           ¬t, ¬c, h




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               Action Theory Contraction               KR’2008   11 / 24
Intuitions About Contraction
 Contracting token → buy ⊤

                                                   ¬t, c, h
                                               b

                                         t, c, h           t, ¬c, h
                                                       b

                                 ¬t, ¬c, ¬h     t, ¬c, ¬h           ¬t, ¬c, h




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               Action Theory Contraction               KR’2008   11 / 24
Intuitions About Contraction
 Contracting token → buy ⊤

                                                   ¬t, c, h


                                         t, c, h           t, ¬c, h
                                                       b

                                 ¬t, ¬c, ¬h     t, ¬c, ¬h           ¬t, ¬c, h




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               Action Theory Contraction               KR’2008   11 / 24
Intuitions About Contraction
 Contracting laws

                                                   ¬t, c, h
                                               b              b

                                         t, c, h           t, ¬c, h
                                                       b

                                 ¬t, ¬c, ¬h     t, ¬c, ¬h           ¬t, ¬c, h




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               Action Theory Contraction               KR’2008   11 / 24
Intuitions About Contraction
 Contracting token → [buy]hot

                                                   ¬t, c, h
                                               b              b

                                         t, c, h           t, ¬c, h
                                                       b

                                 ¬t, ¬c, ¬h     t, ¬c, ¬h           ¬t, ¬c, h




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               Action Theory Contraction               KR’2008   11 / 24
Intuitions About Contraction
 Contracting token → [buy]hot

                                                      ¬t, c, h
                                                  b              b

                                         t, c, h              t, ¬c, h
                                                          b

                                 ¬t, ¬c, ¬h       t, ¬c, ¬h          ¬t, ¬c, h

                                              b




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               Action Theory Contraction                KR’2008   11 / 24
Intuitions About Contraction
 Contracting token → [buy]hot

                                                   ¬t, c, h
                                               b              b

                                         t, c, h           t, ¬c, h
                                                       b
                                                         b
                                 ¬t, ¬c, ¬h     t, ¬c, ¬h           ¬t, ¬c, h




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               Action Theory Contraction               KR’2008   11 / 24
Intuitions About Contraction
 Contracting token → [buy]hot

                                                      ¬t, c, h
                                                  b              b

                                         t, c, h              t, ¬c, h
                                                          b
                                                           b
                                 ¬t, ¬c, ¬h       t, ¬c, ¬h          ¬t, ¬c, h

                                              b




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               Action Theory Contraction                KR’2008   11 / 24
Minimal Change
 Choosing models
        Distance between models
           ◮   Prefer models closest to the original one
           ◮   Hamming distance, Dalal, etc
        Distance dependent on the type of law retracted
           ◮   Static law: look at the set of possible states (worlds)
           ◮   Executability law: look at the leaving arrows
           ◮   Effect law: look at the arriving arrows

 Definition
 Let M = W , R . M ′ = W ′ , R ′ is as close to M as M ′′ = W ′′ , R ′′
 iff
     either W −W ′ ⊆ W −W ′′
              ˙        ˙
     or W −W ′ = W −W ′′ and R −R ′ ⊆ R −R ′′
           ˙        ˙           ˙         ˙

 Notation: M ′            M   M ′′
Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction          KR’2008   12 / 24
Minimal Change
 Choosing models
        Distance between models
           ◮   Prefer models closest to the original one
           ◮   Hamming distance, Dalal, etc
        Distance dependent on the type of law retracted
           ◮   Static law: look at the set of possible states (worlds)
           ◮   Executability law: look at the leaving arrows
           ◮   Effect law: look at the arriving arrows

 Definition
 Let M = W , R . M ′ = W ′ , R ′ is as close to M as M ′′ = W ′′ , R ′′
 iff
     either W −W ′ ⊆ W −W ′′
              ˙        ˙
     or W −W ′ = W −W ′′ and R −R ′ ⊆ R −R ′′
           ˙        ˙           ˙         ˙

 Notation: M ′            M   M ′′
Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction          KR’2008   12 / 24
Minimal Change
 Choosing models
        Distance between models
           ◮   Prefer models closest to the original one
           ◮   Hamming distance, Dalal, etc
        Distance dependent on the type of law retracted
           ◮   Static law: look at the set of possible states (worlds)
           ◮   Executability law: look at the leaving arrows
           ◮   Effect law: look at the arriving arrows

 Definition
 Let M = W , R . M ′ = W ′ , R ′ is as close to M as M ′′ = W ′′ , R ′′
 iff
     either W −W ′ ⊆ W −W ′′
              ˙        ˙
     or W −W ′ = W −W ′′ and R −R ′ ⊆ R −R ′′
           ˙        ˙           ˙         ˙

 Notation: M ′            M   M ′′
Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction          KR’2008   12 / 24
Minimal Change
 Choosing models: contracting ϕ

 Definition
 Let M = W , R . M ′ = W ′ , R ′ ∈ Mϕ iff
                                    −

        W ⊆ W′
        R = R′
                                      M′
        There is w ∈ W ′ s.t. |= ϕ
                               w


 Definition
 contract(M , ϕ) =                    −
                                 min{Mϕ ,    M}




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                              Action Theory Contraction   KR’2008   13 / 24
Minimal Change
 Choosing models: contracting ϕ

 Definition
 Let M = W , R . M ′ = W ′ , R ′ ∈ Mϕ iff
                                    −

        W ⊆ W′
        R = R′
                                      M′
        There is w ∈ W ′ s.t. |= ϕ
                               w


 Definition
 contract(M , ϕ) =                    −
                                 min{Mϕ ,    M}




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                              Action Theory Contraction   KR’2008   13 / 24
Minimal Change
 Choosing models: contracting coffee → hot


                         ¬t, c, h       t, c, ¬h                 ¬t, c, ¬h         ¬t, c, h          t, c, ¬h
                     b              b                                         b               b

               t, c, h           t, ¬c, h                                t, c, h           t, ¬c, h
                                                           M
                             b                                                         b

  ¬t, ¬c, ¬h          t, ¬c, ¬h         ¬t, ¬c, h              ¬t, ¬c, ¬h      t, ¬c, ¬h          ¬t, ¬c, h




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                   Action Theory Contraction                      KR’2008      14 / 24
Minimal Change
 Choosing models: contracting coffee → hot


                         ¬t, c, h       t, c, ¬h                 ¬t, c, ¬h         ¬t, c, h
                     b              b                                         b               b

               t, c, h           t, ¬c, h                                t, c, h           t, ¬c, h
                             b                                                         b

  ¬t, ¬c, ¬h          t, ¬c, ¬h         ¬t, ¬c, h              ¬t, ¬c, ¬h      t, ¬c, ¬h          ¬t, ¬c, h


                                              Incomparable




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                   Action Theory Contraction                      KR’2008    14 / 24
Minimal Change
 Choosing models: contracting ϕ → a ⊤

 Definition
                                    −
 Let M = W , R . M ′ = W ′ , R ′ ∈ Mϕ→                        a ⊤   iff
        W′ = W
        R′ ⊆ R
                                           M
        If (w , w ′ ) ∈ R  R ′ , then |= ϕ
                                        w
                                      M′
        There is w ∈ W ′ s.t. |= ϕ → a ⊤
                               w


 Definition
                                            −
 contract(M , ϕ → a ⊤) =               min{Mϕ→           a ⊤,      M}




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                              Action Theory Contraction         KR’2008   15 / 24
Minimal Change
 Choosing models: contracting ϕ → a ⊤

 Definition
                                    −
 Let M = W , R . M ′ = W ′ , R ′ ∈ Mϕ→                        a ⊤   iff
        W′ = W
        R′ ⊆ R
                                           M
        If (w , w ′ ) ∈ R  R ′ , then |= ϕ
                                        w
                                      M′
        There is w ∈ W ′ s.t. |= ϕ → a ⊤
                               w


 Definition
                                            −
 contract(M , ϕ → a ⊤) =               min{Mϕ→           a ⊤,      M}




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                              Action Theory Contraction         KR’2008   15 / 24
Minimal Change
 Choosing models: contracting token → buy ⊤


                         ¬t, c, h                                                 ¬t, c, h
                                    b

               t, c, h           t, ¬c, h                               t, c, h          t, ¬c, h
                                                           M
                             b

  ¬t, ¬c, ¬h          t, ¬c, ¬h         ¬t, ¬c, h              ¬t, ¬c, ¬h     t, ¬c, ¬h        ¬t, ¬c, h




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                   Action Theory Contraction                    KR’2008    16 / 24
Minimal Change
 Choosing models: contracting token → buy ⊤


                         ¬t, c, h                                                 ¬t, c, h
                                    b                                        b               b

               t, c, h           t, ¬c, h                               t, c, h          t, ¬c, h
                             b

  ¬t, ¬c, ¬h          t, ¬c, ¬h         ¬t, ¬c, h              ¬t, ¬c, ¬h     t, ¬c, ¬h          ¬t, ¬c, h


                                              Incomparable




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                   Action Theory Contraction                    KR’2008    16 / 24
Minimal Change
 Choosing models: contracting ϕ → [a]ψ

 Definition
                                         −
 Let M = W , R . Then M ′ = W ′ , R ′ ∈ Mϕ→[a]ψ iff
        W′ = W
        R ⊆ R′
        If (w , w ′ ) ∈ R ′  R , then w ′ ∈ RelTarget(w , ¬(ϕ → [a]ψ))
                                      M′
        There is w ∈ W ′ s.t. |= ϕ → [a]ψ
                               w


 Definition
                                            −
 contract(M , ϕ → [a]ψ) =              min{Mϕ→[a]ψ ,               M}




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                              Action Theory Contraction        KR’2008   17 / 24
Minimal Change
 Choosing models: contracting ϕ → [a]ψ

 Definition
                                         −
 Let M = W , R . Then M ′ = W ′ , R ′ ∈ Mϕ→[a]ψ iff
        W′ = W
        R ⊆ R′
        If (w , w ′ ) ∈ R ′  R , then w ′ ∈ RelTarget(w , ¬(ϕ → [a]ψ))
                                      M′
        There is w ∈ W ′ s.t. |= ϕ → [a]ψ
                               w


 Definition
                                            −
 contract(M , ϕ → [a]ψ) =              min{Mϕ→[a]ψ ,               M}




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                              Action Theory Contraction        KR’2008   17 / 24
Minimal Change
 Choosing models: contracting token → [buy]hot


                          ¬t, c, h                                                   ¬t, c, h
                      b              b                                           b              b

               t, c, h            t, ¬c, h                               t, c, h             t, ¬c, h
                                                            M
                              b                                                          b
                                                                         b
  ¬t, ¬c, ¬h          t, ¬c, ¬h          ¬t, ¬c, h              ¬t, ¬c, ¬h       t, ¬c, ¬h          ¬t, ¬c, h

                  b                                                          b




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                    Action Theory Contraction                       KR’2008    18 / 24
Minimal Change
 Choosing models: contracting token → [buy]hot


                          ¬t, c, h                                                 ¬t, c, h
                      b              b                                        b               b

               t, c, h            t, ¬c, h                               t, c, h           t, ¬c, h
                              b                                                        b
                                                                         b
  ¬t, ¬c, ¬h          t, ¬c, ¬h          ¬t, ¬c, h              ¬t, ¬c, ¬h     t, ¬c, ¬h          ¬t, ¬c, h

                  b
                                               Incomparable




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                    Action Theory Contraction                     KR’2008    18 / 24
Quick look: Correctness of the Algorithms
        T an action theory
        Φ a law
 We have defined algorithms that contract Φ from T, giving a weaker T ′

        ϕ a static law
        S ⊆ T set of static laws in T

 Definition (Herzig & Varzinczak, AiML 2005)
 T is modular iff for every static law ϕ, if T |= ϕ, then S |= ϕ
                                               PDL          CPL


 Theorem
 Under modularity, the algorithms are correct w.r.t. our semantics




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   19 / 24
Quick look: Correctness of the Algorithms
        T an action theory
        Φ a law
 We have defined algorithms that contract Φ from T, giving a weaker T ′

        ϕ a static law
        S ⊆ T set of static laws in T

 Definition (Herzig & Varzinczak, AiML 2005)
 T is modular iff for every static law ϕ, if T |= ϕ, then S |= ϕ
                                               PDL          CPL


 Theorem
 Under modularity, the algorithms are correct w.r.t. our semantics




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   19 / 24
Quick look: Correctness of the Algorithms
        T an action theory
        Φ a law
 We have defined algorithms that contract Φ from T, giving a weaker T ′

        ϕ a static law
        S ⊆ T set of static laws in T

 Definition (Herzig & Varzinczak, AiML 2005)
 T is modular iff for every static law ϕ, if T |= ϕ, then S |= ϕ
                                               PDL          CPL


 Theorem
 Under modularity, the algorithms are correct w.r.t. our semantics




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   19 / 24
Outline


 1   Preliminaries
       Action Theories in Dynamic Logic



 2   Contraction of Laws
       Semantic Contraction
       Postulates



 3   Conclusion




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   20 / 24
Postulates

 Monotonicity
 T |= T ′
    PDL




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   21 / 24
Postulates

 Monotonicity
 T |= T ′
    PDL




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   21 / 24
Postulates

 Monotonicity
 T |= T ′
    PDL



 Preservation
 If T |= Φ, then |= T ↔ T ′
       PDL        PDL




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   21 / 24
Postulates

 Monotonicity
 T |= T ′
    PDL



 Preservation
 If T |= Φ, then |= T ↔ T ′
       PDL        PDL




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   21 / 24
Postulates

 Monotonicity
 T |= T ′
    PDL



 Preservation
 If T |= Φ, then |= T ↔ T ′
       PDL        PDL



 Success
 If T |= ⊥ and |= Φ, then T ′ |= Φ
       PDL      PDL            PDL




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   21 / 24
Postulates

 Monotonicity
 T |= T ′
    PDL



 Preservation
 If T |= Φ, then |= T ↔ T ′
       PDL        PDL



 Success
 If T |= ⊥ and |= Φ, then T ′ |= Φ
       PDL      PDL            PDL
                                                         (under modularity)




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction               KR’2008   21 / 24
Postulates

 Equivalences
 If |= T1 ↔ T2 and |= Φ1 ↔ Φ2 , then |= T1′ ↔ T2′ , for T1′ ∈ (T1 )−
     PDL            PDL               PDL                          Φ2
 and T2′ ∈ (T2 )−1
                Φ




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   22 / 24
Postulates

 Equivalences
 If |= T1 ↔ T2 and |= Φ1 ↔ Φ2 , then |= T1′ ↔ T2′ , for T1′ ∈ (T1 )−
     PDL            PDL               PDL                          Φ2
 and T2′ ∈ (T2 )−1
                Φ              (under modularity)




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                              Action Theory Contraction   KR’2008   22 / 24
Postulates

 Equivalences
 If |= T1 ↔ T2 and |= Φ1 ↔ Φ2 , then |= T1′ ↔ T2′ , for T1′ ∈ (T1 )−
     PDL            PDL               PDL                          Φ2
 and T2′ ∈ (T2 )−1
                Φ              (under modularity)


 Recovery
 T ′ ∪ {Φ} |= T
            PDL




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                              Action Theory Contraction   KR’2008   22 / 24
Postulates

 Equivalences
 If |= T1 ↔ T2 and |= Φ1 ↔ Φ2 , then |= T1′ ↔ T2′ , for T1′ ∈ (T1 )−
     PDL            PDL               PDL                          Φ2
 and T2′ ∈ (T2 )−1
                Φ              (under modularity)


 Recovery
 T ′ ∪ {Φ} |= T
            PDL
                              (under modularity)




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                              Action Theory Contraction   KR’2008   22 / 24
Postulates

 Equivalences
 If |= T1 ↔ T2 and |= Φ1 ↔ Φ2 , then |= T1′ ↔ T2′ , for T1′ ∈ (T1 )−
     PDL            PDL               PDL                          Φ2
 and T2′ ∈ (T2 )−1
                Φ              (under modularity)


 Recovery
 T ′ ∪ {Φ} |= T
            PDL
                              (under modularity)


 Preservation of modularity
 If T is modular, then T ′ is modular




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                              Action Theory Contraction   KR’2008   22 / 24
Postulates

 Equivalences
 If |= T1 ↔ T2 and |= Φ1 ↔ Φ2 , then |= T1′ ↔ T2′ , for T1′ ∈ (T1 )−
     PDL            PDL               PDL                          Φ2
 and T2′ ∈ (T2 )−1
                Φ              (under modularity)


 Recovery
 T ′ ∪ {Φ} |= T
            PDL
                              (under modularity)


 Preservation of modularity
 If T is modular, then T ′ is modular




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                              Action Theory Contraction   KR’2008   22 / 24
Conclusion
 Contribution
        Semantics for action theory change
           ◮   Distance between models
           ◮   Minimal change

        Syntactic operators (algorithms)
           ◮   Correct w.r.t. the semantics

        Postulates for action theory change
           ◮   Modularity fruitful




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   23 / 24
Conclusion
 Contribution
        Semantics for action theory change
           ◮   Distance between models
           ◮   Minimal change

        Syntactic operators (algorithms)
           ◮   Correct w.r.t. the semantics

        Postulates for action theory change
           ◮   Modularity fruitful




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   23 / 24
Conclusion
 Contribution
        Semantics for action theory change
           ◮   Distance between models
           ◮   Minimal change

        Syntactic operators (algorithms)
           ◮   Correct w.r.t. the semantics

        Postulates for action theory change
           ◮   Modularity fruitful




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction   KR’2008   23 / 24
Conclusion
 Ongoing research and future work
        Action theory revision
           ◮   Making formulas true in a model (first results: NMR’08)

        Contraction of general formulas
           ◮   not only ϕ, ϕ → a ⊤, ϕ → [a]ψ

        Applications in Description Logics
           ◮   ontology evolution/debugging




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction         KR’2008   24 / 24
Conclusion
 Ongoing research and future work
        Action theory revision
           ◮   Making formulas true in a model (first results: NMR’08)

        Contraction of general formulas
           ◮   not only ϕ, ϕ → a ⊤, ϕ → [a]ψ

        Applications in Description Logics
           ◮   ontology evolution/debugging




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction         KR’2008   24 / 24
Conclusion
 Ongoing research and future work
        Action theory revision
           ◮   Making formulas true in a model (first results: NMR’08)

        Contraction of general formulas
           ◮   not only ϕ, ϕ → a ⊤, ϕ → [a]ψ

        Applications in Description Logics
           ◮   ontology evolution/debugging




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             Action Theory Contraction         KR’2008   24 / 24

More Related Content

PDF
Impact of training and development on organizational
PDF
A COMPARATIVE SURVEY OF THE IMPACT OF TRAINING AND DEVELOPMENT ON QUALITY OF ...
PDF
Impact of training and development programs conducted in organizations. kezia...
DOCX
Training and Development-modified (2)
DOCX
IMPACT OF TRAINING AND DEVELOPMENT ON EMPLOYEE PERFORMANCE
PDF
Semantic Diff as the Basis for Knowledge Base Versioning
PDF
Pertinence Construed Modally
PDF
On Action Theory Change: Semantics for Contraction and its Properties
Impact of training and development on organizational
A COMPARATIVE SURVEY OF THE IMPACT OF TRAINING AND DEVELOPMENT ON QUALITY OF ...
Impact of training and development programs conducted in organizations. kezia...
Training and Development-modified (2)
IMPACT OF TRAINING AND DEVELOPMENT ON EMPLOYEE PERFORMANCE
Semantic Diff as the Basis for Knowledge Base Versioning
Pertinence Construed Modally
On Action Theory Change: Semantics for Contraction and its Properties

More from Ivan Varzinczak (17)

PDF
A Modularity Approach for a Fragment of ALC
PDF
Proceedings of ARCOE'09
PDF
Next Steps in Propositional Horn Contraction
PDF
On the Revision of Action Laws: An Algorithmic Approach
PDF
Action Theory Contraction and Minimal Change
PDF
Causalidade e dependência em raciocínio sobre ações
PDF
Cohesion, Coupling and the Meta-theory of Actions
PDF
Meta-theory of Actions: Beyond Consistency
PDF
Domain Descriptions Should be Modular
PDF
Elaborating Domain Descriptions
PDF
What Is a Good Domain Description? Evaluating and Revising Action Theories in...
PDF
Regression in Modal Logic
PDF
On the Modularity of Theories
PDF
On the Revision of Action Laws: an Algorithmic Approach
PDF
First Steps in EL Contraction
PDF
What Is a Good Domain Description? Evaluating & Revising Action Theories in D...
PDF
Next Steps in Propositional Horn Contraction
A Modularity Approach for a Fragment of ALC
Proceedings of ARCOE'09
Next Steps in Propositional Horn Contraction
On the Revision of Action Laws: An Algorithmic Approach
Action Theory Contraction and Minimal Change
Causalidade e dependência em raciocínio sobre ações
Cohesion, Coupling and the Meta-theory of Actions
Meta-theory of Actions: Beyond Consistency
Domain Descriptions Should be Modular
Elaborating Domain Descriptions
What Is a Good Domain Description? Evaluating and Revising Action Theories in...
Regression in Modal Logic
On the Modularity of Theories
On the Revision of Action Laws: an Algorithmic Approach
First Steps in EL Contraction
What Is a Good Domain Description? Evaluating & Revising Action Theories in D...
Next Steps in Propositional Horn Contraction
Ad

Recently uploaded (20)

PPTX
Custom Battery Pack Design Considerations for Performance and Safety
PDF
Developing a website for English-speaking practice to English as a foreign la...
DOCX
search engine optimization ppt fir known well about this
PDF
STKI Israel Market Study 2025 version august
PDF
Flame analysis and combustion estimation using large language and vision assi...
PDF
UiPath Agentic Automation session 1: RPA to Agents
PDF
Taming the Chaos: How to Turn Unstructured Data into Decisions
PDF
A Late Bloomer's Guide to GenAI: Ethics, Bias, and Effective Prompting - Boha...
PDF
CloudStack 4.21: First Look Webinar slides
PDF
sustainability-14-14877-v2.pddhzftheheeeee
PDF
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
PPTX
Modernising the Digital Integration Hub
PDF
Hindi spoken digit analysis for native and non-native speakers
PDF
Five Habits of High-Impact Board Members
PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PDF
The influence of sentiment analysis in enhancing early warning system model f...
PPTX
Final SEM Unit 1 for mit wpu at pune .pptx
PPT
Galois Field Theory of Risk: A Perspective, Protocol, and Mathematical Backgr...
PPTX
The various Industrial Revolutions .pptx
PPT
Geologic Time for studying geology for geologist
Custom Battery Pack Design Considerations for Performance and Safety
Developing a website for English-speaking practice to English as a foreign la...
search engine optimization ppt fir known well about this
STKI Israel Market Study 2025 version august
Flame analysis and combustion estimation using large language and vision assi...
UiPath Agentic Automation session 1: RPA to Agents
Taming the Chaos: How to Turn Unstructured Data into Decisions
A Late Bloomer's Guide to GenAI: Ethics, Bias, and Effective Prompting - Boha...
CloudStack 4.21: First Look Webinar slides
sustainability-14-14877-v2.pddhzftheheeeee
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
Modernising the Digital Integration Hub
Hindi spoken digit analysis for native and non-native speakers
Five Habits of High-Impact Board Members
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
The influence of sentiment analysis in enhancing early warning system model f...
Final SEM Unit 1 for mit wpu at pune .pptx
Galois Field Theory of Risk: A Perspective, Protocol, and Mathematical Backgr...
The various Industrial Revolutions .pptx
Geologic Time for studying geology for geologist
Ad

Action Theory Contraction and Minimal Change

  • 1. Action Theory Contraction and Minimal Change Ivan Jos´ Varzinczak e Knowledge Systems Group Meraka Institute CSIR Pretoria, South Africa KR’2008 Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 1 / 24
  • 2. Motivation Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 2 / 24
  • 3. Motivation Knowledge Base ‘A coffee is a hot drink’ ‘With a token I can buy coffee’ ‘After buying I have a hot drink” ... Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 2 / 24
  • 4. Motivation ¬t, c, h b b t, c, h t, ¬c, h b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 2 / 24
  • 5. Motivation Observations ‘I have a cold coffee’ ‘I cannot buy’ ‘I bought and got no hot drink’ Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 2 / 24
  • 6. Motivation Observations ‘I have a cold coffee’ ‘I cannot buy’ ‘I bought and got no hot drink’ Need for change the laws about the behavior of actions Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 2 / 24
  • 7. Motivation ¬t, c, h b b t, c, h t, ¬c, h b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h Need for change the laws about the behavior of actions Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 2 / 24
  • 8. Motivation ¬t, c, h c, ¬h b b t, c, h t, ¬c, h b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h Need for change the laws about the behavior of actions Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 2 / 24
  • 9. Motivation ¬t, c, h b b t, c, h t, ¬c, h b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h Need for change the laws about the behavior of actions Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 2 / 24
  • 10. Motivation ¬t, c, h b t, c, h t, ¬c, h b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h Need for change the laws about the behavior of actions Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 2 / 24
  • 11. Motivation ¬t, c, h b b t, c, h t, ¬c, h b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h Need for change the laws about the behavior of actions Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 2 / 24
  • 12. Motivation ¬t, c, h b b t, c, h t, ¬c, h b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h b Need for change the laws about the behavior of actions Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 2 / 24
  • 13. Outline 1 Preliminaries Action Theories in Dynamic Logic 2 Contraction of Laws Semantic Contraction Postulates 3 Conclusion Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 3 / 24
  • 14. Outline 1 Preliminaries Action Theories in Dynamic Logic 2 Contraction of Laws Semantic Contraction Postulates 3 Conclusion Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 3 / 24
  • 15. Outline 1 Preliminaries Action Theories in Dynamic Logic 2 Contraction of Laws Semantic Contraction Postulates 3 Conclusion Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 3 / 24
  • 16. Outline 1 Preliminaries Action Theories in Dynamic Logic 2 Contraction of Laws Semantic Contraction Postulates 3 Conclusion Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 4 / 24
  • 17. Action Theories in Dynamic Logic Dynamic Logic Well defined semantics ◮ Possible worlds models Expressive ◮ Actions, state constraints, nondeterminism Decidable ◮ exptime or pspace-complete, though Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 5 / 24
  • 18. Action Theories in Dynamic Logic Dynamic Logic Well defined semantics ◮ Possible worlds models Expressive ◮ Actions, state constraints, nondeterminism Decidable ◮ exptime or pspace-complete, though Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 5 / 24
  • 19. Action Theories in Dynamic Logic Dynamic Logic Well defined semantics ◮ Possible worlds models Expressive ◮ Actions, state constraints, nondeterminism Decidable ◮ exptime or pspace-complete, though Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 5 / 24
  • 20. Action Theories in Dynamic Logic Dynamic Logic Well defined semantics ◮ Possible worlds models Expressive ◮ Actions, state constraints, nondeterminism Decidable ◮ exptime or pspace-complete, though Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 5 / 24
  • 21. Action Theories in Dynamic Logic Possible worlds semantics: Transition Systems M = W , R W : possible worlds R : accessibility relation a1 p1 , ¬p2 p1 , p2 a2 M : a2 a1 ¬p1 , p2 Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 6 / 24
  • 22. Action Theories in Dynamic Logic Formulas that hold in M a1 p1 , ¬p2 p1 , p2 a2 p1 ∨ p2 M : a2 a1 p1 → [a1 ]p2 p2 → a 2 ⊤ ¬p1 , p2 ¬p1 → a1 ⊤ Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 7 / 24
  • 23. Action Theories in Dynamic Logic Formulas that hold in M a1 p1 , ¬p2 p1 , p2 a2 p1 ∨ p2 M : a2 a1 p1 → [a1 ]p2 p2 → a 2 ⊤ ¬p1 , p2 ¬p1 → a1 ⊤ Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 7 / 24
  • 24. Action Theories in Dynamic Logic Formulas that hold in M a1 p1 , ¬p2 p1 , p2 a2 p1 ∨ p2 M : a2 a1 p1 → [a1 ]p2 p2 → a 2 ⊤ ¬p1 , p2 ¬p1 → a1 ⊤ Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 7 / 24
  • 25. Action Theories in Dynamic Logic Formulas that hold in M a1 p1 , ¬p2 p1 , p2 a2 p1 ∨ p2 M : a2 a1 p1 → [a1 ]p2 p2 → a 2 ⊤ ¬p1 , p2 ¬p1 → a1 ⊤ Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 7 / 24
  • 26. Action Theories in Dynamic Logic Formulas that hold in M a1 p1 , ¬p2 p1 , p2 a2 p1 ∨ p2 M : a2 a1 p1 → [a1 ]p2 p2 → a 2 ⊤ ¬p1 , p2 ¬p1 → a1 ⊤ ± Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 7 / 24
  • 27. Action Theories in Dynamic Logic Describing Laws In RAA: 3 types of laws Static Laws: ϕ ◮ coffee → hot Executability Laws: ϕ → a ⊤ ◮ token → buy ⊤ Effect Laws: ϕ → [a]ψ ◮ ¬coffee → [buy]coffee Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 8 / 24
  • 28. Action Theories in Dynamic Logic Describing Laws In RAA: 3 types of laws Static Laws: ϕ ◮ coffee → hot Executability Laws: ϕ → a ⊤ ◮ token → buy ⊤ Effect Laws: ϕ → [a]ψ ◮ ¬coffee → [buy]coffee Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 8 / 24
  • 29. Action Theories in Dynamic Logic Describing Laws In RAA: 3 types of laws Static Laws: ϕ ◮ coffee → hot Executability Laws: ϕ → a ⊤ ◮ token → buy ⊤ Effect Laws: ϕ → [a]ψ ◮ ¬coffee → [buy]coffee Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 8 / 24
  • 30. Action Theories in Dynamic Logic One model of our scenario example ¬t, c, h b b M : t, c, h t, ¬c, h b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 9 / 24
  • 31. Outline 1 Preliminaries Action Theories in Dynamic Logic 2 Contraction of Laws Semantic Contraction Postulates 3 Conclusion Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 10 / 24
  • 32. Intuitions About Contraction Contracting laws ¬t, c, h b b t, c, h t, ¬c, h b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 11 / 24
  • 33. Intuitions About Contraction Contracting coffee → hot ¬t, c, h b b t, c, h t, ¬c, h b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 11 / 24
  • 34. Intuitions About Contraction Contracting coffee → hot ¬t, c, h t, c, ¬h b b t, c, h t, ¬c, h b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 11 / 24
  • 35. Intuitions About Contraction Contracting coffee → hot ¬t, c, ¬h ¬t, c, h b b t, c, h t, ¬c, h b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 11 / 24
  • 36. Intuitions About Contraction Contracting coffee → hot ¬t, c, ¬h ¬t, c, h t, c, ¬h b b t, c, h t, ¬c, h b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 11 / 24
  • 37. Intuitions About Contraction Contracting laws ¬t, c, h b b t, c, h t, ¬c, h b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 11 / 24
  • 38. Intuitions About Contraction Contracting token → buy ⊤ ¬t, c, h b b t, c, h t, ¬c, h b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 11 / 24
  • 39. Intuitions About Contraction Contracting token → buy ⊤ ¬t, c, h b t, c, h t, ¬c, h b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 11 / 24
  • 40. Intuitions About Contraction Contracting token → buy ⊤ ¬t, c, h b b t, c, h t, ¬c, h ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 11 / 24
  • 41. Intuitions About Contraction Contracting token → buy ⊤ ¬t, c, h b t, c, h t, ¬c, h b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 11 / 24
  • 42. Intuitions About Contraction Contracting token → buy ⊤ ¬t, c, h t, c, h t, ¬c, h b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 11 / 24
  • 43. Intuitions About Contraction Contracting laws ¬t, c, h b b t, c, h t, ¬c, h b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 11 / 24
  • 44. Intuitions About Contraction Contracting token → [buy]hot ¬t, c, h b b t, c, h t, ¬c, h b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 11 / 24
  • 45. Intuitions About Contraction Contracting token → [buy]hot ¬t, c, h b b t, c, h t, ¬c, h b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h b Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 11 / 24
  • 46. Intuitions About Contraction Contracting token → [buy]hot ¬t, c, h b b t, c, h t, ¬c, h b b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 11 / 24
  • 47. Intuitions About Contraction Contracting token → [buy]hot ¬t, c, h b b t, c, h t, ¬c, h b b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h b Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 11 / 24
  • 48. Minimal Change Choosing models Distance between models ◮ Prefer models closest to the original one ◮ Hamming distance, Dalal, etc Distance dependent on the type of law retracted ◮ Static law: look at the set of possible states (worlds) ◮ Executability law: look at the leaving arrows ◮ Effect law: look at the arriving arrows Definition Let M = W , R . M ′ = W ′ , R ′ is as close to M as M ′′ = W ′′ , R ′′ iff either W −W ′ ⊆ W −W ′′ ˙ ˙ or W −W ′ = W −W ′′ and R −R ′ ⊆ R −R ′′ ˙ ˙ ˙ ˙ Notation: M ′ M M ′′ Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 12 / 24
  • 49. Minimal Change Choosing models Distance between models ◮ Prefer models closest to the original one ◮ Hamming distance, Dalal, etc Distance dependent on the type of law retracted ◮ Static law: look at the set of possible states (worlds) ◮ Executability law: look at the leaving arrows ◮ Effect law: look at the arriving arrows Definition Let M = W , R . M ′ = W ′ , R ′ is as close to M as M ′′ = W ′′ , R ′′ iff either W −W ′ ⊆ W −W ′′ ˙ ˙ or W −W ′ = W −W ′′ and R −R ′ ⊆ R −R ′′ ˙ ˙ ˙ ˙ Notation: M ′ M M ′′ Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 12 / 24
  • 50. Minimal Change Choosing models Distance between models ◮ Prefer models closest to the original one ◮ Hamming distance, Dalal, etc Distance dependent on the type of law retracted ◮ Static law: look at the set of possible states (worlds) ◮ Executability law: look at the leaving arrows ◮ Effect law: look at the arriving arrows Definition Let M = W , R . M ′ = W ′ , R ′ is as close to M as M ′′ = W ′′ , R ′′ iff either W −W ′ ⊆ W −W ′′ ˙ ˙ or W −W ′ = W −W ′′ and R −R ′ ⊆ R −R ′′ ˙ ˙ ˙ ˙ Notation: M ′ M M ′′ Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 12 / 24
  • 51. Minimal Change Choosing models: contracting ϕ Definition Let M = W , R . M ′ = W ′ , R ′ ∈ Mϕ iff − W ⊆ W′ R = R′ M′ There is w ∈ W ′ s.t. |= ϕ w Definition contract(M , ϕ) = − min{Mϕ , M} Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 13 / 24
  • 52. Minimal Change Choosing models: contracting ϕ Definition Let M = W , R . M ′ = W ′ , R ′ ∈ Mϕ iff − W ⊆ W′ R = R′ M′ There is w ∈ W ′ s.t. |= ϕ w Definition contract(M , ϕ) = − min{Mϕ , M} Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 13 / 24
  • 53. Minimal Change Choosing models: contracting coffee → hot ¬t, c, h t, c, ¬h ¬t, c, ¬h ¬t, c, h t, c, ¬h b b b b t, c, h t, ¬c, h t, c, h t, ¬c, h M b b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 14 / 24
  • 54. Minimal Change Choosing models: contracting coffee → hot ¬t, c, h t, c, ¬h ¬t, c, ¬h ¬t, c, h b b b b t, c, h t, ¬c, h t, c, h t, ¬c, h b b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h Incomparable Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 14 / 24
  • 55. Minimal Change Choosing models: contracting ϕ → a ⊤ Definition − Let M = W , R . M ′ = W ′ , R ′ ∈ Mϕ→ a ⊤ iff W′ = W R′ ⊆ R M If (w , w ′ ) ∈ R R ′ , then |= ϕ w M′ There is w ∈ W ′ s.t. |= ϕ → a ⊤ w Definition − contract(M , ϕ → a ⊤) = min{Mϕ→ a ⊤, M} Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 15 / 24
  • 56. Minimal Change Choosing models: contracting ϕ → a ⊤ Definition − Let M = W , R . M ′ = W ′ , R ′ ∈ Mϕ→ a ⊤ iff W′ = W R′ ⊆ R M If (w , w ′ ) ∈ R R ′ , then |= ϕ w M′ There is w ∈ W ′ s.t. |= ϕ → a ⊤ w Definition − contract(M , ϕ → a ⊤) = min{Mϕ→ a ⊤, M} Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 15 / 24
  • 57. Minimal Change Choosing models: contracting token → buy ⊤ ¬t, c, h ¬t, c, h b t, c, h t, ¬c, h t, c, h t, ¬c, h M b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 16 / 24
  • 58. Minimal Change Choosing models: contracting token → buy ⊤ ¬t, c, h ¬t, c, h b b b t, c, h t, ¬c, h t, c, h t, ¬c, h b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h Incomparable Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 16 / 24
  • 59. Minimal Change Choosing models: contracting ϕ → [a]ψ Definition − Let M = W , R . Then M ′ = W ′ , R ′ ∈ Mϕ→[a]ψ iff W′ = W R ⊆ R′ If (w , w ′ ) ∈ R ′ R , then w ′ ∈ RelTarget(w , ¬(ϕ → [a]ψ)) M′ There is w ∈ W ′ s.t. |= ϕ → [a]ψ w Definition − contract(M , ϕ → [a]ψ) = min{Mϕ→[a]ψ , M} Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 17 / 24
  • 60. Minimal Change Choosing models: contracting ϕ → [a]ψ Definition − Let M = W , R . Then M ′ = W ′ , R ′ ∈ Mϕ→[a]ψ iff W′ = W R ⊆ R′ If (w , w ′ ) ∈ R ′ R , then w ′ ∈ RelTarget(w , ¬(ϕ → [a]ψ)) M′ There is w ∈ W ′ s.t. |= ϕ → [a]ψ w Definition − contract(M , ϕ → [a]ψ) = min{Mϕ→[a]ψ , M} Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 17 / 24
  • 61. Minimal Change Choosing models: contracting token → [buy]hot ¬t, c, h ¬t, c, h b b b b t, c, h t, ¬c, h t, c, h t, ¬c, h M b b b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h b b Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 18 / 24
  • 62. Minimal Change Choosing models: contracting token → [buy]hot ¬t, c, h ¬t, c, h b b b b t, c, h t, ¬c, h t, c, h t, ¬c, h b b b ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h ¬t, ¬c, ¬h t, ¬c, ¬h ¬t, ¬c, h b Incomparable Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 18 / 24
  • 63. Quick look: Correctness of the Algorithms T an action theory Φ a law We have defined algorithms that contract Φ from T, giving a weaker T ′ ϕ a static law S ⊆ T set of static laws in T Definition (Herzig & Varzinczak, AiML 2005) T is modular iff for every static law ϕ, if T |= ϕ, then S |= ϕ PDL CPL Theorem Under modularity, the algorithms are correct w.r.t. our semantics Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 19 / 24
  • 64. Quick look: Correctness of the Algorithms T an action theory Φ a law We have defined algorithms that contract Φ from T, giving a weaker T ′ ϕ a static law S ⊆ T set of static laws in T Definition (Herzig & Varzinczak, AiML 2005) T is modular iff for every static law ϕ, if T |= ϕ, then S |= ϕ PDL CPL Theorem Under modularity, the algorithms are correct w.r.t. our semantics Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 19 / 24
  • 65. Quick look: Correctness of the Algorithms T an action theory Φ a law We have defined algorithms that contract Φ from T, giving a weaker T ′ ϕ a static law S ⊆ T set of static laws in T Definition (Herzig & Varzinczak, AiML 2005) T is modular iff for every static law ϕ, if T |= ϕ, then S |= ϕ PDL CPL Theorem Under modularity, the algorithms are correct w.r.t. our semantics Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 19 / 24
  • 66. Outline 1 Preliminaries Action Theories in Dynamic Logic 2 Contraction of Laws Semantic Contraction Postulates 3 Conclusion Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 20 / 24
  • 67. Postulates Monotonicity T |= T ′ PDL Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 21 / 24
  • 68. Postulates Monotonicity T |= T ′ PDL Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 21 / 24
  • 69. Postulates Monotonicity T |= T ′ PDL Preservation If T |= Φ, then |= T ↔ T ′ PDL PDL Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 21 / 24
  • 70. Postulates Monotonicity T |= T ′ PDL Preservation If T |= Φ, then |= T ↔ T ′ PDL PDL Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 21 / 24
  • 71. Postulates Monotonicity T |= T ′ PDL Preservation If T |= Φ, then |= T ↔ T ′ PDL PDL Success If T |= ⊥ and |= Φ, then T ′ |= Φ PDL PDL PDL Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 21 / 24
  • 72. Postulates Monotonicity T |= T ′ PDL Preservation If T |= Φ, then |= T ↔ T ′ PDL PDL Success If T |= ⊥ and |= Φ, then T ′ |= Φ PDL PDL PDL (under modularity) Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 21 / 24
  • 73. Postulates Equivalences If |= T1 ↔ T2 and |= Φ1 ↔ Φ2 , then |= T1′ ↔ T2′ , for T1′ ∈ (T1 )− PDL PDL PDL Φ2 and T2′ ∈ (T2 )−1 Φ Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 22 / 24
  • 74. Postulates Equivalences If |= T1 ↔ T2 and |= Φ1 ↔ Φ2 , then |= T1′ ↔ T2′ , for T1′ ∈ (T1 )− PDL PDL PDL Φ2 and T2′ ∈ (T2 )−1 Φ (under modularity) Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 22 / 24
  • 75. Postulates Equivalences If |= T1 ↔ T2 and |= Φ1 ↔ Φ2 , then |= T1′ ↔ T2′ , for T1′ ∈ (T1 )− PDL PDL PDL Φ2 and T2′ ∈ (T2 )−1 Φ (under modularity) Recovery T ′ ∪ {Φ} |= T PDL Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 22 / 24
  • 76. Postulates Equivalences If |= T1 ↔ T2 and |= Φ1 ↔ Φ2 , then |= T1′ ↔ T2′ , for T1′ ∈ (T1 )− PDL PDL PDL Φ2 and T2′ ∈ (T2 )−1 Φ (under modularity) Recovery T ′ ∪ {Φ} |= T PDL (under modularity) Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 22 / 24
  • 77. Postulates Equivalences If |= T1 ↔ T2 and |= Φ1 ↔ Φ2 , then |= T1′ ↔ T2′ , for T1′ ∈ (T1 )− PDL PDL PDL Φ2 and T2′ ∈ (T2 )−1 Φ (under modularity) Recovery T ′ ∪ {Φ} |= T PDL (under modularity) Preservation of modularity If T is modular, then T ′ is modular Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 22 / 24
  • 78. Postulates Equivalences If |= T1 ↔ T2 and |= Φ1 ↔ Φ2 , then |= T1′ ↔ T2′ , for T1′ ∈ (T1 )− PDL PDL PDL Φ2 and T2′ ∈ (T2 )−1 Φ (under modularity) Recovery T ′ ∪ {Φ} |= T PDL (under modularity) Preservation of modularity If T is modular, then T ′ is modular Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 22 / 24
  • 79. Conclusion Contribution Semantics for action theory change ◮ Distance between models ◮ Minimal change Syntactic operators (algorithms) ◮ Correct w.r.t. the semantics Postulates for action theory change ◮ Modularity fruitful Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 23 / 24
  • 80. Conclusion Contribution Semantics for action theory change ◮ Distance between models ◮ Minimal change Syntactic operators (algorithms) ◮ Correct w.r.t. the semantics Postulates for action theory change ◮ Modularity fruitful Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 23 / 24
  • 81. Conclusion Contribution Semantics for action theory change ◮ Distance between models ◮ Minimal change Syntactic operators (algorithms) ◮ Correct w.r.t. the semantics Postulates for action theory change ◮ Modularity fruitful Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 23 / 24
  • 82. Conclusion Ongoing research and future work Action theory revision ◮ Making formulas true in a model (first results: NMR’08) Contraction of general formulas ◮ not only ϕ, ϕ → a ⊤, ϕ → [a]ψ Applications in Description Logics ◮ ontology evolution/debugging Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 24 / 24
  • 83. Conclusion Ongoing research and future work Action theory revision ◮ Making formulas true in a model (first results: NMR’08) Contraction of general formulas ◮ not only ϕ, ϕ → a ⊤, ϕ → [a]ψ Applications in Description Logics ◮ ontology evolution/debugging Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 24 / 24
  • 84. Conclusion Ongoing research and future work Action theory revision ◮ Making formulas true in a model (first results: NMR’08) Contraction of general formulas ◮ not only ϕ, ϕ → a ⊤, ϕ → [a]ψ Applications in Description Logics ◮ ontology evolution/debugging Ivan Jos´ Varzinczak (KSG - Meraka) e Action Theory Contraction KR’2008 24 / 24