SlideShare a Scribd company logo
Introduction
                    Main Results
             Concluding Remarks




   What is a Good Domain Description?
Evaluating & Revising Action Theories in Dynamic Logic


                  Ivan José Varzinczak

                 IRIT – Université Paul Sabatier


                    October 27th 2006




             Ivan José Varzinczak   What is a Good Domain Description?
Introduction
                          Main Results
                   Concluding Remarks


Reasoning About Actions

  Problem: describing domains by logical formulas
      Actions and their effects
      Executabilities of actions
      Inexecutabilities of actions
      Domain constraints

  Example
      A turkey that walks is alive
      Teasing a turkey makes it walk
      It is always possible to tease a turkey
      A dead turkey remains dead after teasing it

                    Ivan José Varzinczak   What is a Good Domain Description?
Introduction
                          Main Results
                   Concluding Remarks


Reasoning About Actions

  Problem: describing domains by logical formulas
      Actions and their effects
      Executabilities of actions
      Inexecutabilities of actions
      Domain constraints

  Example
      A turkey that walks is alive
      Teasing a turkey makes it walk
      It is always possible to tease a turkey
      A dead turkey remains dead after teasing it

                    Ivan José Varzinczak   What is a Good Domain Description?
Introduction
                           Main Results
                    Concluding Remarks


Reasoning About Actions

  Goal: inference tasks
     Prediction
      Explanation
      Planning




                    Ivan José Varzinczak   What is a Good Domain Description?
Introduction
                           Main Results
                    Concluding Remarks


Reasoning About Actions

  Prediction: reasoning about the future


                                           ?

                 Initial            actions                  Result
                 state                                       state



      After shooting, the turkey stops walking

                    Ivan José Varzinczak       What is a Good Domain Description?
Introduction
                          Main Results
                   Concluding Remarks


Reasoning About Actions

  Explanation: reasoning about the past


                                          ?

                Initial            actions                  Current
                state                                        state



      After shooting, the turkey is dead: the gun was loaded

                   Ivan José Varzinczak       What is a Good Domain Description?
Introduction
                          Main Results
                   Concluding Remarks


Reasoning About Actions

  Planning: what to do to achieve a goal



                                          ?
                Current            actions                  Desired
                 state                                       state



      To have the turkey dead: load the gun, then shoot




                   Ivan José Varzinczak       What is a Good Domain Description?
Introduction
                           Main Results
                    Concluding Remarks


Reasoning About Actions

  Other important tasks
      Consistency check
      Test of executability/inexecutability
      Theory change
      ...




                    Ivan José Varzinczak   What is a Good Domain Description?
Introduction
                           Main Results
                    Concluding Remarks


Outline

  1   Introduction
         Describing Action Theories
         Unwanted Conclusions

  2   Main Results
        Decomposing Theories
        Logical Modularity
        Exploiting Modularity
        Theory Change

  3   Concluding Remarks



                    Ivan José Varzinczak   What is a Good Domain Description?
Introduction
                           Main Results
                    Concluding Remarks


Outline

  1   Introduction
         Describing Action Theories
         Unwanted Conclusions

  2   Main Results
        Decomposing Theories
        Logical Modularity
        Exploiting Modularity
        Theory Change

  3   Concluding Remarks



                    Ivan José Varzinczak   What is a Good Domain Description?
Introduction
                           Main Results
                    Concluding Remarks


Outline

  1   Introduction
         Describing Action Theories
         Unwanted Conclusions

  2   Main Results
        Decomposing Theories
        Logical Modularity
        Exploiting Modularity
        Theory Change

  3   Concluding Remarks



                    Ivan José Varzinczak   What is a Good Domain Description?
Introduction
                                           Describing Action Theories
                           Main Results
                                           Unwanted Conclusions
                    Concluding Remarks


Outline

  1   Introduction
         Describing Action Theories
         Unwanted Conclusions

  2   Main Results
        Decomposing Theories
        Logical Modularity
        Exploiting Modularity
        Theory Change

  3   Concluding Remarks



                    Ivan José Varzinczak   What is a Good Domain Description?
Introduction
                                                                                            Describing Action Theories
                                               Main Results
                                                                                            Unwanted Conclusions
                                        Concluding Remarks


Formalizing Domains

  Several base formalisms
      Situation calculus [McCarthy & Hayes, 1969]
                s Holds loaded s                                                           Holds alive do shoot s
             
                 ¢ £¡                   ¢                               ¤          ¨ ©§¥
                                                                                      ¦               ¢          ¤   ¢            ¤     ¥
                                                                                                                                       ¥ ¥

      Languages                            ,                      , etc. [Lifschitz et al., 90’s]
            shoot causes alive if loaded               ¨

      Fluent calculus [Thielscher, 1995]
            Poss shoot tk s
                        ¢                       ¢          ¤ ¥         ¦ §¥

            State do shoot tk s
                            ¢       ¢                             ¢         ¤ ¥     ¥
                                                                                     ¥    State s¢        ¥   dead tk ¢   !¥       alive tk¢   ¥

      ...




                                        Ivan José Varzinczak                                What is a Good Domain Description?
Introduction
                                         Describing Action Theories
                         Main Results
                                         Unwanted Conclusions
                  Concluding Remarks


Formalizing Domains

  In this work. . .
       we have chosen Modal Logic
          Weak version of Propositional Dynamic Logic (PDL)
          Simple and decidable
          With a tableaux-based theorem prover: Lotrec




                  Ivan José Varzinczak   What is a Good Domain Description?
Introduction
                                                                                            Describing Action Theories
                                                      Main Results
                                                                                            Unwanted Conclusions
                                               Concluding Remarks


Logical Preliminaries
  Ontology
      Actions:                         ) 0($
                                          ' % #           a 1 a2
                                                            1          53331
                                                                      4 2 2 2

      Atomic propositions:                                           ) 0BA386
                                                                        ' @ 9 7                 p 1 p2    1            53331
                                                                                                                      4 2 2 2

      Literals:                        RP$H38GFEC
                                      Q ) I @ 9 7 6 ' % D                      p p      S     H38UT
                                                                                             @ 9 7 6                    4

      Classical formulas:                                            Rba`XV
                                                                    c ) ' Y W               1   c 1       2        53331
                                                                                                                  4 2 2 2


  Action operators
  For each a       , a modal operator a
                                      $dT
                                     % #                                                             e       f

      ea : “after execution of a, is true”
              c gf                                                                  c

                          a           : “a is inexecutable”
                      h
                              p qi

              a                                a
          r
                  ' ts
                      c          def    e uQ        vgf
                                                   c Q

                          a            : “a is executable”
                    w
                               y €x

      Complex formulas:                                             1    1   2    3331
                                                                                   2 2 2

                                               Ivan José Varzinczak                         What is a Good Domain Description?
Introduction
                                                                                            Describing Action Theories
                                                      Main Results
                                                                                            Unwanted Conclusions
                                               Concluding Remarks


Logical Preliminaries
  Ontology
      Actions:                         ) 0($
                                          ' % #           a 1 a2
                                                            1          53331
                                                                      4 2 2 2

      Atomic propositions:                                           ) 0BA386
                                                                        ' @ 9 7                 p 1 p2    1            53331
                                                                                                                      4 2 2 2

      Literals:                        RP$H38GFEC
                                      Q ) I @ 9 7 6 ' % D                      p p      S     H38UT
                                                                                             @ 9 7 6                    4

      Classical formulas:                                            Rba`XV
                                                                    c ) ' Y W               1   c 1       2        53331
                                                                                                                  4 2 2 2


  Action operators
  For each a       , a modal operator a
                                      $dT
                                     % #                                                             e       f

      ea : “after execution of a, is true”
              c gf                                                                  c

                          a           : “a is inexecutable”
                      h
                              p qi

              a                                a
          r
                  ' ts
                      c          def    e uQ        vgf
                                                   c Q

                          a            : “a is executable”
                    w
                               y €x

      Complex formulas:                                             1    1   2    3331
                                                                                   2 2 2

                                               Ivan José Varzinczak                         What is a Good Domain Description?
Introduction
                                                                                            Describing Action Theories
                                                      Main Results
                                                                                            Unwanted Conclusions
                                               Concluding Remarks


Logical Preliminaries
  Ontology
      Actions:                         ) 0($
                                          ' % #           a 1 a2
                                                            1          53331
                                                                      4 2 2 2

      Atomic propositions:                                           ) 0BA386
                                                                        ' @ 9 7                 p 1 p2    1            53331
                                                                                                                      4 2 2 2

      Literals:                        RP$H38GFEC
                                      Q ) I @ 9 7 6 ' % D                      p p      S     H38UT
                                                                                             @ 9 7 6                    4

      Classical formulas:                                            Rba`XV
                                                                    c ) ' Y W               1   c 1       2        53331
                                                                                                                  4 2 2 2


  Action operators
  For each a       , a modal operator a
                                      $dT
                                     % #                                                             e       f

      ea : “after execution of a, is true”
              c gf                                                                  c

                          a           : “a is inexecutable”
                      h
                              p qi

              a                                a
          r
                  ' ts
                      c          def    e uQ        vgf
                                                   c Q

                          a            : “a is executable”
                    w
                               y €x

      Complex formulas:                                             1    1   2    3331
                                                                                   2 2 2

                                               Ivan José Varzinczak                         What is a Good Domain Description?
Introduction
                                                                                            Describing Action Theories
                                                      Main Results
                                                                                            Unwanted Conclusions
                                               Concluding Remarks


Logical Preliminaries
  Ontology
      Actions:                         ) 0($
                                          ' % #           a 1 a2
                                                            1          53331
                                                                      4 2 2 2

      Atomic propositions:                                           ) 0BA386
                                                                        ' @ 9 7                 p 1 p2    1            53331
                                                                                                                      4 2 2 2

      Literals:                        RP$H38GFEC
                                      Q ) I @ 9 7 6 ' % D                      p p      S     H38UT
                                                                                             @ 9 7 6                    4

      Classical formulas:                                            Rba`XV
                                                                    c ) ' Y W               1   c 1       2        53331
                                                                                                                  4 2 2 2


  Action operators
  For each a       , a modal operator a
                                      $dT
                                     % #                                                             e       f

      ea : “after execution of a, is true”
              c gf                                                                  c

                          a           : “a is inexecutable”
                      h
                              p qi

              a                                a
          r
                  ' ts
                      c          def    e uQ        vgf
                                                   c Q

                          a            : “a is executable”
                    w
                               y €x

      Complex formulas:                                             1    1   2    3331
                                                                                   2 2 2

                                               Ivan José Varzinczak                         What is a Good Domain Description?
Introduction
                                              Describing Action Theories
                          Main Results
                                              Unwanted Conclusions
                   Concluding Remarks


Logical Preliminaries

  Example
     Actions: shoot, tease
     Propositions: loaded, alive, walking
     Formulas: alive  walking, tease                          ,
                                          r
                       Q ƒ‚                            „ s

     loaded e  shoot alive
              †…        Q gf




                   Ivan José Varzinczak       What is a Good Domain Description?
Introduction
                                                                             Describing Action Theories
                                                             Main Results
                                                                             Unwanted Conclusions
                                                      Concluding Remarks


Semantics

  Multimodal logic K [Popkorn 94,Blackburn et al. 2001].
  Definition
  Models                                        W R where
                                            r
                     ‡                  '         1        s

      W          ˆ           2      g‘‰
                                   “ ’         : set of possible worlds (states)
      R:              –•$
                     … ” % #                    2W     —       W


  Definition
      ˜


                         p (p is true at world w of model                                   ) iff p                      w
             w
      ™ A' ˜                                                                            ‡         ˜              T


                             a              iff for every w such that wRa w ,
             w                                                                                           w
          ™ A'           e        df                                e                        e       ™ A'           
                                                                                                             f

      the usual truth conditions for the other connectives


                                                      Ivan José Varzinczak   What is a Good Domain Description?
Introduction
                                                                             Describing Action Theories
                                                             Main Results
                                                                             Unwanted Conclusions
                                                      Concluding Remarks


Semantics

  Multimodal logic K [Popkorn 94,Blackburn et al. 2001].
  Definition
  Models                                        W R where
                                            r
                     ‡                  '         1        s

      W          ˆ           2      g‘‰
                                   “ ’         : set of possible worlds (states)
      R:              –•$
                     … ” % #                    2W     —       W


  Definition
      ˜


                         p (p is true at world w of model                                   ) iff p                      w
             w
      ™ A' ˜                                                                            ‡         ˜              T


                             a              iff for every w such that wRa w ,
             w                                                                                           w
          ™ A'           e        df                                e                        e       ™ A'           
                                                                                                             f

      the usual truth conditions for the other connectives


                                                      Ivan José Varzinczak   What is a Good Domain Description?
Introduction
                                                                                                         Describing Action Theories
                                                          Main Results
                                                                                                         Unwanted Conclusions
                                                   Concluding Remarks


Semantics

  Example
  If                       a1 a2 , and                                                        p 1 p2 ,                                              W R , where
                                                                                                                                                r
       ) b($
          ' % #                    1    4                        ) 0gH386
                                                                    ' @ 9 7                          1         4       ‡           '                       1      s



                                       W        hb'
                                               ) )               p 1 p2
                                                                   1             ) i4
                                                                                   1      p1   Q 1         p2      Q R) i4
                                                                                                                        1          p1 p2    1               ih4
                                                                                                                                                           1 4


                                                   p1 p2                     p 1 p2                                  p 1 p2                                    p 1 p2
                               l

        R a1
                                            ) mj         1         ) i4
                                                                     1              Q 1                  ) mj nR4
                                                                                                              1 k             1             Q R) i4
                                                                                                                                                 1                     1           nR4
                                                                                                                                                                                  1 k

                                                   p1 p2                        p1 p2                                   p 1 p2                                 p1 p2
          j        k   '
                                        Rmj
                                       Q )                   1         Q R) i4
                                                                            1             1               Rmj nR4
                                                                                                         Q )  1 k                      1             ) i4
                                                                                                                                                       1                   Q 1         o tR4
                                                                                                                                                                                          k


              R a2
               j           k    mi0'
                               ) j )               p1 p2
                                                     1            ) i4
                                                                    1       p1     Q 1        p2   ) mj nR4
                                                                                                        1 k         p1       Q 1           p2       ) i4
                                                                                                                                                      1        p1     Q 1        p2    pR4
                                                                                                                                                                                      4 k


  is a model




                                                   Ivan José Varzinczak                                  What is a Good Domain Description?
Introduction
                                                Describing Action Theories
                            Main Results
                                                Unwanted Conclusions
                     Concluding Remarks


Semantics
  Example

                                        a1
                      a1
          p1 p2                                 p1 p2
                                                                                  p1       p2
            q                               r        s               w A uv


                     a2
                                                                                       x



                                                                              p1              a2             p2
                                                                    w uv

  ‡   :         a1                              a1                                     z {y        } g|


                                                                                   p1             a1
                                                                    w A uv
                                                                              }            ~ {y            € 



                     p1          p2                                                p2             a1
                                                                    w uv
                                                                              }            z †y            ‚|
                          r ts



                     a2
                     Ivan José Varzinczak       What is a Good Domain Description?
Introduction
                                                                                              Describing Action Theories
                                                          Main Results
                                                                                              Unwanted Conclusions
                                                   Concluding Remarks


Semantics

  Definition         ˜                                                       ˜


                                 iff for all w                         W,
                                                                                    w
                    ™ '˜              ˜                   T                    ™ '     


                        ƒ „A'
                           ™     iff        …A'
                                              ™       for every                       ƒ P†
                                                                                         T




  Definition
  is a consequence of the set of global axioms in all         ˜
                                                                                                                    ƒ
                                                                                                                        ˜


  PDL-models (noted
      ˜
                        PDL
                             ) iff for every  , if    , then
                                                       ƒ           '                                       ‡               ™ '   ƒ


          ™ '           .




                                                   Ivan José Varzinczak                       What is a Good Domain Description?
Introduction
                                                                                              Describing Action Theories
                                                          Main Results
                                                                                              Unwanted Conclusions
                                                   Concluding Remarks


Semantics

  Definition         ˜                                                       ˜


                                 iff for all w                         W,
                                                                                    w
                    ™ '˜              ˜                   T                    ™ '     


                        ƒ „A'
                           ™     iff        …A'
                                              ™       for every                       ƒ P†
                                                                                         T




  Definition
  is a consequence of the set of global axioms in all         ˜
                                                                                                                    ƒ
                                                                                                                        ˜


  PDL-models (noted
      ˜
                        PDL
                             ) iff for every  , if    , then
                                                       ƒ           '                                       ‡               ™ '   ƒ


          ™ '           .




                                                   Ivan José Varzinczak                       What is a Good Domain Description?
Introduction
                                           Describing Action Theories
                           Main Results
                                           Unwanted Conclusions
                    Concluding Remarks


Outline

  1   Introduction
         Describing Action Theories
         Unwanted Conclusions

  2   Main Results
        Decomposing Theories
        Logical Modularity
        Exploiting Modularity
        Theory Change

  3   Concluding Remarks



                    Ivan José Varzinczak   What is a Good Domain Description?
Introduction
                                                       Describing Action Theories
                                       Main Results
                                                       Unwanted Conclusions
                                Concluding Remarks


The Tale Again

  Example
     A turkey that walks is alive:                                            walking           …   alive
     Teasing a turkey makes it to walk:                                         e   tease walking
                                                                                            f

     It is always possible to tease a turkey:                                               tease
                                                                                        r
                                                                                                      „ s

     A dead turkey remains dead after teasing it
                alive               tease alive
                                h
            ¨           ¦                   ¨ Fi

     If the gun is loaded, shooting kills the turkey
            loaded                      shoot alive
                                    h
                            ¦                  ¨ di

     Teasing does not unload the gun
            loaded                      tease loaded
                                    h
                            ¦                  i




                                Ivan José Varzinczak   What is a Good Domain Description?
Introduction
                                                                                                      Describing Action Theories
                                                     Main Results
                                                                                                      Unwanted Conclusions
                                              Concluding Remarks


The Tale Again

  Example
       ‡ˆ
       ˆ
                                                                                    ˆ
                                                                                    ˆ
       ˆ                                                                            ˆ
       ˆ                                                                            ˆ
       ˆ                                                                            ˆ
       ˆ                                                                            ˆ

                     tease
                    r                                                           ‹        ˜


                                                                                                      tease alive
                                       „ s     1
       ˆ
       ˆ
       ˆ        walking      alive …                                1
                                                                                    ˆ
                                                                                    ˆ
                                                                                    ˆ
                                                                                         '˜       e            f


                  tease walking                                                                        alive              tease alive          alive
    ˆ ‰                                                                             ˆ
                                                                                    Œˆ
  ˆ
       ˆ        e              f                                                    ˆ
                                                                1                        Q Ž' ˜                    e †…        j €f     Q ƒ‚

            loaded       shoot alive
                                                                                                                                                       k


                                                                                                       alive              tease
                        e {…                            Q gf                1

              alive     tease alive
                                                                                         Q Ž' ˜                    e {…         ‚f
            Q       e †…                        Q gf

                                                                                                 alive
                                                                        1

            loaded       tease loaded
       Š                                                                        
                        e †…                        f                                        '



 N.B.: Such a description is consistent

                                                               What is the problem?



                                              Ivan José Varzinczak                                    What is a Good Domain Description?
Introduction
                                                                                                      Describing Action Theories
                                                     Main Results
                                                                                                      Unwanted Conclusions
                                              Concluding Remarks


The Tale Again

  Example
       ‡ˆ
       ˆ
                                                                                    ˆ
                                                                                    ˆ
       ˆ                                                                            ˆ
       ˆ                                                                            ˆ
       ˆ                                                                            ˆ
       ˆ                                                                            ˆ

                     tease
                    r                                                           ‹        ˜


                                                                                                      tease alive
                                       „ s     1
       ˆ
       ˆ
       ˆ        walking      alive …                                1
                                                                                    ˆ
                                                                                    ˆ
                                                                                    ˆ
                                                                                         '˜       e            f


                  tease walking                                                                        alive              tease alive          alive
    ˆ ‰                                                                             ˆ
                                                                                    Œˆ
  ˆ
       ˆ        e              f                                                    ˆ
                                                                1                        Q Ž' ˜                    e †…        j €f     Q ƒ‚

            loaded       shoot alive
                                                                                                                                                       k


                                                                                                       alive              tease
                        e {…                            Q gf                1

              alive     tease alive
                                                                                         Q Ž' ˜                    e {…         ‚f
            Q       e †…                        Q gf

                                                                                                 alive
                                                                        1

            loaded       tease loaded
       Š                                                                        
                        e †…                        f                                        '



 N.B.: Such a description is consistent

                                                               What is the problem?



                                              Ivan José Varzinczak                                    What is a Good Domain Description?
Introduction
                                                                                                         Describing Action Theories
                                                     Main Results
                                                                                                         Unwanted Conclusions
                                              Concluding Remarks


The Tale Again

  Example
       ‡ˆ
       ˆ
                                                                                    ˆ
                                                                                    ˆ
       ˆ                                                                            ˆ
       ˆ                                                                            ˆ
       ˆ                                                                            ˆ
       ˆ                                                                            ˆ

                     tease
                    r                                                           ‹        ˜


                                                                                                         tease alive
                                       „ s     1
       ˆ
       ˆ
       ˆ        walking      alive …                                1
                                                                                    ˆ
                                                                                    ˆ
                                                                                    ˆ
                                                                                         '˜          e            f


                  tease walking                                                                           alive              tease alive          alive
    ˆ ‰                                                                             ˆ
                                                                                    Œˆ
  ˆ
       ˆ        e              f                                                    ˆ
                                                                1                        '˜      Q                    e †…        j €f     Q ƒ‚

            loaded       shoot alive
                                                                                                                                                          k


                                                                                                          alive              tease
                        e {…                            Q gf                1

              alive     tease alive
                                                                                         Q Ž' ˜                       e {…         ‚f
            Q       e †…                        Q gf

                                                                                                 alive
                                                                        1

            loaded       tease loaded
       Š                                                                        
                        e †…                        f                                        '



 N.B.: Such a description is consistent

                                                               What is the problem?



                                              Ivan José Varzinczak                                       What is a Good Domain Description?
Introduction
                                                                                                  Describing Action Theories
                                                     Main Results
                                                                                                  Unwanted Conclusions
                                              Concluding Remarks


The Tale Again

  Example
       ‡ˆ
       ˆ
                                                                                    ˆ
                                                                                    ˆ
       ˆ                                                                            ˆ
       ˆ                                                                            ˆ
       ˆ                                                                            ˆ
       ˆ                                                                            ˆ

                     tease
                    r                                                           ‹        ˜


                                                                                                  tease alive
                                       „ s     1
       ˆ
       ˆ
       ˆ        walking      alive …                                1
                                                                                    ˆ
                                                                                    ˆ
                                                                                    ˆ
                                                                                         e ' ˜            f


                  tease walking                                                                    alive              tease alive          alive
    ˆ ‰                                                                             ˆ
                                                                                    Œˆ
  ˆ
       ˆ        e              f                                                    ˆ
                                                                1                        Q Ž' ˜                e †…        j €f     Q ƒ‚

            loaded       shoot alive
                                                                                                                                                   k


                                                                                                   alive              tease
                        e {…                            Q gf                1

              alive     tease alive
                                                                                         Q Ž' ˜                e {…         ‚f
            Q       e †…                        Q gf

                                                                                                 alive
                                                                        1

            loaded       tease loaded
       Š                                                                        
                        e †…                        f                                        '



 N.B.: Such a description is consistent

                                                               What is the problem?



                                              Ivan José Varzinczak                                What is a Good Domain Description?
Introduction
                                                                                                  Describing Action Theories
                                                     Main Results
                                                                                                  Unwanted Conclusions
                                              Concluding Remarks


The Tale Again

  Example
       ‡ˆ
       ˆ
                                                                                    ˆ
                                                                                    ˆ
       ˆ                                                                            ˆ
       ˆ                                                                            ˆ
       ˆ                                                                            ˆ
       ˆ                                                                            ˆ

                     tease
                    r                                                           ‹        ˜


                                                                                                  tease alive
                                       „ s     1
       ˆ
       ˆ
       ˆ        walking      alive …                                1
                                                                                    ˆ
                                                                                    ˆ
                                                                                    ˆ
                                                                                         e ' ˜            f


                  tease walking                                                                    alive              tease alive          alive
    ˆ ‰                                                                             ˆ
                                                                                    Œˆ
  ˆ
       ˆ        e              f                                                    ˆ
                                                                1                        Q Ž' ˜                e †…        j €f     Q ƒ‚

            loaded       shoot alive
                                                                                                                                                   k


                                                                                                   alive              tease
                        e {…                            Q gf                1

              alive     tease alive
                                                                                         Q Ž' ˜                e {…         ‚f
            Q       e †…                        Q gf

                                                                                                 alive
                                                                        1

            loaded       tease loaded
       Š                                                                        
                        e †…                        f                                        '



 N.B.: Such a description is consistent

                                                               What is the problem?



                                              Ivan José Varzinczak                                What is a Good Domain Description?
Introduction
                                                                                                  Describing Action Theories
                                                     Main Results
                                                                                                  Unwanted Conclusions
                                              Concluding Remarks


The Tale Again

  Example
       ‡ˆ
       ˆ
                                                                                    ˆ
                                                                                    ˆ
       ˆ                                                                            ˆ
       ˆ                                                                            ˆ
       ˆ                                                                            ˆ
       ˆ                                                                            ˆ

                     tease
                    r                                                           ‹        ˜


                                                                                                  tease alive
                                       „ s     1
       ˆ
       ˆ
       ˆ        walking      alive …                                1
                                                                                    ˆ
                                                                                    ˆ
                                                                                    ˆ
                                                                                         e ' ˜            f


                  tease walking                                                                    alive              tease alive          alive
    ˆ ‰                                                                             ˆ
                                                                                    Œˆ
  ˆ
       ˆ        e              f                                                    ˆ
                                                                1                        Q Ž' ˜                e †…        j €f     Q ƒ‚

            loaded       shoot alive
                                                                                                                                                   k


                                                                                                   alive              tease
                        e {…                            Q gf                1

              alive     tease alive
                                                                                         Q Ž' ˜                e {…         ‚f
            Q       e †…                        Q gf

                                                                                                 alive
                                                                        1

            loaded       tease loaded
       Š                                                                        
                        e †…                        f                                        '



 N.B.: Such a description is consistent

                                                               What is the problem?



                                              Ivan José Varzinczak                                What is a Good Domain Description?
Decomposing Theories
                            Introduction
                                           Logical Modularity
                           Main Results
                                           Exploiting Modularity
                    Concluding Remarks
                                           Theory Change


Outline

  1   Introduction
         Describing Action Theories
         Unwanted Conclusions

  2   Main Results
        Decomposing Theories
        Logical Modularity
        Exploiting Modularity
        Theory Change

  3   Concluding Remarks



                    Ivan José Varzinczak   What is a Good Domain Description?
Decomposing Theories
                              Introduction
                                                          Logical Modularity
                             Main Results
                                                          Exploiting Modularity
                      Concluding Remarks
                                                          Theory Change


Natural Modules in Action Theories

  Types of domain laws
   Static laws : walking        …    alive
   Effect laws : loaded     e †…     shoot alive
                                             Q ‚f

  Executability laws : hasGun                           shoot
                                                    r
                                        …                        „ s

  Inexecutability laws :    Q       hasGun              e †…   shoot     gf




                  !         only formulas of these types




                      Ivan José Varzinczak                What is a Good Domain Description?
Decomposing Theories
                              Introduction
                                                          Logical Modularity
                             Main Results
                                                          Exploiting Modularity
                      Concluding Remarks
                                                          Theory Change


Natural Modules in Action Theories

  Types of domain laws
   Static laws : walking        …    alive
   Effect laws : loaded     e †…     shoot alive
                                             Q ‚f

  Executability laws : hasGun                           shoot
                                                    r
                                        …                        „ s

  Inexecutability laws :    Q       hasGun              e †…   shoot     gf




                  !         only formulas of these types




                      Ivan José Varzinczak                What is a Good Domain Description?
Decomposing Theories
                              Introduction
                                                          Logical Modularity
                             Main Results
                                                          Exploiting Modularity
                      Concluding Remarks
                                                          Theory Change


Natural Modules in Action Theories

  Types of domain laws
   Static laws : walking        …    alive
   Effect laws : loaded     e †…     shoot alive
                                             Q ‚f

  Executability laws : hasGun                           shoot
                                                    r
                                        …                        „ s

  Inexecutability laws :    Q       hasGun              e †…   shoot     gf




                  !         only formulas of these types




                      Ivan José Varzinczak                What is a Good Domain Description?
Decomposing Theories
                              Introduction
                                                          Logical Modularity
                             Main Results
                                                          Exploiting Modularity
                      Concluding Remarks
                                                          Theory Change


Natural Modules in Action Theories

  Types of domain laws
   Static laws : walking        …    alive
   Effect laws : loaded     e †…     shoot alive
                                             Q ‚f

  Executability laws : hasGun                           shoot
                                                    r
                                        …                        „ s

  Inexecutability laws :    Q       hasGun              e †…   shoot     gf




                  !         only formulas of these types




                      Ivan José Varzinczak                What is a Good Domain Description?
Decomposing Theories
                              Introduction
                                                          Logical Modularity
                             Main Results
                                                          Exploiting Modularity
                      Concluding Remarks
                                                          Theory Change


Natural Modules in Action Theories

  Types of domain laws
   Static laws : walking        …    alive
   Effect laws : loaded     e †…     shoot alive
                                             Q ‚f

  Executability laws : hasGun                           shoot
                                                    r
                                        …                        „ s

  Inexecutability laws :    Q       hasGun              e †…   shoot     gf




                  !         only formulas of these types




                      Ivan José Varzinczak                What is a Good Domain Description?
Decomposing Theories
                                                                   Introduction
                                                                                            Logical Modularity
                                                                  Main Results
                                                                                            Exploiting Modularity
                                                           Concluding Remarks
                                                                                            Theory Change


Natural Modules in Action Theories

  Defining modules
      : set of static laws
     ‘



     Given a                                   $dT
                                              % # 
                                  a
                                    : effect laws for a
                          ’

                                      a
                                     : executability laws for a
                              “

                                  a
                                    : inexecutability laws for a
                      ”

         ‘ r
                                  a            a          a       : domain description for a
               • 1                   – n1         — ‚1       s

                                                           a,                               a,   and                            a
     •         ˜ Ž'
                                       a     • 5R™
                                               œ › š               –   ˜ '
                                                                              a   – 5R™
                                                                                    œ › š              —   ˜ Ž'
                                                                                                                  a   — 5ž™
                                                                                                                        œ › š

                                                          : the action theory of a given domain
         ‘ r
                ‚ nŸ1
               — 1 – 1 •                              s




                                                           Ivan José Varzinczak             What is a Good Domain Description?
Decomposing Theories
                                                                   Introduction
                                                                                            Logical Modularity
                                                                  Main Results
                                                                                            Exploiting Modularity
                                                           Concluding Remarks
                                                                                            Theory Change


Natural Modules in Action Theories

  Defining modules
      : set of static laws
     ‘



     Given a                                   $dT
                                              % # 
                                  a
                                    : effect laws for a
                          ’

                                      a
                                     : executability laws for a
                              “

                                  a
                                    : inexecutability laws for a
                      ”

         ‘ r
                                  a            a          a       : domain description for a
               • 1                   – n1         — ‚1       s

                                                           a,                               a,   and                            a
     •         ˜ Ž'
                                       a     • 5R™
                                               œ › š               –   ˜ '
                                                                              a   – 5R™
                                                                                    œ › š              —   ˜ Ž'
                                                                                                                  a   — 5ž™
                                                                                                                        œ › š

                                                          : the action theory of a given domain
         ‘ r
                ‚ nŸ1
               — 1 – 1 •                              s




                                                           Ivan José Varzinczak             What is a Good Domain Description?
Decomposing Theories
                                                                   Introduction
                                                                                            Logical Modularity
                                                                  Main Results
                                                                                            Exploiting Modularity
                                                           Concluding Remarks
                                                                                            Theory Change


Natural Modules in Action Theories

  Defining modules
      : set of static laws
     ‘



     Given a                                   $dT
                                              % # 
                                  a
                                    : effect laws for a
                          ’

                                      a
                                     : executability laws for a
                              “

                                  a
                                    : inexecutability laws for a
                      ”

         ‘ r
                                  a            a          a       : domain description for a
               • 1                   – n1         — ‚1       s

                                                           a,                               a,   and                            a
     •         ˜ Ž'
                                       a     • 5R™
                                               œ › š               –   ˜ '
                                                                              a   – 5R™
                                                                                    œ › š              —   ˜ Ž'
                                                                                                                  a   — 5ž™
                                                                                                                        œ › š

                                                          : the action theory of a given domain
         ‘ r
                ‚ nŸ1
               — 1 – 1 •                              s




                                                           Ivan José Varzinczak             What is a Good Domain Description?
Decomposing Theories
                                                                   Introduction
                                                                                            Logical Modularity
                                                                  Main Results
                                                                                            Exploiting Modularity
                                                           Concluding Remarks
                                                                                            Theory Change


Natural Modules in Action Theories

  Defining modules
      : set of static laws
     ‘



     Given a                                   $dT
                                              % # 
                                  a
                                    : effect laws for a
                          ’

                                      a
                                     : executability laws for a
                              “

                                  a
                                    : inexecutability laws for a
                      ”

         ‘ r
                                  a            a          a       : domain description for a
               • 1                   – n1         — ‚1       s

                                                           a,                               a,   and                            a
     •         ˜ Ž'
                                       a     • 5R™
                                               œ › š               –   ˜ '
                                                                              a   – 5R™
                                                                                    œ › š              —   ˜ Ž'
                                                                                                                  a   — 5ž™
                                                                                                                        œ › š

                                                          : the action theory of a given domain
         ‘ r
                ‚ nŸ1
               — 1 – 1 •                              s




                                                           Ivan José Varzinczak             What is a Good Domain Description?
Decomposing Theories
                                             Introduction
                                                                     Logical Modularity
                                            Main Results
                                                                     Exploiting Modularity
                                     Concluding Remarks
                                                                     Theory Change


What About the Frame Problem?

  In our example
      If we had an action wait
                                                    loaded           wait loaded
            ¡       ’       “        ¢¤
                                     £”                          h

                                              PDL
                ¤       ¤        ¤                          ¦            i




  Definition
  Dependence relation [Castilho et al. 99]:                                      Fª©•$§¦¥
                                                                                % D C ¨ % #  ˆ




  Example
      shoot     Q «¥            alive, tease           ¥     walking, tease           ¬¥     alive
      From wait                 Q «¥
                                   ¬          loaded conclude loaded                 e †…    wait loaded
                                                                                                f




                                      Ivan José Varzinczak           What is a Good Domain Description?
Decomposing Theories
                                             Introduction
                                                                     Logical Modularity
                                            Main Results
                                                                     Exploiting Modularity
                                     Concluding Remarks
                                                                     Theory Change


What About the Frame Problem?

  In our example
      If we had an action wait
                                                    loaded           wait loaded
            ¡       ’       “        ¢¤
                                     £”                          h

                                              PDL
                ¤       ¤        ¤                          ¦            i




  Definition
  Dependence relation [Castilho et al. 99]:                                      Fª©•$§¦¥
                                                                                % D C ¨ % #  ˆ




  Example
      shoot     Q «¥            alive, tease           ¥     walking, tease           ¬¥     alive
      From wait                 Q «¥
                                   ¬          loaded conclude loaded                 e †…    wait loaded
                                                                                                f




                                      Ivan José Varzinczak           What is a Good Domain Description?
Decomposing Theories
                                             Introduction
                                                                     Logical Modularity
                                            Main Results
                                                                     Exploiting Modularity
                                     Concluding Remarks
                                                                     Theory Change


What About the Frame Problem?

  In our example
      If we had an action wait
                                                    loaded           wait loaded
            ¡       ’       “        ¢¤
                                     £”                          h

                                              PDL
                ¤       ¤        ¤                          ¦            i




  Definition
  Dependence relation [Castilho et al. 99]:                                      Fª©•$§¦¥
                                                                                % D C ¨ % #  ˆ




  Example
      shoot     Q «¥            alive, tease           ¥     walking, tease           ¬¥     alive
      From wait                 Q «¥
                                   ¬          loaded conclude loaded                 e †…    wait loaded
                                                                                                f




                                      Ivan José Varzinczak           What is a Good Domain Description?
Decomposing Theories
                                             Introduction
                                                                     Logical Modularity
                                            Main Results
                                                                     Exploiting Modularity
                                     Concluding Remarks
                                                                     Theory Change


What About the Frame Problem?

  In our example
      If we had an action wait
                                                    loaded           wait loaded
            ¡       ’       “        ¢¤
                                     £”                          h

                                              PDL
                ¤       ¤        ¤                          ¦            i




  Definition
  Dependence relation [Castilho et al. 99]:                                      Fª©•$§¦¥
                                                                                % D C ¨ % #  ˆ




  Example
      shoot     Q «¥            alive, tease           ¥     walking, tease           ¬¥     alive
      From wait                 Q «¥
                                   ¬          loaded conclude loaded                 e †…    wait loaded
                                                                                                f




                                      Ivan José Varzinczak           What is a Good Domain Description?
Decomposing Theories
                                                        Introduction
                                                                                               Logical Modularity
                                                       Main Results
                                                                                               Exploiting Modularity
                                                Concluding Remarks
                                                                                               Theory Change


What About the Frame Problem?

  Restriction on models
  For all wRa w :
              ˜
                                         e
                                                 ˜



                         w
                             p implies                                  p, if a            p
                                                                w
          ™ '¬ ˜                                     ™ '¬ ˜                       ¬¥
                                                                    f

                             p implies                                  p, if a                p.
                         w                                      w
                  ™ A'                               ™ H'                         Q ­¥
                                                                                     ¬
                                                                    f



  New logical consequence
          ˜                                             ˜


                  ® '       instead of                     '
                                                                PDL


  Example                      ˜


                                             loaded                            wait loaded
  ‘
       ‚ nŸ1
      — 1 – 1 •                    ® '                                  e ¯…           f




                                                Ivan José Varzinczak                           What is a Good Domain Description?
Decomposing Theories
                                                        Introduction
                                                                                               Logical Modularity
                                                       Main Results
                                                                                               Exploiting Modularity
                                                Concluding Remarks
                                                                                               Theory Change


What About the Frame Problem?

  Restriction on models
  For all wRa w :
              ˜
                                         e
                                                 ˜



                         w
                             p implies                                  p, if a            p
                                                                w
          ™ '¬ ˜                                     ™ '¬ ˜                       ¬¥
                                                                    f

                             p implies                                  p, if a                p.
                         w                                      w
                  ™ A'                               ™ H'                         Q ­¥
                                                                                     ¬
                                                                    f



  New logical consequence
          ˜                                             ˜


                  ® '       instead of                     '
                                                                PDL


  Example                      ˜


                                             loaded                            wait loaded
  ‘
       ‚ nŸ1
      — 1 – 1 •                    ® '                                  e ¯…           f




                                                Ivan José Varzinczak                           What is a Good Domain Description?
Decomposing Theories
                                                        Introduction
                                                                                               Logical Modularity
                                                       Main Results
                                                                                               Exploiting Modularity
                                                Concluding Remarks
                                                                                               Theory Change


What About the Frame Problem?

  Restriction on models
  For all wRa w :
              ˜
                                         e
                                                 ˜



                         w
                             p implies                                  p, if a            p
                                                                w
          ™ '¬ ˜                                     ™ '¬ ˜                       ¬¥
                                                                    f

                             p implies                                  p, if a                p.
                         w                                      w
                  ™ A'                               ™ H'                         Q ­¥
                                                                                     ¬
                                                                    f



  New logical consequence
          ˜                                             ˜


                  ® '       instead of                     '
                                                                PDL


  Example                      ˜


                                             loaded                            wait loaded
  ‘
       ‚ nŸ1
      — 1 – 1 •                    ® '                                  e ¯…           f




                                                Ivan José Varzinczak                           What is a Good Domain Description?
Decomposing Theories
                           Introduction
                                          Logical Modularity
                          Main Results
                                          Exploiting Modularity
                   Concluding Remarks
                                          Theory Change


What About the Frame Problem?

  The dependence-based approach. . .
      solves the frame problem
      subsumes Reiter’s regression [Demolombe et al. 2003]
      does not entirely solve the ramification problem
          e.g. shoot   ¨ ±°   walking
      But is the only approach that works for domains with
      actions with both indeterminate and indirect effects
      [Castilho et al. 2002], [Herzig  Varzinczak 2004]




                   Ivan José Varzinczak   What is a Good Domain Description?
Decomposing Theories
                           Introduction
                                          Logical Modularity
                          Main Results
                                          Exploiting Modularity
                   Concluding Remarks
                                          Theory Change


What About the Frame Problem?

  The dependence-based approach. . .
      solves the frame problem
      subsumes Reiter’s regression [Demolombe et al. 2003]
      does not entirely solve the ramification problem
          e.g. shoot   ¨ ±°   walking
      But is the only approach that works for domains with
      actions with both indeterminate and indirect effects
      [Castilho et al. 2002], [Herzig  Varzinczak 2004]




                   Ivan José Varzinczak   What is a Good Domain Description?
Decomposing Theories
                           Introduction
                                          Logical Modularity
                          Main Results
                                          Exploiting Modularity
                   Concluding Remarks
                                          Theory Change


What About the Frame Problem?

  The dependence-based approach. . .
      solves the frame problem
      subsumes Reiter’s regression [Demolombe et al. 2003]
      does not entirely solve the ramification problem
          e.g. shoot   ¨ ±°   walking
      But is the only approach that works for domains with
      actions with both indeterminate and indirect effects
      [Castilho et al. 2002], [Herzig  Varzinczak 2004]




                   Ivan José Varzinczak   What is a Good Domain Description?
Decomposing Theories
                            Introduction
                                           Logical Modularity
                           Main Results
                                           Exploiting Modularity
                    Concluding Remarks
                                           Theory Change


Outline

  1   Introduction
         Describing Action Theories
         Unwanted Conclusions

  2   Main Results
        Decomposing Theories
        Logical Modularity
        Exploiting Modularity
        Theory Change

  3   Concluding Remarks



                    Ivan José Varzinczak   What is a Good Domain Description?
Decomposing Theories
                                    Introduction
                                                                                                    Logical Modularity
                                   Main Results
                                                                                                    Exploiting Modularity
                            Concluding Remarks
                                                                                                    Theory Change


Consistency and More
  Postulates                                                                                 ˜


  PC (Consistency):
                                ‘
                                                  a                  a                a                                                             ˜                          ˜
                                           • 1               – n1        — ‚1                   ® '¬              

  PS (No implicit static laws): if
                                                                                  ‘
                                                                                                        a                     a                 a                 , then
                                                                                                                                                                           ‘
                                                                                          • 1              – n1                     — ‚1               ® '   c                    c Ž'

  PI (No implicit inexecutability laws):
                                                                     ˜


               if
                 ‘
                      a   a   a          a
                                                  ˜
                                                                                                                                            ,
                     • 1           – n1              — ‚1               ® '            e {²c
                                                                                           …                                   ‚f

               then      a  ‘
                                       a
                            PDL     — ‚1              '                        e †²c
                                                                                  …                            gf

  PX (No implicit executability laws):
                                                                     ˜


              if     a   a   a           a                                                                                                  ,
                 ‘                                      ˜                                                              r
                     • 1           – n1              — ‚1               … ²³'
                                                                            c ®                                                „ s

              then      a              a
                            ‘                                                                           r

                            PDL     – n1                  '                      … tc                                  „ s




  Motivation
      Better control what is going on

                            Ivan José Varzinczak                                                    What is a Good Domain Description?
Decomposing Theories
                                    Introduction
                                                                                                    Logical Modularity
                                   Main Results
                                                                                                    Exploiting Modularity
                            Concluding Remarks
                                                                                                    Theory Change


Consistency and More
  Postulates                                                                                 ˜


  PC (Consistency):
                                ‘
                                                  a                  a                a                                                             ˜                          ˜
                                           • 1               – n1        — ‚1                   ® '¬              

  PS (No implicit static laws): if
                                                                                  ‘
                                                                                                        a                     a                 a                 , then
                                                                                                                                                                           ‘
                                                                                          • 1              – n1                     — ‚1               ® '   c                    c Ž'

  PI (No implicit inexecutability laws):
                                                                     ˜


               if
                 ‘
                      a   a   a          a
                                                  ˜
                                                                                                                                            ,
                     • 1           – n1              — ‚1               ® '            e {²c
                                                                                           …                                   ‚f

               then      a  ‘
                                       a
                            PDL     — ‚1              '                        e †²c
                                                                                  …                            gf

  PX (No implicit executability laws):
                                                                     ˜


              if     a   a   a           a                                                                                                  ,
                 ‘                                      ˜                                                              r
                     • 1           – n1              — ‚1               … ²³'
                                                                            c ®                                                „ s

              then      a              a
                            ‘                                                                           r

                            PDL     – n1                  '                      … tc                                  „ s




  Motivation
      Better control what is going on

                            Ivan José Varzinczak                                                    What is a Good Domain Description?
Decomposing Theories
                                    Introduction
                                                                                                    Logical Modularity
                                   Main Results
                                                                                                    Exploiting Modularity
                            Concluding Remarks
                                                                                                    Theory Change


Consistency and More
  Postulates                                                                                 ˜


  PC (Consistency):
                                ‘
                                                  a                  a                a                                                             ˜                          ˜
                                           • 1               – n1        — ‚1                   ® '¬              

  PS (No implicit static laws): if
                                                                                  ‘
                                                                                                        a                     a                 a                 , then
                                                                                                                                                                           ‘
                                                                                          • 1              – n1                     — ‚1               ® '   c                    c Ž'

  PI (No implicit inexecutability laws):
                                                                     ˜


               if
                 ‘
                      a   a   a          a
                                                  ˜
                                                                                                                                            ,
                     • 1           – n1              — ‚1               ® '            e {²c
                                                                                           …                                   ‚f

               then      a  ‘
                                       a
                            PDL     — ‚1              '                        e †²c
                                                                                  …                            gf

  PX (No implicit executability laws):
                                                                     ˜


              if     a   a   a           a                                                                                                  ,
                 ‘                                      ˜                                                              r
                     • 1           – n1              — ‚1               … ²³'
                                                                            c ®                                                „ s

              then      a              a
                            ‘                                                                           r

                            PDL     – n1                  '                      … tc                                  „ s




  Motivation
      Better control what is going on

                            Ivan José Varzinczak                                                    What is a Good Domain Description?
Decomposing Theories
                                    Introduction
                                                                                                    Logical Modularity
                                   Main Results
                                                                                                    Exploiting Modularity
                            Concluding Remarks
                                                                                                    Theory Change


Consistency and More
  Postulates                                                                                 ˜


  PC (Consistency):
                                ‘
                                                  a                  a                a                                                             ˜                          ˜
                                           • 1               – n1        — ‚1                   ® '¬              

  PS (No implicit static laws): if
                                                                                  ‘
                                                                                                        a                     a                 a                 , then
                                                                                                                                                                           ‘
                                                                                          • 1              – n1                     — ‚1               ® '   c                    c Ž'

  PI (No implicit inexecutability laws):
                                                                     ˜


               if
                 ‘
                      a   a   a          a
                                                  ˜
                                                                                                                                            ,
                     • 1           – n1              — ‚1               ® '            e {²c
                                                                                           …                                   ‚f

               then      a  ‘
                                       a
                            PDL     — ‚1              '                        e †²c
                                                                                  …                            gf

  PX (No implicit executability laws):
                                                                     ˜


              if     a   a   a           a                                                                                                  ,
                 ‘                                      ˜                                                              r
                     • 1           – n1              — ‚1               … ²³'
                                                                            c ®                                                „ s

              then      a              a
                            ‘                                                                           r

                            PDL     – n1                  '                      … tc                                  „ s




  Motivation
      Better control what is going on

                            Ivan José Varzinczak                                                    What is a Good Domain Description?
Decomposing Theories
                                    Introduction
                                                                                                    Logical Modularity
                                   Main Results
                                                                                                    Exploiting Modularity
                            Concluding Remarks
                                                                                                    Theory Change


Consistency and More
  Postulates                                                                                 ˜


  PC (Consistency):
                                ‘
                                                  a                  a                a                                                             ˜                          ˜
                                           • 1               – n1        — ‚1                   ® '¬              

  PS (No implicit static laws): if
                                                                                  ‘
                                                                                                        a                     a                 a                 , then
                                                                                                                                                                           ‘
                                                                                          • 1              – n1                     — ‚1               ® '   c                    c Ž'

  PI (No implicit inexecutability laws):
                                                                     ˜


               if
                 ‘
                      a   a   a          a
                                                  ˜
                                                                                                                                            ,
                     • 1           – n1              — ‚1               ® '            e {²c
                                                                                           …                                   ‚f

               then      a  ‘
                                       a
                            PDL     — ‚1              '                        e †²c
                                                                                  …                            gf

  PX (No implicit executability laws):
                                                                     ˜


              if     a   a   a           a                                                                                                  ,
                 ‘                                      ˜                                                              r
                     • 1           – n1              — ‚1               … ²³'
                                                                            c ®                                                „ s

              then      a              a
                            ‘                                                                           r

                            PDL     – n1                  '                      … tc                                  „ s




  Motivation
      Better control what is going on

                            Ivan José Varzinczak                                                    What is a Good Domain Description?
Decomposing Theories
                                                              Introduction
                                                                                                         Logical Modularity
                                                             Main Results
                                                                                                         Exploiting Modularity
                                                      Concluding Remarks
                                                                                                         Theory Change


No Implicit Static Laws
  Example
                                                                                                             tease walking
                                                                                                 l

                     walking                            alive
    ‘                                                                                                           e            f                         1

                                                                                                         loaded    shoot alive
            ) 0'                              …                             •i4
                                                                           • 1              '                                                                  1
                                                                                                                       e †…                 Q gf           o


                                                      tease                                                alive             tease
                                                  r
                         –            ) 0'                          „ s      ‘i4
                                                                             — 1                 R0'
                                                                                                Q )                   e †…            gf          4


                                             tease              ¥          walking shoot             1              Q «¥   alive
                                                                                  ˜

        ‘
                     tease   ˜               tease                  tease                       alive
              • 1                    – n1               — ‚1                         ® '

        But                             alive
                     ‘
                                 '¬




                                             !                  Postulate PS violated


                                                      Ivan José Varzinczak                               What is a Good Domain Description?
Decomposing Theories
                                                              Introduction
                                                                                                         Logical Modularity
                                                             Main Results
                                                                                                         Exploiting Modularity
                                                      Concluding Remarks
                                                                                                         Theory Change


No Implicit Static Laws
  Example
                                                                                                             tease walking
                                                                                                 l

                     walking                            alive
    ‘                                                                                                           e            f                         1

                                                                                                         loaded    shoot alive
            ) 0'                              …                             •i4
                                                                           • 1              '                                                                  1
                                                                                                                       e †…                 Q gf           o


                                                      tease                                                alive             tease
                                                  r
                         –            ) 0'                          „ s      ‘i4
                                                                             — 1                 R0'
                                                                                                Q )                   e †…            gf          4


                                             tease              ¥          walking shoot             1              Q «¥   alive
                                                                                  ˜

        ‘
                     tease   ˜               tease                  tease                       alive
              • 1                    – n1               — ‚1                         ® '

        But                             alive
                     ‘
                                 '¬




                                             !                  Postulate PS violated


                                                      Ivan José Varzinczak                               What is a Good Domain Description?
Decomposing Theories
                                                              Introduction
                                                                                                         Logical Modularity
                                                             Main Results
                                                                                                         Exploiting Modularity
                                                      Concluding Remarks
                                                                                                         Theory Change


No Implicit Static Laws
  Example
                                                                                                             tease walking
                                                                                                 l

                     walking                            alive
    ‘                                                                                                           e            f                         1

                                                                                                         loaded    shoot alive
            ) 0'                              …                             •i4
                                                                           • 1              '                                                                  1
                                                                                                                       e †…                 Q gf           o


                                                      tease                                                alive             tease
                                                  r
                         –            ) 0'                          „ s      ‘i4
                                                                             — 1                 R0'
                                                                                                Q )                   e †…            gf          4


                                             tease              ¥          walking shoot             1              Q «¥   alive
                                                                                  ˜

        ‘
                     tease   ˜               tease                  tease                       alive
              • 1                    – n1               — ‚1                         ® '

        But                             alive
                     ‘
                                 '¬




                                             !                  Postulate PS violated


                                                      Ivan José Varzinczak                               What is a Good Domain Description?
Decomposing Theories
                                                              Introduction
                                                                                                         Logical Modularity
                                                             Main Results
                                                                                                         Exploiting Modularity
                                                      Concluding Remarks
                                                                                                         Theory Change


No Implicit Static Laws
  Example
                                                                                                             tease walking
                                                                                                 l

                     walking                            alive
    ‘                                                                                                           e            f                         1

                                                                                                         loaded    shoot alive
            ) 0'                              …                             •i4
                                                                           • 1              '                                                                  1
                                                                                                                       e †…                 Q gf           o


                                                      tease                                                alive             tease
                                                  r
                         –            ) 0'                          „ s      ‘i4
                                                                             — 1                 R0'
                                                                                                Q )                   e †…            gf          4


                                             tease              ¥          walking shoot             1              Q «¥   alive
                                                                                  ˜

        ‘
                     tease   ˜               tease                  tease                       alive
              • 1                    – n1               — ‚1                         ® '

        But                             alive
                     ‘
                                 '¬




                                             !                  Postulate PS violated


                                                      Ivan José Varzinczak                               What is a Good Domain Description?
Decomposing Theories
                                             Introduction
                                                                Logical Modularity
                                            Main Results
                                                                Exploiting Modularity
                                     Concluding Remarks
                                                                Theory Change


No Implicit Static Laws

  Idea of algorithm
  For each                a
                      r
             … tc             „ s

   1   find   e †‘c
                … e    a entailed by the theory
                           gf

       if           is consistent with
                                                            ‘
   2     ‘©´c
        e c ‚

              ¸!8q(¨
             ¥ · µ ¶ µ ¢             is possibly an implicit law


                    Result: the set of all implicit static laws




                                     Ivan José Varzinczak       What is a Good Domain Description?
Decomposing Theories
                                             Introduction
                                                                Logical Modularity
                                            Main Results
                                                                Exploiting Modularity
                                     Concluding Remarks
                                                                Theory Change


No Implicit Static Laws

  Idea of algorithm
  For each                a
                      r
             … tc             „ s

   1   find   e †‘c
                … e    a entailed by the theory
                           gf

       if           is consistent with
                                                            ‘
   2     ‘©´c
        e c ‚

              ¸!8q(¨
             ¥ · µ ¶ µ ¢             is possibly an implicit law


                    Result: the set of all implicit static laws




                                     Ivan José Varzinczak       What is a Good Domain Description?
Decomposing Theories
                                                                                                                     Introduction
                                                                                                                                                                                       Logical Modularity
                                                                                                                    Main Results
                                                                                                                                                                                       Exploiting Modularity
                                                                                                             Concluding Remarks
                                                                                                                                                                                       Theory Change


No Implicit Static Laws
  Algorithm 1: Finding all implicit static laws induced by a
                  a    a   a
  input:         ‚•¸¹
                ¼ » º           and                           ½ »                  ¾ F»
                                                                                                     ¿
                                                                                                                                  À
                                                                                                                                                                                                            a                a           a
  output: imp* , the set of all implicit static laws of
                    º                                                                                                                                                                               •¸¹
                                                                                                                                                                                                   ¼ » º          ½ €»            ¾ 5»
                                                                                                                                                                                                                                             ¿

  calls: NewCons                  PI            PI                              ÇXFÃÁ
                                                                               Æ Å Ä Â                                                 aXËÊqÂ
                                                                                                                                      Ì Å Ä É È                                 ÇqÂ
                                                                                                                                                                               Å È
    º imp* :=                 Í
    repeat
         imp :=
            º                         Í
                                     a
       for all          a             ¹do
                                        ¦ÏÈ
                                         Î
                                                                                            Ñ Ò‚¿
                                                                                               Ð
                                                                                                                        ½
                     a       a       a
           for all                     do                 Ó                  Ô Ãf                ¼
                                                                                                              Õ
                                                                                                                            ¾
                                                   a
                 a :=       Ö i
                              ×È   i      a i     Ø                              nuÙ
                                                                                È Ú                                   È Û             Ü ¦Î   Ä £Ý
                                                                                                                                                         Ñ
                                                                                                                                                                           Ó    Þ ¸f
                                                   a
                 a :=   Ä     i   Öi      a i Ø                                  ßuÙ
                                                                                Ä Ú                                   È Û             Ü ¦Î   Ä £Ý
                                                                                                                                                     Ñ
                                                                                                                                                                       Ó        Þ ¸f

              for all       NewCons           a  do                      à
                                                                                    Ñ
                                                                                                                                          ÇF!á
                                                                                                                                         Ö Ä Â               Å Ø
                if        imp*            a          and li
                                                      º
                                                                     Õ
                                                                                        º
                                                                                                                  Õ
                                                                                                                                        ×€–pÚ
                                                                                                                                       Ö È » Èt‚Ø
                                                                                                                                             à â »                 ä gÞ
                                                                                                                                                                      ã                        å
                                                                                                                                                                                                     Ñ
                                                                                                                                                                                                           » à          a   æÀ          li then
                     imp := imp                  a
                                                                                                                                               Õ                               Þ ÇtéÉ Ø
                                                              º                                          º                      ÈèÉÊÈqÂçnÚ
                                                                                                                                         â                         Ö             Å à â

         imp* := imp*        imp
                                                                                    Õ
        º                                 º                                                  º
    until imp   º                             Í UÆ



                                                                                                             Ivan José Varzinczak                                                      What is a Good Domain Description?
Decomposing Theories
                                                                                                                     Introduction
                                                                                                                                                                                       Logical Modularity
                                                                                                                    Main Results
                                                                                                                                                                                       Exploiting Modularity
                                                                                                             Concluding Remarks
                                                                                                                                                                                       Theory Change


No Implicit Static Laws
  Algorithm 1: Finding all implicit static laws induced by a
                  a    a   a
  input:         ‚•¸¹
                ¼ » º           and                           ½ »                  ¾ F»
                                                                                                     ¿
                                                                                                                                  À
                                                                                                                                                                                                            a                a           a
  output: imp* , the set of all implicit static laws of
                    º                                                                                                                                                                               •¸¹
                                                                                                                                                                                                   ¼ » º          ½ €»            ¾ 5»
                                                                                                                                                                                                                                             ¿

  calls: NewCons                  PI            PI                              ÇXFÃÁ
                                                                               Æ Å Ä Â                                                 aXËÊqÂ
                                                                                                                                      Ì Å Ä É È                                 ÇqÂ
                                                                                                                                                                               Å È
    º imp* :=                 Í
    repeat
         imp :=
            º                         Í
                                     a
       for all          a             ¹do
                                        ¦ÏÈ
                                         Î
                                                                                            Ñ Ò‚¿
                                                                                               Ð
                                                                                                                        ½
                     a       a       a
           for all                     do                 Ó                  Ô Ãf                ¼
                                                                                                              Õ
                                                                                                                            ¾
                                                   a
                 a :=       Ö i
                              ×È   i      a i     Ø                              nuÙ
                                                                                È Ú                                   È Û             Ü ¦Î   Ä £Ý
                                                                                                                                                         Ñ
                                                                                                                                                                           Ó    Þ ¸f
                                                   a
                 a :=   Ä     i   Öi      a i Ø                                  ßuÙ
                                                                                Ä Ú                                   È Û             Ü ¦Î   Ä £Ý
                                                                                                                                                     Ñ
                                                                                                                                                                       Ó        Þ ¸f

              for all       NewCons           a  do                      à
                                                                                    Ñ
                                                                                                                                          ÇF!á
                                                                                                                                         Ö Ä Â               Å Ø
                if        imp*            a          and li
                                                      º
                                                                     Õ
                                                                                        º
                                                                                                                  Õ
                                                                                                                                        ×€–pÚ
                                                                                                                                       Ö È » Èt‚Ø
                                                                                                                                             à â »                 ä gÞ
                                                                                                                                                                      ã                        å
                                                                                                                                                                                                     Ñ
                                                                                                                                                                                                           » à          a   æÀ          li then
                     imp := imp                  a
                                                                                                                                               Õ                               Þ ÇtéÉ Ø
                                                              º                                          º                      ÈèÉÊÈqÂçnÚ
                                                                                                                                         â                         Ö             Å à â

         imp* := imp*        imp
                                                                                    Õ
        º                                 º                                                  º
    until imp   º                             Í UÆ



                                                                                                             Ivan José Varzinczak                                                      What is a Good Domain Description?
Decomposing Theories
                                                                                                                     Introduction
                                                                                                                                                                                       Logical Modularity
                                                                                                                    Main Results
                                                                                                                                                                                       Exploiting Modularity
                                                                                                             Concluding Remarks
                                                                                                                                                                                       Theory Change


No Implicit Static Laws
  Algorithm 1: Finding all implicit static laws induced by a
                  a    a   a
  input:         ‚•¸¹
                ¼ » º           and                           ½ »                  ¾ F»
                                                                                                     ¿
                                                                                                                                  À
                                                                                                                                                                                                            a                a           a
  output: imp* , the set of all implicit static laws of
                    º                                                                                                                                                                               •¸¹
                                                                                                                                                                                                   ¼ » º          ½ €»            ¾ 5»
                                                                                                                                                                                                                                             ¿

  calls: NewCons                  PI            PI                              ÇXFÃÁ
                                                                               Æ Å Ä Â                                                 aXËÊqÂ
                                                                                                                                      Ì Å Ä É È                                 ÇqÂ
                                                                                                                                                                               Å È
    º imp* :=                 Í
    repeat
         imp :=
            º                         Í
                                     a
       for all          a             ¹do
                                        ¦ÏÈ
                                         Î
                                                                                            Ñ Ò‚¿
                                                                                               Ð
                                                                                                                        ½
                     a       a       a
           for all                     do                 Ó                  Ô Ãf                ¼
                                                                                                              Õ
                                                                                                                            ¾
                                                   a
                 a :=       Ö i
                              ×È   i      a i     Ø                              nuÙ
                                                                                È Ú                                   È Û             Ü ¦Î   Ä £Ý
                                                                                                                                                         Ñ
                                                                                                                                                                           Ó    Þ ¸f
                                                   a
                 a :=   Ä     i   Öi      a i Ø                                  ßuÙ
                                                                                Ä Ú                                   È Û             Ü ¦Î   Ä £Ý
                                                                                                                                                     Ñ
                                                                                                                                                                       Ó        Þ ¸f

              for all       NewCons           a  do                      à
                                                                                    Ñ
                                                                                                                                          ÇF!á
                                                                                                                                         Ö Ä Â               Å Ø
                if        imp*            a          and li
                                                      º
                                                                     Õ
                                                                                        º
                                                                                                                  Õ
                                                                                                                                        ×€–pÚ
                                                                                                                                       Ö È » Èt‚Ø
                                                                                                                                             à â »                 ä gÞ
                                                                                                                                                                      ã                        å
                                                                                                                                                                                                     Ñ
                                                                                                                                                                                                           » à          a   æÀ          li then
                     imp := imp                  a
                                                                                                                                               Õ                               Þ ÇtéÉ Ø
                                                              º                                          º                      ÈèÉÊÈqÂçnÚ
                                                                                                                                         â                         Ö             Å à â

         imp* := imp*        imp
                                                                                    Õ
        º                                 º                                                  º
    until imp   º                             Í UÆ



                                                                                                             Ivan José Varzinczak                                                      What is a Good Domain Description?
Decomposing Theories
                                                                                                                     Introduction
                                                                                                                                                                                       Logical Modularity
                                                                                                                    Main Results
                                                                                                                                                                                       Exploiting Modularity
                                                                                                             Concluding Remarks
                                                                                                                                                                                       Theory Change


No Implicit Static Laws
  Algorithm 1: Finding all implicit static laws induced by a
                  a    a   a
  input:         ‚•¸¹
                ¼ » º           and                           ½ »                  ¾ F»
                                                                                                     ¿
                                                                                                                                  À
                                                                                                                                                                                                            a                a           a
  output: imp* , the set of all implicit static laws of
                    º                                                                                                                                                                               •¸¹
                                                                                                                                                                                                   ¼ » º          ½ €»            ¾ 5»
                                                                                                                                                                                                                                             ¿

  calls: NewCons                  PI            PI                              ÇXFÃÁ
                                                                               Æ Å Ä Â                                                 aXËÊqÂ
                                                                                                                                      Ì Å Ä É È                                 ÇqÂ
                                                                                                                                                                               Å È
    º imp* :=                 Í
    repeat
         imp :=
            º                         Í
                                     a
       for all          a             ¹do
                                        ¦ÏÈ
                                         Î
                                                                                            Ñ Ò‚¿
                                                                                               Ð
                                                                                                                        ½
                     a       a       a
           for all                     do                 Ó                  Ô Ãf                ¼
                                                                                                              Õ
                                                                                                                            ¾
                                                   a
                 a :=       Ö i
                              ×È   i      a i     Ø                              nuÙ
                                                                                È Ú                                   È Û             Ü ¦Î   Ä £Ý
                                                                                                                                                         Ñ
                                                                                                                                                                           Ó    Þ ¸f
                                                   a
                 a :=   Ä     i   Öi      a i Ø                                  ßuÙ
                                                                                Ä Ú                                   È Û             Ü ¦Î   Ä £Ý
                                                                                                                                                     Ñ
                                                                                                                                                                       Ó        Þ ¸f

              for all       NewCons           a  do                      à
                                                                                    Ñ
                                                                                                                                          ÇF!á
                                                                                                                                         Ö Ä Â               Å Ø
                if        imp*            a          and li
                                                      º
                                                                     Õ
                                                                                        º
                                                                                                                  Õ
                                                                                                                                        ×€–pÚ
                                                                                                                                       Ö È » Èt‚Ø
                                                                                                                                             à â »                 ä gÞ
                                                                                                                                                                      ã                        å
                                                                                                                                                                                                     Ñ
                                                                                                                                                                                                           » à          a   æÀ          li then
                     imp := imp                  a
                                                                                                                                               Õ                               Þ ÇtéÉ Ø
                                                              º                                          º                      ÈèÉÊÈqÂçnÚ
                                                                                                                                         â                         Ö             Å à â

         imp* := imp*        imp
                                                                                    Õ
        º                                 º                                                  º
    until imp   º                             Í UÆ



                                                                                                             Ivan José Varzinczak                                                      What is a Good Domain Description?
Decomposing Theories
                                                                                                                     Introduction
                                                                                                                                                                                       Logical Modularity
                                                                                                                    Main Results
                                                                                                                                                                                       Exploiting Modularity
                                                                                                             Concluding Remarks
                                                                                                                                                                                       Theory Change


No Implicit Static Laws
  Algorithm 1: Finding all implicit static laws induced by a
                  a    a   a
  input:         ‚•¸¹
                ¼ » º           and                           ½ »                  ¾ F»
                                                                                                     ¿
                                                                                                                                  À
                                                                                                                                                                                                            a                a           a
  output: imp* , the set of all implicit static laws of
                    º                                                                                                                                                                               •¸¹
                                                                                                                                                                                                   ¼ » º          ½ €»            ¾ 5»
                                                                                                                                                                                                                                             ¿

  calls: NewCons                  PI            PI                              ÇXFÃÁ
                                                                               Æ Å Ä Â                                                 aXËÊqÂ
                                                                                                                                      Ì Å Ä É È                                 ÇqÂ
                                                                                                                                                                               Å È
    º imp* :=                 Í
    repeat
         imp :=
            º                         Í
                                     a
       for all          a             ¹do
                                        ¦ÏÈ
                                         Î
                                                                                            Ñ Ò‚¿
                                                                                               Ð
                                                                                                                        ½
                     a       a       a
           for all                     do                 Ó                  Ô Ãf                ¼
                                                                                                              Õ
                                                                                                                            ¾
                                                   a
                 a :=       Ö i
                              ×È   i      a i     Ø                              nuÙ
                                                                                È Ú                                   È Û             Ü ¦Î   Ä £Ý
                                                                                                                                                         Ñ
                                                                                                                                                                           Ó    Þ ¸f
                                                   a
                 a :=   Ä     i   Öi      a i Ø                                  ßuÙ
                                                                                Ä Ú                                   È Û             Ü ¦Î   Ä £Ý
                                                                                                                                                     Ñ
                                                                                                                                                                       Ó        Þ ¸f

              for all       NewCons           a  do                      à
                                                                                    Ñ
                                                                                                                                          ÇF!á
                                                                                                                                         Ö Ä Â               Å Ø
                if        imp*            a          and li
                                                      º
                                                                     Õ
                                                                                        º
                                                                                                                  Õ
                                                                                                                                        ×€–pÚ
                                                                                                                                       Ö È » Èt‚Ø
                                                                                                                                             à â »                 ä gÞ
                                                                                                                                                                      ã                        å
                                                                                                                                                                                                     Ñ
                                                                                                                                                                                                           » à          a   æÀ          li then
                     imp := imp                  a
                                                                                                                                               Õ                               Þ ÇtéÉ Ø
                                                              º                                          º                      ÈèÉÊÈqÂçnÚ
                                                                                                                                         â                         Ö             Å à â

         imp* := imp*        imp
                                                                                    Õ
        º                                 º                                                  º
    until imp   º                             Í UÆ



                                                                                                             Ivan José Varzinczak                                                      What is a Good Domain Description?
Decomposing Theories
                                                                                                                     Introduction
                                                                                                                                                                                       Logical Modularity
                                                                                                                    Main Results
                                                                                                                                                                                       Exploiting Modularity
                                                                                                             Concluding Remarks
                                                                                                                                                                                       Theory Change


No Implicit Static Laws
  Algorithm 1: Finding all implicit static laws induced by a
                  a    a   a
  input:         ‚•¸¹
                ¼ » º           and                           ½ »                  ¾ F»
                                                                                                     ¿
                                                                                                                                  À
                                                                                                                                                                                                            a                a           a
  output: imp* , the set of all implicit static laws of
                    º                                                                                                                                                                               •¸¹
                                                                                                                                                                                                   ¼ » º          ½ €»            ¾ 5»
                                                                                                                                                                                                                                             ¿

  calls: NewCons                  PI            PI                              ÇXFÃÁ
                                                                               Æ Å Ä Â                                                 aXËÊqÂ
                                                                                                                                      Ì Å Ä É È                                 ÇqÂ
                                                                                                                                                                               Å È
    º imp* :=                 Í
    repeat
         imp :=
            º                         Í
                                     a
       for all          a             ¹do
                                        ¦ÏÈ
                                         Î
                                                                                            Ñ Ò‚¿
                                                                                               Ð
                                                                                                                        ½
                     a       a       a
           for all                     do                 Ó                  Ô Ãf                ¼
                                                                                                              Õ
                                                                                                                            ¾
                                                   a
                 a :=       Ö i
                              ×È   i      a i     Ø                              nuÙ
                                                                                È Ú                                   È Û             Ü ¦Î   Ä £Ý
                                                                                                                                                         Ñ
                                                                                                                                                                           Ó    Þ ¸f
                                                   a
                 a :=   Ä     i   Öi      a i Ø                                  ßuÙ
                                                                                Ä Ú                                   È Û             Ü ¦Î   Ä £Ý
                                                                                                                                                     Ñ
                                                                                                                                                                       Ó        Þ ¸f

              for all       NewCons           a  do                      à
                                                                                    Ñ
                                                                                                                                          ÇF!á
                                                                                                                                         Ö Ä Â               Å Ø
                if        imp*            a          and li
                                                      º
                                                                     Õ
                                                                                        º
                                                                                                                  Õ
                                                                                                                                        ×€–pÚ
                                                                                                                                       Ö È » Èt‚Ø
                                                                                                                                             à â »                 ä gÞ
                                                                                                                                                                      ã                        å
                                                                                                                                                                                                     Ñ
                                                                                                                                                                                                           » à          a   æÀ          li then
                     imp := imp                  a
                                                                                                                                               Õ                               Þ ÇtéÉ Ø
                                                              º                                          º                      ÈèÉÊÈqÂçnÚ
                                                                                                                                         â                         Ö             Å à â

         imp* := imp*        imp
                                                                                    Õ
        º                                 º                                                  º
    until imp   º                             Í UÆ



                                                                                                             Ivan José Varzinczak                                                      What is a Good Domain Description?
Decomposing Theories
                                                                                                                     Introduction
                                                                                                                                                                                       Logical Modularity
                                                                                                                    Main Results
                                                                                                                                                                                       Exploiting Modularity
                                                                                                             Concluding Remarks
                                                                                                                                                                                       Theory Change


No Implicit Static Laws
  Algorithm 1: Finding all implicit static laws induced by a
                  a    a   a
  input:         ‚•¸¹
                ¼ » º           and                           ½ »                  ¾ F»
                                                                                                     ¿
                                                                                                                                  À
                                                                                                                                                                                                            a                a           a
  output: imp* , the set of all implicit static laws of
                    º                                                                                                                                                                               •¸¹
                                                                                                                                                                                                   ¼ » º          ½ €»            ¾ 5»
                                                                                                                                                                                                                                             ¿

  calls: NewCons                  PI            PI                              ÇXFÃÁ
                                                                               Æ Å Ä Â                                                 aXËÊqÂ
                                                                                                                                      Ì Å Ä É È                                 ÇqÂ
                                                                                                                                                                               Å È
    º imp* :=                 Í
    repeat
         imp :=
            º                         Í
                                     a
       for all          a             ¹do
                                        ¦ÏÈ
                                         Î
                                                                                            Ñ Ò‚¿
                                                                                               Ð
                                                                                                                        ½
                     a       a       a
           for all                     do                 Ó                  Ô Ãf                ¼
                                                                                                              Õ
                                                                                                                            ¾
                                                   a
                 a :=       Ö i
                              ×È   i      a i     Ø                              nuÙ
                                                                                È Ú                                   È Û             Ü ¦Î   Ä £Ý
                                                                                                                                                         Ñ
                                                                                                                                                                           Ó    Þ ¸f
                                                   a
                 a :=   Ä     i   Öi      a i Ø                                  ßuÙ
                                                                                Ä Ú                                   È Û             Ü ¦Î   Ä £Ý
                                                                                                                                                     Ñ
                                                                                                                                                                       Ó        Þ ¸f

              for all       NewCons           a  do                      à
                                                                                    Ñ
                                                                                                                                          ÇF!á
                                                                                                                                         Ö Ä Â               Å Ø
                if        imp*            a          and li
                                                      º
                                                                     Õ
                                                                                        º
                                                                                                                  Õ
                                                                                                                                        ×€–pÚ
                                                                                                                                       Ö È » Èt‚Ø
                                                                                                                                             à â »                 ä gÞ
                                                                                                                                                                      ã                        å
                                                                                                                                                                                                     Ñ
                                                                                                                                                                                                           » à          a   æÀ          li then
                     imp := imp                  a
                                                                                                                                               Õ                               Þ ÇtéÉ Ø
                                                              º                                          º                      ÈèÉÊÈqÂçnÚ
                                                                                                                                         â                         Ö             Å à â

         imp* := imp*        imp
                                                                                    Õ
        º                                 º                                                  º
    until imp   º                             Í UÆ



                                                                                                             Ivan José Varzinczak                                                      What is a Good Domain Description?
Decomposing Theories
                                                                                                                 Introduction
                                                                                                                                                                                   Logical Modularity
                                                                                                                Main Results
                                                                                                                                                                                   Exploiting Modularity
                                                                                                         Concluding Remarks
                                                                                                                                                                                   Theory Change


No Implicit Static Laws
  Algorithm 1: Finding all implicit static laws induced by a
                  a    a   a
  input:     ‚•¸¹
            ¼ » º               and                       ½ »                  ¾ F»
                                                                                                 ¿
                                                                                                                              À
                                                                                                                                                                                                        a                a           a
  output: imp* , the set of all implicit static laws of
                º                                                                                                                                                                               •¸¹
                                                                                                                                                                                               ¼ » º          ½ €»            ¾ 5»
                                                                                                                                                                                                                                         ¿

  calls: NewCons                  PI            PI                          ÇXFÃÁ
                                                                           Æ Å Ä Â                                                 aXËÊqÂ
                                                                                                                                  Ì Å Ä É È                                 ÇqÂ
                                                                                                                                                                           Å È
    º imp* :=             Í
    repeat
        ºimp :=                   Í
                                     a
       for all          a         ¹ ¦ÏÈ
                                     Î do                                               Ñ Ò‚¿
                                                                                           Ð
                                                                                                                    ½
                     a       a       a
           for all                     do             Ó                  Ô Ãf                ¼
                                                                                                          Õ
                                                                                                                        ¾
                                                   a
                 a :=   Ö ×È  i    i      a i Ø                              nuÙ
                                                                            È Ú                                   È Û             Ü ¦Î   Ä £Ý
                                                                                                                                                     Ñ
                                                                                                                                                                       Ó    Þ ¸f
                                                   a
                 a :=
                    Ä         i
                              Ö    i      a i
                                          Ø                                  ßuÙ
                                                                            Ä Ú                                   È Û             Ü ¦Î   Ä £Ý
                                                                                                                                                 Ñ
                                                                                                                                                                   Ó        Þ ¸f

              for all       NewCons           a  do                  à
                                                                                Ñ
                                                                                                                                      ÇF!á
                                                                                                                                     Ö Ä Â               Å Ø
                if        imp*            a       º  and li      Õ
                                                                                    º
                                                                                                              Õ
                                                                                                                                    ×€–pÚ
                                                                                                                                   Ö È » Èt‚Ø
                                                                                                                                         à â »                 ä gÞ
                                                                                                                                                                  ã                        å
                                                                                                                                                                                                 Ñ
                                                                                                                                                                                                       » à          a   æÀ          li then
                     imp := imp                  a
                                                                                                                                           Õ                               Þ ÇtéÉ Ø
                                                          º                                          º                      ÈèÉÊÈqÂçnÚ
                                                                                                                                     â                         Ö             Å à â

         imp* := imp*        imp
                                                                                Õ
        º                             º                                                  º
    until imp
            º                             Í UÆ



                                                                                                         Ivan José Varzinczak                                                      What is a Good Domain Description?
Decomposing Theories
                                                  Introduction
                                                                                                                 Logical Modularity
                                                 Main Results
                                                                                                                 Exploiting Modularity
                                          Concluding Remarks
                                                                                                                 Theory Change


No Implicit Static Laws
  Example
                                                                                                                      tease walking
                                 walking                       alive
                                                                                                                             Ü            Ý                »
                                                                                                                  loaded    shoot alive
               Ú ©ƒº
                  Æ                                Î                                 ê  Ï–» Þ
                                                                                        Æ ¼                                                                        »
                                                                                                                                    Ü ¦Î           â 5Ý        ë

                                   쩆½
                                  ¹ Ú Æ                    tease              Ð ‚¿
                                                                                           p©di» Þ
                                                                                          â Ú Æ ¾                     alive        Ü ¦Î   tease   Þ •ä Ý


                                              tease                   À                  walking shoot       »                   â íÀ   alive
   For tease                       and tease walking:
          r
                          „ s                 e                                f

      NewCons walking              j vî                                   k          '            alive: tease alive
                                                                                                                  e                 f

      tease          ¬¥           alive:               Q       alive                     e {…       tease alive       Q ‚f

      Hence alive            Q                 e {…            tease
                                                                ˜
                                                                                              gf
                                                                                                    ˜


                                      alive                                              :                       alive
      ‘                                                                                       ‘
              Q ĠRPI
                 ‚ „ )                                     4         Ž' ¬                              '¬

                                 alive
      ‘
              imp   ) 0'                  4




                                              Ivan José Varzinczak                                               What is a Good Domain Description?
Decomposing Theories
                                                  Introduction
                                                                                                                 Logical Modularity
                                                 Main Results
                                                                                                                 Exploiting Modularity
                                          Concluding Remarks
                                                                                                                 Theory Change


No Implicit Static Laws
  Example
                                                                                                                      tease walking
                                 walking                       alive
                                                                                                                             Ü            Ý                »
                                                                                                                  loaded    shoot alive
               Ú ©ƒº
                  Æ                                Î                                 ê  Ï–» Þ
                                                                                        Æ ¼                                                                        »
                                                                                                                                    Ü ¦Î           â 5Ý        ë

                                  ¹ ©†½
                                    Ú Æ                    tease              Ð ‚¿
                                                                                           p©di» Þ
                                                                                          â Ú Æ ¾                     alive        Ü ¦Î   tease   Þ •ä Ý


                                              tease                   À                  walking shoot       »                   â íÀ   alive
   For tease                       and tease walking:
          r
                          „ s                 e                                f

      NewCons walking              j vî                                   k          '            alive: tease alive
                                                                                                                  e                 f

      tease          ¬¥           alive:               Q       alive                     e {…       tease alive       Q ‚f

      Hence alive            Q                 e {…            tease
                                                                ˜
                                                                                              gf
                                                                                                    ˜


                                      alive                                              :                       alive
      ‘                                                                                       ‘
              Q ĠRPI
                 ‚ „ )                                     4         Ž' ¬                              '¬

                                 alive
      ‘
              imp   ) 0'                  4




                                              Ivan José Varzinczak                                               What is a Good Domain Description?
Decomposing Theories
                                                  Introduction
                                                                                                                 Logical Modularity
                                                 Main Results
                                                                                                                 Exploiting Modularity
                                          Concluding Remarks
                                                                                                                 Theory Change


No Implicit Static Laws
  Example
                                                                                                                      tease walking
                                 walking                       alive
                                                                                                                             Ü            Ý                »
                                                                                                                  loaded    shoot alive
               Ú ©ƒº
                  Æ                                Î                                 ê  Ï–» Þ
                                                                                        Æ ¼                                                                        »
                                                                                                                                    Ü ¦Î           â 5Ý        ë

                                  ¹ ©†½
                                    Ú Æ                    tease              Ð ‚¿
                                                                                           p©di» Þ
                                                                                          â Ú Æ ¾                     alive        Ü ¦Î   tease   Þ •ä Ý


                                              tease                   À                  walking shoot       »                   â íÀ   alive
   For tease                       and tease walking:
          r
                          „ s                 e                                f

      NewCons walking              j vî                                   k          '            alive: tease alive
                                                                                                                  e                 f

      tease          ¬¥           alive:               Q       alive                     e {…       tease alive       Q ‚f

      Hence alive            Q                 e {…            tease
                                                                ˜
                                                                                              gf
                                                                                                    ˜


                                      alive                                              :                       alive
      ‘                                                                                       ‘
              Q ĠRPI
                 ‚ „ )                                     4         Ž' ¬                              '¬

                                 alive
      ‘
              imp   ) 0'                  4




                                              Ivan José Varzinczak                                               What is a Good Domain Description?
Decomposing Theories
                                                  Introduction
                                                                                                                 Logical Modularity
                                                 Main Results
                                                                                                                 Exploiting Modularity
                                          Concluding Remarks
                                                                                                                 Theory Change


No Implicit Static Laws
  Example
                                                                                                                      tease walking
                                 walking                       alive
                                                                                                                             Ü            Ý                »
                                                                                                                  loaded    shoot alive
               Ú ©ƒº
                  Æ                                Î                                 ê  Ï–» Þ
                                                                                        Æ ¼                                                                        »
                                                                                                                                    Ü ¦Î           â 5Ý        ë

                                  ¹ ©†½
                                    Ú Æ                    tease              Ð ‚¿
                                                                                           p©di» Þ
                                                                                          â Ú Æ ¾                     alive        Ü ¦Î   tease   Þ •ä Ý


                                              tease                   À                  walking shoot       »                   â íÀ   alive
   For tease                       and tease walking:
          r
                          „ s                 e                                f

      NewCons walking              j vî                                   k          '            alive: tease alive
                                                                                                                  e                 f

      tease          ¬¥           alive:               Q       alive                     e {…       tease alive       Q ‚f

      Hence alive            Q                 e {…            tease
                                                                ˜
                                                                                              gf
                                                                                                    ˜


                                      alive                                              :                       alive
      ‘                                                                                       ‘
              Q ĠRPI
                 ‚ „ )                                     4         Ž' ¬                              '¬

                                 alive
      ‘
              imp   ) 0'                  4




                                              Ivan José Varzinczak                                               What is a Good Domain Description?
Decomposing Theories
                                                  Introduction
                                                                                                                 Logical Modularity
                                                 Main Results
                                                                                                                 Exploiting Modularity
                                          Concluding Remarks
                                                                                                                 Theory Change


No Implicit Static Laws
  Example
                                                                                                                      tease walking
                                 walking                       alive
                                                                                                                             Ü            Ý                »
                                                                                                                  loaded    shoot alive
               Ú ©ƒº
                  Æ                                Î                                 ê  Ï–» Þ
                                                                                        Æ ¼                                                                        »
                                                                                                                                    Ü ¦Î           â 5Ý        ë

                                  ¹ ©†½
                                    Ú Æ                    tease              Ð ‚¿
                                                                                           p©di» Þ
                                                                                          â Ú Æ ¾                     alive        Ü ¦Î   tease   Þ •ä Ý


                                              tease                   À                  walking shoot       »                   â íÀ   alive
   For tease                       and tease walking:
          r
                          „ s                 e                                f

      NewCons walking              j vî                                   k          '            alive: tease alive
                                                                                                                  e                 f

      tease          ¬¥           alive:               Q       alive                     e {…       tease alive       Q ‚f

      Hence alive            Q                 e {…            tease
                                                                ˜
                                                                                              gf
                                                                                                    ˜


                                      alive                                              :                       alive
      ‘                                                                                       ‘
              Q ĠRPI
                 ‚ „ )                                     4         Ž' ¬                              '¬

                                 alive
      ‘
              imp   ) 0'                  4




                                              Ivan José Varzinczak                                               What is a Good Domain Description?
Decomposing Theories
                                                  Introduction
                                                                                                                 Logical Modularity
                                                 Main Results
                                                                                                                 Exploiting Modularity
                                          Concluding Remarks
                                                                                                                 Theory Change


No Implicit Static Laws
  Example
                                                                                                                      tease walking
                                 walking                       alive
                                                                                                                             Ü            Ý                »
                                                                                                                  loaded    shoot alive
               Ú ©ƒº
                  Æ                                Î                                 ê  Ï–» Þ
                                                                                        Æ ¼                                                                        »
                                                                                                                                    Ü ¦Î           â 5Ý        ë

                                  ¹ ©†½
                                    Ú Æ                    tease              Ð ‚¿
                                                                                           p©di» Þ
                                                                                          â Ú Æ ¾                     alive        Ü ¦Î   tease   Þ •ä Ý


                                              tease                   À                  walking shoot       »                   â íÀ   alive
   For tease                       and tease walking:
          r
                          „ s                 e                                f

      NewCons walking              j vî                                   k          '            alive: tease alive
                                                                                                                  e                 f

      tease          ¬¥           alive:               Q       alive                     e {…       tease alive       Q ‚f

      Hence alive            Q                 e {…            tease
                                                                ˜
                                                                                              gf
                                                                                                    ˜


                                      alive                                              :                       alive
      ‘                                                                                       ‘
              Q ĠRPI
                 ‚ „ )                                     4         Ž' ¬                              '¬

                                 alive
      ‘
              imp   ) 0'                  4




                                              Ivan José Varzinczak                                               What is a Good Domain Description?
Decomposing Theories
                                                  Introduction
                                                                                                                 Logical Modularity
                                                 Main Results
                                                                                                                 Exploiting Modularity
                                          Concluding Remarks
                                                                                                                 Theory Change


No Implicit Static Laws
  Example
                                                                                                                      tease walking
                                 walking                       alive
                                                                                                                             Ü            Ý                »
                                                                                                                  loaded    shoot alive
               Ú ©ƒº
                  Æ                                Î                                 ê  Ï–» Þ
                                                                                        Æ ¼                                                                        »
                                                                                                                                    Ü ¦Î           â 5Ý        ë

                                  ¹ ©†½
                                    Ú Æ                    tease              Ð ‚¿
                                                                                           p©di» Þ
                                                                                          â Ú Æ ¾                     alive        Ü ¦Î   tease   Þ •ä Ý


                                              tease                   À                  walking shoot       »                   â íÀ   alive
   For tease                       and tease walking:
          r
                          „ s                 e                                f

      NewCons walking              j vî                                   k          '            alive: tease alive
                                                                                                                  e                 f

      tease          ¬¥           alive:               Q       alive                     e {…       tease alive       Q ‚f

      Hence alive            Q                 e {…            tease
                                                                ˜
                                                                                              gf
                                                                                                    ˜


                                      alive                                              :                       alive
      ‘                                                                                       ‘
              Q ĠRPI
                 ‚ „ )                                     4         Ž' ¬                              '¬

                                 alive
      ‘
              imp   ) 0'                  4




                                              Ivan José Varzinczak                                               What is a Good Domain Description?
Decomposing Theories
                                      Introduction
                                                              Logical Modularity
                                     Main Results
                                                              Exploiting Modularity
                              Concluding Remarks
                                                              Theory Change


No Implicit Static Laws

  Example (cont.)
  Alternatives for repairing:
        :=        alive
      ‘     ‘
                ) ©I                4


      add tease           ¥   alive
      weaken tease walking: alive
                  e             f                             e †…   tease walking
                                                                            f

      weaken tease                         : alive           tease
                      r                                  r
                                    „ s             …               „ s


           contraction of action theories (addressed later)




                              Ivan José Varzinczak            What is a Good Domain Description?
Decomposing Theories
                                      Introduction
                                                              Logical Modularity
                                     Main Results
                                                              Exploiting Modularity
                              Concluding Remarks
                                                              Theory Change


No Implicit Static Laws

  Example (cont.)
  Alternatives for repairing:
        :=        alive
      ‘     ‘
                ) ©I                4


      add tease           ¥   alive
      weaken tease walking: alive
                  e             f                             e †…   tease walking
                                                                            f

      weaken tease                         : alive           tease
                      r                                  r
                                    „ s             …               „ s


           contraction of action theories (addressed later)




                              Ivan José Varzinczak            What is a Good Domain Description?
Decomposing Theories
                                      Introduction
                                                              Logical Modularity
                                     Main Results
                                                              Exploiting Modularity
                              Concluding Remarks
                                                              Theory Change


No Implicit Static Laws

  Example (cont.)
  Alternatives for repairing:
        :=        alive
      ‘     ‘
                ) ©I                4


      add tease           ¥   alive
      weaken tease walking: alive
                  e             f                             e †…   tease walking
                                                                            f

      weaken tease                         : alive           tease
                      r                                  r
                                    „ s             …               „ s


           contraction of action theories (addressed later)




                              Ivan José Varzinczak            What is a Good Domain Description?
Decomposing Theories
                                                                                           Introduction
                                                                                                                                                        Logical Modularity
                                                                                          Main Results
                                                                                                                                                        Exploiting Modularity
                                                                                   Concluding Remarks
                                                                                                                                                        Theory Change


No Implicit Static Laws

  Theorem
  ‘ r
                           a                a            a               and                                 satisfy Postulate PS iff
                                                                                                                                                                              ‘
                                                                                                                                                                                                                 .
        • 1                     – n1             — ‚1       s                                    ¥                                                                                imp*               ï ð'




  Theorem
  Let imp* be the output of Algorithm 1 on input
               ‘                                                                                                                                                                   ‘ r
                                                                                                                                                                                                      a              a          a   s
                                                                                                                                                                                               • 1       – n1           — ‚1

  and . Then       ¥
                           ‘ r               ‘
                                                                                   a                  a                a              has no implicit static law.
                                              imp*
                                                                                       ˜
                                        I                               • 1               – n1             — ‚1           s

                                            a   a                              a
                                                                                                                           imp* .
                       ‘                                                                                           ‘
                                 • 1            – n1            — ‚1                      ñ ³® '




  Corollary                                                                                                                               ˜                                              ˜


  For all                                                                ,
                                                                               ‘
                                                                                                      a                a              a                   iff
                                                                                                                                                                ‘       ‘
                                                                                                                                                                                                      .
                                    Y `Xdòc
                                       W V T                                               • 1           – n1                 — ‚1           ® '   c               I       imp*             c Ž'




                                                                                       Ivan José Varzinczak                                             What is a Good Domain Description?
Decomposing Theories
                                                                                           Introduction
                                                                                                                                                        Logical Modularity
                                                                                          Main Results
                                                                                                                                                        Exploiting Modularity
                                                                                   Concluding Remarks
                                                                                                                                                        Theory Change


No Implicit Static Laws

  Theorem
  ‘ r
                           a                a            a               and                                 satisfy Postulate PS iff
                                                                                                                                                                              ‘
                                                                                                                                                                                                                 .
        • 1                     – n1             — ‚1       s                                    ¥                                                                                imp*               ï ð'




  Theorem
  Let imp* be the output of Algorithm 1 on input
               ‘                                                                                                                                                                   ‘ r
                                                                                                                                                                                                      a              a          a   s
                                                                                                                                                                                               • 1       – n1           — ‚1

  and . Then       ¥
                           ‘ r               ‘
                                                                                   a                  a                a              has no implicit static law.
                                              imp*
                                                                                       ˜
                                        I                               • 1               – n1             — ‚1           s

                                            a   a                              a
                                                                                                                           imp* .
                       ‘                                                                                           ‘
                                 • 1            – n1            — ‚1                      ñ ³® '




  Corollary                                                                                                                               ˜                                              ˜


  For all                                                                ,
                                                                               ‘
                                                                                                      a                a              a                   iff
                                                                                                                                                                ‘       ‘
                                                                                                                                                                                                      .
                                    Y `Xdòc
                                       W V T                                               • 1           – n1                 — ‚1           ® '   c               I       imp*             c Ž'




                                                                                       Ivan José Varzinczak                                             What is a Good Domain Description?
Decomposing Theories
                                                                                           Introduction
                                                                                                                                                        Logical Modularity
                                                                                          Main Results
                                                                                                                                                        Exploiting Modularity
                                                                                   Concluding Remarks
                                                                                                                                                        Theory Change


No Implicit Static Laws

  Theorem
  ‘ r
                           a                a            a               and                                 satisfy Postulate PS iff
                                                                                                                                                                              ‘
                                                                                                                                                                                                                 .
        • 1                     – n1             — ‚1       s                                    ¥                                                                                imp*               ï ð'




  Theorem
  Let imp* be the output of Algorithm 1 on input
               ‘                                                                                                                                                                   ‘ r
                                                                                                                                                                                                      a              a          a   s
                                                                                                                                                                                               • 1       – n1           — ‚1

  and . Then       ¥
                           ‘ r               ‘
                                                                                   a                  a                a              has no implicit static law.
                                              imp*
                                                                                       ˜
                                        I                               • 1               – n1             — ‚1           s

                                            a   a                              a
                                                                                                                           imp* .
                       ‘                                                                                           ‘
                                 • 1            – n1            — ‚1                      ñ ³® '




  Corollary                                                                                                                               ˜                                              ˜


  For all                                                                ,
                                                                               ‘
                                                                                                      a                a              a                   iff
                                                                                                                                                                ‘       ‘
                                                                                                                                                                                                      .
                                    Y `Xdòc
                                       W V T                                               • 1           – n1                 — ‚1           ® '   c               I       imp*             c Ž'




                                                                                       Ivan José Varzinczak                                             What is a Good Domain Description?
Decomposing Theories
                                                              Introduction
                                                                                                   Logical Modularity
                                                             Main Results
                                                                                                   Exploiting Modularity
                                                      Concluding Remarks
                                                                                                   Theory Change


No Implicit Inexecutability Laws
  Example
                                                                                                        tease walking
                                 walking                          alive
                                                                                                                Ü             Ý                 »
                                                                                                    loaded    shoot alive
                 Ú ©ƒº
                    Æ                                       Î               Æ Ï–» Þ
                                                                               ¼          ê                                                                    »
                                                                                                                           Ü ¦Î          â 5Ý              ë

                                         ìƒ`Bó½
                                        » Í Æ ¾ Æ
                                                  ˜
                                                                           tease    À    walking shoot      »                     â ôÀ   alive
      ‘
                  tease                                    tease alive
          • 1                          e õß' ˜
                                           ®                           f
      ‘
                  tease                                    alive                    tease alive (from tease
                                                                                                 ‚f ˜                                                          alive)
          • 1                          ® '   Q                            e †…                Q                                                    ¬¥


      Thus
                      ‘
                                         tease    ˜               tease             tease                           alive                tease
                                 • 1                      – n1              — ‚1              ® '      Q                         e †…               gf


      But
                  ‘
                                   tease                                   alive               tease
                                                           PDL
                          — ‚1                        '¬           Q                    e †…                         gf




                                              !                   Postulate PI violated


                                                      Ivan José Varzinczak                         What is a Good Domain Description?
Decomposing Theories
                                                              Introduction
                                                                                                   Logical Modularity
                                                             Main Results
                                                                                                   Exploiting Modularity
                                                      Concluding Remarks
                                                                                                   Theory Change


No Implicit Inexecutability Laws
  Example
                                                                                                        tease walking
                                 walking                          alive
                                                                                                                Ü             Ý                 »
                                                                                                    loaded    shoot alive
                 Ú ©ƒº
                    Æ                                       Î               Æ Ï–» Þ
                                                                               ¼          ê                                                                    »
                                                                                                                           Ü ¦Î          â 5Ý              ë

                                         ìƒ`Bó½
                                        » Í Æ ¾ Æ
                                                  ˜
                                                                           tease    À    walking shoot      »                     â ôÀ   alive
      ‘
                  tease                                    tease alive
          • 1                          e õß' ˜
                                           ®                           f
      ‘
                  tease                                    alive                    tease alive (from tease
                                                                                                 ‚f ˜                                                          alive)
          • 1                          ® '   Q                            e †…                Q                                                    ¬¥


      Thus
                      ‘
                                         tease    ˜               tease             tease                           alive                tease
                                 • 1                      – n1              — ‚1              ® '      Q                         e †…               gf


      But
                  ‘
                                   tease                                   alive               tease
                                                           PDL
                          — ‚1                        '¬           Q                    e †…                         gf




                                              !                   Postulate PI violated


                                                      Ivan José Varzinczak                         What is a Good Domain Description?
Decomposing Theories
                                                              Introduction
                                                                                                   Logical Modularity
                                                             Main Results
                                                                                                   Exploiting Modularity
                                                      Concluding Remarks
                                                                                                   Theory Change


No Implicit Inexecutability Laws
  Example
                                                                                                        tease walking
                                 walking                          alive
                                                                                                                Ü             Ý                 »
                                                                                                    loaded    shoot alive
                 Ú ©ƒº
                    Æ                                       Î               Æ Ï–» Þ
                                                                               ¼          ê                                                                    »
                                                                                                                           Ü ¦Î          â 5Ý              ë

                                         ìƒ`Bó½
                                        » Í Æ ¾ Æ
                                                  ˜
                                                                           tease    À    walking shoot      »                     â ôÀ   alive
      ‘
                  tease                                    tease alive
          • 1                          e õß' ˜
                                           ®                           f
      ‘
                  tease                                    alive                    tease alive (from tease
                                                                                                 ‚f ˜                                                          alive)
          • 1                          ® '   Q                            e †…                Q                                                    ¬¥


      Thus
                      ‘
                                         tease    ˜               tease             tease                           alive                tease
                                 • 1                      – n1              — ‚1              ® '      Q                         e †…               gf


      But
                  ‘
                                   tease                                   alive               tease
                                                           PDL
                          — ‚1                        '¬           Q                    e †…                         gf




                                              !                   Postulate PI violated


                                                      Ivan José Varzinczak                         What is a Good Domain Description?
Decomposing Theories
                                                              Introduction
                                                                                                   Logical Modularity
                                                             Main Results
                                                                                                   Exploiting Modularity
                                                      Concluding Remarks
                                                                                                   Theory Change


No Implicit Inexecutability Laws
  Example
                                                                                                        tease walking
                                 walking                          alive
                                                                                                                Ü             Ý                 »
                                                                                                    loaded    shoot alive
                 Ú ©ƒº
                    Æ                                       Î               Æ Ï–» Þ
                                                                               ¼          ê                                                                    »
                                                                                                                           Ü ¦Î          â 5Ý              ë

                                         ìƒ`Bó½
                                        » Í Æ ¾ Æ
                                                  ˜
                                                                           tease    À    walking shoot      »                     â ôÀ   alive
      ‘
                  tease                                    tease alive
          • 1                          e õß' ˜
                                           ®                           f
      ‘
                  tease                                    alive                    tease alive (from tease
                                                                                                 ‚f ˜                                                          alive)
          • 1                          ® '   Q                            e †…                Q                                                    ¬¥


      Thus
                      ‘
                                         tease    ˜               tease             tease                           alive                tease
                                 • 1                      – n1              — ‚1              ® '      Q                         e †…               gf


      But
                  ‘
                                   tease                                   alive               tease
                                                           PDL
                          — ‚1                        '¬           Q                    e †…                         gf




                                              !                   Postulate PI violated


                                                      Ivan José Varzinczak                         What is a Good Domain Description?
Decomposing Theories
                                                              Introduction
                                                                                                   Logical Modularity
                                                             Main Results
                                                                                                   Exploiting Modularity
                                                      Concluding Remarks
                                                                                                   Theory Change


No Implicit Inexecutability Laws
  Example
                                                                                                        tease walking
                                 walking                          alive
                                                                                                                Ü             Ý                 »
                                                                                                    loaded    shoot alive
                 Ú ©ƒº
                    Æ                                       Î               Æ Ï–» Þ
                                                                               ¼          ê                                                                    »
                                                                                                                           Ü ¦Î          â 5Ý              ë

                                         ìƒ`Bó½
                                        » Í Æ ¾ Æ
                                                  ˜
                                                                           tease    À    walking shoot      »                     â ôÀ   alive
      ‘
                  tease                                    tease alive
          • 1                          e õß' ˜
                                           ®                           f
      ‘
                  tease                                    alive                    tease alive (from tease
                                                                                                 ‚f ˜                                                          alive)
          • 1                          ® '   Q                            e †…                Q                                                    ¬¥


      Thus
                      ‘
                                         tease    ˜               tease             tease                           alive                tease
                                 • 1                      – n1              — ‚1              ® '      Q                         e †…               gf


      But
                  ‘
                                   tease                                   alive               tease
                                                           PDL
                          — ‚1                        '¬           Q                    e †…                         gf




                                              !                   Postulate PI violated


                                                      Ivan José Varzinczak                         What is a Good Domain Description?
Decomposing Theories
                                                              Introduction
                                                                                                   Logical Modularity
                                                             Main Results
                                                                                                   Exploiting Modularity
                                                      Concluding Remarks
                                                                                                   Theory Change


No Implicit Inexecutability Laws
  Example
                                                                                                        tease walking
                                 walking                          alive
                                                                                                                Ü             Ý                 »
                                                                                                    loaded    shoot alive
                 Ú ©ƒº
                    Æ                                       Î               Æ Ï–» Þ
                                                                               ¼          ê                                                                    »
                                                                                                                           Ü ¦Î          â 5Ý              ë

                                         ìƒ`Bó½
                                        » Í Æ ¾ Æ
                                                  ˜
                                                                           tease    À    walking shoot      »                     â ôÀ   alive
      ‘
                  tease                                    tease alive
          • 1                          e õß' ˜
                                           ®                           f
      ‘
                  tease                                    alive                    tease alive (from tease
                                                                                                 ‚f ˜                                                          alive)
          • 1                          ® '   Q                            e †…                Q                                                    ¬¥


      Thus
                      ‘
                                         tease    ˜               tease             tease                           alive                tease
                                 • 1                      – n1              — ‚1              ® '      Q                         e †…               gf


      But
                  ‘
                                   tease                                   alive               tease
                                                           PDL
                          — ‚1                        '¬           Q                    e †…                         gf




                                              !                   Postulate PI violated


                                                      Ivan José Varzinczak                         What is a Good Domain Description?
Decomposing Theories
                              Introduction
                                             Logical Modularity
                             Main Results
                                             Exploiting Modularity
                      Concluding Remarks
                                             Theory Change


No Implicit Inexecutability Laws

  Idea of algorithm
  For each combination of effect laws
    1   find inconsistent consequents
    2   mark it as an implicit inexecutability

             Result: the set of all implicit inexecutabilities




                      Ivan José Varzinczak   What is a Good Domain Description?
Decomposing Theories
                              Introduction
                                             Logical Modularity
                             Main Results
                                             Exploiting Modularity
                      Concluding Remarks
                                             Theory Change


No Implicit Inexecutability Laws

  Idea of algorithm
  For each combination of effect laws
    1   find inconsistent consequents
    2   mark it as an implicit inexecutability

             Result: the set of all implicit inexecutabilities




                      Ivan José Varzinczak   What is a Good Domain Description?
Decomposing Theories
                                                                                              Introduction
                                                                                                                                                   Logical Modularity
                                                                                             Main Results
                                                                                                                                                   Exploiting Modularity
                                                                                      Concluding Remarks
                                                                                                                                                   Theory Change


No Implicit Inexecutability Laws

  Algorithm 2: Finding implicit inexecutability laws for a
  input:        a
               ‘ r
                    a and                                                         s                  ¥
                                         • 1               — ‚1

  output: imp a , the set of implicit inexecutability laws for a
                         —

  calls: NewCons                 PI         PI                                     ‚çö
                                                                                  ÷ j        k   '              ÷ ´U€j
                                                                                                                   ‚ c                            ø §k                  c €j       k
      a :=
    — imp                            ï

    for all a        a do
                                 •
                                                e       ˆ             •

                                  a i     a
        ù a :=
          §c    f    i     i                        ñ              c R)               c aS           e †…       ÷ df            T             •
                                                                                                                                                             e
                                                                                                                                                                 4

                                  a i     a
        ù a :=
          (÷    f    i     i                        ñ              ÷ ì)               c ÃS           e †…       ÷ df        T             •
                                                                                                                                                             e
                                                                                                                                                                 4

       for all     NewCons            a  do     T òú                                                        î    ª‚j
                                                                                                                ù ÷                 k f

          if li       a      li and     a                  a then
                                                                                                                  ‘
                                               a
                                                                                                                                                    ü
                     û                              ú UT                  1             ¬¥                                 — ‚1                                       ‘€j
                                                                                                                                                                     ù c       f          (ƒ‚
                                                                                                                                                                                         ú Q      k   e †…    gf
              a := a                            a
                                    a
             imp       imp   —                                                —                   ‘€iPI
                                                                                                 ù c j )               f    ªU‚
                                                                                                                           ú Q                           k           e †…               gf   4




                                                                                      Ivan José Varzinczak                                         What is a Good Domain Description?
Decomposing Theories
                                                                                              Introduction
                                                                                                                                                   Logical Modularity
                                                                                             Main Results
                                                                                                                                                   Exploiting Modularity
                                                                                      Concluding Remarks
                                                                                                                                                   Theory Change


No Implicit Inexecutability Laws

  Algorithm 2: Finding implicit inexecutability laws for a
  input:        a
               ‘ r
                    a and                                                         s                  ¥
                                         • 1               — ‚1

  output: imp a , the set of implicit inexecutability laws for a
                         —

  calls: NewCons                 PI         PI                                     ‚çö
                                                                                  ÷ j        k   '              ÷ ´U€j
                                                                                                                   ‚ c                            ø §k                  c €j       k
      a :=
    — imp                            ï

    for all a        a do
                                 •
                                                e       ˆ             •

                                  a i     a
        ù a :=
          §c    f    i     i                        ñ              c R)               c aS           e †…       ÷ df            T             •
                                                                                                                                                             e
                                                                                                                                                                 4

                                  a i     a
        ù a :=
          (÷    f    i     i                        ñ              ÷ ì)               c ÃS           e †…       ÷ df        T             •
                                                                                                                                                             e
                                                                                                                                                                 4

       for all     NewCons            a  do     T òú                                                        î    ª‚j
                                                                                                                ù ÷                 k f

          if li       a      li and     a                  a then
                                                                                                                  ‘
                                               a
                                                                                                                                                    ü
                     û                              ú UT                  1             ¬¥                                 — ‚1                                       ‘€j
                                                                                                                                                                     ù c       f          (ƒ‚
                                                                                                                                                                                         ú Q      k   e †…    gf
              a := a                            a
                                    a
             imp       imp   —                                                —                   ‘€iPI
                                                                                                 ù c j )               f    ªU‚
                                                                                                                           ú Q                           k           e †…               gf   4




                                                                                      Ivan José Varzinczak                                         What is a Good Domain Description?
Decomposing Theories
                                                                                              Introduction
                                                                                                                                                   Logical Modularity
                                                                                             Main Results
                                                                                                                                                   Exploiting Modularity
                                                                                      Concluding Remarks
                                                                                                                                                   Theory Change


No Implicit Inexecutability Laws

  Algorithm 2: Finding implicit inexecutability laws for a
  input:        a
               ‘ r
                    a and                                                         s                  ¥
                                         • 1               — ‚1

  output: imp a , the set of implicit inexecutability laws for a
                         —

  calls: NewCons                 PI         PI                                     ‚çö
                                                                                  ÷ j        k   '              ÷ ´U€j
                                                                                                                   ‚ c                            ø §k                  c €j       k
      a :=
    — imp                            ï

    for all a        a do
                                 •
                                                e       ˆ             •

                                  a i     a
        ù a :=
          §c    f    i     i                        ñ              c R)               c aS           e †…       ÷ df            T             •
                                                                                                                                                             e
                                                                                                                                                                 4

                                  a i     a
        ù a :=
          (÷    f    i     i                        ñ              ÷ ì)               c ÃS           e †…       ÷ df        T             •
                                                                                                                                                             e
                                                                                                                                                                 4

       for all     NewCons            a  do     T òú                                                        î    ª‚j
                                                                                                                ù ÷                 k f

          if li       a      li and     a                  a then
                                                                                                                  ‘
                                               a
                                                                                                                                                    ü
                     û                              ú UT                  1             ¬¥                                 — ‚1                                       ‘€j
                                                                                                                                                                     ù c       f          (ƒ‚
                                                                                                                                                                                         ú Q      k   e †…    gf
              a := a                            a
                                    a
             imp       imp   —                                                —                   ‘€iPI
                                                                                                 ù c j )               f    ªU‚
                                                                                                                           ú Q                           k           e †…               gf   4




                                                                                      Ivan José Varzinczak                                         What is a Good Domain Description?
Decomposing Theories
                                                                                              Introduction
                                                                                                                                                   Logical Modularity
                                                                                             Main Results
                                                                                                                                                   Exploiting Modularity
                                                                                      Concluding Remarks
                                                                                                                                                   Theory Change


No Implicit Inexecutability Laws

  Algorithm 2: Finding implicit inexecutability laws for a
  input:        a
               ‘ r
                    a and                                                         s                  ¥
                                         • 1               — ‚1

  output: imp a , the set of implicit inexecutability laws for a
                         —

  calls: NewCons                 PI         PI                                     ‚çö
                                                                                  ÷ j        k   '              ÷ ´U€j
                                                                                                                   ‚ c                            ø §k                  c €j       k
      a :=
    — imp                            ï

    for all a        a do
                                 •
                                                e       ˆ             •

                                  a i     a
        ù a :=
          §c    f    i     i                        ñ              c R)               c aS           e †…       ÷ df            T             •
                                                                                                                                                             e
                                                                                                                                                                 4

                                  a i     a
        ù a :=
          (÷    f    i     i                        ñ              ÷ ì)               c ÃS           e †…       ÷ df        T             •
                                                                                                                                                             e
                                                                                                                                                                 4

       for all     NewCons            a  do     T òú                                                        î    ª‚j
                                                                                                                ù ÷                 k f

          if li       a      li and     a                  a then
                                                                                                                  ‘
                                               a
                                                                                                                                                    ü
                     û                              ú UT                  1             ¬¥                                 — ‚1                                       ‘€j
                                                                                                                                                                     ù c       f          (ƒ‚
                                                                                                                                                                                         ú Q      k   e †…    gf
              a := a                            a
                                    a
             imp       imp   —                                                —                   ‘€iPI
                                                                                                 ù c j )               f    ªU‚
                                                                                                                           ú Q                           k           e †…               gf   4




                                                                                      Ivan José Varzinczak                                         What is a Good Domain Description?
Decomposing Theories
                                                                                              Introduction
                                                                                                                                                   Logical Modularity
                                                                                             Main Results
                                                                                                                                                   Exploiting Modularity
                                                                                      Concluding Remarks
                                                                                                                                                   Theory Change


No Implicit Inexecutability Laws

  Algorithm 2: Finding implicit inexecutability laws for a
  input:        a
               ‘ r
                    a and                                                         s                  ¥
                                         • 1               — ‚1

  output: imp a , the set of implicit inexecutability laws for a
                         —

  calls: NewCons                 PI         PI                                     ‚çö
                                                                                  ÷ j        k   '              ÷ ´U€j
                                                                                                                   ‚ c                            ø §k                  c €j       k
      a :=
    — imp                            ï

    for all a        a do
                                 •
                                                e       ˆ             •

                                  a i     a
        ù a :=
          §c    f    i     i                        ñ              c R)               c aS           e †…       ÷ df            T             •
                                                                                                                                                             e
                                                                                                                                                                 4

                                  a i     a
        ù a :=
          (÷    f    i     i                        ñ              ÷ ì)               c ÃS           e †…       ÷ df        T             •
                                                                                                                                                             e
                                                                                                                                                                 4

       for all     NewCons            a  do     T òú                                                        î    ª‚j
                                                                                                                ù ÷                 k f

          if li       a      li and     a                  a then
                                                                                                                  ‘
                                               a
                                                                                                                                                    ü
                     û                              ú UT                  1             ¬¥                                 — ‚1                                       ‘€j
                                                                                                                                                                     ù c       f          (ƒ‚
                                                                                                                                                                                         ú Q      k   e †…    gf
              a := a                            a
                                    a
             imp       imp   —                                                —                   ‘€iPI
                                                                                                 ù c j )               f    ªU‚
                                                                                                                           ú Q                           k           e †…               gf   4




                                                                                      Ivan José Varzinczak                                         What is a Good Domain Description?
Decomposing Theories
                                                                                              Introduction
                                                                                                                                                   Logical Modularity
                                                                                             Main Results
                                                                                                                                                   Exploiting Modularity
                                                                                      Concluding Remarks
                                                                                                                                                   Theory Change


No Implicit Inexecutability Laws

  Algorithm 2: Finding implicit inexecutability laws for a
  input:        a
               ‘ r
                    a and                                                         s                  ¥
                                         • 1               — ‚1

  output: imp a , the set of implicit inexecutability laws for a
                         —

  calls: NewCons                 PI         PI                                     ‚çö
                                                                                  ÷ j        k   '              ÷ ´U€j
                                                                                                                   ‚ c                            ø §k                  c €j       k
      a :=
    — imp                            ï

    for all a        a do
                                 •
                                                e       ˆ             •

                                  a i     a
        ù a :=
          §c    f    i     i                        ñ              c R)               c aS           e †…       ÷ df            T             •
                                                                                                                                                             e
                                                                                                                                                                 4

                                  a i     a
        ù a :=
          (÷    f    i     i                        ñ              ÷ ì)               c ÃS           e †…       ÷ df        T             •
                                                                                                                                                             e
                                                                                                                                                                 4

       for all     NewCons            a  do     T òú                                                        î    ª‚j
                                                                                                                ù ÷                 k f

          if li       a      li and     a                  a then
                                                                                                                  ‘
                                               a
                                                                                                                                                    ü
                     û                              ú UT                  1             ¬¥                                 — ‚1                                       ‘€j
                                                                                                                                                                     ù c       f          (ƒ‚
                                                                                                                                                                                         ú Q      k   e †…    gf
              a := a                            a
                                    a
             imp       imp   —                                                —                   ‘€iPI
                                                                                                 ù c j )               f    ªU‚
                                                                                                                           ú Q                           k           e †…               gf   4




                                                                                      Ivan José Varzinczak                                         What is a Good Domain Description?
Decomposing Theories
                                                                                              Introduction
                                                                                                                                                   Logical Modularity
                                                                                             Main Results
                                                                                                                                                   Exploiting Modularity
                                                                                      Concluding Remarks
                                                                                                                                                   Theory Change


No Implicit Inexecutability Laws

  Algorithm 2: Finding implicit inexecutability laws for a
  input:        a
               ‘ r
                    a and                                                         s                  ¥
                                         • 1               — ‚1

  output: imp a , the set of implicit inexecutability laws for a
                         —

  calls: NewCons                 PI         PI                                     ‚çö
                                                                                  ÷ j        k   '              ÷ ´U€j
                                                                                                                   ‚ c                            ø §k                  c €j       k
      a :=
    — imp                            ï

    for all a        a do
                                 •
                                                e       ˆ             •

                                  a i     a
        ù a :=
          §c    f    i     i                        ñ              c R)               c aS           e †…       ÷ df            T             •
                                                                                                                                                             e
                                                                                                                                                                 4

                                  a i     a
        ù a :=
          (÷    f    i     i                        ñ              ÷ ì)               c ÃS           e †…       ÷ df        T             •
                                                                                                                                                             e
                                                                                                                                                                 4

       for all     NewCons            a  do     T òú                                                        î    ª‚j
                                                                                                                ù ÷                 k f

          if li       a      li and     a                  a then
                                                                                                                  ‘
                                               a
                                                                                                                                                    ü
                     û                              ú UT                  1             ¬¥                                 — ‚1                                       ‘€j
                                                                                                                                                                     ù c       f          (ƒ‚
                                                                                                                                                                                         ú Q      k   e †…    gf
              a := a                            a
                                    a
             imp       imp   —                                                —                   ‘€iPI
                                                                                                 ù c j )               f    ªU‚
                                                                                                                           ú Q                           k           e †…               gf   4




                                                                                      Ivan José Varzinczak                                         What is a Good Domain Description?
Decomposing Theories
                                                          Introduction
                                                                                                       Logical Modularity
                                                         Main Results
                                                                                                       Exploiting Modularity
                                                  Concluding Remarks
                                                                                                       Theory Change


No Implicit Inexecutability Laws
  Example
                                                                                                           tease walking
                                 walking                         alive
                                                                                                                             Ü       Ý                  »
                                                                                                       loaded    shoot alive
                     Ú ©ƒº
                        Æ                               Î                   ê  Ï–» Þ
                                                                               Æ ¼                                                                              »
                                                                                                                                 Ü ¦Î            â 5Ý       ë

                                   ìUdg†½
                                  » Í Æ ¾ Æ                        tease               À      walking shoot              »               â ôÀ   alive
   For action tease:
          NewCons walking                  j vî                         k   '          alive: tease alive
                                                                                                       e                         f

          tease             ¬¥    alive:                    Q   alive            e {…      tease alive            Q ‚f

          Then alive    Q
                                  ˜
                                                  e †…          tease            gf
          ‘
                      tease                                     alive                      tease
                                           PDL
              — ‚1                    '¬            Q                       e †…                            gf

              tease                           alive                         tease
      —       imp             R0'
                             Q )                                 e †…                        ‚f   4




                                                  Ivan José Varzinczak                                 What is a Good Domain Description?
Decomposing Theories
                                                          Introduction
                                                                                                       Logical Modularity
                                                         Main Results
                                                                                                       Exploiting Modularity
                                                  Concluding Remarks
                                                                                                       Theory Change


No Implicit Inexecutability Laws
  Example
                                                                                                           tease walking
                                 walking                         alive
                                                                                                                             Ü       Ý                  »
                                                                                                       loaded    shoot alive
                     Ú ©ƒº
                        Æ                               Î                   ê  Ï–» Þ
                                                                               Æ ¼                                                                              »
                                                                                                                                 Ü ¦Î            â 5Ý       ë

                                   ìUdg†½
                                  » Í Æ ¾ Æ                        tease               À      walking shoot              »               â ôÀ   alive
   For action tease:
          NewCons walking                  j vî                         k   '          alive: tease alive
                                                                                                       e                         f

          tease             ¬¥    alive:                    Q   alive            e {…      tease alive            Q ‚f

          Then alive    Q
                                  ˜
                                                  e †…          tease            gf
          ‘
                      tease                                     alive                      tease
                                           PDL
              — ‚1                    '¬            Q                       e †…                            gf

              tease                           alive                         tease
      —       imp             R0'
                             Q )                                 e †…                        ‚f   4




                                                  Ivan José Varzinczak                                 What is a Good Domain Description?
Decomposing Theories
                                                          Introduction
                                                                                                       Logical Modularity
                                                         Main Results
                                                                                                       Exploiting Modularity
                                                  Concluding Remarks
                                                                                                       Theory Change


No Implicit Inexecutability Laws
  Example
                                                                                                           tease walking
                                 walking                         alive
                                                                                                                             Ü       Ý                  »
                                                                                                       loaded    shoot alive
                     Ú ©ƒº
                        Æ                               Î                   ê  Ï–» Þ
                                                                               Æ ¼                                                                              »
                                                                                                                                 Ü ¦Î            â 5Ý       ë

                                   ìUdg†½
                                  » Í Æ ¾ Æ                        tease               À      walking shoot              »               â ôÀ   alive
   For action tease:
          NewCons walking                  j vî                         k   '          alive: tease alive
                                                                                                       e                         f

          tease             ¬¥    alive:                    Q   alive            e {…      tease alive            Q ‚f

          Then alive    Q
                                  ˜
                                                  e †…          tease            gf
          ‘
                      tease                                     alive                      tease
                                           PDL
              — ‚1                    '¬            Q                       e †…                            gf

              tease                           alive                         tease
      —       imp             R0'
                             Q )                                 e †…                        ‚f   4




                                                  Ivan José Varzinczak                                 What is a Good Domain Description?
Decomposing Theories
                                                          Introduction
                                                                                                       Logical Modularity
                                                         Main Results
                                                                                                       Exploiting Modularity
                                                  Concluding Remarks
                                                                                                       Theory Change


No Implicit Inexecutability Laws
  Example
                                                                                                           tease walking
                                 walking                         alive
                                                                                                                             Ü       Ý                  »
                                                                                                       loaded    shoot alive
                     Ú ©ƒº
                        Æ                               Î                   ê  Ï–» Þ
                                                                               Æ ¼                                                                              »
                                                                                                                                 Ü ¦Î            â 5Ý       ë

                                   ìUdg†½
                                  » Í Æ ¾ Æ                        tease               À      walking shoot              »               â ôÀ   alive
   For action tease:
          NewCons walking                  j vî                         k   '          alive: tease alive
                                                                                                       e                         f

          tease             ¬¥    alive:                    Q   alive            e {…      tease alive            Q ‚f

          Then alive    Q
                                  ˜
                                                  e †…          tease            gf
          ‘
                      tease                                     alive                      tease
                                           PDL
              — ‚1                    '¬            Q                       e †…                            gf

              tease                           alive                         tease
      —       imp             R0'
                             Q )                                 e †…                        ‚f   4




                                                  Ivan José Varzinczak                                 What is a Good Domain Description?
Decomposing Theories
                                                          Introduction
                                                                                                       Logical Modularity
                                                         Main Results
                                                                                                       Exploiting Modularity
                                                  Concluding Remarks
                                                                                                       Theory Change


No Implicit Inexecutability Laws
  Example
                                                                                                           tease walking
                                 walking                         alive
                                                                                                                             Ü       Ý                  »
                                                                                                       loaded    shoot alive
                     Ú ©ƒº
                        Æ                               Î                   ê  Ï–» Þ
                                                                               Æ ¼                                                                              »
                                                                                                                                 Ü ¦Î            â 5Ý       ë

                                   ìUdg†½
                                  » Í Æ ¾ Æ                        tease               À      walking shoot              »               â ôÀ   alive
   For action tease:
          NewCons walking                  j vî                         k   '          alive: tease alive
                                                                                                       e                         f

          tease             ¬¥    alive:                    Q   alive            e {…      tease alive            Q ‚f

          Then alive    Q
                                  ˜
                                                  e †…          tease            gf
          ‘
                      tease                                     alive                      tease
                                           PDL
              — ‚1                    '¬            Q                       e †…                            gf

              tease                           alive                         tease
      —       imp             R0'
                             Q )                                 e †…                        ‚f   4




                                                  Ivan José Varzinczak                                 What is a Good Domain Description?
Decomposing Theories
                                                          Introduction
                                                                                                       Logical Modularity
                                                         Main Results
                                                                                                       Exploiting Modularity
                                                  Concluding Remarks
                                                                                                       Theory Change


No Implicit Inexecutability Laws
  Example
                                                                                                           tease walking
                                 walking                         alive
                                                                                                                             Ü       Ý                  »
                                                                                                       loaded    shoot alive
                     Ú ©ƒº
                        Æ                               Î                   ê  Ï–» Þ
                                                                               Æ ¼                                                                              »
                                                                                                                                 Ü ¦Î            â 5Ý       ë

                                   ìUdg†½
                                  » Í Æ ¾ Æ                        tease               À      walking shoot              »               â ôÀ   alive
   For action tease:
          NewCons walking                  j vî                         k   '          alive: tease alive
                                                                                                       e                         f

          tease             ¬¥    alive:                    Q   alive            e {…      tease alive            Q ‚f

          Then alive    Q
                                  ˜
                                                  e †…          tease            gf
          ‘
                      tease                                     alive                      tease
                                           PDL
              — ‚1                    '¬            Q                       e †…                            gf

              tease                           alive                         tease
      —       imp             R0'
                             Q )                                 e †…                        ‚f   4




                                                  Ivan José Varzinczak                                 What is a Good Domain Description?
Decomposing Theories
                                                          Introduction
                                                                                                       Logical Modularity
                                                         Main Results
                                                                                                       Exploiting Modularity
                                                  Concluding Remarks
                                                                                                       Theory Change


No Implicit Inexecutability Laws
  Example
                                                                                                           tease walking
                                 walking                         alive
                                                                                                                             Ü       Ý                  »
                                                                                                       loaded    shoot alive
                     Ú ©ƒº
                        Æ                               Î                   ê  Ï–» Þ
                                                                               Æ ¼                                                                              »
                                                                                                                                 Ü ¦Î            â 5Ý       ë

                                   ìUdg†½
                                  » Í Æ ¾ Æ                        tease               À      walking shoot              »               â ôÀ   alive
   For action tease:
          NewCons walking                  j vî                         k   '          alive: tease alive
                                                                                                       e                         f

          tease             ¬¥    alive:                    Q   alive            e {…      tease alive            Q ‚f

          Then alive    Q
                                  ˜
                                                  e †…          tease            gf
          ‘
                      tease                                     alive                      tease
                                           PDL
              — ‚1                    '¬            Q                       e †…                            gf

              tease                           alive                         tease
      —       imp             R0'
                             Q )                                 e †…                        ‚f   4




                                                  Ivan José Varzinczak                                 What is a Good Domain Description?
Decomposing Theories
                                                                        Introduction
                                                                                       Logical Modularity
                                                                       Main Results
                                                                                       Exploiting Modularity
                                                                Concluding Remarks
                                                                                       Theory Change


No Implicit Inexecutability Laws

  Theorem
  If    a
        ‘ r
                                         a              aands  satisfy Postulate PS, then
                                                                      ¥
                 • 1          – n1          — ‚1
  ‘ r
                  a               a           a     s   and  satisfy Postulate PI iff imp
                                                                  ¥                                            ï ð'   .
          • 1          – n1          — ‚1                                                             —




                                                                Ivan José Varzinczak   What is a Good Domain Description?
Decomposing Theories
                                    Introduction
                                                        Logical Modularity
                                   Main Results
                                                        Exploiting Modularity
                            Concluding Remarks
                                                        Theory Change


Generalizing the Postulates

  Postulate
      PS* (No implicit static laws):
                                                   ˜                                        ˜


                    if                                                , then
                                  ‘                                                  ‘

                                                                                                        PDL
                                       ‚ýnŸ1
                                      — 1 – 1 •        c ³'
                                                          ®                                     '             c




  Theorem
  ‘ r
               and  s  satisfy PS* iff
                        ¥
                                                        ‘ r
                                                                      a          a          a       s    and      ¥
         ‚ nŸ1
        — 1 – 1 •                                              • 1       – n1       — ‚1

  satisfy PS for all a      . $UT
                             % # 




                            Ivan José Varzinczak        What is a Good Domain Description?
Decomposing Theories
                                    Introduction
                                                        Logical Modularity
                                   Main Results
                                                        Exploiting Modularity
                            Concluding Remarks
                                                        Theory Change


Generalizing the Postulates

  Postulate
      PS* (No implicit static laws):
                                                   ˜                                        ˜


                    if                                                , then
                                  ‘                                                  ‘

                                                                                                        PDL
                                       ‚ýnŸ1
                                      — 1 – 1 •        c ³'
                                                          ®                                     '             c




  Theorem
  ‘ r
               and  s  satisfy PS* iff
                        ¥
                                                        ‘ r
                                                                      a          a          a       s    and      ¥
         ‚ nŸ1
        — 1 – 1 •                                              • 1       – n1       — ‚1

  satisfy PS for all a      . $UT
                             % # 




                            Ivan José Varzinczak        What is a Good Domain Description?
Decomposing Theories
                                               Introduction
                                                                         Logical Modularity
                                              Main Results
                                                                         Exploiting Modularity
                                       Concluding Remarks
                                                                         Theory Change


Generalizing the Postulates

  Postulate                                                                                ˜


      PC* (Logical consistency):
                                                                         ‘
                                                                              ‚ýnŸ1
                                                                             — 1 – 1 •         ® '¬   




  Theorem
  If              and                                  satisfy PS*, then             and
    ‘ r                                                                          ‘ r
           ‚ nŸ1
          — 1 – 1 •   s                 ¥                                               ‚tnŸ1
                                                                                       — 1 – 1 •          s   ¥

  satisfy PC* iff
                          ‘ r
                                            a           a    a and
                                                                 s   ¥ satisfies PC for all a                       $UT
                                                                                                                  % #    .
                                • 1            – n1      — ‚1




                                       Ivan José Varzinczak              What is a Good Domain Description?
Decomposing Theories
                                               Introduction
                                                                         Logical Modularity
                                              Main Results
                                                                         Exploiting Modularity
                                       Concluding Remarks
                                                                         Theory Change


Generalizing the Postulates

  Postulate                                                                                ˜


      PC* (Logical consistency):
                                                                         ‘
                                                                              ‚ýnŸ1
                                                                             — 1 – 1 •         ® '¬   




  Theorem
  If              and                                  satisfy PS*, then             and
    ‘ r                                                                          ‘ r
           ‚ nŸ1
          — 1 – 1 •   s                 ¥                                               ‚tnŸ1
                                                                                       — 1 – 1 •          s   ¥

  satisfy PC* iff
                          ‘ r
                                            a           a    a and
                                                                 s   ¥ satisfies PC for all a                       $UT
                                                                                                                  % #    .
                                • 1            – n1      — ‚1




                                       Ivan José Varzinczak              What is a Good Domain Description?
Decomposing Theories
                                                 Introduction
                                                                               Logical Modularity
                                                Main Results
                                                                               Exploiting Modularity
                                         Concluding Remarks
                                                                               Theory Change


Generalizing the Postulates

  Postulate
      PI* (No implicit inexecutability laws):
                                                            ˜                                                    ˜


            if                   a , then                                                                                                  a
                    ‘                                                                             ‘

                                                                                                                         PDL
                               ‚ nŸ1
                              — 1 – 1 •                         e †tþ'
                                                                   … c ®        ‚f                   — ‚1           '             e †tc
                                                                                                                                      …         gf




  Theorem
  Let                             and                           satisfy PS*.               and
      ‘ r                                                                             ‘ r
             ‚ nŸ1
            — 1 – 1 •         s                     ¥                                        ‚ nŸ1
                                                                                            — 1 – 1 •        s                 ¥

  satisfy PI* iff
                        ‘ r
                                         a              a         a ands   ¥ satisfy PI for all a                                   $dT
                                                                                                                                   % #    .
                                  • 1       – n1               — ‚1




                                         Ivan José Varzinczak                  What is a Good Domain Description?
Decomposing Theories
                                                 Introduction
                                                                               Logical Modularity
                                                Main Results
                                                                               Exploiting Modularity
                                         Concluding Remarks
                                                                               Theory Change


Generalizing the Postulates

  Postulate
      PI* (No implicit inexecutability laws):
                                                            ˜                                                    ˜


            if                   a , then                                                                                                  a
                    ‘                                                                             ‘

                                                                                                                         PDL
                               ‚ nŸ1
                              — 1 – 1 •                         e †tþ'
                                                                   … c ®        ‚f                   — ‚1           '             e †tc
                                                                                                                                      …         gf




  Theorem
  Let                             and                           satisfy PS*.               and
      ‘ r                                                                             ‘ r
             ‚ nŸ1
            — 1 – 1 •         s                     ¥                                        ‚ nŸ1
                                                                                            — 1 – 1 •        s                 ¥

  satisfy PI* iff
                        ‘ r
                                         a              a         a ands   ¥ satisfy PI for all a                                   $dT
                                                                                                                                   % #    .
                                  • 1       – n1               — ‚1




                                         Ivan José Varzinczak                  What is a Good Domain Description?
Decomposing Theories
                            Introduction
                                           Logical Modularity
                           Main Results
                                           Exploiting Modularity
                    Concluding Remarks
                                           Theory Change


Outline

  1   Introduction
         Describing Action Theories
         Unwanted Conclusions

  2   Main Results
        Decomposing Theories
        Logical Modularity
        Exploiting Modularity
        Theory Change

  3   Concluding Remarks



                    Ivan José Varzinczak   What is a Good Domain Description?
Decomposing Theories
                                                Introduction
                                                                                            Logical Modularity
                                               Main Results
                                                                                            Exploiting Modularity
                                        Concluding Remarks
                                                                                            Theory Change


Reasoning Modularly

  If                               and               satisfy Postulate PS*, then
       ‘ r
              ‚ nŸ1
             — 1 – 1 •         s         ¥


  Theorem            ˜                                 ˜


                                       iff                        .
  ‘                                          ‘
        ‚ nŸ1
       — 1 – 1 •         ® '                               Ž'




  Theorem            ˜                                                                          ˜

  ‘
                                                 a            iff
                                                                      ‘
                                                                                 a          a                     a .
        ‚ nŸ1
       — 1 – 1 •         ® '       e †tc
                                      …              ÷ df                 • 1       — ‚1           ® '   e †tc
                                                                                                             …    ÷ qf




                                        Ivan José Varzinczak                                What is a Good Domain Description?
Decomposing Theories
                                                Introduction
                                                                                            Logical Modularity
                                               Main Results
                                                                                            Exploiting Modularity
                                        Concluding Remarks
                                                                                            Theory Change


Reasoning Modularly

  If                               and               satisfy Postulate PS*, then
       ‘ r
              ‚ nŸ1
             — 1 – 1 •         s         ¥


  Theorem            ˜                                 ˜


                                       iff                        .
  ‘                                          ‘
        ‚ nŸ1
       — 1 – 1 •         ® '                               Ž'




  Theorem            ˜                                                                          ˜

  ‘
                                                 a            iff
                                                                      ‘
                                                                                 a          a                     a .
        ‚ nŸ1
       — 1 – 1 •         ® '       e †tc
                                      …              ÷ df                 • 1       — ‚1           ® '   e †tc
                                                                                                             …    ÷ qf




                                        Ivan José Varzinczak                                What is a Good Domain Description?
Decomposing Theories
                                                  Introduction
                                                                                                Logical Modularity
                                                 Main Results
                                                                                                Exploiting Modularity
                                          Concluding Remarks
                                                                                                Theory Change


Reasoning Modularly

  If                               and                 satisfy Postulate PS*, then
       ‘ r
              ‚ nŸ1
             — 1 – 1 •         s           ¥


  Theorem            ˜                                                                      ˜


                                                   a           iff                    a                           a             .
  ‘                                            r                         ‘                                    r
        ‚ nŸ1
       — 1 – 1 •         ® '       … tc                 „ s                   – n1             ® '   … tc               „ s




  Corollary
  PX is a consequence of PS.

  Theorem
  If                               and                 satisfy Postulates PS* and PI*, then
       ‘ r    ˜                                                                       ˜
              ‚ nŸ1
             — 1 – 1 •         s           ¥
  ‘
                                                   a      iff    a   ‘
                                                                            a .
        ‚ nŸ1
       — 1 – 1 •         ® '       e †tc
                                      …                 gf                  — ‚1         ® '         e †tc
                                                                                                         …         ‚f




                                          Ivan José Varzinczak                                  What is a Good Domain Description?
Decomposing Theories
                                                  Introduction
                                                                                                Logical Modularity
                                                 Main Results
                                                                                                Exploiting Modularity
                                          Concluding Remarks
                                                                                                Theory Change


Reasoning Modularly

  If                               and                 satisfy Postulate PS*, then
       ‘ r
              ‚ nŸ1
             — 1 – 1 •         s           ¥


  Theorem            ˜                                                                      ˜


                                                   a           iff                    a                           a             .
  ‘                                            r                         ‘                                    r
        ‚ nŸ1
       — 1 – 1 •         ® '       … tc                 „ s                   – n1             ® '   … tc               „ s




  Corollary
  PX is a consequence of PS.

  Theorem
  If                               and                 satisfy Postulates PS* and PI*, then
       ‘ r    ˜                                                                       ˜
              ‚ nŸ1
             — 1 – 1 •         s           ¥
  ‘
                                                   a      iff    a   ‘
                                                                            a .
        ‚ nŸ1
       — 1 – 1 •         ® '       e †tc
                                      …                 gf                  — ‚1         ® '         e †tc
                                                                                                         …         ‚f




                                          Ivan José Varzinczak                                  What is a Good Domain Description?
Decomposing Theories
                                                  Introduction
                                                                                                Logical Modularity
                                                 Main Results
                                                                                                Exploiting Modularity
                                          Concluding Remarks
                                                                                                Theory Change


Reasoning Modularly

  If                               and                 satisfy Postulate PS*, then
       ‘ r
              ‚ nŸ1
             — 1 – 1 •         s           ¥


  Theorem            ˜                                                                      ˜


                                                   a           iff                    a                           a             .
  ‘                                            r                         ‘                                    r
        ‚ nŸ1
       — 1 – 1 •         ® '       … tc                 „ s                   – n1             ® '   … tc               „ s




  Corollary
  PX is a consequence of PS.

  Theorem
  If                               and                 satisfy Postulates PS* and PI*, then
       ‘ r    ˜                                                                       ˜
              ‚ nŸ1
             — 1 – 1 •         s           ¥
  ‘
                                                   a      iff    a   ‘
                                                                            a .
        ‚ nŸ1
       — 1 – 1 •         ® '       e †tc
                                      …                 gf                  — ‚1         ® '         e †tc
                                                                                                         …         ‚f




                                          Ivan José Varzinczak                                  What is a Good Domain Description?
Decomposing Theories
                                                                         Introduction
                                                                                                                           Logical Modularity
                                                                        Main Results
                                                                                                                           Exploiting Modularity
                                                                 Concluding Remarks
                                                                                                                           Theory Change


Reasoning Modularly

  If                                               and                           satisfy Postulate PS*, then
        ‘ r
               ‚ nŸ1
              — 1 – 1 •                       s                   ¥


  Theorem                           ˜


                                                                            a1                       an iff
  ‘                                                  ˜
        ‚ nŸ1
       — 1 – 1 •                        ® '        e †tc
                                                       …                           ÿ3331
                                                                                  1 2 2 2                      ÷ df
  ‘
              a1     ¢¢¢ 
                     ¡ ¡ ¡   an               a1     ¢¢¢ 
                                                     ¡ ¡ ¡   an                                       a1    an                              .
       • 1                       — ‚1                                     ® '        e †tc
                                                                                         …                              ÿ3331
                                                                                                                       1 2 2 2       ÷ df




  Theorem                           ˜


                                                                             a1                      an                   iff
  ‘                                                                    r                             ˜
        ‚ nŸ1
       — 1 – 1 •                        ® '        … tc                            ÿ3331
                                                                                  1 2 2 2                       ÷ €s
              a1             an                   a1             an              a1             an                                   a1               an          .
  ‘                                                                                                                              r
                     ¢¢¢ 
                     ¡ ¡ ¡                               ¢¢¢ 
                                                         ¡ ¡ ¡                          ¢¢¢ 
                                                                                        ¡ ¡ ¡
       • 1                       – n1                                — ‚1                               ® '            … tc                 ÿ3331
                                                                                                                                            1 2 2 2        ÷ €s




                                                                 Ivan José Varzinczak                                      What is a Good Domain Description?
Decomposing Theories
                                                                         Introduction
                                                                                                                           Logical Modularity
                                                                        Main Results
                                                                                                                           Exploiting Modularity
                                                                 Concluding Remarks
                                                                                                                           Theory Change


Reasoning Modularly

  If                                               and                           satisfy Postulate PS*, then
        ‘ r
               ‚ nŸ1
              — 1 – 1 •                       s                   ¥


  Theorem                           ˜


                                                                            a1                       an iff
  ‘                                                  ˜
        ‚ nŸ1
       — 1 – 1 •                        ® '        e †tc
                                                       …                           ÿ3331
                                                                                  1 2 2 2                      ÷ df
  ‘
              a1     ¢¢¢ 
                     ¡ ¡ ¡   an               a1     ¢¢¢ 
                                                     ¡ ¡ ¡   an                                       a1    an                              .
       • 1                       — ‚1                                     ® '        e †tc
                                                                                         …                              ÿ3331
                                                                                                                       1 2 2 2       ÷ df




  Theorem                           ˜


                                                                             a1                      an                   iff
  ‘                                                                    r                             ˜
        ‚ nŸ1
       — 1 – 1 •                        ® '        … tc                            ÿ3331
                                                                                  1 2 2 2                       ÷ €s
              a1             an                   a1             an              a1             an                                   a1               an          .
  ‘                                                                                                                              r
                     ¢¢¢ 
                     ¡ ¡ ¡                               ¢¢¢ 
                                                         ¡ ¡ ¡                          ¢¢¢ 
                                                                                        ¡ ¡ ¡
       • 1                       – n1                                — ‚1                               ® '            … tc                 ÿ3331
                                                                                                                                            1 2 2 2        ÷ €s




                                                                 Ivan José Varzinczak                                      What is a Good Domain Description?
Decomposing Theories
                            Introduction
                                           Logical Modularity
                           Main Results
                                           Exploiting Modularity
                    Concluding Remarks
                                           Theory Change


Outline

  1   Introduction
         Describing Action Theories
         Unwanted Conclusions

  2   Main Results
        Decomposing Theories
        Logical Modularity
        Exploiting Modularity
        Theory Change

  3   Concluding Remarks



                    Ivan José Varzinczak   What is a Good Domain Description?
Decomposing Theories
                                                 Introduction
                                                                Logical Modularity
                                                Main Results
                                                                Exploiting Modularity
                                         Concluding Remarks
                                                                Theory Change


Another Tale

  Example
     If the switch is up, the room is lit up
            up        ¦       light
     Toggling the switch changes its position
             up                     toggle up
                                    h
            ¨             ¦                          i

            up                    toggle up
                              h
                      ¦                       ¨ di

     It is always possible to toggle the switch
                    toggle
                w
                                  y x




                                         Ivan José Varzinczak   What is a Good Domain Description?
Decomposing Theories
                             Introduction
                                            Logical Modularity
                            Main Results
                                            Exploiting Modularity
                     Concluding Remarks
                                            Theory Change


The Need for Theory Change

  You observe that. . .
      even if the switch is up the light is off.
       in a blackout, you do not succeed to switch the light on.
       despite your efforts you do not manage to toggle the
       switch.




                     Ivan José Varzinczak   What is a Good Domain Description?
Decomposing Theories
                            Introduction
                                           Logical Modularity
                           Main Results
                                           Exploiting Modularity
                    Concluding Remarks
                                           Theory Change


Contraction: Motivation

  Contracting by a static law
      You observe that even if the switch is up the light is off
      Static law up …light must be given up
      Can we just contract the static laws of ?
                                                         ‘


           May not be enough: side effects!
               Conflict with   ½
               The contracted law may be an implicit one




                    Ivan José Varzinczak   What is a Good Domain Description?
Decomposing Theories
                            Introduction
                                           Logical Modularity
                           Main Results
                                           Exploiting Modularity
                    Concluding Remarks
                                           Theory Change


Contraction: Motivation

  Contracting by a static law
      You observe that even if the switch is up the light is off
      Static law up …light must be given up
      Can we just contract the static laws of ?
                                                         ‘


           May not be enough: side effects!
               Conflict with   ½
               The contracted law may be an implicit one




                    Ivan José Varzinczak   What is a Good Domain Description?
Decomposing Theories
                             Introduction
                                            Logical Modularity
                            Main Results
                                            Exploiting Modularity
                     Concluding Remarks
                                            Theory Change


Contraction: Motivation

  Contracting by an effect law
      During a blackout you do not succeed to switch the light on
      Effect law up
                 Q      e †…   toggle light must be given up
                                       f

      Important issue: give up as few as possible




                     Ivan José Varzinczak   What is a Good Domain Description?
Decomposing Theories
                             Introduction
                                            Logical Modularity
                            Main Results
                                            Exploiting Modularity
                     Concluding Remarks
                                            Theory Change


Contraction: Motivation

  Contracting by an effect law
      During a blackout you do not succeed to switch the light on
      Effect law up
                 Q      e †…   toggle light must be given up
                                       f

      Important issue: give up as few as possible




                     Ivan José Varzinczak   What is a Good Domain Description?
Decomposing Theories
                              Introduction
                                              Logical Modularity
                             Main Results
                                              Exploiting Modularity
                      Concluding Remarks
                                              Theory Change


Contraction: Motivation

  Contracting by an executability law
      Despite your efforts you do not manage to toggle the switch
      Executability law up                toggle          must be given up
                                      r
                                 …                 „ s

      Side effects?




                      Ivan José Varzinczak    What is a Good Domain Description?
Decomposing Theories
                                  Introduction
                                                               Logical Modularity
                                 Main Results
                                                               Exploiting Modularity
                          Concluding Remarks
                                                               Theory Change


Contraction: Semantics

  Playing with models

                                                toggle
             £
                 up   q
                          £
                              light                                       up light
                                                                              s


                                                     toggle

      Semantical contraction produces a set of models:

                                  W R                          W R
                                                ¥   § ¨v
                                   ¤        ¦                     ¤ ©
                              ~                           ~               ©
                                                                             




                          Ivan José Varzinczak                 What is a Good Domain Description?
Decomposing Theories
                                  Introduction
                                                               Logical Modularity
                                 Main Results
                                                               Exploiting Modularity
                          Concluding Remarks
                                                               Theory Change


Contraction: Semantics

  Playing with models

                                                toggle
             £
                 up   q
                          £
                              light                                       up light
                                                                              s


                                                     toggle

      Semantical contraction produces a set of models:

                                  W R                          W R
                                                ¥   § ¨v
                                   ¤        ¦                     ¤ ©
                              ~                           ~               ©
                                                                             




                          Ivan José Varzinczak                 What is a Good Domain Description?
Decomposing Theories
                                            Introduction
                                                                Logical Modularity
                                           Main Results
                                                                Exploiting Modularity
                                    Concluding Remarks
                                                                Theory Change


Contraction: Semantics
  Contracting static laws
          W R
      r
           1    
                   up
                  s
                           light        ! '


      Intuition: add some up                       Q U‚       light-worlds to W
                                                   toggle
                       £
                           up   q
                                    £
                                          light                          up light
                                                                               s


                                                           toggle

                                                  up   r ×s
                                                               light

      Don’t add new arrows to R!
                                    Ivan José Varzinczak        What is a Good Domain Description?
Decomposing Theories
                                            Introduction
                                                                Logical Modularity
                                           Main Results
                                                                Exploiting Modularity
                                    Concluding Remarks
                                                                Theory Change


Contraction: Semantics
  Contracting static laws
          W R
      r
           1    
                   up
                  s
                           light        ! '


      Intuition: add some up                       Q U‚       light-worlds to W
                                                   toggle
                       £
                           up   q
                                    £
                                          light                          up light
                                                                               s


                                                           toggle

                                                  up   r ×s
                                                               light

      Don’t add new arrows to R!
                                    Ivan José Varzinczak        What is a Good Domain Description?
Decomposing Theories
                                                       Introduction
                                                                                        Logical Modularity
                                                      Main Results
                                                                                        Exploiting Modularity
                                               Concluding Remarks
                                                                                        Theory Change


Contraction: Semantics

  Contracting static laws
      Rely on any belief change operator for classical logic
               Say PMA, . . .
          W R                                                     W R                 , where
      r                                                       r
           1     s
                            up            light    ) 0'               1 e     4 s e

               W        ·            W           PMA up          ¦         light
               R    ·                R            ˜


      N.B.: W R                                               toggle
                r                                         r
                                    1 e      ' és e
                                               ¬                              „ s

               Executability laws to be weakened!




                                                  Ivan José Varzinczak                  What is a Good Domain Description?
Decomposing Theories
                                                       Introduction
                                                                                        Logical Modularity
                                                      Main Results
                                                                                        Exploiting Modularity
                                               Concluding Remarks
                                                                                        Theory Change


Contraction: Semantics

  Contracting static laws
      Rely on any belief change operator for classical logic
               Say PMA, . . .
          W R                                                     W R                 , where
      r                                                       r
           1     s
                            up            light    ) 0'               1 e     4 s e

               W        ·            W           PMA up          ¦         light
               R    ·                R            ˜


      N.B.: W R                                               toggle
                r                                         r
                                    1 e      ' és e
                                               ¬                              „ s

               Executability laws to be weakened!




                                                  Ivan José Varzinczak                  What is a Good Domain Description?
Decomposing Theories
                                                       Introduction
                                                                                        Logical Modularity
                                                      Main Results
                                                                                        Exploiting Modularity
                                               Concluding Remarks
                                                                                        Theory Change


Contraction: Semantics

  Contracting static laws
      Rely on any belief change operator for classical logic
               Say PMA, . . .
          W R                                                     W R                 , where
      r                                                       r
           1     s
                            up            light    ) 0'               1 e     4 s e

               W        ·            W           PMA up          ¦         light
               R    ·                R            ˜


      N.B.: W R                                               toggle
                r                                         r
                                    1 e      ' és e
                                               ¬                              „ s

               Executability laws to be weakened!




                                                  Ivan José Varzinczak                  What is a Good Domain Description?
Decomposing Theories
                                               Introduction
                                                                  Logical Modularity
                                              Main Results
                                                                  Exploiting Modularity
                                       Concluding Remarks
                                                                  Theory Change


Contraction: Semantics

  Contracting effect laws
              W R
          r
               1    # s
                           up   $ %   toggle light
                                                        ! '


      Intuition: add some arrows from up-worlds to                     Q

      Q light-worlds

                   toggle
                                                               toggle
                            £
                                  up      q
                                              £
                                                      light                    up light
                                                                                    s


                                                                 toggle


                                       Ivan José Varzinczak       What is a Good Domain Description?
Decomposing Theories
                                                 Introduction
                                                                          Logical Modularity
                                                Main Results
                                                                          Exploiting Modularity
                                         Concluding Remarks
                                                                          Theory Change


Contraction: Semantics

  Contracting effect laws
          W R
      r
           1       # s
                          up   $ %   toggle light 
                                                      '                                       ˜


                          W R              Ra             Ra              w w             w              up
                     r
               )           1         I       S §s e        e   ˆ   j i)     1   k e   S           Q Ž'        4 h4

      Problems:
               Don’t link light-worlds
               Don’t link all light-worlds    ¨




                                         Ivan José Varzinczak             What is a Good Domain Description?
Decomposing Theories
                                                 Introduction
                                                                          Logical Modularity
                                                Main Results
                                                                          Exploiting Modularity
                                         Concluding Remarks
                                                                          Theory Change


Contraction: Semantics

  Contracting effect laws
          W R
      r
           1       # s
                          up   $ %   toggle light 
                                                      '                                       ˜


                          W R              Ra             Ra              w w             w              up
                     r
               )           1         I       S §s e        e   ˆ   j i)     1   k e   S           Q Ž'        4 h4

      Problems:
               Don’t link light-worlds
               Don’t link all light-worlds    ¨




                                         Ivan José Varzinczak             What is a Good Domain Description?
Decomposing Theories
                                        Introduction
                                                        Logical Modularity
                                       Main Results
                                                        Exploiting Modularity
                                Concluding Remarks
                                                        Theory Change


Contraction: Semantics

  Contracting executability laws
          W R
      r
           1      up
                 s
                       ' (   toggle   0 1)
                                             ! '


      Intuition: delete some arrows leaving up-worlds


                                                     toggle
                        £
                             up   q
                                        £
                                             light                   up light
                                                                          s




                                Ivan José Varzinczak    What is a Good Domain Description?
Decomposing Theories
                                              Introduction
                                                                       Logical Modularity
                                             Main Results
                                                                       Exploiting Modularity
                                      Concluding Remarks
                                                                       Theory Change


Contraction: Semantics

  Contracting executability laws
          W R
      r
              1         up
                       s
                             ' (   toggle   0 1)
                                                   '
                                                                                                      ˜


                      W R Ra                       Ra             w w              wRa w and w                up
                  r
          )             1     ø      S §s e            e    iðˆ
                                                           j )     1     k e   S          e               '        4 h4




      N.B.: if there is no up-world, then contraction is not
      successful!




                                      Ivan José Varzinczak             What is a Good Domain Description?
Decomposing Theories
                                              Introduction
                                                                       Logical Modularity
                                             Main Results
                                                                       Exploiting Modularity
                                      Concluding Remarks
                                                                       Theory Change


Contraction: Semantics

  Contracting executability laws
          W R
      r
              1         up
                       s
                             ' (   toggle   0 1)
                                                   '
                                                                                                      ˜


                      W R Ra                       Ra             w w              wRa w and w                up
                  r
          )             1     ø      S §s e            e    iðˆ
                                                           j )     1     k e   S          e               '        4 h4




      N.B.: if there is no up-world, then contraction is not
      successful!




                                      Ivan José Varzinczak             What is a Good Domain Description?
Decomposing Theories
                                             Introduction
                                                                                     Logical Modularity
                                            Main Results
                                                                                     Exploiting Modularity
                                     Concluding Remarks
                                                                                     Theory Change


Contraction: Syntax

  Domain descriptions
      Simplification:
                                           ‘ r
                                                   nŸ1
                                                  – 1 •                s

      Resulting action theory
          ¡ w       ’       “                    ¡ w         ’             “
                ¤       ¤       24
                                3x                    ¤ ·       ¤ ·           x ·




                                     Ivan José Varzinczak                            What is a Good Domain Description?
Decomposing Theories
                                                                 Introduction
                                                                                                    Logical Modularity
                                                                Main Results
                                                                                                    Exploiting Modularity
                                                         Concluding Remarks
                                                                                                    Theory Change


Contraction: Syntax

  Contracting static laws
                                                                                                    , where
      ‘ r                                                                  ‘ r
              nŸ1
             – 1 •                           s
                                                up       light     '             – Ÿ1 e
                                                                                   1 •        s e


                                                         PMA up                  light              light       up
                    ¡                             ¡
                            ·                                         ¦                   5 6             ¦        7
                        “
                                ·       

                            up                        light                            toggle                                toggle
                                                                                   w                                     w                    “
            ¨ €ž5
              ¢ ¢                           8                 ¥    ‘X϶
                                                                  ¦ ¥ µ                             ¦ du@€x
                                                                                                       µ 9 y                          A B€x
                                                                                                                                         y        7




                                                          Ivan José Varzinczak                      What is a Good Domain Description?
Decomposing Theories
                                                                 Introduction
                                                                                                    Logical Modularity
                                                                Main Results
                                                                                                    Exploiting Modularity
                                                         Concluding Remarks
                                                                                                    Theory Change


Contraction: Syntax

  Contracting static laws
                                                                                                    , where
      ‘ r                                                                  ‘ r
              nŸ1
             – 1 •                           s
                                                up       light     '             – Ÿ1 e
                                                                                   1 •        s e


                                                         PMA up                  light              light       up
                    ¡                             ¡
                            ·                                         ¦                   5 6             ¦        7
                        “
                                ·       

                            up                        light                            toggle                                toggle
                                                                                   w                                     w                    “
            ¨ €ž5
              ¢ ¢                           8                 ¥    ‘X϶
                                                                  ¦ ¥ µ                             ¦ du@€x
                                                                                                       µ 9 y                          A B€x
                                                                                                                                         y        7




                                                          Ivan José Varzinczak                      What is a Good Domain Description?
Decomposing Theories
                                            Introduction
                                                                          Logical Modularity
                                           Main Results
                                                                          Exploiting Modularity
                                    Concluding Remarks
                                                                          Theory Change


Contraction: Syntax

  Contracting effect laws
                                                                                         , where
      ‘ r                                                     ‘ r
             nŸ1
            – 1 •      # s
                              up   $ (   toggle light
                                                 
                                                          '         • 1     – n1 e   s


                               up                        toggle                               toggle
              ’                                      h                                    h                    ’
                  ·    žC
                      ¢ 5                 §!¶
                                         ¦ ¥ µ                      ¦ ´uFEi
                                                                       µ 9 D                           A GEi
                                                                                                          D        7




                                    Ivan José Varzinczak                  What is a Good Domain Description?
Decomposing Theories
                                             Introduction
                                                                       Logical Modularity
                                            Main Results
                                                                       Exploiting Modularity
                                     Concluding Remarks
                                                                       Theory Change


Contraction: Syntax

  Contracting executability laws
                                                                                  , where
      ‘ r                                                    ‘ r
             nŸ1
            – 1 •         up
                         s
                               ' %   toggle   0 H)
                                                     '             – Ÿ1
                                                                     1 •    s e

                                     up                        toggle                       toggle
               “                                         w                              w                    “
                    ·    gžC
                        ¨ ¢ 5              !¶
                                          ¦ ¥ µ                            ¦ du@x
                                                                              µ 9 y                  A B€x
                                                                                                        y        7




                                     Ivan José Varzinczak              What is a Good Domain Description?
Decomposing Theories
                                           Introduction
                                                              Logical Modularity
                                          Main Results
                                                              Exploiting Modularity
                                   Concluding Remarks
                                                              Theory Change


Soundness

 Theorem       ˜                                                     ˜


 If W R                                    , then W R                                             .
   r                   ‘                            r                        ‘ r
       1   s       '       ‚   •   ‚   –                  1   I s       '          nŸ1
                                                                                   – 1 •   I s




                                   Ivan José Varzinczak       What is a Good Domain Description?
Decomposing Theories
                                                   Introduction
                                                                                                                 Logical Modularity
                                                  Main Results
                                                                                                                 Exploiting Modularity
                                           Concluding Remarks
                                                                                                                 Theory Change


Incompleteness

  Example
                      ,                    p                 a                            ,                                 a
     ‘                                                                                                                  r
               ï ð'       •         ) 0'              e †…                gf         4       –        ) 0'                     „ s   4

     Unique model: W R                                                                                            p                                  p                         p
                                                         r                                        r
                                                             1                   ' Es                  Rh)
                                                                                                      Q )                    Rmi) ih4
                                                                                                                            Q ) j 1 4                    Q R) i41                  s pR4
                                                                                                                                                                                     4 k

                                                                                          p              a                                     p             a                               .
         ‘ r                                                     r                                                                                            r
                nŸ1
               – 1 •            p
                               s
                                     ' (   a   0 H)
                                                       '             ï          ) 1               e †…            ‚f        Q R) i4
                                                                                                                                  1            … ˜                  „ s           s 4


     Syntactically: successful, as                                                                                                                             p                             a          .
                                                                                                             ‘                                                                           r

                                                                                                                                                     PDL
                                                                                                                         nŸ1
                                                                                                                        – 1 •              e   '¬                          …                     „ s

     Semantically: contraction is unsuccessful!




                                           Ivan José Varzinczak                                                  What is a Good Domain Description?
Decomposing Theories
                                                   Introduction
                                                                                                                 Logical Modularity
                                                  Main Results
                                                                                                                 Exploiting Modularity
                                           Concluding Remarks
                                                                                                                 Theory Change


Incompleteness

  Example
                      ,                    p                 a                            ,                                 a
     ‘                                                                                                                  r
               ï ð'       •         ) 0'              e †…                gf         4       –        ) 0'                     „ s   4

     Unique model: W R                                                                                            p                                  p                         p
                                                         r                                        r
                                                             1                   ' Es                  Rh)
                                                                                                      Q )                    Rmi) ih4
                                                                                                                            Q ) j 1 4                    Q R) i41                  s pR4
                                                                                                                                                                                     4 k

                                                                                          p              a                                     p             a                               .
         ‘ r                                                     r                                                                                            r
                nŸ1
               – 1 •            p
                               s
                                     ' (   a   0 H)
                                                       '             ï          ) 1               e †…            ‚f        Q R) i4
                                                                                                                                  1            … ˜                  „ s           s 4


     Syntactically: successful, as                                                                                                                             p                             a          .
                                                                                                             ‘                                                                           r

                                                                                                                                                     PDL
                                                                                                                         nŸ1
                                                                                                                        – 1 •              e   '¬                          …                     „ s

     Semantically: contraction is unsuccessful!




                                           Ivan José Varzinczak                                                  What is a Good Domain Description?
Decomposing Theories
                                                   Introduction
                                                                                                                 Logical Modularity
                                                  Main Results
                                                                                                                 Exploiting Modularity
                                           Concluding Remarks
                                                                                                                 Theory Change


Incompleteness

  Example
                      ,                    p                 a                            ,                                 a
     ‘                                                                                                                  r
               ï ð'       •         ) 0'              e †…                gf         4       –        ) 0'                     „ s   4

     Unique model: W R                                                                                            p                                  p                         p
                                                         r                                        r
                                                             1                   ' Es                  Rh)
                                                                                                      Q )                    Rmi) ih4
                                                                                                                            Q ) j 1 4                    Q R) i41                  s pR4
                                                                                                                                                                                     4 k

                                                                                          p              a                                     p             a                               .
         ‘ r                                                     r                                                                                            r
                nŸ1
               – 1 •            p
                               s
                                     ' (   a   0 H)
                                                       '             ï          ) 1               e †…            ‚f        Q ) i4
                                                                                                                                 1             … ˜                  „ s           s 4


     Syntactically: successful, as                                                                                                                             p                             a          .
                                                                                                             ‘                                                                           r

                                                                                                                                                     PDL
                                                                                                                         nŸ1
                                                                                                                        – 1 •              e   '¬                          …                     „ s

     Semantically: contraction is unsuccessful!




                                           Ivan José Varzinczak                                                  What is a Good Domain Description?
Decomposing Theories
                                                   Introduction
                                                                                                                 Logical Modularity
                                                  Main Results
                                                                                                                 Exploiting Modularity
                                           Concluding Remarks
                                                                                                                 Theory Change


Incompleteness

  Example
                      ,                    p                 a                            ,                                 a
     ‘                                                                                                                  r
               ï ð'       •         ) 0'              e †…                gf         4       –        ) 0'                     „ s   4

     Unique model: W R                                                                                            p                                  p                         p
                                                         r                                        r
                                                             1                   ' Es                  Rh)
                                                                                                      Q )                    Rmi) ih4
                                                                                                                            Q ) j 1 4                    Q R) i41                  s pR4
                                                                                                                                                                                     4 k

                                                                                          p              a                                     p             a                               .
         ‘ r                                                     r                                                                                            r
                nŸ1
               – 1 •            p
                               s
                                     ' (   a   0 H)
                                                       '             ï          ) 1               e †…            ‚f        Q R) i4
                                                                                                                                  1            … ˜                  „ s           s 4


     Syntactically: successful, as                                                                                                                             p                             a          .
                                                                                                             ‘                                                                           r

                                                                                                                                                     PDL
                                                                                                                         nŸ1
                                                                                                                        – 1 •              e   '¬                          …                     „ s

     Semantically: contraction is unsuccessful!




                                           Ivan José Varzinczak                                                  What is a Good Domain Description?
Decomposing Theories
                                                   Introduction
                                                                                                                 Logical Modularity
                                                  Main Results
                                                                                                                 Exploiting Modularity
                                           Concluding Remarks
                                                                                                                 Theory Change


Incompleteness

  Example
                      ,                    p                 a                            ,                                 a
     ‘                                                                                                                  r
               ï ð'       •         ) 0'              e †…                gf         4       –        ) 0'                     „ s   4

     Unique model: W R                                                                                            p                                  p                         p
                                                         r                                        r
                                                             1                   ' Es                  Rh)
                                                                                                      Q )                    Rmi) ih4
                                                                                                                            Q ) j 1 4                    Q R) i41                  s pR4
                                                                                                                                                                                     4 k

                                                                                          p              a                                     p             a                               .
         ‘ r                                                     r                                                                                            r
                nŸ1
               – 1 •            p
                               s
                                     ' (   a   0 H)
                                                       '             ï          ) 1               e †…            ‚f        Q R) i4
                                                                                                                                  1            … ˜                  „ s           s 4


     Syntactically: successful, as                                                                                                                             p                             a          .
                                                                                                             ‘                                                                           r

                                                                                                                                                     PDL
                                                                                                                         nŸ1
                                                                                                                        – 1 •              e   '¬                          …                     „ s

     Semantically: contraction is unsuccessful!




                                           Ivan José Varzinczak                                                  What is a Good Domain Description?
Decomposing Theories
                                                   Introduction
                                                                  Logical Modularity
                                                  Main Results
                                                                  Exploiting Modularity
                                           Concluding Remarks
                                                                  Theory Change


Completeness: Modularity

  Theorem                                                                                                               ˜


  If                               and     satisfy Postulate PS*, then                                                                 iff
      ‘ r               ˜                                                            ˜ ‘ r
                 nŸ1
                – 1 •        s         ¥                                                          nŸ1
                                                                                                 – 1 •       I s           P Q'

   W R                              , for every W R such that W R                                                                  .
  r                                                 r                        r                      ‘
            1    I s       P Q'                         1   s                   1   s       '           ‚    •     ‚         –




                                           Ivan José Varzinczak   What is a Good Domain Description?
Decomposing Theories
                                                     Introduction
                                                                                                Logical Modularity
                                                    Main Results
                                                                                                Exploiting Modularity
                                             Concluding Remarks
                                                                                                Theory Change


Outlook: Semantics of Revision

  Levi identity
      Revise by glued                                 e {…   toggle                   gf       amounts to
             Contract by glued    toggle
                                                                                 h
         1                                          ¢ (¨                     ¦                          uqi
                                                                                                       ¥ p

             Expand by glued   toggle
                                                                         h
         2                                                   ¦                                  p qi

      Problem: we can contract by domain laws only
                      glued            glued  toggletoggle
                                                h                                                             w
             ¢ (¨                      ¦                          Suqi
                                                                 R ¥ p                      ¢            ¶           u€x
                                                                                                                    ¥ y

                                   not defined
                ¡ w       ’       “
                      glued toggle
                      ¤       ¤       2 3x

             What is the negation of
                                                     U VT         X HW



                              an effect law?
                              an executability law?




                                             Ivan José Varzinczak                               What is a Good Domain Description?
Decomposing Theories
                                                     Introduction
                                                                                                Logical Modularity
                                                    Main Results
                                                                                                Exploiting Modularity
                                             Concluding Remarks
                                                                                                Theory Change


Outlook: Semantics of Revision

  Levi identity
      Revise by glued                                 e {…   toggle                   gf       amounts to
             Contract by glued    toggle
                                                                                 h
         1                                          ¢ (¨                     ¦                          uqi
                                                                                                       ¥ p

             Expand by glued   toggle
                                                                         h
         2                                                   ¦                                  p qi

      Problem: we can contract by domain laws only
                      glued            glued  toggletoggle
                                                h                                                             w
             ¢ (¨                      ¦                          Suqi
                                                                 R ¥ p                      ¢            ¶           u€x
                                                                                                                    ¥ y

                                   not defined
                ¡ w       ’       “
                      glued toggle
                      ¤       ¤       2 3x

             What is the negation of
                                                     U VT         X HW



                              an effect law?
                              an executability law?




                                             Ivan José Varzinczak                               What is a Good Domain Description?
Introduction
                          Main Results
                   Concluding Remarks


Related Work

  Modularity
      [Pirri  Reiter 1999]: deterministic actions without
      ramifications in Situation Calculus
      [Amir 2000]: object-oriented concepts in Situation Calculus
      [Zhang et al. 2002]: EPDL approach/normal form
      [Lang et al. 2003]: computational complexity
      [Kakas et al. 2005]: elaboration tolerance, concurrent
      actions
      [Ghilardi, Lutz  Wolter, KR’06]: uniform interpolation and
      conservative extensions in          ` a%
                                             Y




                   Ivan José Varzinczak     What is a Good Domain Description?
Introduction
                         Main Results
                  Concluding Remarks


Related Work

  Theory change
     [Li Pereira 1996]: motivations
     [Liberatore 2000]: meta-results
     [Eiter et al. 2005/06]: update in action languages




                  Ivan José Varzinczak   What is a Good Domain Description?
Introduction
                             Main Results
                      Concluding Remarks


Summary
 Claim
     Consistency is not enough to evaluate a domain
     description
     The dynamic part of an action theory should not influence
     the non-dynamic one (otherwise: problems)
 Contribution
     Fine-grained postulates of modularity
     Algorithms to check/give hints on modularity
     Satisfaction of modularity
             More efficient reasoning
             Important for updating theories [Herzig et al. ECAI’06]
     Our results apply to every approach allowing for                          , ,
                                                                           ‘
                                                                                  •   –

     and —

                      Ivan José Varzinczak   What is a Good Domain Description?
Introduction
                             Main Results
                      Concluding Remarks


Summary
 Claim
     Consistency is not enough to evaluate a domain
     description
     The dynamic part of an action theory should not influence
     the non-dynamic one (otherwise: problems)
 Contribution
     Fine-grained postulates of modularity
     Algorithms to check/give hints on modularity
     Satisfaction of modularity
             More efficient reasoning
             Important for updating theories [Herzig et al. ECAI’06]
     Our results apply to every approach allowing for                          , ,
                                                                           ‘
                                                                                  •   –

     and —

                      Ivan José Varzinczak   What is a Good Domain Description?
Introduction
                          Main Results
                   Concluding Remarks


Summary

 Contribution (cont.)
     Semantics of action theory contraction
          Domain-independent
          Does not require extra information (preferences/epistemic
          entrenchment relation/. . . )
          Fully automatic
     Completeness result: highlights importance of modularity




                   Ivan José Varzinczak   What is a Good Domain Description?
Introduction
                            Main Results
                     Concluding Remarks


Summary

 Modularity is also fruitful. . .
      for theories in general [Herzig  Varzinczak AiML’04]
      in the Situation Calculus [Herzig  Varzinczak IJCAI’05]
      in Description Logics [Herzig  Varzinczak JELIA’06]
           (See next slide)

 Future work
     Fine tune contraction of effect laws
      Contract by any formulas (not just laws)
      Postulates about effect laws? about causation?



                      Ivan José Varzinczak   What is a Good Domain Description?
Introduction
                            Main Results
                     Concluding Remarks


Summary

 Modularity is also fruitful. . .
      for theories in general [Herzig  Varzinczak AiML’04]
      in the Situation Calculus [Herzig  Varzinczak IJCAI’05]
      in Description Logics [Herzig  Varzinczak JELIA’06]
           (See next slide)

 Future work
     Fine tune contraction of effect laws
      Contract by any formulas (not just laws)
      Postulates about effect laws? about causation?



                      Ivan José Varzinczak   What is a Good Domain Description?
Introduction
                        Main Results
                 Concluding Remarks


Outlook: Modularity in Description Logics

  Example
     Suppose a passport control system in an airport
     Such a system is composed of many software components
     One of them an ontology (knowledge base) about
     passengers
     All passengers must be controlled




                 Ivan José Varzinczak   What is a Good Domain Description?
Introduction
                         Main Results
                  Concluding Remarks


Outlook: Modularity in Description Logics

  Example (Ontology)
      A passenger has a passport
      European citizens have European passports
      Foreigners have non-European passports
      Someone with double citizenship is a foreigner and a
      European




                  Ivan José Varzinczak   What is a Good Domain Description?
Introduction
                               Main Results
                        Concluding Remarks


Outlook: Modularity in Description Logics

  Example (The ontology in DL)
      Terminology:
          Passenger   passport      c db                               y ¡

          EUcitizen  passport EU
                                      
                            b                                ¡

          Foreigner  passport EU
                                          
                                b                                ¨ ¡

          2Citizen Foreigner EUcitizen
                    b                                    e


      Assertions:
          EU POLAND
             ¢                               ¥

          EUcitizen JAN ¢                            ¥

          passport JAN POLAND
                    ¢                            ¤                      ¥




                        Ivan José Varzinczak                                 What is a Good Domain Description?
Introduction
                                        Main Results
                                 Concluding Remarks


Outlook: Modularity in Description Logics
      Nevertheless

              Passenger   passport                                                             2Citizen           passport EU             EU
      fg                                                              gu       x
      g                                               Ð                   gv
                          q rp                    s       »                        Æ                      å gp             Â s     â Êt        Å

              EUcitizen  passport EU
  h

                                                                                               2Citizen           passport
                        å gp                  s               »                        x

             Foreigner  passport EU
      g                                                                   g                                                   äs
      gi                                                                  g                Æ               å gp
                       å Bp              âs                       »
           2Citizen Foreigner EUcitizen
                                                                      w

                                                                                               2Citizen           Passenger
                   p                t                                                  x
                                                                                           Æ               â ´p



                 Someone with double citizenship is not a passenger

      Hence. . .



               !
                                 if we have 2Citizen BINLADEN ,                                    j                   k

                          this individual is not obliged to be controlled!


                                 Ivan José Varzinczak                                  What is a Good Domain Description?
Introduction
                                        Main Results
                                 Concluding Remarks


Outlook: Modularity in Description Logics
      Nevertheless

              Passenger   passport                                                                     2Citizen           passport EU             EU
      fg                                                              gu       x
      g                                               Ð                   gv
                          q rp                    s       »                        Æ                              å gp             Â s     â Êt        Å

              EUcitizen  passport EU
  h

                                                                                                       2Citizen           passport
                        å gp                  s               »                            x

             Foreigner  passport EU
      g                                                                   g                                                           äs
      gi                                                                  g                        Æ               å gp
                       å Bp              âs                       »
           2Citizen Foreigner EUcitizen
                                                                      w

                                                                                                       2Citizen           Passenger
                   p                t                                                  x
                                                                                               Æ                   â ´p



                 Someone with double citizenship is not a passenger

      Hence. . .



               !
                                 if we have 2Citizen BINLADEN ,                                            j                   k

                          this individual is not obliged to be controlled!


                                 Ivan José Varzinczak                                  What is a Good Domain Description?
Introduction
                                        Main Results
                                 Concluding Remarks


Outlook: Modularity in Description Logics
      Nevertheless

              Passenger   passport                                                             2Citizen           passport EU             EU
      fg                                                              gu       x
      g                                               Ð                   gv
                          q rp                    s       »                        Æ                      å gp             Â s     â Êt        Å

              EUcitizen  passport EU
  h

                                                                                               2Citizen           passport
                        å gp                  s               »                        x

             Foreigner  passport EU
      g                                                                   g                                                   äs
      gi                                                                  g                Æ               å gp
                       å Bp              âs                       »
           2Citizen Foreigner EUcitizen
                                                                      w

                                                                                               2Citizen           Passenger
                   p                t                                                  x
                                                                                           Æ               â ´p



                 Someone with double citizenship is not a passenger

      Hence. . .



               !
                                 if we have 2Citizen BINLADEN ,                                    j                   k

                          this individual is not obliged to be controlled!


                                 Ivan José Varzinczak                                  What is a Good Domain Description?
Introduction
                                        Main Results
                                 Concluding Remarks


Outlook: Modularity in Description Logics
      Nevertheless

              Passenger   passport                                                                     2Citizen           passport EU             EU
      fg                                                              gu       x
      g                                               Ð                   gv
                          q rp                    s       »                        Æ                              å gp             Â s     â Êt        Å

              EUcitizen  passport EU
  h

                                                                                                       2Citizen           passport
                        å gp                  s               »                            x

             Foreigner  passport EU
      g                                                                   g                                                           äs
      gi                                                                  g                        Æ               å gp
                       å Bp              âs                       »
           2Citizen Foreigner EUcitizen
                                                                      w

                                                                                                       2Citizen           Passenger
                   p                t                                                  x
                                                                                               Æ                   â ´p



                 Someone with double citizenship is not a passenger

      Hence. . .



               !
                                 if we have 2Citizen BINLADEN ,                                            j                   k

                          this individual is not obliged to be controlled!


                                 Ivan José Varzinczak                                  What is a Good Domain Description?
Introduction
                                        Main Results
                                 Concluding Remarks


Outlook: Modularity in Description Logics
      Nevertheless

              Passenger   passport                                                                     2Citizen           passport EU             EU
      fg                                                              gu       x
      g                                               Ð                   gv
                          q rp                    s       »                        Æ                              å gp             Â s     â Êt        Å

              EUcitizen  passport EU
  h

                                                                                                       2Citizen           passport
                        å gp                  s               »                            x

             Foreigner  passport EU
      g                                                                   g                                                           äs
      gi                                                                  g                        Æ               å gp
                       å Bp              âs                       »
           2Citizen Foreigner EUcitizen
                                                                      w

                                                                                                       2Citizen           Passenger
                   p                t                                                  x
                                                                                               Æ                   â ´p



                 Someone with double citizenship is not a passenger

      Hence. . .



               !
                                 if we have 2Citizen BINLADEN ,                                            j                   k

                          this individual is not obliged to be controlled!


                                 Ivan José Varzinczak                                  What is a Good Domain Description?
Introduction
                                        Main Results
                                 Concluding Remarks


Outlook: Modularity in Description Logics
      Nevertheless

              Passenger   passport                                                                     2Citizen           passport EU             EU
      fg                                                              gu       x
      g                                               Ð                   gv
                          q rp                    s       »                        Æ                              å gp             Â s     â Êt        Å

              EUcitizen  passport EU
  h

                                                                                                       2Citizen           passport
                        å gp                  s               »                            x

             Foreigner  passport EU
      g                                                                   g                                                           äs
      gi                                                                  g                        Æ               å gp
                       å Bp              âs                       »
           2Citizen Foreigner EUcitizen
                                                                      w

                                                                                                       2Citizen           Passenger
                   p                t                                                  x
                                                                                               Æ                   â ´p



                 Someone with double citizenship is not a passenger

      Hence. . .



               !
                                 if we have 2Citizen BINLADEN ,                                            j                   k

                          this individual is not obliged to be controlled!


                                 Ivan José Varzinczak                                  What is a Good Domain Description?
Introduction
                          Main Results
                   Concluding Remarks


Outlook: Modularity in Description Logics

  Our results. . .
  can be applied in DL, too




                   Ivan José Varzinczak   What is a Good Domain Description?
Introduction
       Main Results
Concluding Remarks




             Thank you!
        Merci beaucoup !
           Danke schön!
              Choukran!
        ¡Muchas gracias!
          Muito obrigado!




Ivan José Varzinczak   What is a Good Domain Description?
Can We Ask for More?

  Postulate about effects
      PE (No implicit effect laws):
                            ˜                                                      ˜


           if                   a and                                                                 a          ,
           ‘                                                      ‘
                                                        ˜
                ‚ýnŸ1
               — 1 – 1 •        ® '   e {²c
                                         …     ÷ df                    ‚ nŸ1
                                                                      — 1 – 1 •        ® '¬   e †tc
                                                                                                 …         gf

                          then                                            a
                                          ‘
                                              • 1          ® '   e †tc
                                                                     …      ÷ df




                      Ivan José Varzinczak            What is a Good Domain Description?
Can We Ask for More?

  Example
                                                                                   loaded   shoot alive
                                                                  l
              ‘                                                                                          e {…                Q gf                     1

                                                                                 loaded alive    shoot alive
                   ï ð'    • v1                  '
                                                                          Q €j                      ‚             k    e {…                       f          o


                   hasGun                                                 shoot                                        hasGun                             shoot
                                                                      r
    –       ) 0'                                         …                             „ s        ‘i4
                                                                                                  — 1       R0'
                                                                                                           Q )                                    e {…             gf   4


                                                                                 shoot             Q ­¥    alive
                                      ˜


                                                                      hasGun                       loaded                    shoot alive
        ‘
                                      ˜
              ‚tnŸ1
             — 1 – 1 •                    ® '                 Q                               y                       e †…                 Q ‚f

                                                                      hasGun                       loaded                    shoot
        ‘
                           ˜
              ‚tnŸ1
             — 1 – 1 •                    ® '¬                Q                               y                       e †…                  ‚f

        but                                                   hasGun                              loaded                shoot alive
                    ‘
                    • 1       ® '¬                  Q                             y                            e †…                Q gf




                                                             Ivan José Varzinczak                         What is a Good Domain Description?
Can We Ask for More?

  Example
                                                                                   loaded   shoot alive
                                                                  l
              ‘                                                                                          e {…                Q gf                     1

                                                                                 loaded alive    shoot alive
                   ï ð'    • v1                  '
                                                                          Q €j                      ‚             k    e {…                       f          o


                   hasGun                                                 shoot                                        hasGun                             shoot
                                                                      r
    –       ) 0'                                         …                             „ s        ‘i4
                                                                                                  — 1       R0'
                                                                                                           Q )                                    e {…             gf   4


                                                                                 shoot             Q ­¥    alive
                                      ˜


                                                                      hasGun                       loaded                    shoot alive
        ‘
                                      ˜
              ‚tnŸ1
             — 1 – 1 •                    ® '                 Q                               y                       e †…                 Q ‚f

                                                                      hasGun                       loaded                    shoot
        ‘
                           ˜
              ‚tnŸ1
             — 1 – 1 •                    ® '¬                Q                               y                       e †…                  ‚f

        but                                                   hasGun                              loaded                shoot alive
                    ‘
                    • 1       ® '¬                  Q                             y                            e †…                Q gf




                                                             Ivan José Varzinczak                         What is a Good Domain Description?
Can We Ask for More?

  Example
                                                                                   loaded   shoot alive
                                                                  l
              ‘                                                                                          e {…                Q gf                     1

                                                                                 loaded alive    shoot alive
                   ï ð'    • v1                  '
                                                                          Q €j                      ‚             k    e {…                       f          o


                   hasGun                                                 shoot                                        hasGun                             shoot
                                                                      r
    –       ) 0'                                         …                             „ s        ‘i4
                                                                                                  — 1       R0'
                                                                                                           Q )                                    e {…             gf   4


                                                                                 shoot             Q ­¥    alive
                                      ˜


                                                                      hasGun                       loaded                    shoot alive
        ‘
                                      ˜
              ‚tnŸ1
             — 1 – 1 •                    ® '                 Q                               y                       e †…                 Q ‚f

                                                                      hasGun                       loaded                    shoot
        ‘
                           ˜
              ‚tnŸ1
             — 1 – 1 •                    ® '¬                Q                               y                       e †…                  ‚f

        but                                                   hasGun                              loaded                shoot alive
                    ‘
                    • 1       ® '¬                  Q                             y                            e †…                Q gf




                                                             Ivan José Varzinczak                         What is a Good Domain Description?
Can We Ask for More?

  Postulate about effects
      P (No unattainable effects):
                         ˜                                              ˜
       

             if           a , then                                                         a
             ‘                                          ‘
                 • 1        ® '   e †tc
                                      …    ÷ qf              ‚tnŸ1
                                                            — 1 – 1 •       ® '¬   e †²c
                                                                                      …         gf




                        Ivan José Varzinczak      What is a Good Domain Description?
Can We Ask for More?

  Example
                                                                                    loaded   shoot alive
                                                         l
                  ‘                                                                                   e {…                       Q gf               1

                                                                                  loaded alive    shoot alive
                            ï ð'     • v1   '
                                                                       Q €j                     ‚                k   e {…                       f               o


                            hasGun                                 shoot                                             hasGun                             shoot
                                                               r
    –       ) 0'                                …                                   „ s    ‘i4
                                                                                           — 1              R0'
                                                                                                           Q )                                 e {…                  gf   4


                                                                                  shoot        Q ­¥        alive
              ˜


        •         ® '         Q €j   hasGun          ˜
                                                                   ‚          loaded       k        e †…    shoot alive
                                                                                                                      Q gf

        but                                                                       hasGun                    loaded                             shoot
                        ‘
                              ‚ýnŸ1
                             — 1 – 1 •                   ® '               Q €j                       ‚                      k          e †…              gf




                                                    Ivan José Varzinczak                                  What is a Good Domain Description?
Can We Ask for More?

  Example
                                                                                    loaded   shoot alive
                                                         l
                  ‘                                                                                   e {…                       Q gf               1

                                                                                  loaded alive    shoot alive
                            ï ð'     • v1   '
                                                                       Q €j                     ‚                k   e {…                       f               o


                            hasGun                                 shoot                                             hasGun                             shoot
                                                               r
    –       ) 0'                                …                                   „ s    ‘i4
                                                                                           — 1              R0'
                                                                                                           Q )                                 e {…                  gf   4


                                                                                  shoot        Q ­¥        alive
              ˜


        •         ® '         Q €j   hasGun          ˜
                                                                   ‚          loaded       k        e †…    shoot alive
                                                                                                                      Q gf

        but                                                                       hasGun                    loaded                             shoot
                        ‘
                              ‚ýnŸ1
                             — 1 – 1 •                   ® '               Q €j                       ‚                      k          e †…              gf




                                                    Ivan José Varzinczak                                  What is a Good Domain Description?

More Related Content

PPTX
CogniSens Athletics Presentation - GPS Texas
PPTX
Explanation & learning slides (talk @ pittsburgh science of learning center)
PPT
6 games
PPT
Satisfaction And Its Application To Ai Planning
PPTX
Turing test
PPTX
Probabilistic reasoning
PDF
The SimpleFPS Planning Domain: A PDDL Benchmark for Proactive NPCs
PDF
Assuring spatial and temporal data integrity via constraints and triggers in ...
CogniSens Athletics Presentation - GPS Texas
Explanation & learning slides (talk @ pittsburgh science of learning center)
6 games
Satisfaction And Its Application To Ai Planning
Turing test
Probabilistic reasoning
The SimpleFPS Planning Domain: A PDDL Benchmark for Proactive NPCs
Assuring spatial and temporal data integrity via constraints and triggers in ...

Viewers also liked (17)

PDF
02.03 Artificial Intelligence: Search by Optimization
DOCX
Neural network
PDF
Jylee probabilistic reasoning with bayesian networks
KEY
General Game Playing
PPTX
Alpha beta pruning
PPTX
Fuzzy logic and application in AI
PPTX
Adversarial search
PPTX
Adversarial search with Game Playing
PPT
Alpha beta prouning
PDF
Soumith Chintala, Artificial Intelligence Research Engineer, Facebook at MLco...
PPT
Lecture 8 dynamic programming
PPT
Hill climbing
PPT
Hidden markov model ppt
PPT
Game Playing in Artificial Intelligence
PPT
artificial intelligence
PDF
Domain Modeling
02.03 Artificial Intelligence: Search by Optimization
Neural network
Jylee probabilistic reasoning with bayesian networks
General Game Playing
Alpha beta pruning
Fuzzy logic and application in AI
Adversarial search
Adversarial search with Game Playing
Alpha beta prouning
Soumith Chintala, Artificial Intelligence Research Engineer, Facebook at MLco...
Lecture 8 dynamic programming
Hill climbing
Hidden markov model ppt
Game Playing in Artificial Intelligence
artificial intelligence
Domain Modeling
Ad

More from Ivan Varzinczak (20)

PDF
Semantic Diff as the Basis for Knowledge Base Versioning
PDF
Pertinence Construed Modally
PDF
On Action Theory Change: Semantics for Contraction and its Properties
PDF
A Modularity Approach for a Fragment of ALC
PDF
Proceedings of ARCOE'09
PDF
Next Steps in Propositional Horn Contraction
PDF
On the Revision of Action Laws: An Algorithmic Approach
PDF
Action Theory Contraction and Minimal Change
PDF
Causalidade e dependência em raciocínio sobre ações
PDF
Cohesion, Coupling and the Meta-theory of Actions
PDF
Meta-theory of Actions: Beyond Consistency
PDF
Domain Descriptions Should be Modular
PDF
Elaborating Domain Descriptions
PDF
What Is a Good Domain Description? Evaluating and Revising Action Theories in...
PDF
Regression in Modal Logic
PDF
On the Modularity of Theories
PDF
On the Revision of Action Laws: an Algorithmic Approach
PDF
Action Theory Contraction and Minimal Change
PDF
First Steps in EL Contraction
PDF
Next Steps in Propositional Horn Contraction
Semantic Diff as the Basis for Knowledge Base Versioning
Pertinence Construed Modally
On Action Theory Change: Semantics for Contraction and its Properties
A Modularity Approach for a Fragment of ALC
Proceedings of ARCOE'09
Next Steps in Propositional Horn Contraction
On the Revision of Action Laws: An Algorithmic Approach
Action Theory Contraction and Minimal Change
Causalidade e dependência em raciocínio sobre ações
Cohesion, Coupling and the Meta-theory of Actions
Meta-theory of Actions: Beyond Consistency
Domain Descriptions Should be Modular
Elaborating Domain Descriptions
What Is a Good Domain Description? Evaluating and Revising Action Theories in...
Regression in Modal Logic
On the Modularity of Theories
On the Revision of Action Laws: an Algorithmic Approach
Action Theory Contraction and Minimal Change
First Steps in EL Contraction
Next Steps in Propositional Horn Contraction
Ad

Recently uploaded (20)

PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PPTX
Spectroscopy.pptx food analysis technology
PDF
Encapsulation theory and applications.pdf
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
Electronic commerce courselecture one. Pdf
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
cuic standard and advanced reporting.pdf
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PPTX
Machine Learning_overview_presentation.pptx
PDF
Empathic Computing: Creating Shared Understanding
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
Network Security Unit 5.pdf for BCA BBA.
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
20250228 LYD VKU AI Blended-Learning.pptx
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Spectroscopy.pptx food analysis technology
Encapsulation theory and applications.pdf
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Review of recent advances in non-invasive hemoglobin estimation
Unlocking AI with Model Context Protocol (MCP)
Mobile App Security Testing_ A Comprehensive Guide.pdf
Reach Out and Touch Someone: Haptics and Empathic Computing
Chapter 3 Spatial Domain Image Processing.pdf
Electronic commerce courselecture one. Pdf
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
cuic standard and advanced reporting.pdf
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
gpt5_lecture_notes_comprehensive_20250812015547.pdf
Machine Learning_overview_presentation.pptx
Empathic Computing: Creating Shared Understanding
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx

What Is a Good Domain Description? Evaluating & Revising Action Theories in Dynamic Logic

  • 1. Introduction Main Results Concluding Remarks What is a Good Domain Description? Evaluating & Revising Action Theories in Dynamic Logic Ivan José Varzinczak IRIT – Université Paul Sabatier October 27th 2006 Ivan José Varzinczak What is a Good Domain Description?
  • 2. Introduction Main Results Concluding Remarks Reasoning About Actions Problem: describing domains by logical formulas Actions and their effects Executabilities of actions Inexecutabilities of actions Domain constraints Example A turkey that walks is alive Teasing a turkey makes it walk It is always possible to tease a turkey A dead turkey remains dead after teasing it Ivan José Varzinczak What is a Good Domain Description?
  • 3. Introduction Main Results Concluding Remarks Reasoning About Actions Problem: describing domains by logical formulas Actions and their effects Executabilities of actions Inexecutabilities of actions Domain constraints Example A turkey that walks is alive Teasing a turkey makes it walk It is always possible to tease a turkey A dead turkey remains dead after teasing it Ivan José Varzinczak What is a Good Domain Description?
  • 4. Introduction Main Results Concluding Remarks Reasoning About Actions Goal: inference tasks Prediction Explanation Planning Ivan José Varzinczak What is a Good Domain Description?
  • 5. Introduction Main Results Concluding Remarks Reasoning About Actions Prediction: reasoning about the future ? Initial actions Result state state After shooting, the turkey stops walking Ivan José Varzinczak What is a Good Domain Description?
  • 6. Introduction Main Results Concluding Remarks Reasoning About Actions Explanation: reasoning about the past ? Initial actions Current state state After shooting, the turkey is dead: the gun was loaded Ivan José Varzinczak What is a Good Domain Description?
  • 7. Introduction Main Results Concluding Remarks Reasoning About Actions Planning: what to do to achieve a goal ? Current actions Desired state state To have the turkey dead: load the gun, then shoot Ivan José Varzinczak What is a Good Domain Description?
  • 8. Introduction Main Results Concluding Remarks Reasoning About Actions Other important tasks Consistency check Test of executability/inexecutability Theory change ... Ivan José Varzinczak What is a Good Domain Description?
  • 9. Introduction Main Results Concluding Remarks Outline 1 Introduction Describing Action Theories Unwanted Conclusions 2 Main Results Decomposing Theories Logical Modularity Exploiting Modularity Theory Change 3 Concluding Remarks Ivan José Varzinczak What is a Good Domain Description?
  • 10. Introduction Main Results Concluding Remarks Outline 1 Introduction Describing Action Theories Unwanted Conclusions 2 Main Results Decomposing Theories Logical Modularity Exploiting Modularity Theory Change 3 Concluding Remarks Ivan José Varzinczak What is a Good Domain Description?
  • 11. Introduction Main Results Concluding Remarks Outline 1 Introduction Describing Action Theories Unwanted Conclusions 2 Main Results Decomposing Theories Logical Modularity Exploiting Modularity Theory Change 3 Concluding Remarks Ivan José Varzinczak What is a Good Domain Description?
  • 12. Introduction Describing Action Theories Main Results Unwanted Conclusions Concluding Remarks Outline 1 Introduction Describing Action Theories Unwanted Conclusions 2 Main Results Decomposing Theories Logical Modularity Exploiting Modularity Theory Change 3 Concluding Remarks Ivan José Varzinczak What is a Good Domain Description?
  • 13. Introduction Describing Action Theories Main Results Unwanted Conclusions Concluding Remarks Formalizing Domains Several base formalisms Situation calculus [McCarthy & Hayes, 1969] s Holds loaded s Holds alive do shoot s   ¢ £¡ ¢ ¤ ¨ ©§¥ ¦ ¢ ¤ ¢ ¤ ¥ ¥ ¥ Languages , , etc. [Lifschitz et al., 90’s] shoot causes alive if loaded ¨ Fluent calculus [Thielscher, 1995] Poss shoot tk s ¢ ¢ ¤ ¥ ¦ §¥ State do shoot tk s ¢ ¢ ¢ ¤ ¥ ¥ ¥ State s¢ ¥ dead tk ¢ !¥ alive tk¢ ¥ ... Ivan José Varzinczak What is a Good Domain Description?
  • 14. Introduction Describing Action Theories Main Results Unwanted Conclusions Concluding Remarks Formalizing Domains In this work. . . we have chosen Modal Logic Weak version of Propositional Dynamic Logic (PDL) Simple and decidable With a tableaux-based theorem prover: Lotrec Ivan José Varzinczak What is a Good Domain Description?
  • 15. Introduction Describing Action Theories Main Results Unwanted Conclusions Concluding Remarks Logical Preliminaries Ontology Actions: ) 0($ ' % # a 1 a2 1 53331 4 2 2 2 Atomic propositions: ) 0BA386 ' @ 9 7 p 1 p2 1 53331 4 2 2 2 Literals: RP$H38GFEC Q ) I @ 9 7 6 ' % D p p S H38UT @ 9 7 6 4 Classical formulas: Rba`XV c ) ' Y W 1 c 1 2 53331 4 2 2 2 Action operators For each a , a modal operator a $dT % # e f ea : “after execution of a, is true” c gf c a : “a is inexecutable” h p qi a a r ' ts c def e uQ vgf c Q a : “a is executable” w y €x Complex formulas:  1  1 2 3331 2 2 2 Ivan José Varzinczak What is a Good Domain Description?
  • 16. Introduction Describing Action Theories Main Results Unwanted Conclusions Concluding Remarks Logical Preliminaries Ontology Actions: ) 0($ ' % # a 1 a2 1 53331 4 2 2 2 Atomic propositions: ) 0BA386 ' @ 9 7 p 1 p2 1 53331 4 2 2 2 Literals: RP$H38GFEC Q ) I @ 9 7 6 ' % D p p S H38UT @ 9 7 6 4 Classical formulas: Rba`XV c ) ' Y W 1 c 1 2 53331 4 2 2 2 Action operators For each a , a modal operator a $dT % # e f ea : “after execution of a, is true” c gf c a : “a is inexecutable” h p qi a a r ' ts c def e uQ vgf c Q a : “a is executable” w y €x Complex formulas:  1  1 2 3331 2 2 2 Ivan José Varzinczak What is a Good Domain Description?
  • 17. Introduction Describing Action Theories Main Results Unwanted Conclusions Concluding Remarks Logical Preliminaries Ontology Actions: ) 0($ ' % # a 1 a2 1 53331 4 2 2 2 Atomic propositions: ) 0BA386 ' @ 9 7 p 1 p2 1 53331 4 2 2 2 Literals: RP$H38GFEC Q ) I @ 9 7 6 ' % D p p S H38UT @ 9 7 6 4 Classical formulas: Rba`XV c ) ' Y W 1 c 1 2 53331 4 2 2 2 Action operators For each a , a modal operator a $dT % # e f ea : “after execution of a, is true” c gf c a : “a is inexecutable” h p qi a a r ' ts c def e uQ vgf c Q a : “a is executable” w y €x Complex formulas:  1  1 2 3331 2 2 2 Ivan José Varzinczak What is a Good Domain Description?
  • 18. Introduction Describing Action Theories Main Results Unwanted Conclusions Concluding Remarks Logical Preliminaries Ontology Actions: ) 0($ ' % # a 1 a2 1 53331 4 2 2 2 Atomic propositions: ) 0BA386 ' @ 9 7 p 1 p2 1 53331 4 2 2 2 Literals: RP$H38GFEC Q ) I @ 9 7 6 ' % D p p S H38UT @ 9 7 6 4 Classical formulas: Rba`XV c ) ' Y W 1 c 1 2 53331 4 2 2 2 Action operators For each a , a modal operator a $dT % # e f ea : “after execution of a, is true” c gf c a : “a is inexecutable” h p qi a a r ' ts c def e uQ vgf c Q a : “a is executable” w y €x Complex formulas:  1  1 2 3331 2 2 2 Ivan José Varzinczak What is a Good Domain Description?
  • 19. Introduction Describing Action Theories Main Results Unwanted Conclusions Concluding Remarks Logical Preliminaries Example Actions: shoot, tease Propositions: loaded, alive, walking Formulas: alive walking, tease , r Q ƒ‚ „ s loaded e shoot alive †… Q gf Ivan José Varzinczak What is a Good Domain Description?
  • 20. Introduction Describing Action Theories Main Results Unwanted Conclusions Concluding Remarks Semantics Multimodal logic K [Popkorn 94,Blackburn et al. 2001]. Definition Models W R where r ‡ ' 1 s W ˆ 2 g‘‰ “ ’  : set of possible worlds (states) R: –•$ … ” % # 2W — W Definition ˜ p (p is true at world w of model ) iff p w w ™ A' ˜ ‡ ˜ T a iff for every w such that wRa w , w w ™ A' e  df e e ™ A'  f the usual truth conditions for the other connectives Ivan José Varzinczak What is a Good Domain Description?
  • 21. Introduction Describing Action Theories Main Results Unwanted Conclusions Concluding Remarks Semantics Multimodal logic K [Popkorn 94,Blackburn et al. 2001]. Definition Models W R where r ‡ ' 1 s W ˆ 2 g‘‰ “ ’  : set of possible worlds (states) R: –•$ … ” % # 2W — W Definition ˜ p (p is true at world w of model ) iff p w w ™ A' ˜ ‡ ˜ T a iff for every w such that wRa w , w w ™ A' e  df e e ™ A'  f the usual truth conditions for the other connectives Ivan José Varzinczak What is a Good Domain Description?
  • 22. Introduction Describing Action Theories Main Results Unwanted Conclusions Concluding Remarks Semantics Example If a1 a2 , and p 1 p2 , W R , where r ) b($ ' % # 1 4 ) 0gH386 ' @ 9 7 1 4 ‡ ' 1 s W hb' ) ) p 1 p2 1 ) i4 1 p1 Q 1 p2 Q R) i4 1 p1 p2 1 ih4 1 4 p1 p2 p 1 p2 p 1 p2 p 1 p2 l R a1 ) mj 1 ) i4 1 Q 1 ) mj nR4 1 k 1 Q R) i4 1 1 nR4 1 k p1 p2 p1 p2 p 1 p2 p1 p2 j k ' Rmj Q ) 1 Q R) i4 1 1 Rmj nR4 Q ) 1 k 1 ) i4 1 Q 1 o tR4 k R a2 j k mi0' ) j ) p1 p2 1 ) i4 1 p1 Q 1 p2 ) mj nR4 1 k p1 Q 1 p2 ) i4 1 p1 Q 1 p2 pR4 4 k is a model Ivan José Varzinczak What is a Good Domain Description?
  • 23. Introduction Describing Action Theories Main Results Unwanted Conclusions Concluding Remarks Semantics Example a1 a1 p1 p2 p1 p2 p1 p2 q r s w A uv a2 x p1 a2 p2 w uv ‡ : a1 a1 z {y } g| p1 a1 w A uv } ~ {y €  p1 p2 p2 a1 w uv } z †y  ‚| r ts a2 Ivan José Varzinczak What is a Good Domain Description?
  • 24. Introduction Describing Action Theories Main Results Unwanted Conclusions Concluding Remarks Semantics Definition ˜ ˜ iff for all w W, w ™ '˜  ˜ T ™ '  ƒ „A' ™ iff  …A' ™ for every ƒ P† T Definition is a consequence of the set of global axioms in all ˜ ƒ ˜ PDL-models (noted ˜ PDL ) iff for every , if , then ƒ '  ‡ ™ ' ƒ ™ '  . Ivan José Varzinczak What is a Good Domain Description?
  • 25. Introduction Describing Action Theories Main Results Unwanted Conclusions Concluding Remarks Semantics Definition ˜ ˜ iff for all w W, w ™ '˜  ˜ T ™ '  ƒ „A' ™ iff  …A' ™ for every ƒ P† T Definition is a consequence of the set of global axioms in all ˜ ƒ ˜ PDL-models (noted ˜ PDL ) iff for every , if , then ƒ '  ‡ ™ ' ƒ ™ '  . Ivan José Varzinczak What is a Good Domain Description?
  • 26. Introduction Describing Action Theories Main Results Unwanted Conclusions Concluding Remarks Outline 1 Introduction Describing Action Theories Unwanted Conclusions 2 Main Results Decomposing Theories Logical Modularity Exploiting Modularity Theory Change 3 Concluding Remarks Ivan José Varzinczak What is a Good Domain Description?
  • 27. Introduction Describing Action Theories Main Results Unwanted Conclusions Concluding Remarks The Tale Again Example A turkey that walks is alive: walking … alive Teasing a turkey makes it to walk: e tease walking f It is always possible to tease a turkey: tease r „ s A dead turkey remains dead after teasing it alive tease alive h ¨ ¦ ¨ Fi If the gun is loaded, shooting kills the turkey loaded shoot alive h ¦ ¨ di Teasing does not unload the gun loaded tease loaded h ¦ i Ivan José Varzinczak What is a Good Domain Description?
  • 28. Introduction Describing Action Theories Main Results Unwanted Conclusions Concluding Remarks The Tale Again Example ‡ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ tease r ‹ ˜ tease alive „ s 1 ˆ ˆ ˆ walking alive … 1 ˆ ˆ ˆ '˜ e f tease walking alive tease alive alive ˆ ‰ ˆ Œˆ ˆ ˆ e f ˆ 1 Q Ž' ˜ e †… j €f Q ƒ‚ loaded shoot alive k alive tease e {… Q gf 1 alive tease alive Q Ž' ˜ e {…  ‚f Q e †… Q gf alive 1 loaded tease loaded Š  e †… f ' N.B.: Such a description is consistent What is the problem? Ivan José Varzinczak What is a Good Domain Description?
  • 29. Introduction Describing Action Theories Main Results Unwanted Conclusions Concluding Remarks The Tale Again Example ‡ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ tease r ‹ ˜ tease alive „ s 1 ˆ ˆ ˆ walking alive … 1 ˆ ˆ ˆ '˜ e f tease walking alive tease alive alive ˆ ‰ ˆ Œˆ ˆ ˆ e f ˆ 1 Q Ž' ˜ e †… j €f Q ƒ‚ loaded shoot alive k alive tease e {… Q gf 1 alive tease alive Q Ž' ˜ e {…  ‚f Q e †… Q gf alive 1 loaded tease loaded Š  e †… f ' N.B.: Such a description is consistent What is the problem? Ivan José Varzinczak What is a Good Domain Description?
  • 30. Introduction Describing Action Theories Main Results Unwanted Conclusions Concluding Remarks The Tale Again Example ‡ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ tease r ‹ ˜ tease alive „ s 1 ˆ ˆ ˆ walking alive … 1 ˆ ˆ ˆ '˜ e f tease walking alive tease alive alive ˆ ‰ ˆ Œˆ ˆ ˆ e f ˆ 1 '˜ Q e †… j €f Q ƒ‚ loaded shoot alive k alive tease e {… Q gf 1 alive tease alive Q Ž' ˜ e {…  ‚f Q e †… Q gf alive 1 loaded tease loaded Š  e †… f ' N.B.: Such a description is consistent What is the problem? Ivan José Varzinczak What is a Good Domain Description?
  • 31. Introduction Describing Action Theories Main Results Unwanted Conclusions Concluding Remarks The Tale Again Example ‡ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ tease r ‹ ˜ tease alive „ s 1 ˆ ˆ ˆ walking alive … 1 ˆ ˆ ˆ e ' ˜ f tease walking alive tease alive alive ˆ ‰ ˆ Œˆ ˆ ˆ e f ˆ 1 Q Ž' ˜ e †… j €f Q ƒ‚ loaded shoot alive k alive tease e {… Q gf 1 alive tease alive Q Ž' ˜ e {…  ‚f Q e †… Q gf alive 1 loaded tease loaded Š  e †… f ' N.B.: Such a description is consistent What is the problem? Ivan José Varzinczak What is a Good Domain Description?
  • 32. Introduction Describing Action Theories Main Results Unwanted Conclusions Concluding Remarks The Tale Again Example ‡ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ tease r ‹ ˜ tease alive „ s 1 ˆ ˆ ˆ walking alive … 1 ˆ ˆ ˆ e ' ˜ f tease walking alive tease alive alive ˆ ‰ ˆ Œˆ ˆ ˆ e f ˆ 1 Q Ž' ˜ e †… j €f Q ƒ‚ loaded shoot alive k alive tease e {… Q gf 1 alive tease alive Q Ž' ˜ e {…  ‚f Q e †… Q gf alive 1 loaded tease loaded Š  e †… f ' N.B.: Such a description is consistent What is the problem? Ivan José Varzinczak What is a Good Domain Description?
  • 33. Introduction Describing Action Theories Main Results Unwanted Conclusions Concluding Remarks The Tale Again Example ‡ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ tease r ‹ ˜ tease alive „ s 1 ˆ ˆ ˆ walking alive … 1 ˆ ˆ ˆ e ' ˜ f tease walking alive tease alive alive ˆ ‰ ˆ Œˆ ˆ ˆ e f ˆ 1 Q Ž' ˜ e †… j €f Q ƒ‚ loaded shoot alive k alive tease e {… Q gf 1 alive tease alive Q Ž' ˜ e {…  ‚f Q e †… Q gf alive 1 loaded tease loaded Š  e †… f ' N.B.: Such a description is consistent What is the problem? Ivan José Varzinczak What is a Good Domain Description?
  • 34. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Outline 1 Introduction Describing Action Theories Unwanted Conclusions 2 Main Results Decomposing Theories Logical Modularity Exploiting Modularity Theory Change 3 Concluding Remarks Ivan José Varzinczak What is a Good Domain Description?
  • 35. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Natural Modules in Action Theories Types of domain laws Static laws : walking … alive Effect laws : loaded e †… shoot alive Q ‚f Executability laws : hasGun shoot r … „ s Inexecutability laws : Q hasGun e †… shoot  gf ! only formulas of these types Ivan José Varzinczak What is a Good Domain Description?
  • 36. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Natural Modules in Action Theories Types of domain laws Static laws : walking … alive Effect laws : loaded e †… shoot alive Q ‚f Executability laws : hasGun shoot r … „ s Inexecutability laws : Q hasGun e †… shoot  gf ! only formulas of these types Ivan José Varzinczak What is a Good Domain Description?
  • 37. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Natural Modules in Action Theories Types of domain laws Static laws : walking … alive Effect laws : loaded e †… shoot alive Q ‚f Executability laws : hasGun shoot r … „ s Inexecutability laws : Q hasGun e †… shoot  gf ! only formulas of these types Ivan José Varzinczak What is a Good Domain Description?
  • 38. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Natural Modules in Action Theories Types of domain laws Static laws : walking … alive Effect laws : loaded e †… shoot alive Q ‚f Executability laws : hasGun shoot r … „ s Inexecutability laws : Q hasGun e †… shoot  gf ! only formulas of these types Ivan José Varzinczak What is a Good Domain Description?
  • 39. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Natural Modules in Action Theories Types of domain laws Static laws : walking … alive Effect laws : loaded e †… shoot alive Q ‚f Executability laws : hasGun shoot r … „ s Inexecutability laws : Q hasGun e †… shoot  gf ! only formulas of these types Ivan José Varzinczak What is a Good Domain Description?
  • 40. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Natural Modules in Action Theories Defining modules : set of static laws ‘ Given a $dT % # a : effect laws for a ’ a : executability laws for a “ a : inexecutability laws for a ” ‘ r a a a : domain description for a • 1 – n1 — ‚1 s a, a, and a • ˜ Ž' a • 5R™ œ › š – ˜ ' a – 5R™ œ › š — ˜ Ž' a — 5ž™ œ › š : the action theory of a given domain ‘ r ‚ nŸ1 — 1 – 1 • s Ivan José Varzinczak What is a Good Domain Description?
  • 41. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Natural Modules in Action Theories Defining modules : set of static laws ‘ Given a $dT % # a : effect laws for a ’ a : executability laws for a “ a : inexecutability laws for a ” ‘ r a a a : domain description for a • 1 – n1 — ‚1 s a, a, and a • ˜ Ž' a • 5R™ œ › š – ˜ ' a – 5R™ œ › š — ˜ Ž' a — 5ž™ œ › š : the action theory of a given domain ‘ r ‚ nŸ1 — 1 – 1 • s Ivan José Varzinczak What is a Good Domain Description?
  • 42. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Natural Modules in Action Theories Defining modules : set of static laws ‘ Given a $dT % # a : effect laws for a ’ a : executability laws for a “ a : inexecutability laws for a ” ‘ r a a a : domain description for a • 1 – n1 — ‚1 s a, a, and a • ˜ Ž' a • 5R™ œ › š – ˜ ' a – 5R™ œ › š — ˜ Ž' a — 5ž™ œ › š : the action theory of a given domain ‘ r ‚ nŸ1 — 1 – 1 • s Ivan José Varzinczak What is a Good Domain Description?
  • 43. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Natural Modules in Action Theories Defining modules : set of static laws ‘ Given a $dT % # a : effect laws for a ’ a : executability laws for a “ a : inexecutability laws for a ” ‘ r a a a : domain description for a • 1 – n1 — ‚1 s a, a, and a • ˜ Ž' a • 5R™ œ › š – ˜ ' a – 5R™ œ › š — ˜ Ž' a — 5ž™ œ › š : the action theory of a given domain ‘ r ‚ nŸ1 — 1 – 1 • s Ivan José Varzinczak What is a Good Domain Description?
  • 44. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change What About the Frame Problem? In our example If we had an action wait loaded wait loaded ¡ ’ “ ¢¤ £” h PDL ¤ ¤ ¤ ¦ i Definition Dependence relation [Castilho et al. 99]: Fª©•$§¦¥ % D C ¨ % # ˆ Example shoot Q «¥ alive, tease ¥ walking, tease ¬¥ alive From wait Q «¥ ¬ loaded conclude loaded e †… wait loaded f Ivan José Varzinczak What is a Good Domain Description?
  • 45. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change What About the Frame Problem? In our example If we had an action wait loaded wait loaded ¡ ’ “ ¢¤ £” h PDL ¤ ¤ ¤ ¦ i Definition Dependence relation [Castilho et al. 99]: Fª©•$§¦¥ % D C ¨ % # ˆ Example shoot Q «¥ alive, tease ¥ walking, tease ¬¥ alive From wait Q «¥ ¬ loaded conclude loaded e †… wait loaded f Ivan José Varzinczak What is a Good Domain Description?
  • 46. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change What About the Frame Problem? In our example If we had an action wait loaded wait loaded ¡ ’ “ ¢¤ £” h PDL ¤ ¤ ¤ ¦ i Definition Dependence relation [Castilho et al. 99]: Fª©•$§¦¥ % D C ¨ % # ˆ Example shoot Q «¥ alive, tease ¥ walking, tease ¬¥ alive From wait Q «¥ ¬ loaded conclude loaded e †… wait loaded f Ivan José Varzinczak What is a Good Domain Description?
  • 47. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change What About the Frame Problem? In our example If we had an action wait loaded wait loaded ¡ ’ “ ¢¤ £” h PDL ¤ ¤ ¤ ¦ i Definition Dependence relation [Castilho et al. 99]: Fª©•$§¦¥ % D C ¨ % # ˆ Example shoot Q «¥ alive, tease ¥ walking, tease ¬¥ alive From wait Q «¥ ¬ loaded conclude loaded e †… wait loaded f Ivan José Varzinczak What is a Good Domain Description?
  • 48. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change What About the Frame Problem? Restriction on models For all wRa w : ˜ e ˜ w p implies p, if a p w ™ '¬ ˜ ™ '¬ ˜ ¬¥ f p implies p, if a p. w w ™ A' ™ H' Q ­¥ ¬ f New logical consequence ˜ ˜ ® ' instead of ' PDL Example ˜ loaded wait loaded ‘ ‚ nŸ1 — 1 – 1 • ® ' e ¯… f Ivan José Varzinczak What is a Good Domain Description?
  • 49. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change What About the Frame Problem? Restriction on models For all wRa w : ˜ e ˜ w p implies p, if a p w ™ '¬ ˜ ™ '¬ ˜ ¬¥ f p implies p, if a p. w w ™ A' ™ H' Q ­¥ ¬ f New logical consequence ˜ ˜ ® ' instead of ' PDL Example ˜ loaded wait loaded ‘ ‚ nŸ1 — 1 – 1 • ® ' e ¯… f Ivan José Varzinczak What is a Good Domain Description?
  • 50. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change What About the Frame Problem? Restriction on models For all wRa w : ˜ e ˜ w p implies p, if a p w ™ '¬ ˜ ™ '¬ ˜ ¬¥ f p implies p, if a p. w w ™ A' ™ H' Q ­¥ ¬ f New logical consequence ˜ ˜ ® ' instead of ' PDL Example ˜ loaded wait loaded ‘ ‚ nŸ1 — 1 – 1 • ® ' e ¯… f Ivan José Varzinczak What is a Good Domain Description?
  • 51. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change What About the Frame Problem? The dependence-based approach. . . solves the frame problem subsumes Reiter’s regression [Demolombe et al. 2003] does not entirely solve the ramification problem e.g. shoot ¨ ±° walking But is the only approach that works for domains with actions with both indeterminate and indirect effects [Castilho et al. 2002], [Herzig Varzinczak 2004] Ivan José Varzinczak What is a Good Domain Description?
  • 52. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change What About the Frame Problem? The dependence-based approach. . . solves the frame problem subsumes Reiter’s regression [Demolombe et al. 2003] does not entirely solve the ramification problem e.g. shoot ¨ ±° walking But is the only approach that works for domains with actions with both indeterminate and indirect effects [Castilho et al. 2002], [Herzig Varzinczak 2004] Ivan José Varzinczak What is a Good Domain Description?
  • 53. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change What About the Frame Problem? The dependence-based approach. . . solves the frame problem subsumes Reiter’s regression [Demolombe et al. 2003] does not entirely solve the ramification problem e.g. shoot ¨ ±° walking But is the only approach that works for domains with actions with both indeterminate and indirect effects [Castilho et al. 2002], [Herzig Varzinczak 2004] Ivan José Varzinczak What is a Good Domain Description?
  • 54. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Outline 1 Introduction Describing Action Theories Unwanted Conclusions 2 Main Results Decomposing Theories Logical Modularity Exploiting Modularity Theory Change 3 Concluding Remarks Ivan José Varzinczak What is a Good Domain Description?
  • 55. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Consistency and More Postulates ˜ PC (Consistency): ‘ a a a ˜ ˜ • 1 – n1 — ‚1 ® '¬  PS (No implicit static laws): if ‘ a a a , then ‘ • 1 – n1 — ‚1 ® ' c c Ž' PI (No implicit inexecutability laws): ˜ if ‘ a a a a ˜ , • 1 – n1 — ‚1 ® ' e {²c …  ‚f then a ‘ a PDL — ‚1 ' e †²c …  gf PX (No implicit executability laws): ˜ if a a a a , ‘ ˜ r • 1 – n1 — ‚1 … ²³' c ® „ s then a a ‘ r PDL – n1 ' … tc „ s Motivation Better control what is going on Ivan José Varzinczak What is a Good Domain Description?
  • 56. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Consistency and More Postulates ˜ PC (Consistency): ‘ a a a ˜ ˜ • 1 – n1 — ‚1 ® '¬  PS (No implicit static laws): if ‘ a a a , then ‘ • 1 – n1 — ‚1 ® ' c c Ž' PI (No implicit inexecutability laws): ˜ if ‘ a a a a ˜ , • 1 – n1 — ‚1 ® ' e {²c …  ‚f then a ‘ a PDL — ‚1 ' e †²c …  gf PX (No implicit executability laws): ˜ if a a a a , ‘ ˜ r • 1 – n1 — ‚1 … ²³' c ® „ s then a a ‘ r PDL – n1 ' … tc „ s Motivation Better control what is going on Ivan José Varzinczak What is a Good Domain Description?
  • 57. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Consistency and More Postulates ˜ PC (Consistency): ‘ a a a ˜ ˜ • 1 – n1 — ‚1 ® '¬  PS (No implicit static laws): if ‘ a a a , then ‘ • 1 – n1 — ‚1 ® ' c c Ž' PI (No implicit inexecutability laws): ˜ if ‘ a a a a ˜ , • 1 – n1 — ‚1 ® ' e {²c …  ‚f then a ‘ a PDL — ‚1 ' e †²c …  gf PX (No implicit executability laws): ˜ if a a a a , ‘ ˜ r • 1 – n1 — ‚1 … ²³' c ® „ s then a a ‘ r PDL – n1 ' … tc „ s Motivation Better control what is going on Ivan José Varzinczak What is a Good Domain Description?
  • 58. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Consistency and More Postulates ˜ PC (Consistency): ‘ a a a ˜ ˜ • 1 – n1 — ‚1 ® '¬  PS (No implicit static laws): if ‘ a a a , then ‘ • 1 – n1 — ‚1 ® ' c c Ž' PI (No implicit inexecutability laws): ˜ if ‘ a a a a ˜ , • 1 – n1 — ‚1 ® ' e {²c …  ‚f then a ‘ a PDL — ‚1 ' e †²c …  gf PX (No implicit executability laws): ˜ if a a a a , ‘ ˜ r • 1 – n1 — ‚1 … ²³' c ® „ s then a a ‘ r PDL – n1 ' … tc „ s Motivation Better control what is going on Ivan José Varzinczak What is a Good Domain Description?
  • 59. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Consistency and More Postulates ˜ PC (Consistency): ‘ a a a ˜ ˜ • 1 – n1 — ‚1 ® '¬  PS (No implicit static laws): if ‘ a a a , then ‘ • 1 – n1 — ‚1 ® ' c c Ž' PI (No implicit inexecutability laws): ˜ if ‘ a a a a ˜ , • 1 – n1 — ‚1 ® ' e {²c …  ‚f then a ‘ a PDL — ‚1 ' e †²c …  gf PX (No implicit executability laws): ˜ if a a a a , ‘ ˜ r • 1 – n1 — ‚1 … ²³' c ® „ s then a a ‘ r PDL – n1 ' … tc „ s Motivation Better control what is going on Ivan José Varzinczak What is a Good Domain Description?
  • 60. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Example tease walking l walking alive ‘ e f 1 loaded shoot alive ) 0' … •i4 • 1 ' 1 e †… Q gf o tease alive tease r – ) 0' „ s ‘i4 — 1 R0' Q ) e †…  gf 4 tease ¥ walking shoot 1 Q «¥ alive ˜ ‘ tease ˜ tease tease alive • 1 – n1 — ‚1 ® ' But alive ‘ '¬ ! Postulate PS violated Ivan José Varzinczak What is a Good Domain Description?
  • 61. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Example tease walking l walking alive ‘ e f 1 loaded shoot alive ) 0' … •i4 • 1 ' 1 e †… Q gf o tease alive tease r – ) 0' „ s ‘i4 — 1 R0' Q ) e †…  gf 4 tease ¥ walking shoot 1 Q «¥ alive ˜ ‘ tease ˜ tease tease alive • 1 – n1 — ‚1 ® ' But alive ‘ '¬ ! Postulate PS violated Ivan José Varzinczak What is a Good Domain Description?
  • 62. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Example tease walking l walking alive ‘ e f 1 loaded shoot alive ) 0' … •i4 • 1 ' 1 e †… Q gf o tease alive tease r – ) 0' „ s ‘i4 — 1 R0' Q ) e †…  gf 4 tease ¥ walking shoot 1 Q «¥ alive ˜ ‘ tease ˜ tease tease alive • 1 – n1 — ‚1 ® ' But alive ‘ '¬ ! Postulate PS violated Ivan José Varzinczak What is a Good Domain Description?
  • 63. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Example tease walking l walking alive ‘ e f 1 loaded shoot alive ) 0' … •i4 • 1 ' 1 e †… Q gf o tease alive tease r – ) 0' „ s ‘i4 — 1 R0' Q ) e †…  gf 4 tease ¥ walking shoot 1 Q «¥ alive ˜ ‘ tease ˜ tease tease alive • 1 – n1 — ‚1 ® ' But alive ‘ '¬ ! Postulate PS violated Ivan José Varzinczak What is a Good Domain Description?
  • 64. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Idea of algorithm For each a r … tc „ s 1 find e †‘c … e a entailed by the theory  gf if is consistent with ‘ 2 ‘©´c e c ‚ ¸!8q(¨ ¥ · µ ¶ µ ¢ is possibly an implicit law Result: the set of all implicit static laws Ivan José Varzinczak What is a Good Domain Description?
  • 65. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Idea of algorithm For each a r … tc „ s 1 find e †‘c … e a entailed by the theory  gf if is consistent with ‘ 2 ‘©´c e c ‚ ¸!8q(¨ ¥ · µ ¶ µ ¢ is possibly an implicit law Result: the set of all implicit static laws Ivan José Varzinczak What is a Good Domain Description?
  • 66. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Algorithm 1: Finding all implicit static laws induced by a a a a input: ‚•¸¹ ¼ » º and ½ » ¾ F» ¿ À a a a output: imp* , the set of all implicit static laws of º •¸¹ ¼ » º ½ €» ¾ 5» ¿ calls: NewCons PI PI ÇXFÃÁ Æ Å Ä Â aXËÊqÂ Ì Å Ä É È ÇqÂ Å È º imp* := Í repeat imp := º Í a for all a ¹do ¦ÏÈ Î Ñ Ò‚¿ Ð ½ a a a for all do Ó Ô Ãf ¼ Õ ¾ a a := Ö i ×È i a i Ø nuÙ È Ú È Û Ü ¦Î Ä £Ý Ñ Ó Þ ¸f a a := Ä i Öi a i Ø ßuÙ Ä Ú È Û Ü ¦Î Ä £Ý Ñ Ó Þ ¸f for all NewCons a do à Ñ ÇF!á Ö Ä Â Å Ø if imp* a and li º Õ º Õ ×€–pÚ Ö È » Èt‚Ø à â » ä gÞ ã å Ñ » à a æÀ li then imp := imp a Õ Þ ÇtéÉ Ø º º ÈèÉÊÈqÂçnÚ â Ö Å à â imp* := imp* imp Õ º º º until imp º Í UÆ Ivan José Varzinczak What is a Good Domain Description?
  • 67. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Algorithm 1: Finding all implicit static laws induced by a a a a input: ‚•¸¹ ¼ » º and ½ » ¾ F» ¿ À a a a output: imp* , the set of all implicit static laws of º •¸¹ ¼ » º ½ €» ¾ 5» ¿ calls: NewCons PI PI ÇXFÃÁ Æ Å Ä Â aXËÊqÂ Ì Å Ä É È ÇqÂ Å È º imp* := Í repeat imp := º Í a for all a ¹do ¦ÏÈ Î Ñ Ò‚¿ Ð ½ a a a for all do Ó Ô Ãf ¼ Õ ¾ a a := Ö i ×È i a i Ø nuÙ È Ú È Û Ü ¦Î Ä £Ý Ñ Ó Þ ¸f a a := Ä i Öi a i Ø ßuÙ Ä Ú È Û Ü ¦Î Ä £Ý Ñ Ó Þ ¸f for all NewCons a do à Ñ ÇF!á Ö Ä Â Å Ø if imp* a and li º Õ º Õ ×€–pÚ Ö È » Èt‚Ø à â » ä gÞ ã å Ñ » à a æÀ li then imp := imp a Õ Þ ÇtéÉ Ø º º ÈèÉÊÈqÂçnÚ â Ö Å à â imp* := imp* imp Õ º º º until imp º Í UÆ Ivan José Varzinczak What is a Good Domain Description?
  • 68. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Algorithm 1: Finding all implicit static laws induced by a a a a input: ‚•¸¹ ¼ » º and ½ » ¾ F» ¿ À a a a output: imp* , the set of all implicit static laws of º •¸¹ ¼ » º ½ €» ¾ 5» ¿ calls: NewCons PI PI ÇXFÃÁ Æ Å Ä Â aXËÊqÂ Ì Å Ä É È ÇqÂ Å È º imp* := Í repeat imp := º Í a for all a ¹do ¦ÏÈ Î Ñ Ò‚¿ Ð ½ a a a for all do Ó Ô Ãf ¼ Õ ¾ a a := Ö i ×È i a i Ø nuÙ È Ú È Û Ü ¦Î Ä £Ý Ñ Ó Þ ¸f a a := Ä i Öi a i Ø ßuÙ Ä Ú È Û Ü ¦Î Ä £Ý Ñ Ó Þ ¸f for all NewCons a do à Ñ ÇF!á Ö Ä Â Å Ø if imp* a and li º Õ º Õ ×€–pÚ Ö È » Èt‚Ø à â » ä gÞ ã å Ñ » à a æÀ li then imp := imp a Õ Þ ÇtéÉ Ø º º ÈèÉÊÈqÂçnÚ â Ö Å à â imp* := imp* imp Õ º º º until imp º Í UÆ Ivan José Varzinczak What is a Good Domain Description?
  • 69. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Algorithm 1: Finding all implicit static laws induced by a a a a input: ‚•¸¹ ¼ » º and ½ » ¾ F» ¿ À a a a output: imp* , the set of all implicit static laws of º •¸¹ ¼ » º ½ €» ¾ 5» ¿ calls: NewCons PI PI ÇXFÃÁ Æ Å Ä Â aXËÊqÂ Ì Å Ä É È ÇqÂ Å È º imp* := Í repeat imp := º Í a for all a ¹do ¦ÏÈ Î Ñ Ò‚¿ Ð ½ a a a for all do Ó Ô Ãf ¼ Õ ¾ a a := Ö i ×È i a i Ø nuÙ È Ú È Û Ü ¦Î Ä £Ý Ñ Ó Þ ¸f a a := Ä i Öi a i Ø ßuÙ Ä Ú È Û Ü ¦Î Ä £Ý Ñ Ó Þ ¸f for all NewCons a do à Ñ ÇF!á Ö Ä Â Å Ø if imp* a and li º Õ º Õ ×€–pÚ Ö È » Èt‚Ø à â » ä gÞ ã å Ñ » à a æÀ li then imp := imp a Õ Þ ÇtéÉ Ø º º ÈèÉÊÈqÂçnÚ â Ö Å à â imp* := imp* imp Õ º º º until imp º Í UÆ Ivan José Varzinczak What is a Good Domain Description?
  • 70. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Algorithm 1: Finding all implicit static laws induced by a a a a input: ‚•¸¹ ¼ » º and ½ » ¾ F» ¿ À a a a output: imp* , the set of all implicit static laws of º •¸¹ ¼ » º ½ €» ¾ 5» ¿ calls: NewCons PI PI ÇXFÃÁ Æ Å Ä Â aXËÊqÂ Ì Å Ä É È ÇqÂ Å È º imp* := Í repeat imp := º Í a for all a ¹do ¦ÏÈ Î Ñ Ò‚¿ Ð ½ a a a for all do Ó Ô Ãf ¼ Õ ¾ a a := Ö i ×È i a i Ø nuÙ È Ú È Û Ü ¦Î Ä £Ý Ñ Ó Þ ¸f a a := Ä i Öi a i Ø ßuÙ Ä Ú È Û Ü ¦Î Ä £Ý Ñ Ó Þ ¸f for all NewCons a do à Ñ ÇF!á Ö Ä Â Å Ø if imp* a and li º Õ º Õ ×€–pÚ Ö È » Èt‚Ø à â » ä gÞ ã å Ñ » à a æÀ li then imp := imp a Õ Þ ÇtéÉ Ø º º ÈèÉÊÈqÂçnÚ â Ö Å à â imp* := imp* imp Õ º º º until imp º Í UÆ Ivan José Varzinczak What is a Good Domain Description?
  • 71. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Algorithm 1: Finding all implicit static laws induced by a a a a input: ‚•¸¹ ¼ » º and ½ » ¾ F» ¿ À a a a output: imp* , the set of all implicit static laws of º •¸¹ ¼ » º ½ €» ¾ 5» ¿ calls: NewCons PI PI ÇXFÃÁ Æ Å Ä Â aXËÊqÂ Ì Å Ä É È ÇqÂ Å È º imp* := Í repeat imp := º Í a for all a ¹do ¦ÏÈ Î Ñ Ò‚¿ Ð ½ a a a for all do Ó Ô Ãf ¼ Õ ¾ a a := Ö i ×È i a i Ø nuÙ È Ú È Û Ü ¦Î Ä £Ý Ñ Ó Þ ¸f a a := Ä i Öi a i Ø ßuÙ Ä Ú È Û Ü ¦Î Ä £Ý Ñ Ó Þ ¸f for all NewCons a do à Ñ ÇF!á Ö Ä Â Å Ø if imp* a and li º Õ º Õ ×€–pÚ Ö È » Èt‚Ø à â » ä gÞ ã å Ñ » à a æÀ li then imp := imp a Õ Þ ÇtéÉ Ø º º ÈèÉÊÈqÂçnÚ â Ö Å à â imp* := imp* imp Õ º º º until imp º Í UÆ Ivan José Varzinczak What is a Good Domain Description?
  • 72. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Algorithm 1: Finding all implicit static laws induced by a a a a input: ‚•¸¹ ¼ » º and ½ » ¾ F» ¿ À a a a output: imp* , the set of all implicit static laws of º •¸¹ ¼ » º ½ €» ¾ 5» ¿ calls: NewCons PI PI ÇXFÃÁ Æ Å Ä Â aXËÊqÂ Ì Å Ä É È ÇqÂ Å È º imp* := Í repeat imp := º Í a for all a ¹do ¦ÏÈ Î Ñ Ò‚¿ Ð ½ a a a for all do Ó Ô Ãf ¼ Õ ¾ a a := Ö i ×È i a i Ø nuÙ È Ú È Û Ü ¦Î Ä £Ý Ñ Ó Þ ¸f a a := Ä i Öi a i Ø ßuÙ Ä Ú È Û Ü ¦Î Ä £Ý Ñ Ó Þ ¸f for all NewCons a do à Ñ ÇF!á Ö Ä Â Å Ø if imp* a and li º Õ º Õ ×€–pÚ Ö È » Èt‚Ø à â » ä gÞ ã å Ñ » à a æÀ li then imp := imp a Õ Þ ÇtéÉ Ø º º ÈèÉÊÈqÂçnÚ â Ö Å à â imp* := imp* imp Õ º º º until imp º Í UÆ Ivan José Varzinczak What is a Good Domain Description?
  • 73. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Algorithm 1: Finding all implicit static laws induced by a a a a input: ‚•¸¹ ¼ » º and ½ » ¾ F» ¿ À a a a output: imp* , the set of all implicit static laws of º •¸¹ ¼ » º ½ €» ¾ 5» ¿ calls: NewCons PI PI ÇXFÃÁ Æ Å Ä Â aXËÊqÂ Ì Å Ä É È ÇqÂ Å È º imp* := Í repeat ºimp := Í a for all a ¹ ¦ÏÈ Î do Ñ Ò‚¿ Ð ½ a a a for all do Ó Ô Ãf ¼ Õ ¾ a a := Ö ×È i i a i Ø nuÙ È Ú È Û Ü ¦Î Ä £Ý Ñ Ó Þ ¸f a a := Ä i Ö i a i Ø ßuÙ Ä Ú È Û Ü ¦Î Ä £Ý Ñ Ó Þ ¸f for all NewCons a do à Ñ ÇF!á Ö Ä Â Å Ø if imp* a º and li Õ º Õ ×€–pÚ Ö È » Èt‚Ø à â » ä gÞ ã å Ñ » à a æÀ li then imp := imp a Õ Þ ÇtéÉ Ø º º ÈèÉÊÈqÂçnÚ â Ö Å à â imp* := imp* imp Õ º º º until imp º Í UÆ Ivan José Varzinczak What is a Good Domain Description?
  • 74. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Example tease walking walking alive Ü Ý » loaded shoot alive Ú ©ƒº Æ Î ê  Ï–» Þ Æ ¼ » Ü ¦Î â 5Ý ë 쩆½ ¹ Ú Æ tease Ð ‚¿ p©di» Þ â Ú Æ ¾ alive Ü ¦Î tease Þ •ä Ý tease À walking shoot » â íÀ alive For tease and tease walking: r „ s e f NewCons walking j vî k ' alive: tease alive e f tease ¬¥ alive: Q alive e {… tease alive Q ‚f Hence alive Q e {… tease ˜  gf ˜ alive : alive ‘ ‘ Q ƒ†RPI ‚ „ ) 4  Ž' ¬ '¬ alive ‘ imp ) 0' 4 Ivan José Varzinczak What is a Good Domain Description?
  • 75. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Example tease walking walking alive Ü Ý » loaded shoot alive Ú ©ƒº Æ Î ê  Ï–» Þ Æ ¼ » Ü ¦Î â 5Ý ë ¹ ©†½ Ú Æ tease Ð ‚¿ p©di» Þ â Ú Æ ¾ alive Ü ¦Î tease Þ •ä Ý tease À walking shoot » â íÀ alive For tease and tease walking: r „ s e f NewCons walking j vî k ' alive: tease alive e f tease ¬¥ alive: Q alive e {… tease alive Q ‚f Hence alive Q e {… tease ˜  gf ˜ alive : alive ‘ ‘ Q ƒ†RPI ‚ „ ) 4  Ž' ¬ '¬ alive ‘ imp ) 0' 4 Ivan José Varzinczak What is a Good Domain Description?
  • 76. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Example tease walking walking alive Ü Ý » loaded shoot alive Ú ©ƒº Æ Î ê  Ï–» Þ Æ ¼ » Ü ¦Î â 5Ý ë ¹ ©†½ Ú Æ tease Ð ‚¿ p©di» Þ â Ú Æ ¾ alive Ü ¦Î tease Þ •ä Ý tease À walking shoot » â íÀ alive For tease and tease walking: r „ s e f NewCons walking j vî k ' alive: tease alive e f tease ¬¥ alive: Q alive e {… tease alive Q ‚f Hence alive Q e {… tease ˜  gf ˜ alive : alive ‘ ‘ Q ƒ†RPI ‚ „ ) 4  Ž' ¬ '¬ alive ‘ imp ) 0' 4 Ivan José Varzinczak What is a Good Domain Description?
  • 77. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Example tease walking walking alive Ü Ý » loaded shoot alive Ú ©ƒº Æ Î ê  Ï–» Þ Æ ¼ » Ü ¦Î â 5Ý ë ¹ ©†½ Ú Æ tease Ð ‚¿ p©di» Þ â Ú Æ ¾ alive Ü ¦Î tease Þ •ä Ý tease À walking shoot » â íÀ alive For tease and tease walking: r „ s e f NewCons walking j vî k ' alive: tease alive e f tease ¬¥ alive: Q alive e {… tease alive Q ‚f Hence alive Q e {… tease ˜  gf ˜ alive : alive ‘ ‘ Q ƒ†RPI ‚ „ ) 4  Ž' ¬ '¬ alive ‘ imp ) 0' 4 Ivan José Varzinczak What is a Good Domain Description?
  • 78. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Example tease walking walking alive Ü Ý » loaded shoot alive Ú ©ƒº Æ Î ê  Ï–» Þ Æ ¼ » Ü ¦Î â 5Ý ë ¹ ©†½ Ú Æ tease Ð ‚¿ p©di» Þ â Ú Æ ¾ alive Ü ¦Î tease Þ •ä Ý tease À walking shoot » â íÀ alive For tease and tease walking: r „ s e f NewCons walking j vî k ' alive: tease alive e f tease ¬¥ alive: Q alive e {… tease alive Q ‚f Hence alive Q e {… tease ˜  gf ˜ alive : alive ‘ ‘ Q ƒ†RPI ‚ „ ) 4  Ž' ¬ '¬ alive ‘ imp ) 0' 4 Ivan José Varzinczak What is a Good Domain Description?
  • 79. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Example tease walking walking alive Ü Ý » loaded shoot alive Ú ©ƒº Æ Î ê  Ï–» Þ Æ ¼ » Ü ¦Î â 5Ý ë ¹ ©†½ Ú Æ tease Ð ‚¿ p©di» Þ â Ú Æ ¾ alive Ü ¦Î tease Þ •ä Ý tease À walking shoot » â íÀ alive For tease and tease walking: r „ s e f NewCons walking j vî k ' alive: tease alive e f tease ¬¥ alive: Q alive e {… tease alive Q ‚f Hence alive Q e {… tease ˜  gf ˜ alive : alive ‘ ‘ Q ƒ†RPI ‚ „ ) 4  Ž' ¬ '¬ alive ‘ imp ) 0' 4 Ivan José Varzinczak What is a Good Domain Description?
  • 80. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Example tease walking walking alive Ü Ý » loaded shoot alive Ú ©ƒº Æ Î ê  Ï–» Þ Æ ¼ » Ü ¦Î â 5Ý ë ¹ ©†½ Ú Æ tease Ð ‚¿ p©di» Þ â Ú Æ ¾ alive Ü ¦Î tease Þ •ä Ý tease À walking shoot » â íÀ alive For tease and tease walking: r „ s e f NewCons walking j vî k ' alive: tease alive e f tease ¬¥ alive: Q alive e {… tease alive Q ‚f Hence alive Q e {… tease ˜  gf ˜ alive : alive ‘ ‘ Q ƒ†RPI ‚ „ ) 4  Ž' ¬ '¬ alive ‘ imp ) 0' 4 Ivan José Varzinczak What is a Good Domain Description?
  • 81. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Example (cont.) Alternatives for repairing: := alive ‘ ‘ ) ©I 4 add tease ¥ alive weaken tease walking: alive e f e †… tease walking f weaken tease : alive tease r r „ s … „ s contraction of action theories (addressed later) Ivan José Varzinczak What is a Good Domain Description?
  • 82. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Example (cont.) Alternatives for repairing: := alive ‘ ‘ ) ©I 4 add tease ¥ alive weaken tease walking: alive e f e †… tease walking f weaken tease : alive tease r r „ s … „ s contraction of action theories (addressed later) Ivan José Varzinczak What is a Good Domain Description?
  • 83. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Example (cont.) Alternatives for repairing: := alive ‘ ‘ ) ©I 4 add tease ¥ alive weaken tease walking: alive e f e †… tease walking f weaken tease : alive tease r r „ s … „ s contraction of action theories (addressed later) Ivan José Varzinczak What is a Good Domain Description?
  • 84. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Theorem ‘ r a a a and satisfy Postulate PS iff ‘ . • 1 – n1 — ‚1 s ¥ imp* ï ð' Theorem Let imp* be the output of Algorithm 1 on input ‘ ‘ r a a a s • 1 – n1 — ‚1 and . Then ¥ ‘ r ‘ a a a has no implicit static law. imp* ˜ I • 1 – n1 — ‚1 s a a a imp* . ‘ ‘ • 1 – n1 — ‚1 ñ ³® ' Corollary ˜ ˜ For all , ‘ a a a iff ‘ ‘ . Y `Xdòc W V T • 1 – n1 — ‚1 ® ' c I imp* c Ž' Ivan José Varzinczak What is a Good Domain Description?
  • 85. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Theorem ‘ r a a a and satisfy Postulate PS iff ‘ . • 1 – n1 — ‚1 s ¥ imp* ï ð' Theorem Let imp* be the output of Algorithm 1 on input ‘ ‘ r a a a s • 1 – n1 — ‚1 and . Then ¥ ‘ r ‘ a a a has no implicit static law. imp* ˜ I • 1 – n1 — ‚1 s a a a imp* . ‘ ‘ • 1 – n1 — ‚1 ñ ³® ' Corollary ˜ ˜ For all , ‘ a a a iff ‘ ‘ . Y `Xdòc W V T • 1 – n1 — ‚1 ® ' c I imp* c Ž' Ivan José Varzinczak What is a Good Domain Description?
  • 86. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Static Laws Theorem ‘ r a a a and satisfy Postulate PS iff ‘ . • 1 – n1 — ‚1 s ¥ imp* ï ð' Theorem Let imp* be the output of Algorithm 1 on input ‘ ‘ r a a a s • 1 – n1 — ‚1 and . Then ¥ ‘ r ‘ a a a has no implicit static law. imp* ˜ I • 1 – n1 — ‚1 s a a a imp* . ‘ ‘ • 1 – n1 — ‚1 ñ ³® ' Corollary ˜ ˜ For all , ‘ a a a iff ‘ ‘ . Y `Xdòc W V T • 1 – n1 — ‚1 ® ' c I imp* c Ž' Ivan José Varzinczak What is a Good Domain Description?
  • 87. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Inexecutability Laws Example tease walking walking alive Ü Ý » loaded shoot alive Ú ©ƒº Æ Î Æ Ï–» Þ ¼ ê » Ü ¦Î â 5Ý ë ìƒ`Bó½ » Í Æ ¾ Æ ˜ tease À walking shoot » â ôÀ alive ‘ tease tease alive • 1 e õß' ˜ ® f ‘ tease alive tease alive (from tease ‚f ˜ alive) • 1 ® ' Q e †… Q ¬¥ Thus ‘ tease ˜ tease tease alive tease • 1 – n1 — ‚1 ® ' Q e †…  gf But ‘ tease alive tease PDL — ‚1 '¬ Q e †…  gf ! Postulate PI violated Ivan José Varzinczak What is a Good Domain Description?
  • 88. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Inexecutability Laws Example tease walking walking alive Ü Ý » loaded shoot alive Ú ©ƒº Æ Î Æ Ï–» Þ ¼ ê » Ü ¦Î â 5Ý ë ìƒ`Bó½ » Í Æ ¾ Æ ˜ tease À walking shoot » â ôÀ alive ‘ tease tease alive • 1 e õß' ˜ ® f ‘ tease alive tease alive (from tease ‚f ˜ alive) • 1 ® ' Q e †… Q ¬¥ Thus ‘ tease ˜ tease tease alive tease • 1 – n1 — ‚1 ® ' Q e †…  gf But ‘ tease alive tease PDL — ‚1 '¬ Q e †…  gf ! Postulate PI violated Ivan José Varzinczak What is a Good Domain Description?
  • 89. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Inexecutability Laws Example tease walking walking alive Ü Ý » loaded shoot alive Ú ©ƒº Æ Î Æ Ï–» Þ ¼ ê » Ü ¦Î â 5Ý ë ìƒ`Bó½ » Í Æ ¾ Æ ˜ tease À walking shoot » â ôÀ alive ‘ tease tease alive • 1 e õß' ˜ ® f ‘ tease alive tease alive (from tease ‚f ˜ alive) • 1 ® ' Q e †… Q ¬¥ Thus ‘ tease ˜ tease tease alive tease • 1 – n1 — ‚1 ® ' Q e †…  gf But ‘ tease alive tease PDL — ‚1 '¬ Q e †…  gf ! Postulate PI violated Ivan José Varzinczak What is a Good Domain Description?
  • 90. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Inexecutability Laws Example tease walking walking alive Ü Ý » loaded shoot alive Ú ©ƒº Æ Î Æ Ï–» Þ ¼ ê » Ü ¦Î â 5Ý ë ìƒ`Bó½ » Í Æ ¾ Æ ˜ tease À walking shoot » â ôÀ alive ‘ tease tease alive • 1 e õß' ˜ ® f ‘ tease alive tease alive (from tease ‚f ˜ alive) • 1 ® ' Q e †… Q ¬¥ Thus ‘ tease ˜ tease tease alive tease • 1 – n1 — ‚1 ® ' Q e †…  gf But ‘ tease alive tease PDL — ‚1 '¬ Q e †…  gf ! Postulate PI violated Ivan José Varzinczak What is a Good Domain Description?
  • 91. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Inexecutability Laws Example tease walking walking alive Ü Ý » loaded shoot alive Ú ©ƒº Æ Î Æ Ï–» Þ ¼ ê » Ü ¦Î â 5Ý ë ìƒ`Bó½ » Í Æ ¾ Æ ˜ tease À walking shoot » â ôÀ alive ‘ tease tease alive • 1 e õß' ˜ ® f ‘ tease alive tease alive (from tease ‚f ˜ alive) • 1 ® ' Q e †… Q ¬¥ Thus ‘ tease ˜ tease tease alive tease • 1 – n1 — ‚1 ® ' Q e †…  gf But ‘ tease alive tease PDL — ‚1 '¬ Q e †…  gf ! Postulate PI violated Ivan José Varzinczak What is a Good Domain Description?
  • 92. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Inexecutability Laws Example tease walking walking alive Ü Ý » loaded shoot alive Ú ©ƒº Æ Î Æ Ï–» Þ ¼ ê » Ü ¦Î â 5Ý ë ìƒ`Bó½ » Í Æ ¾ Æ ˜ tease À walking shoot » â ôÀ alive ‘ tease tease alive • 1 e õß' ˜ ® f ‘ tease alive tease alive (from tease ‚f ˜ alive) • 1 ® ' Q e †… Q ¬¥ Thus ‘ tease ˜ tease tease alive tease • 1 – n1 — ‚1 ® ' Q e †…  gf But ‘ tease alive tease PDL — ‚1 '¬ Q e †…  gf ! Postulate PI violated Ivan José Varzinczak What is a Good Domain Description?
  • 93. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Inexecutability Laws Idea of algorithm For each combination of effect laws 1 find inconsistent consequents 2 mark it as an implicit inexecutability Result: the set of all implicit inexecutabilities Ivan José Varzinczak What is a Good Domain Description?
  • 94. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Inexecutability Laws Idea of algorithm For each combination of effect laws 1 find inconsistent consequents 2 mark it as an implicit inexecutability Result: the set of all implicit inexecutabilities Ivan José Varzinczak What is a Good Domain Description?
  • 95. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Inexecutability Laws Algorithm 2: Finding implicit inexecutability laws for a input: a ‘ r a and s ¥ • 1 — ‚1 output: imp a , the set of implicit inexecutability laws for a — calls: NewCons PI PI ‚çö ÷ j k ' ÷ ´U€j ‚ c ø §k c €j k a := — imp ï for all a a do • e ˆ • a i a ù a := §c f i i ñ c R) c aS e †… ÷ df T • e 4 a i a ù a := (÷ f i i ñ ÷ ì) c ÃS e †… ÷ df T • e 4 for all NewCons a do T òú î ª‚j ù ÷ k f if li a li and a a then ‘ a ü û ú UT 1 ¬¥ — ‚1 ‘€j ù c f (ƒ‚ ú Q k e †…  gf a := a a a imp imp — — ‘€iPI ù c j ) f ªU‚ ú Q k e †…  gf 4 Ivan José Varzinczak What is a Good Domain Description?
  • 96. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Inexecutability Laws Algorithm 2: Finding implicit inexecutability laws for a input: a ‘ r a and s ¥ • 1 — ‚1 output: imp a , the set of implicit inexecutability laws for a — calls: NewCons PI PI ‚çö ÷ j k ' ÷ ´U€j ‚ c ø §k c €j k a := — imp ï for all a a do • e ˆ • a i a ù a := §c f i i ñ c R) c aS e †… ÷ df T • e 4 a i a ù a := (÷ f i i ñ ÷ ì) c ÃS e †… ÷ df T • e 4 for all NewCons a do T òú î ª‚j ù ÷ k f if li a li and a a then ‘ a ü û ú UT 1 ¬¥ — ‚1 ‘€j ù c f (ƒ‚ ú Q k e †…  gf a := a a a imp imp — — ‘€iPI ù c j ) f ªU‚ ú Q k e †…  gf 4 Ivan José Varzinczak What is a Good Domain Description?
  • 97. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Inexecutability Laws Algorithm 2: Finding implicit inexecutability laws for a input: a ‘ r a and s ¥ • 1 — ‚1 output: imp a , the set of implicit inexecutability laws for a — calls: NewCons PI PI ‚çö ÷ j k ' ÷ ´U€j ‚ c ø §k c €j k a := — imp ï for all a a do • e ˆ • a i a ù a := §c f i i ñ c R) c aS e †… ÷ df T • e 4 a i a ù a := (÷ f i i ñ ÷ ì) c ÃS e †… ÷ df T • e 4 for all NewCons a do T òú î ª‚j ù ÷ k f if li a li and a a then ‘ a ü û ú UT 1 ¬¥ — ‚1 ‘€j ù c f (ƒ‚ ú Q k e †…  gf a := a a a imp imp — — ‘€iPI ù c j ) f ªU‚ ú Q k e †…  gf 4 Ivan José Varzinczak What is a Good Domain Description?
  • 98. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Inexecutability Laws Algorithm 2: Finding implicit inexecutability laws for a input: a ‘ r a and s ¥ • 1 — ‚1 output: imp a , the set of implicit inexecutability laws for a — calls: NewCons PI PI ‚çö ÷ j k ' ÷ ´U€j ‚ c ø §k c €j k a := — imp ï for all a a do • e ˆ • a i a ù a := §c f i i ñ c R) c aS e †… ÷ df T • e 4 a i a ù a := (÷ f i i ñ ÷ ì) c ÃS e †… ÷ df T • e 4 for all NewCons a do T òú î ª‚j ù ÷ k f if li a li and a a then ‘ a ü û ú UT 1 ¬¥ — ‚1 ‘€j ù c f (ƒ‚ ú Q k e †…  gf a := a a a imp imp — — ‘€iPI ù c j ) f ªU‚ ú Q k e †…  gf 4 Ivan José Varzinczak What is a Good Domain Description?
  • 99. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Inexecutability Laws Algorithm 2: Finding implicit inexecutability laws for a input: a ‘ r a and s ¥ • 1 — ‚1 output: imp a , the set of implicit inexecutability laws for a — calls: NewCons PI PI ‚çö ÷ j k ' ÷ ´U€j ‚ c ø §k c €j k a := — imp ï for all a a do • e ˆ • a i a ù a := §c f i i ñ c R) c aS e †… ÷ df T • e 4 a i a ù a := (÷ f i i ñ ÷ ì) c ÃS e †… ÷ df T • e 4 for all NewCons a do T òú î ª‚j ù ÷ k f if li a li and a a then ‘ a ü û ú UT 1 ¬¥ — ‚1 ‘€j ù c f (ƒ‚ ú Q k e †…  gf a := a a a imp imp — — ‘€iPI ù c j ) f ªU‚ ú Q k e †…  gf 4 Ivan José Varzinczak What is a Good Domain Description?
  • 100. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Inexecutability Laws Algorithm 2: Finding implicit inexecutability laws for a input: a ‘ r a and s ¥ • 1 — ‚1 output: imp a , the set of implicit inexecutability laws for a — calls: NewCons PI PI ‚çö ÷ j k ' ÷ ´U€j ‚ c ø §k c €j k a := — imp ï for all a a do • e ˆ • a i a ù a := §c f i i ñ c R) c aS e †… ÷ df T • e 4 a i a ù a := (÷ f i i ñ ÷ ì) c ÃS e †… ÷ df T • e 4 for all NewCons a do T òú î ª‚j ù ÷ k f if li a li and a a then ‘ a ü û ú UT 1 ¬¥ — ‚1 ‘€j ù c f (ƒ‚ ú Q k e †…  gf a := a a a imp imp — — ‘€iPI ù c j ) f ªU‚ ú Q k e †…  gf 4 Ivan José Varzinczak What is a Good Domain Description?
  • 101. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Inexecutability Laws Algorithm 2: Finding implicit inexecutability laws for a input: a ‘ r a and s ¥ • 1 — ‚1 output: imp a , the set of implicit inexecutability laws for a — calls: NewCons PI PI ‚çö ÷ j k ' ÷ ´U€j ‚ c ø §k c €j k a := — imp ï for all a a do • e ˆ • a i a ù a := §c f i i ñ c R) c aS e †… ÷ df T • e 4 a i a ù a := (÷ f i i ñ ÷ ì) c ÃS e †… ÷ df T • e 4 for all NewCons a do T òú î ª‚j ù ÷ k f if li a li and a a then ‘ a ü û ú UT 1 ¬¥ — ‚1 ‘€j ù c f (ƒ‚ ú Q k e †…  gf a := a a a imp imp — — ‘€iPI ù c j ) f ªU‚ ú Q k e †…  gf 4 Ivan José Varzinczak What is a Good Domain Description?
  • 102. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Inexecutability Laws Example tease walking walking alive Ü Ý » loaded shoot alive Ú ©ƒº Æ Î ê  Ï–» Þ Æ ¼ » Ü ¦Î â 5Ý ë ìUdg†½ » Í Æ ¾ Æ tease À walking shoot » â ôÀ alive For action tease: NewCons walking j vî k ' alive: tease alive e f tease ¬¥ alive: Q alive e {… tease alive Q ‚f Then alive Q ˜ e †… tease  gf ‘ tease alive tease PDL — ‚1 '¬ Q e †…  gf tease alive tease — imp R0' Q ) e †…  ‚f 4 Ivan José Varzinczak What is a Good Domain Description?
  • 103. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Inexecutability Laws Example tease walking walking alive Ü Ý » loaded shoot alive Ú ©ƒº Æ Î ê  Ï–» Þ Æ ¼ » Ü ¦Î â 5Ý ë ìUdg†½ » Í Æ ¾ Æ tease À walking shoot » â ôÀ alive For action tease: NewCons walking j vî k ' alive: tease alive e f tease ¬¥ alive: Q alive e {… tease alive Q ‚f Then alive Q ˜ e †… tease  gf ‘ tease alive tease PDL — ‚1 '¬ Q e †…  gf tease alive tease — imp R0' Q ) e †…  ‚f 4 Ivan José Varzinczak What is a Good Domain Description?
  • 104. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Inexecutability Laws Example tease walking walking alive Ü Ý » loaded shoot alive Ú ©ƒº Æ Î ê  Ï–» Þ Æ ¼ » Ü ¦Î â 5Ý ë ìUdg†½ » Í Æ ¾ Æ tease À walking shoot » â ôÀ alive For action tease: NewCons walking j vî k ' alive: tease alive e f tease ¬¥ alive: Q alive e {… tease alive Q ‚f Then alive Q ˜ e †… tease  gf ‘ tease alive tease PDL — ‚1 '¬ Q e †…  gf tease alive tease — imp R0' Q ) e †…  ‚f 4 Ivan José Varzinczak What is a Good Domain Description?
  • 105. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Inexecutability Laws Example tease walking walking alive Ü Ý » loaded shoot alive Ú ©ƒº Æ Î ê  Ï–» Þ Æ ¼ » Ü ¦Î â 5Ý ë ìUdg†½ » Í Æ ¾ Æ tease À walking shoot » â ôÀ alive For action tease: NewCons walking j vî k ' alive: tease alive e f tease ¬¥ alive: Q alive e {… tease alive Q ‚f Then alive Q ˜ e †… tease  gf ‘ tease alive tease PDL — ‚1 '¬ Q e †…  gf tease alive tease — imp R0' Q ) e †…  ‚f 4 Ivan José Varzinczak What is a Good Domain Description?
  • 106. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Inexecutability Laws Example tease walking walking alive Ü Ý » loaded shoot alive Ú ©ƒº Æ Î ê  Ï–» Þ Æ ¼ » Ü ¦Î â 5Ý ë ìUdg†½ » Í Æ ¾ Æ tease À walking shoot » â ôÀ alive For action tease: NewCons walking j vî k ' alive: tease alive e f tease ¬¥ alive: Q alive e {… tease alive Q ‚f Then alive Q ˜ e †… tease  gf ‘ tease alive tease PDL — ‚1 '¬ Q e †…  gf tease alive tease — imp R0' Q ) e †…  ‚f 4 Ivan José Varzinczak What is a Good Domain Description?
  • 107. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Inexecutability Laws Example tease walking walking alive Ü Ý » loaded shoot alive Ú ©ƒº Æ Î ê  Ï–» Þ Æ ¼ » Ü ¦Î â 5Ý ë ìUdg†½ » Í Æ ¾ Æ tease À walking shoot » â ôÀ alive For action tease: NewCons walking j vî k ' alive: tease alive e f tease ¬¥ alive: Q alive e {… tease alive Q ‚f Then alive Q ˜ e †… tease  gf ‘ tease alive tease PDL — ‚1 '¬ Q e †…  gf tease alive tease — imp R0' Q ) e †…  ‚f 4 Ivan José Varzinczak What is a Good Domain Description?
  • 108. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Inexecutability Laws Example tease walking walking alive Ü Ý » loaded shoot alive Ú ©ƒº Æ Î ê  Ï–» Þ Æ ¼ » Ü ¦Î â 5Ý ë ìUdg†½ » Í Æ ¾ Æ tease À walking shoot » â ôÀ alive For action tease: NewCons walking j vî k ' alive: tease alive e f tease ¬¥ alive: Q alive e {… tease alive Q ‚f Then alive Q ˜ e †… tease  gf ‘ tease alive tease PDL — ‚1 '¬ Q e †…  gf tease alive tease — imp R0' Q ) e †…  ‚f 4 Ivan José Varzinczak What is a Good Domain Description?
  • 109. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change No Implicit Inexecutability Laws Theorem If a ‘ r a aands satisfy Postulate PS, then ¥ • 1 – n1 — ‚1 ‘ r a a a s and satisfy Postulate PI iff imp ¥ ï ð' . • 1 – n1 — ‚1 — Ivan José Varzinczak What is a Good Domain Description?
  • 110. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Generalizing the Postulates Postulate PS* (No implicit static laws): ˜ ˜ if , then ‘ ‘ PDL ‚ýnŸ1 — 1 – 1 • c ³' ® ' c Theorem ‘ r and s satisfy PS* iff ¥ ‘ r a a a s and ¥ ‚ nŸ1 — 1 – 1 • • 1 – n1 — ‚1 satisfy PS for all a . $UT % # Ivan José Varzinczak What is a Good Domain Description?
  • 111. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Generalizing the Postulates Postulate PS* (No implicit static laws): ˜ ˜ if , then ‘ ‘ PDL ‚ýnŸ1 — 1 – 1 • c ³' ® ' c Theorem ‘ r and s satisfy PS* iff ¥ ‘ r a a a s and ¥ ‚ nŸ1 — 1 – 1 • • 1 – n1 — ‚1 satisfy PS for all a . $UT % # Ivan José Varzinczak What is a Good Domain Description?
  • 112. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Generalizing the Postulates Postulate ˜ PC* (Logical consistency): ‘ ‚ýnŸ1 — 1 – 1 • ® '¬  Theorem If and satisfy PS*, then and ‘ r ‘ r ‚ nŸ1 — 1 – 1 • s ¥ ‚tnŸ1 — 1 – 1 • s ¥ satisfy PC* iff ‘ r a a a and s ¥ satisfies PC for all a $UT % # . • 1 – n1 — ‚1 Ivan José Varzinczak What is a Good Domain Description?
  • 113. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Generalizing the Postulates Postulate ˜ PC* (Logical consistency): ‘ ‚ýnŸ1 — 1 – 1 • ® '¬  Theorem If and satisfy PS*, then and ‘ r ‘ r ‚ nŸ1 — 1 – 1 • s ¥ ‚tnŸ1 — 1 – 1 • s ¥ satisfy PC* iff ‘ r a a a and s ¥ satisfies PC for all a $UT % # . • 1 – n1 — ‚1 Ivan José Varzinczak What is a Good Domain Description?
  • 114. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Generalizing the Postulates Postulate PI* (No implicit inexecutability laws): ˜ ˜ if a , then a ‘ ‘ PDL ‚ nŸ1 — 1 – 1 • e †tþ' … c ®  ‚f — ‚1 ' e †tc …  gf Theorem Let and satisfy PS*. and ‘ r ‘ r ‚ nŸ1 — 1 – 1 • s ¥ ‚ nŸ1 — 1 – 1 • s ¥ satisfy PI* iff ‘ r a a a ands ¥ satisfy PI for all a $dT % # . • 1 – n1 — ‚1 Ivan José Varzinczak What is a Good Domain Description?
  • 115. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Generalizing the Postulates Postulate PI* (No implicit inexecutability laws): ˜ ˜ if a , then a ‘ ‘ PDL ‚ nŸ1 — 1 – 1 • e †tþ' … c ®  ‚f — ‚1 ' e †tc …  gf Theorem Let and satisfy PS*. and ‘ r ‘ r ‚ nŸ1 — 1 – 1 • s ¥ ‚ nŸ1 — 1 – 1 • s ¥ satisfy PI* iff ‘ r a a a ands ¥ satisfy PI for all a $dT % # . • 1 – n1 — ‚1 Ivan José Varzinczak What is a Good Domain Description?
  • 116. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Outline 1 Introduction Describing Action Theories Unwanted Conclusions 2 Main Results Decomposing Theories Logical Modularity Exploiting Modularity Theory Change 3 Concluding Remarks Ivan José Varzinczak What is a Good Domain Description?
  • 117. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Reasoning Modularly If and satisfy Postulate PS*, then ‘ r ‚ nŸ1 — 1 – 1 • s ¥ Theorem ˜ ˜ iff . ‘ ‘ ‚ nŸ1 — 1 – 1 • ® '   Ž' Theorem ˜ ˜ ‘ a iff ‘ a a a . ‚ nŸ1 — 1 – 1 • ® ' e †tc … ÷ df • 1 — ‚1 ® ' e †tc … ÷ qf Ivan José Varzinczak What is a Good Domain Description?
  • 118. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Reasoning Modularly If and satisfy Postulate PS*, then ‘ r ‚ nŸ1 — 1 – 1 • s ¥ Theorem ˜ ˜ iff . ‘ ‘ ‚ nŸ1 — 1 – 1 • ® '   Ž' Theorem ˜ ˜ ‘ a iff ‘ a a a . ‚ nŸ1 — 1 – 1 • ® ' e †tc … ÷ df • 1 — ‚1 ® ' e †tc … ÷ qf Ivan José Varzinczak What is a Good Domain Description?
  • 119. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Reasoning Modularly If and satisfy Postulate PS*, then ‘ r ‚ nŸ1 — 1 – 1 • s ¥ Theorem ˜ ˜ a iff a a . ‘ r ‘ r ‚ nŸ1 — 1 – 1 • ® ' … tc „ s – n1 ® ' … tc „ s Corollary PX is a consequence of PS. Theorem If and satisfy Postulates PS* and PI*, then ‘ r ˜ ˜ ‚ nŸ1 — 1 – 1 • s ¥ ‘ a iff a ‘ a . ‚ nŸ1 — 1 – 1 • ® ' e †tc …  gf — ‚1 ® ' e †tc …  ‚f Ivan José Varzinczak What is a Good Domain Description?
  • 120. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Reasoning Modularly If and satisfy Postulate PS*, then ‘ r ‚ nŸ1 — 1 – 1 • s ¥ Theorem ˜ ˜ a iff a a . ‘ r ‘ r ‚ nŸ1 — 1 – 1 • ® ' … tc „ s – n1 ® ' … tc „ s Corollary PX is a consequence of PS. Theorem If and satisfy Postulates PS* and PI*, then ‘ r ˜ ˜ ‚ nŸ1 — 1 – 1 • s ¥ ‘ a iff a ‘ a . ‚ nŸ1 — 1 – 1 • ® ' e †tc …  gf — ‚1 ® ' e †tc …  ‚f Ivan José Varzinczak What is a Good Domain Description?
  • 121. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Reasoning Modularly If and satisfy Postulate PS*, then ‘ r ‚ nŸ1 — 1 – 1 • s ¥ Theorem ˜ ˜ a iff a a . ‘ r ‘ r ‚ nŸ1 — 1 – 1 • ® ' … tc „ s – n1 ® ' … tc „ s Corollary PX is a consequence of PS. Theorem If and satisfy Postulates PS* and PI*, then ‘ r ˜ ˜ ‚ nŸ1 — 1 – 1 • s ¥ ‘ a iff a ‘ a . ‚ nŸ1 — 1 – 1 • ® ' e †tc …  gf — ‚1 ® ' e †tc …  ‚f Ivan José Varzinczak What is a Good Domain Description?
  • 122. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Reasoning Modularly If and satisfy Postulate PS*, then ‘ r ‚ nŸ1 — 1 – 1 • s ¥ Theorem ˜ a1 an iff ‘ ˜ ‚ nŸ1 — 1 – 1 • ® ' e †tc … ÿ3331 1 2 2 2 ÷ df ‘ a1   ¢¢¢  ¡ ¡ ¡ an a1   ¢¢¢  ¡ ¡ ¡ an a1 an . • 1 — ‚1 ® ' e †tc … ÿ3331 1 2 2 2 ÷ df Theorem ˜ a1 an iff ‘ r ˜ ‚ nŸ1 — 1 – 1 • ® ' … tc ÿ3331 1 2 2 2 ÷ €s a1 an a1 an a1 an a1 an . ‘ r   ¢¢¢  ¡ ¡ ¡   ¢¢¢  ¡ ¡ ¡   ¢¢¢  ¡ ¡ ¡ • 1 – n1 — ‚1 ® ' … tc ÿ3331 1 2 2 2 ÷ €s Ivan José Varzinczak What is a Good Domain Description?
  • 123. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Reasoning Modularly If and satisfy Postulate PS*, then ‘ r ‚ nŸ1 — 1 – 1 • s ¥ Theorem ˜ a1 an iff ‘ ˜ ‚ nŸ1 — 1 – 1 • ® ' e †tc … ÿ3331 1 2 2 2 ÷ df ‘ a1   ¢¢¢  ¡ ¡ ¡ an a1   ¢¢¢  ¡ ¡ ¡ an a1 an . • 1 — ‚1 ® ' e †tc … ÿ3331 1 2 2 2 ÷ df Theorem ˜ a1 an iff ‘ r ˜ ‚ nŸ1 — 1 – 1 • ® ' … tc ÿ3331 1 2 2 2 ÷ €s a1 an a1 an a1 an a1 an . ‘ r   ¢¢¢  ¡ ¡ ¡   ¢¢¢  ¡ ¡ ¡   ¢¢¢  ¡ ¡ ¡ • 1 – n1 — ‚1 ® ' … tc ÿ3331 1 2 2 2 ÷ €s Ivan José Varzinczak What is a Good Domain Description?
  • 124. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Outline 1 Introduction Describing Action Theories Unwanted Conclusions 2 Main Results Decomposing Theories Logical Modularity Exploiting Modularity Theory Change 3 Concluding Remarks Ivan José Varzinczak What is a Good Domain Description?
  • 125. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Another Tale Example If the switch is up, the room is lit up up ¦ light Toggling the switch changes its position up toggle up h ¨ ¦ i up toggle up h ¦ ¨ di It is always possible to toggle the switch toggle w y x Ivan José Varzinczak What is a Good Domain Description?
  • 126. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change The Need for Theory Change You observe that. . . even if the switch is up the light is off. in a blackout, you do not succeed to switch the light on. despite your efforts you do not manage to toggle the switch. Ivan José Varzinczak What is a Good Domain Description?
  • 127. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Contraction: Motivation Contracting by a static law You observe that even if the switch is up the light is off Static law up …light must be given up Can we just contract the static laws of ? ‘ May not be enough: side effects! Conflict with ½ The contracted law may be an implicit one Ivan José Varzinczak What is a Good Domain Description?
  • 128. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Contraction: Motivation Contracting by a static law You observe that even if the switch is up the light is off Static law up …light must be given up Can we just contract the static laws of ? ‘ May not be enough: side effects! Conflict with ½ The contracted law may be an implicit one Ivan José Varzinczak What is a Good Domain Description?
  • 129. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Contraction: Motivation Contracting by an effect law During a blackout you do not succeed to switch the light on Effect law up Q e †… toggle light must be given up f Important issue: give up as few as possible Ivan José Varzinczak What is a Good Domain Description?
  • 130. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Contraction: Motivation Contracting by an effect law During a blackout you do not succeed to switch the light on Effect law up Q e †… toggle light must be given up f Important issue: give up as few as possible Ivan José Varzinczak What is a Good Domain Description?
  • 131. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Contraction: Motivation Contracting by an executability law Despite your efforts you do not manage to toggle the switch Executability law up toggle must be given up r … „ s Side effects? Ivan José Varzinczak What is a Good Domain Description?
  • 132. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Contraction: Semantics Playing with models toggle £ up q £ light up light s toggle Semantical contraction produces a set of models: W R W R ¥ § ¨v ¤ ¦ ¤ © ~  ~  © Ivan José Varzinczak What is a Good Domain Description?
  • 133. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Contraction: Semantics Playing with models toggle £ up q £ light up light s toggle Semantical contraction produces a set of models: W R W R ¥ § ¨v ¤ ¦ ¤ © ~  ~  © Ivan José Varzinczak What is a Good Domain Description?
  • 134. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Contraction: Semantics Contracting static laws W R r 1 up s light ! ' Intuition: add some up Q U‚ light-worlds to W toggle £ up q £ light up light s toggle up r ×s light Don’t add new arrows to R! Ivan José Varzinczak What is a Good Domain Description?
  • 135. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Contraction: Semantics Contracting static laws W R r 1 up s light ! ' Intuition: add some up Q U‚ light-worlds to W toggle £ up q £ light up light s toggle up r ×s light Don’t add new arrows to R! Ivan José Varzinczak What is a Good Domain Description?
  • 136. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Contraction: Semantics Contracting static laws Rely on any belief change operator for classical logic Say PMA, . . . W R W R , where r r 1 s up light ) 0' 1 e 4 s e W · W PMA up ¦ light R · R ˜ N.B.: W R toggle r r 1 e ' és e ¬ „ s Executability laws to be weakened! Ivan José Varzinczak What is a Good Domain Description?
  • 137. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Contraction: Semantics Contracting static laws Rely on any belief change operator for classical logic Say PMA, . . . W R W R , where r r 1 s up light ) 0' 1 e 4 s e W · W PMA up ¦ light R · R ˜ N.B.: W R toggle r r 1 e ' és e ¬ „ s Executability laws to be weakened! Ivan José Varzinczak What is a Good Domain Description?
  • 138. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Contraction: Semantics Contracting static laws Rely on any belief change operator for classical logic Say PMA, . . . W R W R , where r r 1 s up light ) 0' 1 e 4 s e W · W PMA up ¦ light R · R ˜ N.B.: W R toggle r r 1 e ' és e ¬ „ s Executability laws to be weakened! Ivan José Varzinczak What is a Good Domain Description?
  • 139. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Contraction: Semantics Contracting effect laws W R r 1 # s up $ % toggle light ! ' Intuition: add some arrows from up-worlds to Q Q light-worlds toggle toggle £ up q £ light up light s toggle Ivan José Varzinczak What is a Good Domain Description?
  • 140. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Contraction: Semantics Contracting effect laws W R r 1 # s up $ % toggle light ' ˜ W R Ra Ra w w w up r ) 1 I S §s e e ˆ j i) 1 k e S Q Ž' 4 h4 Problems: Don’t link light-worlds Don’t link all light-worlds ¨ Ivan José Varzinczak What is a Good Domain Description?
  • 141. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Contraction: Semantics Contracting effect laws W R r 1 # s up $ % toggle light ' ˜ W R Ra Ra w w w up r ) 1 I S §s e e ˆ j i) 1 k e S Q Ž' 4 h4 Problems: Don’t link light-worlds Don’t link all light-worlds ¨ Ivan José Varzinczak What is a Good Domain Description?
  • 142. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Contraction: Semantics Contracting executability laws W R r 1 up s ' ( toggle 0 1) ! ' Intuition: delete some arrows leaving up-worlds toggle £ up q £ light up light s Ivan José Varzinczak What is a Good Domain Description?
  • 143. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Contraction: Semantics Contracting executability laws W R r 1 up s ' ( toggle 0 1) ' ˜ W R Ra Ra w w wRa w and w up r ) 1 ø S §s e e iðˆ j ) 1 k e S e ' 4 h4 N.B.: if there is no up-world, then contraction is not successful! Ivan José Varzinczak What is a Good Domain Description?
  • 144. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Contraction: Semantics Contracting executability laws W R r 1 up s ' ( toggle 0 1) ' ˜ W R Ra Ra w w wRa w and w up r ) 1 ø S §s e e iðˆ j ) 1 k e S e ' 4 h4 N.B.: if there is no up-world, then contraction is not successful! Ivan José Varzinczak What is a Good Domain Description?
  • 145. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Contraction: Syntax Domain descriptions Simplification: ‘ r nŸ1 – 1 • s Resulting action theory ¡ w ’ “ ¡ w ’ “ ¤ ¤ 24 3x ¤ · ¤ · x · Ivan José Varzinczak What is a Good Domain Description?
  • 146. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Contraction: Syntax Contracting static laws , where ‘ r ‘ r nŸ1 – 1 • s up light ' – Ÿ1 e 1 • s e PMA up light light up ¡ ¡ · ¦ 5 6 ¦ 7 “ · up light toggle toggle w w “ ¨ €ž5 ¢ ¢ 8 ¥ ‘X϶ ¦ ¥ µ ¦ du@€x µ 9 y A B€x y 7 Ivan José Varzinczak What is a Good Domain Description?
  • 147. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Contraction: Syntax Contracting static laws , where ‘ r ‘ r nŸ1 – 1 • s up light ' – Ÿ1 e 1 • s e PMA up light light up ¡ ¡ · ¦ 5 6 ¦ 7 “ · up light toggle toggle w w “ ¨ €ž5 ¢ ¢ 8 ¥ ‘X϶ ¦ ¥ µ ¦ du@€x µ 9 y A B€x y 7 Ivan José Varzinczak What is a Good Domain Description?
  • 148. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Contraction: Syntax Contracting effect laws , where ‘ r ‘ r nŸ1 – 1 • # s up $ ( toggle light ' • 1 – n1 e s up toggle toggle ’ h h ’ · žC ¢ 5 §!¶ ¦ ¥ µ ¦ ´uFEi µ 9 D A GEi D 7 Ivan José Varzinczak What is a Good Domain Description?
  • 149. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Contraction: Syntax Contracting executability laws , where ‘ r ‘ r nŸ1 – 1 • up s ' % toggle 0 H) ' – Ÿ1 1 • s e up toggle toggle “ w w “ · gžC ¨ ¢ 5 !¶ ¦ ¥ µ ¦ du@x µ 9 y A B€x y 7 Ivan José Varzinczak What is a Good Domain Description?
  • 150. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Soundness Theorem ˜ ˜ If W R , then W R . r ‘ r ‘ r 1 s ' ‚ • ‚ – 1 I s ' nŸ1 – 1 • I s Ivan José Varzinczak What is a Good Domain Description?
  • 151. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Incompleteness Example , p a , a ‘ r ï ð' • ) 0' e †…  gf 4 – ) 0' „ s 4 Unique model: W R p p p r r 1 ' Es Rh) Q ) Rmi) ih4 Q ) j 1 4 Q R) i41 s pR4 4 k p a p a . ‘ r r r nŸ1 – 1 • p s ' ( a 0 H) ' ï ) 1 e †…  ‚f Q R) i4 1 … ˜ „ s s 4 Syntactically: successful, as p a . ‘ r PDL nŸ1 – 1 • e '¬ … „ s Semantically: contraction is unsuccessful! Ivan José Varzinczak What is a Good Domain Description?
  • 152. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Incompleteness Example , p a , a ‘ r ï ð' • ) 0' e †…  gf 4 – ) 0' „ s 4 Unique model: W R p p p r r 1 ' Es Rh) Q ) Rmi) ih4 Q ) j 1 4 Q R) i41 s pR4 4 k p a p a . ‘ r r r nŸ1 – 1 • p s ' ( a 0 H) ' ï ) 1 e †…  ‚f Q R) i4 1 … ˜ „ s s 4 Syntactically: successful, as p a . ‘ r PDL nŸ1 – 1 • e '¬ … „ s Semantically: contraction is unsuccessful! Ivan José Varzinczak What is a Good Domain Description?
  • 153. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Incompleteness Example , p a , a ‘ r ï ð' • ) 0' e †…  gf 4 – ) 0' „ s 4 Unique model: W R p p p r r 1 ' Es Rh) Q ) Rmi) ih4 Q ) j 1 4 Q R) i41 s pR4 4 k p a p a . ‘ r r r nŸ1 – 1 • p s ' ( a 0 H) ' ï ) 1 e †…  ‚f Q ) i4 1 … ˜ „ s s 4 Syntactically: successful, as p a . ‘ r PDL nŸ1 – 1 • e '¬ … „ s Semantically: contraction is unsuccessful! Ivan José Varzinczak What is a Good Domain Description?
  • 154. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Incompleteness Example , p a , a ‘ r ï ð' • ) 0' e †…  gf 4 – ) 0' „ s 4 Unique model: W R p p p r r 1 ' Es Rh) Q ) Rmi) ih4 Q ) j 1 4 Q R) i41 s pR4 4 k p a p a . ‘ r r r nŸ1 – 1 • p s ' ( a 0 H) ' ï ) 1 e †…  ‚f Q R) i4 1 … ˜ „ s s 4 Syntactically: successful, as p a . ‘ r PDL nŸ1 – 1 • e '¬ … „ s Semantically: contraction is unsuccessful! Ivan José Varzinczak What is a Good Domain Description?
  • 155. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Incompleteness Example , p a , a ‘ r ï ð' • ) 0' e †…  gf 4 – ) 0' „ s 4 Unique model: W R p p p r r 1 ' Es Rh) Q ) Rmi) ih4 Q ) j 1 4 Q R) i41 s pR4 4 k p a p a . ‘ r r r nŸ1 – 1 • p s ' ( a 0 H) ' ï ) 1 e †…  ‚f Q R) i4 1 … ˜ „ s s 4 Syntactically: successful, as p a . ‘ r PDL nŸ1 – 1 • e '¬ … „ s Semantically: contraction is unsuccessful! Ivan José Varzinczak What is a Good Domain Description?
  • 156. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Completeness: Modularity Theorem ˜ If and satisfy Postulate PS*, then iff ‘ r ˜ ˜ ‘ r nŸ1 – 1 • s ¥ nŸ1 – 1 • I s P Q' W R , for every W R such that W R . r r r ‘ 1 I s P Q' 1 s 1 s ' ‚ • ‚ – Ivan José Varzinczak What is a Good Domain Description?
  • 157. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Outlook: Semantics of Revision Levi identity Revise by glued e {… toggle  gf amounts to Contract by glued toggle h 1 ¢ (¨ ¦ uqi ¥ p Expand by glued toggle h 2 ¦ p qi Problem: we can contract by domain laws only glued glued toggletoggle h w ¢ (¨ ¦ Suqi R ¥ p ¢ ¶ u€x ¥ y not defined ¡ w ’ “ glued toggle ¤ ¤ 2 3x What is the negation of U VT X HW an effect law? an executability law? Ivan José Varzinczak What is a Good Domain Description?
  • 158. Decomposing Theories Introduction Logical Modularity Main Results Exploiting Modularity Concluding Remarks Theory Change Outlook: Semantics of Revision Levi identity Revise by glued e {… toggle  gf amounts to Contract by glued toggle h 1 ¢ (¨ ¦ uqi ¥ p Expand by glued toggle h 2 ¦ p qi Problem: we can contract by domain laws only glued glued toggletoggle h w ¢ (¨ ¦ Suqi R ¥ p ¢ ¶ u€x ¥ y not defined ¡ w ’ “ glued toggle ¤ ¤ 2 3x What is the negation of U VT X HW an effect law? an executability law? Ivan José Varzinczak What is a Good Domain Description?
  • 159. Introduction Main Results Concluding Remarks Related Work Modularity [Pirri Reiter 1999]: deterministic actions without ramifications in Situation Calculus [Amir 2000]: object-oriented concepts in Situation Calculus [Zhang et al. 2002]: EPDL approach/normal form [Lang et al. 2003]: computational complexity [Kakas et al. 2005]: elaboration tolerance, concurrent actions [Ghilardi, Lutz Wolter, KR’06]: uniform interpolation and conservative extensions in ` a% Y Ivan José Varzinczak What is a Good Domain Description?
  • 160. Introduction Main Results Concluding Remarks Related Work Theory change [Li Pereira 1996]: motivations [Liberatore 2000]: meta-results [Eiter et al. 2005/06]: update in action languages Ivan José Varzinczak What is a Good Domain Description?
  • 161. Introduction Main Results Concluding Remarks Summary Claim Consistency is not enough to evaluate a domain description The dynamic part of an action theory should not influence the non-dynamic one (otherwise: problems) Contribution Fine-grained postulates of modularity Algorithms to check/give hints on modularity Satisfaction of modularity More efficient reasoning Important for updating theories [Herzig et al. ECAI’06] Our results apply to every approach allowing for , , ‘ • – and — Ivan José Varzinczak What is a Good Domain Description?
  • 162. Introduction Main Results Concluding Remarks Summary Claim Consistency is not enough to evaluate a domain description The dynamic part of an action theory should not influence the non-dynamic one (otherwise: problems) Contribution Fine-grained postulates of modularity Algorithms to check/give hints on modularity Satisfaction of modularity More efficient reasoning Important for updating theories [Herzig et al. ECAI’06] Our results apply to every approach allowing for , , ‘ • – and — Ivan José Varzinczak What is a Good Domain Description?
  • 163. Introduction Main Results Concluding Remarks Summary Contribution (cont.) Semantics of action theory contraction Domain-independent Does not require extra information (preferences/epistemic entrenchment relation/. . . ) Fully automatic Completeness result: highlights importance of modularity Ivan José Varzinczak What is a Good Domain Description?
  • 164. Introduction Main Results Concluding Remarks Summary Modularity is also fruitful. . . for theories in general [Herzig Varzinczak AiML’04] in the Situation Calculus [Herzig Varzinczak IJCAI’05] in Description Logics [Herzig Varzinczak JELIA’06] (See next slide) Future work Fine tune contraction of effect laws Contract by any formulas (not just laws) Postulates about effect laws? about causation? Ivan José Varzinczak What is a Good Domain Description?
  • 165. Introduction Main Results Concluding Remarks Summary Modularity is also fruitful. . . for theories in general [Herzig Varzinczak AiML’04] in the Situation Calculus [Herzig Varzinczak IJCAI’05] in Description Logics [Herzig Varzinczak JELIA’06] (See next slide) Future work Fine tune contraction of effect laws Contract by any formulas (not just laws) Postulates about effect laws? about causation? Ivan José Varzinczak What is a Good Domain Description?
  • 166. Introduction Main Results Concluding Remarks Outlook: Modularity in Description Logics Example Suppose a passport control system in an airport Such a system is composed of many software components One of them an ontology (knowledge base) about passengers All passengers must be controlled Ivan José Varzinczak What is a Good Domain Description?
  • 167. Introduction Main Results Concluding Remarks Outlook: Modularity in Description Logics Example (Ontology) A passenger has a passport European citizens have European passports Foreigners have non-European passports Someone with double citizenship is a foreigner and a European Ivan José Varzinczak What is a Good Domain Description?
  • 168. Introduction Main Results Concluding Remarks Outlook: Modularity in Description Logics Example (The ontology in DL) Terminology: Passenger passport c db y ¡ EUcitizen passport EU   b ¡ Foreigner passport EU   b ¨ ¡ 2Citizen Foreigner EUcitizen b e Assertions: EU POLAND ¢ ¥ EUcitizen JAN ¢ ¥ passport JAN POLAND ¢ ¤ ¥ Ivan José Varzinczak What is a Good Domain Description?
  • 169. Introduction Main Results Concluding Remarks Outlook: Modularity in Description Logics Nevertheless Passenger passport 2Citizen passport EU EU fg gu x g Ð gv q rp s » Æ å gp  s â Êt Å EUcitizen passport EU h 2Citizen passport å gp s » x Foreigner passport EU g g äs gi g Æ å gp å Bp âs » 2Citizen Foreigner EUcitizen w 2Citizen Passenger p t x Æ â ´p Someone with double citizenship is not a passenger Hence. . . ! if we have 2Citizen BINLADEN , j k this individual is not obliged to be controlled! Ivan José Varzinczak What is a Good Domain Description?
  • 170. Introduction Main Results Concluding Remarks Outlook: Modularity in Description Logics Nevertheless Passenger passport 2Citizen passport EU EU fg gu x g Ð gv q rp s » Æ å gp  s â Êt Å EUcitizen passport EU h 2Citizen passport å gp s » x Foreigner passport EU g g äs gi g Æ å gp å Bp âs » 2Citizen Foreigner EUcitizen w 2Citizen Passenger p t x Æ â ´p Someone with double citizenship is not a passenger Hence. . . ! if we have 2Citizen BINLADEN , j k this individual is not obliged to be controlled! Ivan José Varzinczak What is a Good Domain Description?
  • 171. Introduction Main Results Concluding Remarks Outlook: Modularity in Description Logics Nevertheless Passenger passport 2Citizen passport EU EU fg gu x g Ð gv q rp s » Æ å gp  s â Êt Å EUcitizen passport EU h 2Citizen passport å gp s » x Foreigner passport EU g g äs gi g Æ å gp å Bp âs » 2Citizen Foreigner EUcitizen w 2Citizen Passenger p t x Æ â ´p Someone with double citizenship is not a passenger Hence. . . ! if we have 2Citizen BINLADEN , j k this individual is not obliged to be controlled! Ivan José Varzinczak What is a Good Domain Description?
  • 172. Introduction Main Results Concluding Remarks Outlook: Modularity in Description Logics Nevertheless Passenger passport 2Citizen passport EU EU fg gu x g Ð gv q rp s » Æ å gp  s â Êt Å EUcitizen passport EU h 2Citizen passport å gp s » x Foreigner passport EU g g äs gi g Æ å gp å Bp âs » 2Citizen Foreigner EUcitizen w 2Citizen Passenger p t x Æ â ´p Someone with double citizenship is not a passenger Hence. . . ! if we have 2Citizen BINLADEN , j k this individual is not obliged to be controlled! Ivan José Varzinczak What is a Good Domain Description?
  • 173. Introduction Main Results Concluding Remarks Outlook: Modularity in Description Logics Nevertheless Passenger passport 2Citizen passport EU EU fg gu x g Ð gv q rp s » Æ å gp  s â Êt Å EUcitizen passport EU h 2Citizen passport å gp s » x Foreigner passport EU g g äs gi g Æ å gp å Bp âs » 2Citizen Foreigner EUcitizen w 2Citizen Passenger p t x Æ â ´p Someone with double citizenship is not a passenger Hence. . . ! if we have 2Citizen BINLADEN , j k this individual is not obliged to be controlled! Ivan José Varzinczak What is a Good Domain Description?
  • 174. Introduction Main Results Concluding Remarks Outlook: Modularity in Description Logics Nevertheless Passenger passport 2Citizen passport EU EU fg gu x g Ð gv q rp s » Æ å gp  s â Êt Å EUcitizen passport EU h 2Citizen passport å gp s » x Foreigner passport EU g g äs gi g Æ å gp å Bp âs » 2Citizen Foreigner EUcitizen w 2Citizen Passenger p t x Æ â ´p Someone with double citizenship is not a passenger Hence. . . ! if we have 2Citizen BINLADEN , j k this individual is not obliged to be controlled! Ivan José Varzinczak What is a Good Domain Description?
  • 175. Introduction Main Results Concluding Remarks Outlook: Modularity in Description Logics Our results. . . can be applied in DL, too Ivan José Varzinczak What is a Good Domain Description?
  • 176. Introduction Main Results Concluding Remarks Thank you! Merci beaucoup ! Danke schön! Choukran! ¡Muchas gracias! Muito obrigado! Ivan José Varzinczak What is a Good Domain Description?
  • 177. Can We Ask for More? Postulate about effects PE (No implicit effect laws): ˜ ˜ if a and a , ‘ ‘ ˜ ‚ýnŸ1 — 1 – 1 • ® ' e {²c … ÷ df ‚ nŸ1 — 1 – 1 • ® '¬ e †tc …  gf then a ‘ • 1 ® ' e †tc … ÷ df Ivan José Varzinczak What is a Good Domain Description?
  • 178. Can We Ask for More? Example loaded shoot alive l ‘ e {… Q gf 1 loaded alive shoot alive ï ð' • v1 ' Q €j ‚ k e {… f o hasGun shoot hasGun shoot r – ) 0' … „ s ‘i4 — 1 R0' Q ) e {…  gf 4 shoot Q ­¥ alive ˜ hasGun loaded shoot alive ‘ ˜ ‚tnŸ1 — 1 – 1 • ® ' Q y e †… Q ‚f hasGun loaded shoot ‘ ˜ ‚tnŸ1 — 1 – 1 • ® '¬ Q y e †…  ‚f but hasGun loaded shoot alive ‘ • 1 ® '¬ Q y e †… Q gf Ivan José Varzinczak What is a Good Domain Description?
  • 179. Can We Ask for More? Example loaded shoot alive l ‘ e {… Q gf 1 loaded alive shoot alive ï ð' • v1 ' Q €j ‚ k e {… f o hasGun shoot hasGun shoot r – ) 0' … „ s ‘i4 — 1 R0' Q ) e {…  gf 4 shoot Q ­¥ alive ˜ hasGun loaded shoot alive ‘ ˜ ‚tnŸ1 — 1 – 1 • ® ' Q y e †… Q ‚f hasGun loaded shoot ‘ ˜ ‚tnŸ1 — 1 – 1 • ® '¬ Q y e †…  ‚f but hasGun loaded shoot alive ‘ • 1 ® '¬ Q y e †… Q gf Ivan José Varzinczak What is a Good Domain Description?
  • 180. Can We Ask for More? Example loaded shoot alive l ‘ e {… Q gf 1 loaded alive shoot alive ï ð' • v1 ' Q €j ‚ k e {… f o hasGun shoot hasGun shoot r – ) 0' … „ s ‘i4 — 1 R0' Q ) e {…  gf 4 shoot Q ­¥ alive ˜ hasGun loaded shoot alive ‘ ˜ ‚tnŸ1 — 1 – 1 • ® ' Q y e †… Q ‚f hasGun loaded shoot ‘ ˜ ‚tnŸ1 — 1 – 1 • ® '¬ Q y e †…  ‚f but hasGun loaded shoot alive ‘ • 1 ® '¬ Q y e †… Q gf Ivan José Varzinczak What is a Good Domain Description?
  • 181. Can We Ask for More? Postulate about effects P (No unattainable effects): ˜ ˜  if a , then a ‘ ‘ • 1 ® ' e †tc … ÷ qf ‚tnŸ1 — 1 – 1 • ® '¬ e †²c …  gf Ivan José Varzinczak What is a Good Domain Description?
  • 182. Can We Ask for More? Example loaded shoot alive l ‘ e {… Q gf 1 loaded alive shoot alive ï ð' • v1 ' Q €j ‚ k e {… f o hasGun shoot hasGun shoot r – ) 0' … „ s ‘i4 — 1 R0' Q ) e {…  gf 4 shoot Q ­¥ alive ˜ • ® ' Q €j hasGun ˜ ‚ loaded k e †… shoot alive Q gf but hasGun loaded shoot ‘ ‚ýnŸ1 — 1 – 1 • ® ' Q €j ‚ k e †…  gf Ivan José Varzinczak What is a Good Domain Description?
  • 183. Can We Ask for More? Example loaded shoot alive l ‘ e {… Q gf 1 loaded alive shoot alive ï ð' • v1 ' Q €j ‚ k e {… f o hasGun shoot hasGun shoot r – ) 0' … „ s ‘i4 — 1 R0' Q ) e {…  gf 4 shoot Q ­¥ alive ˜ • ® ' Q €j hasGun ˜ ‚ loaded k e †… shoot alive Q gf but hasGun loaded shoot ‘ ‚ýnŸ1 — 1 – 1 • ® ' Q €j ‚ k e †…  gf Ivan José Varzinczak What is a Good Domain Description?