SlideShare a Scribd company logo
On the Revision of Action Laws
                                      An Algorithmic Approach


                                       Ivan Jos´ Varzinczak
                                               e

                                       Knowledge Systems Group
                                            Meraka Institute
                                       CSIR Pretoria, South Africa


                                              NRAC’2009




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                On the Revision of Action Laws   NRAC’2009   1 / 25
Motivation




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws   NRAC’2009   2 / 25
Motivation


                                                        Knowledge Base
                                                        ‘A coffee is a hot drink’
                                                        ‘With a token I can buy coffee’
                                                        ‘Without a token I cannot buy’
                                                        ‘After buying I have a hot drink’
                                                                       ...




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws          NRAC’2009     2 / 25
Motivation


                                                                              k, ¬t, c, h
                                                                             b          b
                                                                                    b
                                                           b           k, t, c, h    k, t, ¬c, h
                                                                                    b
                                                                             b
                                                                             k, t, ¬c, ¬h




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws                    NRAC’2009   2 / 25
Motivation



                                                        Observations
                                                        ‘Only coffee on the machine’
                                                        ‘After buying, I lose my token’
                                                        ‘Coffee is for free’




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws          NRAC’2009   2 / 25
Motivation



                                                        Observations
                                                        ‘Only coffee on the machine’
                                                        ‘After buying, I lose my token’
                                                        ‘Coffee is for free’




               Need for change the laws about the behavior of actions




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws          NRAC’2009   2 / 25
Motivation


                                                                              k, ¬t, c, h
                                                                             b          b
                                                                                    b
                                                           b           k, t, c, h    k, t, ¬c, h
                                                                                    b
                                                                             b
                                                                             k, t, ¬c, ¬h


               Need for change the laws about the behavior of actions




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws                    NRAC’2009   2 / 25
Motivation


                                                          ¬k, ¬t, c, h        k, ¬t, c, h
                                                                             b

                                                           b           k, t, c, h
                                                                                    b
                                                                             b
                                                                             k, t, ¬c, ¬h


               Need for change the laws about the behavior of actions




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws                    NRAC’2009   2 / 25
Motivation


                                                                              k, ¬t, c, h
                                                                             b          b
                                                                                    b
                                                           b           k, t, c, h    k, t, ¬c, h
                                                                                    b
                                                                             b
                                                                             k, t, ¬c, ¬h


               Need for change the laws about the behavior of actions




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws                    NRAC’2009   2 / 25
Motivation


                                                                              k, ¬t, c, h
                                                                             b          b

                                                                       k, t, c, h    k, t, ¬c, h
                                                                                    b

                                                                             k, t, ¬c, ¬h


               Need for change the laws about the behavior of actions




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws                    NRAC’2009   2 / 25
Motivation


                                                                              k, ¬t, c, h
                                                                             b          b
                                                                                    b
                                                           b           k, t, c, h    k, t, ¬c, h
                                                                                    b
                                                                             b
                                                                             k, t, ¬c, ¬h


               Need for change the laws about the behavior of actions




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws                    NRAC’2009   2 / 25
Motivation
                                                                                    b


                                                                              k, ¬t, c, h
                                                                             b          b
                                                                                    b
                                                           b           k, t, c, h    k, t, ¬c, h
                                                                                    b
                                                                             b
                                                                             k, t, ¬c, ¬h


               Need for change the laws about the behavior of actions




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws                    NRAC’2009   2 / 25
Outline


Preliminaries
   Action Theories in Multimodal Logic




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws   NRAC’2009   3 / 25
Outline


Preliminaries
   Action Theories in Multimodal Logic


Revision of Laws
   Semantics of Revision
   Algorithms




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws   NRAC’2009   3 / 25
Outline


Preliminaries
   Action Theories in Multimodal Logic


Revision of Laws
   Semantics of Revision
   Algorithms


Conclusion




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws   NRAC’2009   3 / 25
Preliminaries   Action Theories in Multimodal Logic


Outline


Preliminaries
   Action Theories in Multimodal Logic


Revision of Laws
   Semantics of Revision
   Algorithms


Conclusion




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws                         NRAC’2009   4 / 25
Preliminaries   Action Theories in Multimodal Logic


Action Theories in Multimodal Logic
Multimodal Logic
    ◮   Well defined semantics

    ◮   Expressive

    ◮   Decidable




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws                         NRAC’2009   5 / 25
Preliminaries   Action Theories in Multimodal Logic


Action Theories in Multimodal Logic
Multimodal Logic
    ◮   Well defined semantics
           ◮   Possible worlds models
    ◮   Expressive

    ◮   Decidable




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws                         NRAC’2009   5 / 25
Preliminaries   Action Theories in Multimodal Logic


Action Theories in Multimodal Logic
Multimodal Logic
    ◮   Well defined semantics
           ◮   Possible worlds models
    ◮   Expressive
           ◮   Actions, state constraints, nondeterminism
    ◮   Decidable




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws                         NRAC’2009   5 / 25
Preliminaries   Action Theories in Multimodal Logic


Action Theories in Multimodal Logic
Multimodal Logic
    ◮   Well defined semantics
           ◮   Possible worlds models
    ◮   Expressive
           ◮   Actions, state constraints, nondeterminism
    ◮   Decidable
           ◮   exptime-complete, though




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws                         NRAC’2009   5 / 25
Preliminaries   Action Theories in Multimodal Logic


Action Theories in Multimodal Logic
Multimodal Logic
    ◮   Well defined semantics
           ◮   Possible worlds models
    ◮   Expressive
           ◮   Actions, state constraints, nondeterminism
    ◮   Decidable
           ◮   exptime-complete, though
But of course
    ◮   I have nothing against Situation Calculus, Fluent Calculus, . . .




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws                         NRAC’2009   5 / 25
Preliminaries    Action Theories in Multimodal Logic


Action Theories in Multimodal Logic
Possible worlds semantics: Transition Systems M = W , R
    ◮   W : possible worlds
    ◮   R : accessibility relation

                                                      a1
                                      p1 , ¬p2                     p1 , p2             a2


                      M :             a2
                                                        a1


                                      ¬p1 , p2




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                  On the Revision of Action Laws                          NRAC’2009   6 / 25
Preliminaries   Action Theories in Multimodal Logic


Action Theories in Multimodal Logic
Describing Laws
In RAA: 3 types of laws
    ◮   Static Laws: ϕ
           ◮   Ex.: p1 ∨ p2




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws                         NRAC’2009   7 / 25
Preliminaries   Action Theories in Multimodal Logic


Action Theories in Multimodal Logic
Describing Laws
In RAA: 3 types of laws
    ◮   Static Laws: ϕ
           ◮   Ex.: p1 ∨ p2

    ◮   Executability Laws: ϕ → a ⊤
           ◮   Ex.: p2 → a2 ⊤




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws                         NRAC’2009   7 / 25
Preliminaries   Action Theories in Multimodal Logic


Action Theories in Multimodal Logic
Describing Laws
In RAA: 3 types of laws
    ◮   Static Laws: ϕ
           ◮   Ex.: p1 ∨ p2

    ◮   Executability Laws: ϕ → a ⊤
           ◮   Ex.: p2 → a2 ⊤

    ◮   Effect Laws: ϕ → [a]ψ
           ◮   Ex.: p1 → [a1 ]p2




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws                         NRAC’2009   7 / 25
Preliminaries   Action Theories in Multimodal Logic


Action Theories in Multimodal Logic
Describing Laws
In RAA: 3 types of laws
    ◮   Static Laws: ϕ
           ◮   Ex.: p1 ∨ p2

    ◮   Executability Laws: ϕ → a ⊤
           ◮   Ex.: p2 → a2 ⊤

    ◮   Effect Laws: ϕ → [a]ψ
           ◮   Ex.: p1 → [a1 ]p2
           ◮   Frame axioms: ℓ → [a]ℓ
           ◮   Inexecutability laws: ϕ → [a]⊥




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws                         NRAC’2009   7 / 25
Preliminaries   Action Theories in Multimodal Logic


Action Theories in Multimodal Logic
 Formulas that hold in M

                             a1
           p1 , ¬p2                   p1 , p2            a2

                                                                         ◮   p1 ∨ p2
M :         a2
                               a1                                        ◮   p1 → [a1 ]p2
                                                                         ◮   p2 → a 2 ⊤
           ¬p1 , p2                                                      ◮   ¬p1 → a1 ⊤




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               On the Revision of Action Laws                         NRAC’2009   8 / 25
Preliminaries   Action Theories in Multimodal Logic


Action Theories in Multimodal Logic
 Formulas that hold in M

                             a1
           p1 , ¬p2                   p1 , p2            a2

                                                                         ◮   p1 ∨ p2
M :         a2
                               a1                                        ◮   p1 → [a1 ]p2
                                                                         ◮   p2 → a 2 ⊤
           ¬p1 , p2                                                      ◮   ¬p1 → a1 ⊤




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               On the Revision of Action Laws                         NRAC’2009   8 / 25
Preliminaries   Action Theories in Multimodal Logic


Action Theories in Multimodal Logic
 Formulas that hold in M

                             a1
           p1 , ¬p2                   p1 , p2            a2

                                                                         ◮   p1 ∨ p2
M :         a2
                               a1                                        ◮   p1 → [a1 ]p2
                                                                         ◮   p2 → a 2 ⊤
           ¬p1 , p2                                                      ◮   ¬p1 → a1 ⊤




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               On the Revision of Action Laws                         NRAC’2009   8 / 25
Preliminaries   Action Theories in Multimodal Logic


Action Theories in Multimodal Logic
 Formulas that hold in M

                             a1
           p1 , ¬p2                   p1 , p2            a2

                                                                         ◮   p1 ∨ p2
M :         a2
                               a1                                        ◮   p1 → [a1 ]p2

                                                                         ◮   p2 → a 2 ⊤
           ¬p1 , p2
                                                                         ◮   ¬p1 → a1 ⊤




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               On the Revision of Action Laws                         NRAC’2009   8 / 25
Preliminaries   Action Theories in Multimodal Logic


Action Theories in Multimodal Logic
 Formulas that hold in M

                             a1
           p1 , ¬p2                   p1 , p2            a2

                                                                         ◮   p1 ∨ p2
M :         a2
                               a1                                        ◮   p1 → [a1 ]p2

                                                                         ◮   p2 → a 2 ⊤
           ¬p1 , p2
                                                                         ◮   ¬p1 → a1 ⊤           ±



Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               On the Revision of Action Laws                         NRAC’2009   8 / 25
Preliminaries   Action Theories in Multimodal Logic


Action Theories in Multimodal Logic
In our example

  ◮    Static Law:                                       ◮    coffee → hot
  ◮    Executability Law:                                ◮    token → buy ⊤
  ◮    Effect Law:                                        ◮    ¬coffee → [buy]coffee
  ◮    Inexecutability Law:                              ◮    ¬token → [buy]⊥




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws                         NRAC’2009   9 / 25
Preliminaries   Action Theories in Multimodal Logic


Action Theories in Multimodal Logic
In our example

  ◮    Static Law:                                       ◮    coffee → hot
  ◮    Executability Law:                                ◮    token → buy ⊤
  ◮    Effect Law:                                        ◮    ¬coffee → [buy]coffee
  ◮    Inexecutability Law:                              ◮    ¬token → [buy]⊥

Action Theory T = S ∪ E ∪ X




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws                         NRAC’2009   9 / 25
Preliminaries   Action Theories in Multimodal Logic


Action Theories in Multimodal Logic
In our example

  ◮     Static Law:                                      ◮    coffee → hot
  ◮     Executability Law:                               ◮    token → buy ⊤
  ◮     Effect Law:                                       ◮    ¬coffee → [buy]coffee
  ◮     Inexecutability Law:                             ◮    ¬token → [buy]⊥

Action Theory T = S ∪ E ∪ X

What about the Frame, Ramification and Qualification Problems?
    ◮   No particular solution to the frame problem
    ◮   Assume we have all relevant frame axioms
    ◮   Qualification problem: motivation for revision

Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws                         NRAC’2009   9 / 25
Preliminaries   Action Theories in Multimodal Logic


Action Theories in Multimodal Logic
In our example
                                                           
                          coffee → hot, token → buy ⊤,
                                                           
       T =S ∪E ∪X =   ¬coffee → [buy]coffee, ¬token → [buy]⊥,
                        coffee → [buy]coffee, hot → [buy]hot
                                                           




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                 On the Revision of Action Laws                         NRAC’2009   10 / 25
Preliminaries   Action Theories in Multimodal Logic


Action Theories in Multimodal Logic
In our example
                                                           
                          coffee → hot, token → buy ⊤,
                                                           
       T =S ∪E ∪X =   ¬coffee → [buy]coffee, ¬token → [buy]⊥,
                        coffee → [buy]coffee, hot → [buy]hot
                                                           



                                                    k, ¬t, c, h
                                                   b             b
                                                            b
                                  b        k, t, c, h        k, t, ¬c, h
                                                            b
                                                   b
                                                   k, t, ¬c, ¬h


Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                 On the Revision of Action Laws                         NRAC’2009   10 / 25
Preliminaries   Action Theories in Multimodal Logic


Action Theories in Multimodal Logic
Supra-Models
Definition
M = W , R is a big frame of T iff
    ◮   W = val(S )
    ◮   R =        a∈Act R a ,   where
                                                                              M                  M
                   R a = {(w , w ′ ) : ∀.ϕ → [a]ψ ∈ Ea , if |= ϕ then |= ′ ψ}
                                                             w                                   w


Definition
                                           M
M is a supra-model of T iff |= T and M is a big frame of T.




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                On the Revision of Action Laws                         NRAC’2009   11 / 25
Preliminaries   Action Theories in Multimodal Logic


Action Theories in Multimodal Logic
Supra-Models
                                                           
                          coffee → hot, token → buy ⊤,
                                                           
       T =S ∪E ∪X =   ¬coffee → [buy]coffee, ¬token → [buy]⊥,
                        coffee → [buy]coffee, hot → [buy]hot
                                                           


                                 ¬k, ¬t, c, h       k, ¬t, c, h
                                                   b             b
                                                            b
                                  b        k, t, c, h        k, t, ¬c, h
                                                            b
                                              b
                                k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h



Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                 On the Revision of Action Laws                         NRAC’2009   12 / 25
Revision of Laws   Semantics of Revision


Outline


Preliminaries
   Action Theories in Multimodal Logic


Revision of Laws
   Semantics of Revision
   Algorithms


Conclusion




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               On the Revision of Action Laws           NRAC’2009   13 / 25
Revision of Laws   Semantics of Revision


Intuitions About Model Revision
Revision by a law

                                 ¬k, ¬t, c, h      k, ¬t, c, h
                                                   b            b
                                                           b
                                  b        k, t, c, h       k, t, ¬c, h
                                                           b
                                              b
                                k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h

Make the law true in the model




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                On the Revision of Action Laws           NRAC’2009   14 / 25
Revision of Laws   Semantics of Revision


Intuitions About Model Revision
Revision by hot → coffee

                                 ¬k, ¬t, c, h      k, ¬t, c, h
                                                   b            b
                                                           b
                                  b        k, t, c, h       k, t, ¬c, h
                                                           b
                                              b
                                k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h

Make hot ∧ ¬coffee unsatisfiable




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                On the Revision of Action Laws           NRAC’2009   14 / 25
Revision of Laws   Semantics of Revision


Intuitions About Model Revision
Revision by hot → coffee

                                 ¬k, ¬t, c, h      k, ¬t, c, h
                                                   b

                                  b        k, t, c, h
                                                     b
                                              b
                                k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h

Make hot ∧ ¬coffee unsatisfiable




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                On the Revision of Action Laws           NRAC’2009   14 / 25
Revision of Laws   Semantics of Revision


Intuitions About Model Revision
Revision by hot → coffee

                                 ¬k, ¬t, c, h      k, ¬t, c, h
                                                   b

                                  b        k, t, c, h
                                                     b
                                              b
                                k, ¬t, ¬c, ¬h k, t, ¬c, ¬h

Make hot ∧ ¬coffee unsatisfiable




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                On the Revision of Action Laws           NRAC’2009   14 / 25
Revision of Laws   Semantics of Revision


Intuitions About Model Revision
Revision by a law

                                 ¬k, ¬t, c, h      k, ¬t, c, h
                                                   b            b
                                                           b
                                  b        k, t, c, h       k, t, ¬c, h
                                                           b
                                              b
                                k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h

Make the law true in the model




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                On the Revision of Action Laws           NRAC’2009   14 / 25
Revision of Laws   Semantics of Revision


Intuitions About Model Revision
Revision by token → [buy]¬token

                                 ¬k, ¬t, c, h      k, ¬t, c, h
                                                   b            b
                                                           b
                                  b        k, t, c, h       k, t, ¬c, h
                                                           b
                                              b
                                k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h

Make token ∧ buy token unsatisfiable




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                On the Revision of Action Laws           NRAC’2009   14 / 25
Revision of Laws   Semantics of Revision


Intuitions About Model Revision
Revision by token → [buy]¬token

                                 ¬k, ¬t, c, h      k, ¬t, c, h
                                                   b            b
                                                           b
                                  b        k, t, c, h       k, t, ¬c, h
                                                           b

                                k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h

Make token ∧ buy token unsatisfiable




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                On the Revision of Action Laws           NRAC’2009   14 / 25
Revision of Laws   Semantics of Revision


Intuitions About Model Revision
Revision by token → [buy]¬token

                                 ¬k, ¬t, c, h      k, ¬t, c, h
                                                   b            b

                                           k, t, c, h       k, t, ¬c, h
                                                           b

                                k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h

Make token ∧ buy token unsatisfiable




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                On the Revision of Action Laws           NRAC’2009   14 / 25
Revision of Laws   Semantics of Revision


Intuitions About Model Revision
Revision by a law

                                 ¬k, ¬t, c, h      k, ¬t, c, h
                                                   b            b
                                                           b
                                  b        k, t, c, h       k, t, ¬c, h
                                                           b
                                              b
                                k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h

Make the law true in the model




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                On the Revision of Action Laws           NRAC’2009   14 / 25
Revision of Laws   Semantics of Revision


Intuitions About Model Revision
Revision by ¬token → buy ⊤

                                 ¬k, ¬t, c, h      k, ¬t, c, h
                                                   b            b
                                                           b
                                  b        k, t, c, h       k, t, ¬c, h
                                                           b
                                              b
                                k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h

Make ¬token ∧ [buy]⊥ unsatisfiable




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                On the Revision of Action Laws           NRAC’2009   14 / 25
Revision of Laws   Semantics of Revision


Intuitions About Model Revision
Revision by ¬token → buy ⊤

                                 ¬k, ¬t, c, h      k, ¬t, c, h
                                                   b            b         b
                                                           b
                                  b        k, t, c, h       k, t, ¬c, h
                                                           b
                                              b
                                k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h

Make ¬token ∧ [buy]⊥ unsatisfiable




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                On the Revision of Action Laws           NRAC’2009   14 / 25
Revision of Laws   Semantics of Revision


Intuitions About Model Revision
Revision by ¬token → buy ⊤                               b


                      b          ¬k, ¬t, c, h k, ¬t, c, h
                                         b    b         b                b
                                                          b
                                  b       k, t, c, h       k, t, ¬c, h
                                                          b
                                              b
                                k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h

Make ¬token ∧ [buy]⊥ unsatisfiable




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               On the Revision of Action Laws           NRAC’2009   14 / 25
Revision of Laws   Semantics of Revision


Minimal Change
Choosing models
    ◮   Distance between models
           ◮   Prefer models closest to the original one
           ◮   Hamming/Dalal distance, etc




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               On the Revision of Action Laws           NRAC’2009   15 / 25
Revision of Laws   Semantics of Revision


Minimal Change
Choosing models
    ◮   Distance between models
           ◮   Prefer models closest to the original one
           ◮   Hamming/Dalal distance, etc
    ◮   Distance dependent on the type of law to make valid
           ◮   Static law: look at the set of possible states (worlds)
           ◮   Action laws: look at the set of arrows




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               On the Revision of Action Laws           NRAC’2009   15 / 25
Revision of Laws   Semantics of Revision


Minimal Change
Choosing models
    ◮   Distance between models
           ◮   Prefer models closest to the original one
           ◮   Hamming/Dalal distance, etc
    ◮   Distance dependent on the type of law to make valid
           ◮   Static law: look at the set of possible states (worlds)
           ◮   Action laws: look at the set of arrows

Definition
Let M = W , R . M ′ = W ′ , R ′ is as close to M as M ′′ = W ′′ , R ′′
iff
   ◮ either W −W ′ ⊆ W −W ′′
              ˙        ˙
   ◮ or W −W = W −W ′′ and R −R ′ ⊆ R −R ′′
           ˙  ′     ˙          ˙         ˙

Notation: M ′             M   M ′′

Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               On the Revision of Action Laws           NRAC’2009   15 / 25
Revision of Laws   Semantics of Revision


Minimal Change
Choosing models: revising by ϕ

Definition
Let M = W , R . M ′ = W ′ , R ′ ∈ Mϕ iff:
                                   ⋆

    ◮   W ′ = (W  val(¬ϕ)) ∪ val(ϕ)
    ◮   R′ ⊆ R




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               On the Revision of Action Laws           NRAC’2009   16 / 25
Revision of Laws   Semantics of Revision


Minimal Change
Choosing models: revising by ϕ

Definition
Let M = W , R . M ′ = W ′ , R ′ ∈ Mϕ iff:
                                   ⋆

    ◮   W ′ = (W  val(¬ϕ)) ∪ val(ϕ)
    ◮   R′ ⊆ R

Definition
revise(M , ϕ) =                   ⋆
                             min{Mϕ ,       M}




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               On the Revision of Action Laws           NRAC’2009   16 / 25
Revision of Laws   Semantics of Revision


Minimal Change
Choosing models: revising by hot → coffee



     ¬k, ¬t, c, h        k, ¬t, c, h                          ¬k, ¬t, c, h        k, ¬t, c, h    ¬k, t, c, h
                         b                                                        b

      b          k, t, c, h                                    b           k, t, c, h
                                                 M
                         b                                                        b
                  b                                                        b
    k, ¬t, ¬c, ¬h k, t, ¬c, ¬h                               k, ¬t, ¬c, ¬h k, t, ¬c, ¬h




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                On the Revision of Action Laws                   NRAC’2009   17 / 25
Revision of Laws   Semantics of Revision


Minimal Change
Choosing models: revising by ϕ → [a]ψ

Definition
Let M = W , R . M ′ = W ′ , R ′ ∈ Mϕ→[a]ψ iff:
                                   ⋆

    ◮   W′ = W
    ◮   R′ ⊆ R
                                              M
    ◮   If (w , w ′ ) ∈ R  R ′ , then |= ϕ
                                        w
         M′
    ◮   |= ϕ → [a]ψ




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               On the Revision of Action Laws           NRAC’2009   18 / 25
Revision of Laws   Semantics of Revision


Minimal Change
Choosing models: revising by ϕ → [a]ψ

Definition
Let M = W , R . M ′ = W ′ , R ′ ∈ Mϕ→[a]ψ iff:
                                   ⋆

    ◮   W′ = W
    ◮   R′ ⊆ R
                                              M
    ◮   If (w , w ′ ) ∈ R  R ′ , then |= ϕ
                                        w
         M′
    ◮   |= ϕ → [a]ψ

Definition
revise(M , ϕ → [a]ψ) =                     ⋆
                                      min{Mϕ→[a]ψ ,             M}




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               On the Revision of Action Laws           NRAC’2009   18 / 25
Revision of Laws    Semantics of Revision


 Minimal Change
 Choosing models: revising by token → [buy]¬token



¬k, ¬t, c, h        k, ¬t, c, h                                 ¬k, ¬t, c, h       k, ¬t, c, h
                    b            b

            k, t, c, h       k, t, ¬c, h                                    k, t, c, h    k, t, ¬c, h
                                                          M
                            b

k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h                        k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h




 Ivan Jos´ Varzinczak (KSG - Meraka)
         e                                 On the Revision of Action Laws                  NRAC’2009    19 / 25
Revision of Laws   Semantics of Revision


Minimal Change
Choosing models: revising by ϕ → a ⊤

Definition
Let M = W , R . M ′ = W ′ , R ′ ∈ Mϕ→
                                   ⋆
                                                                  a ⊤    iff:
    ◮   W′ = W
    ◮   R ⊆ R′
    ◮   If (w , w ′ ) ∈ R ′  R , then w ′ ∈ RelTarget(w , ¬(ϕ → [a]⊥))
         M′
    ◮   |= ϕ → a ⊤

RelTarget(.): induces effect laws from the models




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               On the Revision of Action Laws           NRAC’2009   20 / 25
Revision of Laws   Semantics of Revision


Minimal Change
Choosing models: revising by ϕ → a ⊤

Definition
Let M = W , R . M ′ = W ′ , R ′ ∈ Mϕ→
                                   ⋆
                                                                  a ⊤    iff:
    ◮   W′ = W
    ◮   R ⊆ R′
    ◮   If (w , w ′ ) ∈ R ′  R , then w ′ ∈ RelTarget(w , ¬(ϕ → [a]⊥))
         M′
    ◮   |= ϕ → a ⊤

RelTarget(.): induces effect laws from the models

Definition
revise(M , ϕ → a ⊤) =                       ⋆
                                       min{Mϕ→           a ⊤,     M}



Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               On the Revision of Action Laws           NRAC’2009   20 / 25
Revision of Laws    Semantics of Revision


Minimal Change
Choosing models: revising by ¬token → buy ⊤
    ◮   coffee: effect of buy, hot: consequence of coffee
    ◮   token, ¬kitchen: not consequences of coffee

                                      b                   b


                                 ¬k, ¬t, c, h k, ¬t, c, h
                                         b    b         b                  b
                                                           b
                                  b        k, t, c, h        k, t, ¬c, h
                                                            b
                                              b
                                k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h


Ivan Jos´ Varzinczak (KSG - Meraka)
        e                                 On the Revision of Action Laws          NRAC’2009   21 / 25
Revision of Laws   Algorithms


Outline


Preliminaries
   Action Theories in Multimodal Logic


Revision of Laws
   Semantics of Revision
   Algorithms


Conclusion




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               On the Revision of Action Laws   NRAC’2009   22 / 25
Revision of Laws   Algorithms


Quick look: Revision Algorithms
    ◮   We have defined algorithms that revise T by Φ, giving T ′




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               On the Revision of Action Laws   NRAC’2009   23 / 25
Revision of Laws   Algorithms


Quick look: Revision Algorithms
    ◮   We have defined algorithms that revise T by Φ, giving T ′


Theorem
If T has supra-models, the algorithms are correct w.r.t. our semantics




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               On the Revision of Action Laws   NRAC’2009   23 / 25
Revision of Laws   Algorithms


Quick look: Revision Algorithms
    ◮   We have defined algorithms that revise T by Φ, giving T ′


Theorem
If T has supra-models, the algorithms are correct w.r.t. our semantics

Theorem (Herzig & Varzinczak, AI Journal 2007)
We can always ensure T has supra-models




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               On the Revision of Action Laws   NRAC’2009   23 / 25
Revision of Laws   Algorithms


Quick look: Revision Algorithms
    ◮   We have defined algorithms that revise T by Φ, giving T ′


Theorem
If T has supra-models, the algorithms are correct w.r.t. our semantics

Theorem (Herzig & Varzinczak, AI Journal 2007)
We can always ensure T has supra-models

Theorem
Size of T ′ is linear in that of T




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                               On the Revision of Action Laws   NRAC’2009   23 / 25
Conclusion


Conclusion
Contribution
    ◮   Semantics for action theory revision
           ◮   Distance between models
           ◮   Minimal change




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws   NRAC’2009   24 / 25
Conclusion


Conclusion
Contribution
    ◮   Semantics for action theory revision
           ◮   Distance between models
           ◮   Minimal change

    ◮   Extension of previous work on action theory contraction
           ◮   Invalidating formulas in a model (KR’2008)




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws   NRAC’2009   24 / 25
Conclusion


Conclusion
Contribution
    ◮   Semantics for action theory revision
           ◮   Distance between models
           ◮   Minimal change

    ◮   Extension of previous work on action theory contraction
           ◮   Invalidating formulas in a model (KR’2008)

    ◮   Syntactic operators (algorithms)
           ◮   Correct w.r.t. the semantics




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws   NRAC’2009   24 / 25
Conclusion


Conclusion
Ongoing research and future work
    ◮   Postulates for action theory revision




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws   NRAC’2009   25 / 25
Conclusion


Conclusion
Ongoing research and future work
    ◮   Postulates for action theory revision
    ◮   More ‘orthodox’ approach to nonclassical revision




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws   NRAC’2009   25 / 25
Conclusion


Conclusion
Ongoing research and future work
    ◮   Postulates for action theory revision
    ◮   More ‘orthodox’ approach to nonclassical revision
    ◮   Revision of general formulas
           ◮   not only ϕ, ϕ → a ⊤, ϕ → [a]ψ
           ◮   more expressive logics: PDL
           ◮   less expressive logics: Causal Theories of Action




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws   NRAC’2009   25 / 25
Conclusion


Conclusion
Ongoing research and future work
    ◮   Postulates for action theory revision
    ◮   More ‘orthodox’ approach to nonclassical revision
    ◮   Revision of general formulas
           ◮   not only ϕ, ϕ → a ⊤, ϕ → [a]ψ
           ◮   more expressive logics: PDL
           ◮   less expressive logics: Causal Theories of Action

    ◮   Applications in Description Logics
           ◮   ontology evolution/debugging




Ivan Jos´ Varzinczak (KSG - Meraka)
        e                             On the Revision of Action Laws   NRAC’2009   25 / 25

More Related Content

PPTX
Power, politics and government
PPTX
Politics, Government & Laws
PPT
Why The American Legal System Is Unique
PPTX
Laws of the government on environmental problems and sustainable development
PPT
Phil consti
PPTX
Compensation part 1
PPTX
Government Laws and Regulations of Compensation, Incentives and Benefits
PPT
Philippine Constitution
Power, politics and government
Politics, Government & Laws
Why The American Legal System Is Unique
Laws of the government on environmental problems and sustainable development
Phil consti
Compensation part 1
Government Laws and Regulations of Compensation, Incentives and Benefits
Philippine Constitution

More from Ivan Varzinczak (20)

PDF
Semantic Diff as the Basis for Knowledge Base Versioning
PDF
Pertinence Construed Modally
PDF
On Action Theory Change: Semantics for Contraction and its Properties
PDF
A Modularity Approach for a Fragment of ALC
PDF
Proceedings of ARCOE'09
PDF
Next Steps in Propositional Horn Contraction
PDF
On the Revision of Action Laws: An Algorithmic Approach
PDF
Action Theory Contraction and Minimal Change
PDF
Causalidade e dependência em raciocínio sobre ações
PDF
Cohesion, Coupling and the Meta-theory of Actions
PDF
Meta-theory of Actions: Beyond Consistency
PDF
Domain Descriptions Should be Modular
PDF
Elaborating Domain Descriptions
PDF
What Is a Good Domain Description? Evaluating and Revising Action Theories in...
PDF
Regression in Modal Logic
PDF
On the Modularity of Theories
PDF
Action Theory Contraction and Minimal Change
PDF
First Steps in EL Contraction
PDF
What Is a Good Domain Description? Evaluating & Revising Action Theories in D...
PDF
Next Steps in Propositional Horn Contraction
Semantic Diff as the Basis for Knowledge Base Versioning
Pertinence Construed Modally
On Action Theory Change: Semantics for Contraction and its Properties
A Modularity Approach for a Fragment of ALC
Proceedings of ARCOE'09
Next Steps in Propositional Horn Contraction
On the Revision of Action Laws: An Algorithmic Approach
Action Theory Contraction and Minimal Change
Causalidade e dependência em raciocínio sobre ações
Cohesion, Coupling and the Meta-theory of Actions
Meta-theory of Actions: Beyond Consistency
Domain Descriptions Should be Modular
Elaborating Domain Descriptions
What Is a Good Domain Description? Evaluating and Revising Action Theories in...
Regression in Modal Logic
On the Modularity of Theories
Action Theory Contraction and Minimal Change
First Steps in EL Contraction
What Is a Good Domain Description? Evaluating & Revising Action Theories in D...
Next Steps in Propositional Horn Contraction
Ad

Recently uploaded (20)

PPT
Teaching material agriculture food technology
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
NewMind AI Weekly Chronicles - August'25-Week II
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
cuic standard and advanced reporting.pdf
PPTX
Spectroscopy.pptx food analysis technology
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
Encapsulation theory and applications.pdf
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PPTX
Machine Learning_overview_presentation.pptx
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
A comparative analysis of optical character recognition models for extracting...
PDF
Approach and Philosophy of On baking technology
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PPTX
Big Data Technologies - Introduction.pptx
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
Teaching material agriculture food technology
Spectral efficient network and resource selection model in 5G networks
NewMind AI Weekly Chronicles - August'25-Week II
Per capita expenditure prediction using model stacking based on satellite ima...
cuic standard and advanced reporting.pdf
Spectroscopy.pptx food analysis technology
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Encapsulation theory and applications.pdf
Unlocking AI with Model Context Protocol (MCP)
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Machine Learning_overview_presentation.pptx
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
The Rise and Fall of 3GPP – Time for a Sabbatical?
A comparative analysis of optical character recognition models for extracting...
Approach and Philosophy of On baking technology
Assigned Numbers - 2025 - Bluetooth® Document
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Big Data Technologies - Introduction.pptx
gpt5_lecture_notes_comprehensive_20250812015547.pdf
Ad

On the Revision of Action Laws: an Algorithmic Approach

  • 1. On the Revision of Action Laws An Algorithmic Approach Ivan Jos´ Varzinczak e Knowledge Systems Group Meraka Institute CSIR Pretoria, South Africa NRAC’2009 Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 1 / 25
  • 2. Motivation Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 2 / 25
  • 3. Motivation Knowledge Base ‘A coffee is a hot drink’ ‘With a token I can buy coffee’ ‘Without a token I cannot buy’ ‘After buying I have a hot drink’ ... Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 2 / 25
  • 4. Motivation k, ¬t, c, h b b b b k, t, c, h k, t, ¬c, h b b k, t, ¬c, ¬h Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 2 / 25
  • 5. Motivation Observations ‘Only coffee on the machine’ ‘After buying, I lose my token’ ‘Coffee is for free’ Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 2 / 25
  • 6. Motivation Observations ‘Only coffee on the machine’ ‘After buying, I lose my token’ ‘Coffee is for free’ Need for change the laws about the behavior of actions Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 2 / 25
  • 7. Motivation k, ¬t, c, h b b b b k, t, c, h k, t, ¬c, h b b k, t, ¬c, ¬h Need for change the laws about the behavior of actions Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 2 / 25
  • 8. Motivation ¬k, ¬t, c, h k, ¬t, c, h b b k, t, c, h b b k, t, ¬c, ¬h Need for change the laws about the behavior of actions Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 2 / 25
  • 9. Motivation k, ¬t, c, h b b b b k, t, c, h k, t, ¬c, h b b k, t, ¬c, ¬h Need for change the laws about the behavior of actions Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 2 / 25
  • 10. Motivation k, ¬t, c, h b b k, t, c, h k, t, ¬c, h b k, t, ¬c, ¬h Need for change the laws about the behavior of actions Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 2 / 25
  • 11. Motivation k, ¬t, c, h b b b b k, t, c, h k, t, ¬c, h b b k, t, ¬c, ¬h Need for change the laws about the behavior of actions Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 2 / 25
  • 12. Motivation b k, ¬t, c, h b b b b k, t, c, h k, t, ¬c, h b b k, t, ¬c, ¬h Need for change the laws about the behavior of actions Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 2 / 25
  • 13. Outline Preliminaries Action Theories in Multimodal Logic Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 3 / 25
  • 14. Outline Preliminaries Action Theories in Multimodal Logic Revision of Laws Semantics of Revision Algorithms Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 3 / 25
  • 15. Outline Preliminaries Action Theories in Multimodal Logic Revision of Laws Semantics of Revision Algorithms Conclusion Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 3 / 25
  • 16. Preliminaries Action Theories in Multimodal Logic Outline Preliminaries Action Theories in Multimodal Logic Revision of Laws Semantics of Revision Algorithms Conclusion Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 4 / 25
  • 17. Preliminaries Action Theories in Multimodal Logic Action Theories in Multimodal Logic Multimodal Logic ◮ Well defined semantics ◮ Expressive ◮ Decidable Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 5 / 25
  • 18. Preliminaries Action Theories in Multimodal Logic Action Theories in Multimodal Logic Multimodal Logic ◮ Well defined semantics ◮ Possible worlds models ◮ Expressive ◮ Decidable Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 5 / 25
  • 19. Preliminaries Action Theories in Multimodal Logic Action Theories in Multimodal Logic Multimodal Logic ◮ Well defined semantics ◮ Possible worlds models ◮ Expressive ◮ Actions, state constraints, nondeterminism ◮ Decidable Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 5 / 25
  • 20. Preliminaries Action Theories in Multimodal Logic Action Theories in Multimodal Logic Multimodal Logic ◮ Well defined semantics ◮ Possible worlds models ◮ Expressive ◮ Actions, state constraints, nondeterminism ◮ Decidable ◮ exptime-complete, though Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 5 / 25
  • 21. Preliminaries Action Theories in Multimodal Logic Action Theories in Multimodal Logic Multimodal Logic ◮ Well defined semantics ◮ Possible worlds models ◮ Expressive ◮ Actions, state constraints, nondeterminism ◮ Decidable ◮ exptime-complete, though But of course ◮ I have nothing against Situation Calculus, Fluent Calculus, . . . Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 5 / 25
  • 22. Preliminaries Action Theories in Multimodal Logic Action Theories in Multimodal Logic Possible worlds semantics: Transition Systems M = W , R ◮ W : possible worlds ◮ R : accessibility relation a1 p1 , ¬p2 p1 , p2 a2 M : a2 a1 ¬p1 , p2 Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 6 / 25
  • 23. Preliminaries Action Theories in Multimodal Logic Action Theories in Multimodal Logic Describing Laws In RAA: 3 types of laws ◮ Static Laws: ϕ ◮ Ex.: p1 ∨ p2 Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 7 / 25
  • 24. Preliminaries Action Theories in Multimodal Logic Action Theories in Multimodal Logic Describing Laws In RAA: 3 types of laws ◮ Static Laws: ϕ ◮ Ex.: p1 ∨ p2 ◮ Executability Laws: ϕ → a ⊤ ◮ Ex.: p2 → a2 ⊤ Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 7 / 25
  • 25. Preliminaries Action Theories in Multimodal Logic Action Theories in Multimodal Logic Describing Laws In RAA: 3 types of laws ◮ Static Laws: ϕ ◮ Ex.: p1 ∨ p2 ◮ Executability Laws: ϕ → a ⊤ ◮ Ex.: p2 → a2 ⊤ ◮ Effect Laws: ϕ → [a]ψ ◮ Ex.: p1 → [a1 ]p2 Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 7 / 25
  • 26. Preliminaries Action Theories in Multimodal Logic Action Theories in Multimodal Logic Describing Laws In RAA: 3 types of laws ◮ Static Laws: ϕ ◮ Ex.: p1 ∨ p2 ◮ Executability Laws: ϕ → a ⊤ ◮ Ex.: p2 → a2 ⊤ ◮ Effect Laws: ϕ → [a]ψ ◮ Ex.: p1 → [a1 ]p2 ◮ Frame axioms: ℓ → [a]ℓ ◮ Inexecutability laws: ϕ → [a]⊥ Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 7 / 25
  • 27. Preliminaries Action Theories in Multimodal Logic Action Theories in Multimodal Logic Formulas that hold in M a1 p1 , ¬p2 p1 , p2 a2 ◮ p1 ∨ p2 M : a2 a1 ◮ p1 → [a1 ]p2 ◮ p2 → a 2 ⊤ ¬p1 , p2 ◮ ¬p1 → a1 ⊤ Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 8 / 25
  • 28. Preliminaries Action Theories in Multimodal Logic Action Theories in Multimodal Logic Formulas that hold in M a1 p1 , ¬p2 p1 , p2 a2 ◮ p1 ∨ p2 M : a2 a1 ◮ p1 → [a1 ]p2 ◮ p2 → a 2 ⊤ ¬p1 , p2 ◮ ¬p1 → a1 ⊤ Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 8 / 25
  • 29. Preliminaries Action Theories in Multimodal Logic Action Theories in Multimodal Logic Formulas that hold in M a1 p1 , ¬p2 p1 , p2 a2 ◮ p1 ∨ p2 M : a2 a1 ◮ p1 → [a1 ]p2 ◮ p2 → a 2 ⊤ ¬p1 , p2 ◮ ¬p1 → a1 ⊤ Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 8 / 25
  • 30. Preliminaries Action Theories in Multimodal Logic Action Theories in Multimodal Logic Formulas that hold in M a1 p1 , ¬p2 p1 , p2 a2 ◮ p1 ∨ p2 M : a2 a1 ◮ p1 → [a1 ]p2 ◮ p2 → a 2 ⊤ ¬p1 , p2 ◮ ¬p1 → a1 ⊤ Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 8 / 25
  • 31. Preliminaries Action Theories in Multimodal Logic Action Theories in Multimodal Logic Formulas that hold in M a1 p1 , ¬p2 p1 , p2 a2 ◮ p1 ∨ p2 M : a2 a1 ◮ p1 → [a1 ]p2 ◮ p2 → a 2 ⊤ ¬p1 , p2 ◮ ¬p1 → a1 ⊤ ± Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 8 / 25
  • 32. Preliminaries Action Theories in Multimodal Logic Action Theories in Multimodal Logic In our example ◮ Static Law: ◮ coffee → hot ◮ Executability Law: ◮ token → buy ⊤ ◮ Effect Law: ◮ ¬coffee → [buy]coffee ◮ Inexecutability Law: ◮ ¬token → [buy]⊥ Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 9 / 25
  • 33. Preliminaries Action Theories in Multimodal Logic Action Theories in Multimodal Logic In our example ◮ Static Law: ◮ coffee → hot ◮ Executability Law: ◮ token → buy ⊤ ◮ Effect Law: ◮ ¬coffee → [buy]coffee ◮ Inexecutability Law: ◮ ¬token → [buy]⊥ Action Theory T = S ∪ E ∪ X Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 9 / 25
  • 34. Preliminaries Action Theories in Multimodal Logic Action Theories in Multimodal Logic In our example ◮ Static Law: ◮ coffee → hot ◮ Executability Law: ◮ token → buy ⊤ ◮ Effect Law: ◮ ¬coffee → [buy]coffee ◮ Inexecutability Law: ◮ ¬token → [buy]⊥ Action Theory T = S ∪ E ∪ X What about the Frame, Ramification and Qualification Problems? ◮ No particular solution to the frame problem ◮ Assume we have all relevant frame axioms ◮ Qualification problem: motivation for revision Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 9 / 25
  • 35. Preliminaries Action Theories in Multimodal Logic Action Theories in Multimodal Logic In our example   coffee → hot, token → buy ⊤,   T =S ∪E ∪X = ¬coffee → [buy]coffee, ¬token → [buy]⊥, coffee → [buy]coffee, hot → [buy]hot   Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 10 / 25
  • 36. Preliminaries Action Theories in Multimodal Logic Action Theories in Multimodal Logic In our example   coffee → hot, token → buy ⊤,   T =S ∪E ∪X = ¬coffee → [buy]coffee, ¬token → [buy]⊥, coffee → [buy]coffee, hot → [buy]hot   k, ¬t, c, h b b b b k, t, c, h k, t, ¬c, h b b k, t, ¬c, ¬h Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 10 / 25
  • 37. Preliminaries Action Theories in Multimodal Logic Action Theories in Multimodal Logic Supra-Models Definition M = W , R is a big frame of T iff ◮ W = val(S ) ◮ R = a∈Act R a , where M M R a = {(w , w ′ ) : ∀.ϕ → [a]ψ ∈ Ea , if |= ϕ then |= ′ ψ} w w Definition M M is a supra-model of T iff |= T and M is a big frame of T. Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 11 / 25
  • 38. Preliminaries Action Theories in Multimodal Logic Action Theories in Multimodal Logic Supra-Models   coffee → hot, token → buy ⊤,   T =S ∪E ∪X = ¬coffee → [buy]coffee, ¬token → [buy]⊥, coffee → [buy]coffee, hot → [buy]hot   ¬k, ¬t, c, h k, ¬t, c, h b b b b k, t, c, h k, t, ¬c, h b b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 12 / 25
  • 39. Revision of Laws Semantics of Revision Outline Preliminaries Action Theories in Multimodal Logic Revision of Laws Semantics of Revision Algorithms Conclusion Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 13 / 25
  • 40. Revision of Laws Semantics of Revision Intuitions About Model Revision Revision by a law ¬k, ¬t, c, h k, ¬t, c, h b b b b k, t, c, h k, t, ¬c, h b b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h Make the law true in the model Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 14 / 25
  • 41. Revision of Laws Semantics of Revision Intuitions About Model Revision Revision by hot → coffee ¬k, ¬t, c, h k, ¬t, c, h b b b b k, t, c, h k, t, ¬c, h b b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h Make hot ∧ ¬coffee unsatisfiable Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 14 / 25
  • 42. Revision of Laws Semantics of Revision Intuitions About Model Revision Revision by hot → coffee ¬k, ¬t, c, h k, ¬t, c, h b b k, t, c, h b b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h Make hot ∧ ¬coffee unsatisfiable Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 14 / 25
  • 43. Revision of Laws Semantics of Revision Intuitions About Model Revision Revision by hot → coffee ¬k, ¬t, c, h k, ¬t, c, h b b k, t, c, h b b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h Make hot ∧ ¬coffee unsatisfiable Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 14 / 25
  • 44. Revision of Laws Semantics of Revision Intuitions About Model Revision Revision by a law ¬k, ¬t, c, h k, ¬t, c, h b b b b k, t, c, h k, t, ¬c, h b b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h Make the law true in the model Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 14 / 25
  • 45. Revision of Laws Semantics of Revision Intuitions About Model Revision Revision by token → [buy]¬token ¬k, ¬t, c, h k, ¬t, c, h b b b b k, t, c, h k, t, ¬c, h b b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h Make token ∧ buy token unsatisfiable Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 14 / 25
  • 46. Revision of Laws Semantics of Revision Intuitions About Model Revision Revision by token → [buy]¬token ¬k, ¬t, c, h k, ¬t, c, h b b b b k, t, c, h k, t, ¬c, h b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h Make token ∧ buy token unsatisfiable Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 14 / 25
  • 47. Revision of Laws Semantics of Revision Intuitions About Model Revision Revision by token → [buy]¬token ¬k, ¬t, c, h k, ¬t, c, h b b k, t, c, h k, t, ¬c, h b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h Make token ∧ buy token unsatisfiable Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 14 / 25
  • 48. Revision of Laws Semantics of Revision Intuitions About Model Revision Revision by a law ¬k, ¬t, c, h k, ¬t, c, h b b b b k, t, c, h k, t, ¬c, h b b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h Make the law true in the model Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 14 / 25
  • 49. Revision of Laws Semantics of Revision Intuitions About Model Revision Revision by ¬token → buy ⊤ ¬k, ¬t, c, h k, ¬t, c, h b b b b k, t, c, h k, t, ¬c, h b b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h Make ¬token ∧ [buy]⊥ unsatisfiable Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 14 / 25
  • 50. Revision of Laws Semantics of Revision Intuitions About Model Revision Revision by ¬token → buy ⊤ ¬k, ¬t, c, h k, ¬t, c, h b b b b b k, t, c, h k, t, ¬c, h b b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h Make ¬token ∧ [buy]⊥ unsatisfiable Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 14 / 25
  • 51. Revision of Laws Semantics of Revision Intuitions About Model Revision Revision by ¬token → buy ⊤ b b ¬k, ¬t, c, h k, ¬t, c, h b b b b b b k, t, c, h k, t, ¬c, h b b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h Make ¬token ∧ [buy]⊥ unsatisfiable Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 14 / 25
  • 52. Revision of Laws Semantics of Revision Minimal Change Choosing models ◮ Distance between models ◮ Prefer models closest to the original one ◮ Hamming/Dalal distance, etc Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 15 / 25
  • 53. Revision of Laws Semantics of Revision Minimal Change Choosing models ◮ Distance between models ◮ Prefer models closest to the original one ◮ Hamming/Dalal distance, etc ◮ Distance dependent on the type of law to make valid ◮ Static law: look at the set of possible states (worlds) ◮ Action laws: look at the set of arrows Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 15 / 25
  • 54. Revision of Laws Semantics of Revision Minimal Change Choosing models ◮ Distance between models ◮ Prefer models closest to the original one ◮ Hamming/Dalal distance, etc ◮ Distance dependent on the type of law to make valid ◮ Static law: look at the set of possible states (worlds) ◮ Action laws: look at the set of arrows Definition Let M = W , R . M ′ = W ′ , R ′ is as close to M as M ′′ = W ′′ , R ′′ iff ◮ either W −W ′ ⊆ W −W ′′ ˙ ˙ ◮ or W −W = W −W ′′ and R −R ′ ⊆ R −R ′′ ˙ ′ ˙ ˙ ˙ Notation: M ′ M M ′′ Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 15 / 25
  • 55. Revision of Laws Semantics of Revision Minimal Change Choosing models: revising by ϕ Definition Let M = W , R . M ′ = W ′ , R ′ ∈ Mϕ iff: ⋆ ◮ W ′ = (W val(¬ϕ)) ∪ val(ϕ) ◮ R′ ⊆ R Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 16 / 25
  • 56. Revision of Laws Semantics of Revision Minimal Change Choosing models: revising by ϕ Definition Let M = W , R . M ′ = W ′ , R ′ ∈ Mϕ iff: ⋆ ◮ W ′ = (W val(¬ϕ)) ∪ val(ϕ) ◮ R′ ⊆ R Definition revise(M , ϕ) = ⋆ min{Mϕ , M} Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 16 / 25
  • 57. Revision of Laws Semantics of Revision Minimal Change Choosing models: revising by hot → coffee ¬k, ¬t, c, h k, ¬t, c, h ¬k, ¬t, c, h k, ¬t, c, h ¬k, t, c, h b b b k, t, c, h b k, t, c, h M b b b b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, ¬h k, t, ¬c, ¬h Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 17 / 25
  • 58. Revision of Laws Semantics of Revision Minimal Change Choosing models: revising by ϕ → [a]ψ Definition Let M = W , R . M ′ = W ′ , R ′ ∈ Mϕ→[a]ψ iff: ⋆ ◮ W′ = W ◮ R′ ⊆ R M ◮ If (w , w ′ ) ∈ R R ′ , then |= ϕ w M′ ◮ |= ϕ → [a]ψ Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 18 / 25
  • 59. Revision of Laws Semantics of Revision Minimal Change Choosing models: revising by ϕ → [a]ψ Definition Let M = W , R . M ′ = W ′ , R ′ ∈ Mϕ→[a]ψ iff: ⋆ ◮ W′ = W ◮ R′ ⊆ R M ◮ If (w , w ′ ) ∈ R R ′ , then |= ϕ w M′ ◮ |= ϕ → [a]ψ Definition revise(M , ϕ → [a]ψ) = ⋆ min{Mϕ→[a]ψ , M} Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 18 / 25
  • 60. Revision of Laws Semantics of Revision Minimal Change Choosing models: revising by token → [buy]¬token ¬k, ¬t, c, h k, ¬t, c, h ¬k, ¬t, c, h k, ¬t, c, h b b k, t, c, h k, t, ¬c, h k, t, c, h k, t, ¬c, h M b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 19 / 25
  • 61. Revision of Laws Semantics of Revision Minimal Change Choosing models: revising by ϕ → a ⊤ Definition Let M = W , R . M ′ = W ′ , R ′ ∈ Mϕ→ ⋆ a ⊤ iff: ◮ W′ = W ◮ R ⊆ R′ ◮ If (w , w ′ ) ∈ R ′ R , then w ′ ∈ RelTarget(w , ¬(ϕ → [a]⊥)) M′ ◮ |= ϕ → a ⊤ RelTarget(.): induces effect laws from the models Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 20 / 25
  • 62. Revision of Laws Semantics of Revision Minimal Change Choosing models: revising by ϕ → a ⊤ Definition Let M = W , R . M ′ = W ′ , R ′ ∈ Mϕ→ ⋆ a ⊤ iff: ◮ W′ = W ◮ R ⊆ R′ ◮ If (w , w ′ ) ∈ R ′ R , then w ′ ∈ RelTarget(w , ¬(ϕ → [a]⊥)) M′ ◮ |= ϕ → a ⊤ RelTarget(.): induces effect laws from the models Definition revise(M , ϕ → a ⊤) = ⋆ min{Mϕ→ a ⊤, M} Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 20 / 25
  • 63. Revision of Laws Semantics of Revision Minimal Change Choosing models: revising by ¬token → buy ⊤ ◮ coffee: effect of buy, hot: consequence of coffee ◮ token, ¬kitchen: not consequences of coffee b b ¬k, ¬t, c, h k, ¬t, c, h b b b b b b k, t, c, h k, t, ¬c, h b b k, ¬t, ¬c, ¬h k, t, ¬c, ¬h k, ¬t, ¬c, h Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 21 / 25
  • 64. Revision of Laws Algorithms Outline Preliminaries Action Theories in Multimodal Logic Revision of Laws Semantics of Revision Algorithms Conclusion Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 22 / 25
  • 65. Revision of Laws Algorithms Quick look: Revision Algorithms ◮ We have defined algorithms that revise T by Φ, giving T ′ Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 23 / 25
  • 66. Revision of Laws Algorithms Quick look: Revision Algorithms ◮ We have defined algorithms that revise T by Φ, giving T ′ Theorem If T has supra-models, the algorithms are correct w.r.t. our semantics Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 23 / 25
  • 67. Revision of Laws Algorithms Quick look: Revision Algorithms ◮ We have defined algorithms that revise T by Φ, giving T ′ Theorem If T has supra-models, the algorithms are correct w.r.t. our semantics Theorem (Herzig & Varzinczak, AI Journal 2007) We can always ensure T has supra-models Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 23 / 25
  • 68. Revision of Laws Algorithms Quick look: Revision Algorithms ◮ We have defined algorithms that revise T by Φ, giving T ′ Theorem If T has supra-models, the algorithms are correct w.r.t. our semantics Theorem (Herzig & Varzinczak, AI Journal 2007) We can always ensure T has supra-models Theorem Size of T ′ is linear in that of T Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 23 / 25
  • 69. Conclusion Conclusion Contribution ◮ Semantics for action theory revision ◮ Distance between models ◮ Minimal change Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 24 / 25
  • 70. Conclusion Conclusion Contribution ◮ Semantics for action theory revision ◮ Distance between models ◮ Minimal change ◮ Extension of previous work on action theory contraction ◮ Invalidating formulas in a model (KR’2008) Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 24 / 25
  • 71. Conclusion Conclusion Contribution ◮ Semantics for action theory revision ◮ Distance between models ◮ Minimal change ◮ Extension of previous work on action theory contraction ◮ Invalidating formulas in a model (KR’2008) ◮ Syntactic operators (algorithms) ◮ Correct w.r.t. the semantics Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 24 / 25
  • 72. Conclusion Conclusion Ongoing research and future work ◮ Postulates for action theory revision Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 25 / 25
  • 73. Conclusion Conclusion Ongoing research and future work ◮ Postulates for action theory revision ◮ More ‘orthodox’ approach to nonclassical revision Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 25 / 25
  • 74. Conclusion Conclusion Ongoing research and future work ◮ Postulates for action theory revision ◮ More ‘orthodox’ approach to nonclassical revision ◮ Revision of general formulas ◮ not only ϕ, ϕ → a ⊤, ϕ → [a]ψ ◮ more expressive logics: PDL ◮ less expressive logics: Causal Theories of Action Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 25 / 25
  • 75. Conclusion Conclusion Ongoing research and future work ◮ Postulates for action theory revision ◮ More ‘orthodox’ approach to nonclassical revision ◮ Revision of general formulas ◮ not only ϕ, ϕ → a ⊤, ϕ → [a]ψ ◮ more expressive logics: PDL ◮ less expressive logics: Causal Theories of Action ◮ Applications in Description Logics ◮ ontology evolution/debugging Ivan Jos´ Varzinczak (KSG - Meraka) e On the Revision of Action Laws NRAC’2009 25 / 25