SlideShare a Scribd company logo
Adaptive Hyper-Parameter Tuning
for Black-box LiDAR Odometry
Kenji Koide, Masashi Yokozuka, Shuji Oishi, and Atsuhiko Banno
National Institute of Advanced Industrial Science and Technology (AIST), Japan
Odometry Estimation
LiDAR Odometry Visual Odometry
Engel et al., Direct Sparse Odometry
Pan et al., MULLS: Versatile LiDAR SLAM via Multi-metric
Linear Least Square
Tuning is important
Odometry estimation/SLAM frameworks involve
many hyper-parameters
(e.g., downsample resolution, map resolution, keyframe interval...)
Many parameters need to be tuned depending on the sensor and environment
(e.g., Indoor/Outdoor, Mechanical Rotating/Solid-State LiDAR)
w/o parameter tuning
Estimation quality largely depends on the choice
of the parameters
Tuning is difficult
https://google-cartographer-ros.readthedocs.io/en/latest/tuning.html
Google Cartographer Tuning Guide says:
"Tuning Cartographer is unfortunately really difficult.
The system has many parameters many of which affect
each other."
MULLS, SOTA LiDAR SLAM framework, involves over 80 params
It's well documented, but you still need to understand in detail
how it works
https://github.com/YuePanEdward/MULLS
Some other frameworks don't even provide documentation...
Odometry estimation methods are surprisingly complex, parameter tuning is difficult
Automatic and adaptive parameter selection
for black-box LiDAR odometry
Indoor
Outdoor
Forest
Adaptive
Parameter
Selection
Environment descriptor
Param Set A
Param Set B
Param Set C
LiDAR
Odometry
Accuracy improvement by parameter selection
No knowledge on the inner working
Data-driven meta-algorithm as a potential
improvement for any odometry estimation methods
Data-driven black-box LiDAR odometry analysis
Offline parameter-error function modeling
Surrogate function for error prediction
Params Env. descriptor Odometry error
Data-driven function modeling
1. Sample a random parameter set
2. Run LiDAR odometry algorithm
3. For each sub-trajectory:
• Extract an environment descriptor
• Evaluate the odometry error (RTE)
4. Repeat 1~3
5. Fit a KNN regressor s.t.
Sequential Model-based Optimization
SMBO finds the param that maximizes the
expected improvement (EI):
Environment descriptor
NDT voxel histogram-based descriptor
1. Calc normal distribution voxels
M. Magnusson et. al, “Appearance-based loop detection from
3D laser data using the normal distributions transform,” ICRA2009
3. Create histogram and apply PCA (N=10)
The framework is agnostic to the descriptor; other hand-crafted as well as learned features can be used
2. Classify voxels into linear/planar/sphere
𝑒𝑖𝑔 Σ = 𝜆1, 𝜆2, 𝜆3 𝜆1 > 𝜆2 > 𝜆3
𝑁0
𝐿
, 𝑁0
𝑃
, 𝑁0
𝑆
𝑁1
𝐿
, 𝑁1
𝑃
, 𝑁1
𝑆
𝑁2
𝐿
, 𝑁2
𝑃
, 𝑁2
𝑆
Online parameter selection
Params Env. descriptor Odometry error
Surrogate function (KNN regressor)
Best parameter set for the current environment
1. Extract the descriptor for the current input cloud
2. Find the parameter set that minimizes the predicted error
𝑆 is nonlinear and non-convex run SMBO on 𝑺
Parameter selection is performed every second
①
②
③
Simple toy example
Simulated environment
(A) cave, (B) open space, (C) outdoor street
Odometry estimation algorithm
Keyframe-based NDT odometry with 2 params
- NDT resolution
- Keyframe interval
Need to be tuned depending on the environment
NDT resolution
Keyframe interval
Large Small
Better convergence Better accuracy
Small odometry drift Better stability
Parameter
Accuracy vs stability trade-off
Parameter settings
(1) Manually tuned (2) Fixed param (3) Adaptive param
256 offline SMBO trials
Simple toy example
Parameters are selected depending on the environment
without detailed knowledge of the algorithm
A meta tuning algorithm that can potentially improve
the accuracy of any odometry estimation methods
Evaluation on KITTI odometry estimation dataset
Geiger et. al, “Vision meets
Robotics: The KITTI dataset”,
IJRR2013
Odometry estimation algorithms
- Keyframe-based GICP odometry
- LeGO-LOAM [Tixiao, IROS2018]
- SuMa [Behley, RSS2018]
Three algorithms with totally different architectures
Parameter settings
(1) Manually tuned (2) Fixed param (3) Adaptive param
256 offline SMBO trials
For seq. 00
Training/validation set
Seq. 00-05 : for training
Seq. 06-10 : for validation
Sampled parameters and corresponding errors of GICP
Point location: sampled parameter set
Point color: odometry estimation error
Different sequences require different parameters
Max
corresponding
distance
Keyframe interval
- Seq. 00 requires a large max correspondence distance
to prevent estimation corruption
Sampled parameters and corresponding errors of GICP
Point location: sampled parameter set
Point color: odometry estimation error
Different sequences require different parameters
- Seq. 00 requires a large max correspondence distance
to prevent estimation corruption
- The best keyframe interval largely varies depending on
the environment
Max
corresponding
distance
Keyframe interval
Sampled parameters and corresponding errors of GICP
Point location: sampled parameter set
Point color: odometry estimation error
Different sequences require different parameters
- Seq. 00 requires a large max correspondence distance
to prevent estimation corruption
- The best keyframe interval largely varies depending on
the environment
Max
corresponding
distance
Keyframe interval
There is no parameter set that works well for all the seqs
A conservative param for seq. 00 Deteriorated accuracy
Param set for another seq Estimation corruption
Params must be adaptively tuned depending on the environment
Evaluation on KITTI odometry estimation dataset
Fixed parameter set : Improved accuracy on the training set Deteriorated accuracy on the test set
Adaptive parameter set : Improved accuracy on both the training and test sets
Conclusions
• An adaptive parameter tuning framework for black-box LiDAR odometry
is proposed
• The proposed framework uses a data-driven surrogate function modeling
for error prediction
• Offline parameter sampling and online parameter selection are efficiently
done with SMBO (Sequential Model-based Optimization)
• The proposed framework successfully improved the accuracy of different
algorithms in a practical situation

More Related Content

PPTX
Optimization in deep learning
PDF
Voxelized GICP for Fast and Accurate 3D Point Cloud Registration [ICRA2021]
PDF
Time Series Classification with Deep Learning | Marco Del Pra
PPTX
Technology trends Moore’s law
PDF
Matlantisに込められた 技術・思想_高本_Matlantis User Conference
PDF
機械学習研究の現状とこれから
PPT
Lecture20 asic back_end_design
PPTX
MCMCベースレンダリング入門
Optimization in deep learning
Voxelized GICP for Fast and Accurate 3D Point Cloud Registration [ICRA2021]
Time Series Classification with Deep Learning | Marco Del Pra
Technology trends Moore’s law
Matlantisに込められた 技術・思想_高本_Matlantis User Conference
機械学習研究の現状とこれから
Lecture20 asic back_end_design
MCMCベースレンダリング入門

What's hot (20)

PPTX
CAD: Floorplanning
PDF
On the Convergence of Adam and Beyond
PDF
[読会]Long tail learning via logit adjustment
PDF
ニューラルネットと深層学習の歴史
PPTX
Float Zone, Bridgman Techniques--ABU SYED KUET
PDF
ケプストラム正則化NTFによるステレオチャネル楽曲音源分離
PDF
時間領域低ランクスペクトログラム近似法に基づくマスキング音声の欠損成分復元
PDF
第6回WBAシンポジウム:脳参照アーキテクチャ 駆動開発からの AGI構築ロードマップ
PDF
Clock Tree Synthesis.pdf
PPTX
Vlsi physical design automation on partitioning
PPTX
Semiconductor industry in china20151126R1.2
PPTX
MS COCO Dataset Introduction
PPT
System On Chip (SOC)
PDF
Prml11.3~11.4
PDF
メタスタディ (Vision and Language)
PPTX
4.FPGA for dummies: Design Flow
PPTX
ASIC DESIGN : PLACEMENT
PDF
MixMatch: A Holistic Approach to Semi- Supervised Learning
PDF
Floorplanning
PDF
[DL輪読会]NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Det...
CAD: Floorplanning
On the Convergence of Adam and Beyond
[読会]Long tail learning via logit adjustment
ニューラルネットと深層学習の歴史
Float Zone, Bridgman Techniques--ABU SYED KUET
ケプストラム正則化NTFによるステレオチャネル楽曲音源分離
時間領域低ランクスペクトログラム近似法に基づくマスキング音声の欠損成分復元
第6回WBAシンポジウム:脳参照アーキテクチャ 駆動開発からの AGI構築ロードマップ
Clock Tree Synthesis.pdf
Vlsi physical design automation on partitioning
Semiconductor industry in china20151126R1.2
MS COCO Dataset Introduction
System On Chip (SOC)
Prml11.3~11.4
メタスタディ (Vision and Language)
4.FPGA for dummies: Design Flow
ASIC DESIGN : PLACEMENT
MixMatch: A Holistic Approach to Semi- Supervised Learning
Floorplanning
[DL輪読会]NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Det...
Ad

Similar to Adaptive Hyper-Parameter Tuning for Black-box LiDAR Odometry [IROS2021] (20)

PDF
Vector Distance Transform Maps for Autonomous Mobile Robot Navigation
PDF
UiA Slam (Øystein Øihusom & Ørjan l. Olsen)
PDF
Graph-based SLAM
PDF
A Simple Integrative Solution For Simultaneous Localization And Mapping
PDF
Research on automated guided vehicle (AGV) path tracking control based on la...
PPTX
PDF
Visual Odomtery(2)
PDF
Robust and Efficient Coupling of Perception to Actuation with Metric and Non-...
PPTX
Multiple UGV SLAM Map Sharing
PPTX
Autonomous Navigation of a Unmanned Aeri
PDF
Sensors for mobile robot navigation based on robotics
PDF
Visual odometry & slam utilizing indoor structured environments
PDF
2D mapping using omni-directional mobile robot equipped with LiDAR
PPTX
Robotics Navigation
PPTX
Image Processing Algorithms For Deep-Space Autonomous Optical Navigation 2.pptx
PDF
Jung.Rapport
PDF
EVALUATION OF THE VISUAL ODOMETRY METHODS FOR SEMI-DENSE REAL-TIME
PDF
"How to Choose a 3D Vision Sensor," a Presentation from Capable Robot Components
Vector Distance Transform Maps for Autonomous Mobile Robot Navigation
UiA Slam (Øystein Øihusom & Ørjan l. Olsen)
Graph-based SLAM
A Simple Integrative Solution For Simultaneous Localization And Mapping
Research on automated guided vehicle (AGV) path tracking control based on la...
Visual Odomtery(2)
Robust and Efficient Coupling of Perception to Actuation with Metric and Non-...
Multiple UGV SLAM Map Sharing
Autonomous Navigation of a Unmanned Aeri
Sensors for mobile robot navigation based on robotics
Visual odometry & slam utilizing indoor structured environments
2D mapping using omni-directional mobile robot equipped with LiDAR
Robotics Navigation
Image Processing Algorithms For Deep-Space Autonomous Optical Navigation 2.pptx
Jung.Rapport
EVALUATION OF THE VISUAL ODOMETRY METHODS FOR SEMI-DENSE REAL-TIME
"How to Choose a 3D Vision Sensor," a Presentation from Capable Robot Components
Ad

Recently uploaded (20)

PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPTX
Spectroscopy.pptx food analysis technology
PDF
cuic standard and advanced reporting.pdf
PPTX
MYSQL Presentation for SQL database connectivity
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PPTX
Cloud computing and distributed systems.
PDF
Approach and Philosophy of On baking technology
DOCX
The AUB Centre for AI in Media Proposal.docx
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
KodekX | Application Modernization Development
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
Network Security Unit 5.pdf for BCA BBA.
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Spectroscopy.pptx food analysis technology
cuic standard and advanced reporting.pdf
MYSQL Presentation for SQL database connectivity
Building Integrated photovoltaic BIPV_UPV.pdf
Chapter 3 Spatial Domain Image Processing.pdf
Review of recent advances in non-invasive hemoglobin estimation
The Rise and Fall of 3GPP – Time for a Sabbatical?
Understanding_Digital_Forensics_Presentation.pptx
Cloud computing and distributed systems.
Approach and Philosophy of On baking technology
The AUB Centre for AI in Media Proposal.docx
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
MIND Revenue Release Quarter 2 2025 Press Release
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
KodekX | Application Modernization Development
Mobile App Security Testing_ A Comprehensive Guide.pdf
Network Security Unit 5.pdf for BCA BBA.

Adaptive Hyper-Parameter Tuning for Black-box LiDAR Odometry [IROS2021]

  • 1. Adaptive Hyper-Parameter Tuning for Black-box LiDAR Odometry Kenji Koide, Masashi Yokozuka, Shuji Oishi, and Atsuhiko Banno National Institute of Advanced Industrial Science and Technology (AIST), Japan
  • 2. Odometry Estimation LiDAR Odometry Visual Odometry Engel et al., Direct Sparse Odometry Pan et al., MULLS: Versatile LiDAR SLAM via Multi-metric Linear Least Square
  • 3. Tuning is important Odometry estimation/SLAM frameworks involve many hyper-parameters (e.g., downsample resolution, map resolution, keyframe interval...) Many parameters need to be tuned depending on the sensor and environment (e.g., Indoor/Outdoor, Mechanical Rotating/Solid-State LiDAR) w/o parameter tuning Estimation quality largely depends on the choice of the parameters
  • 4. Tuning is difficult https://google-cartographer-ros.readthedocs.io/en/latest/tuning.html Google Cartographer Tuning Guide says: "Tuning Cartographer is unfortunately really difficult. The system has many parameters many of which affect each other." MULLS, SOTA LiDAR SLAM framework, involves over 80 params It's well documented, but you still need to understand in detail how it works https://github.com/YuePanEdward/MULLS Some other frameworks don't even provide documentation... Odometry estimation methods are surprisingly complex, parameter tuning is difficult
  • 5. Automatic and adaptive parameter selection for black-box LiDAR odometry Indoor Outdoor Forest Adaptive Parameter Selection Environment descriptor Param Set A Param Set B Param Set C LiDAR Odometry Accuracy improvement by parameter selection No knowledge on the inner working Data-driven meta-algorithm as a potential improvement for any odometry estimation methods
  • 6. Data-driven black-box LiDAR odometry analysis
  • 7. Offline parameter-error function modeling Surrogate function for error prediction Params Env. descriptor Odometry error Data-driven function modeling 1. Sample a random parameter set 2. Run LiDAR odometry algorithm 3. For each sub-trajectory: • Extract an environment descriptor • Evaluate the odometry error (RTE) 4. Repeat 1~3 5. Fit a KNN regressor s.t. Sequential Model-based Optimization SMBO finds the param that maximizes the expected improvement (EI):
  • 8. Environment descriptor NDT voxel histogram-based descriptor 1. Calc normal distribution voxels M. Magnusson et. al, “Appearance-based loop detection from 3D laser data using the normal distributions transform,” ICRA2009 3. Create histogram and apply PCA (N=10) The framework is agnostic to the descriptor; other hand-crafted as well as learned features can be used 2. Classify voxels into linear/planar/sphere 𝑒𝑖𝑔 Σ = 𝜆1, 𝜆2, 𝜆3 𝜆1 > 𝜆2 > 𝜆3 𝑁0 𝐿 , 𝑁0 𝑃 , 𝑁0 𝑆 𝑁1 𝐿 , 𝑁1 𝑃 , 𝑁1 𝑆 𝑁2 𝐿 , 𝑁2 𝑃 , 𝑁2 𝑆
  • 9. Online parameter selection Params Env. descriptor Odometry error Surrogate function (KNN regressor) Best parameter set for the current environment 1. Extract the descriptor for the current input cloud 2. Find the parameter set that minimizes the predicted error 𝑆 is nonlinear and non-convex run SMBO on 𝑺 Parameter selection is performed every second ① ② ③
  • 10. Simple toy example Simulated environment (A) cave, (B) open space, (C) outdoor street Odometry estimation algorithm Keyframe-based NDT odometry with 2 params - NDT resolution - Keyframe interval Need to be tuned depending on the environment NDT resolution Keyframe interval Large Small Better convergence Better accuracy Small odometry drift Better stability Parameter Accuracy vs stability trade-off Parameter settings (1) Manually tuned (2) Fixed param (3) Adaptive param 256 offline SMBO trials
  • 11. Simple toy example Parameters are selected depending on the environment without detailed knowledge of the algorithm A meta tuning algorithm that can potentially improve the accuracy of any odometry estimation methods
  • 12. Evaluation on KITTI odometry estimation dataset Geiger et. al, “Vision meets Robotics: The KITTI dataset”, IJRR2013 Odometry estimation algorithms - Keyframe-based GICP odometry - LeGO-LOAM [Tixiao, IROS2018] - SuMa [Behley, RSS2018] Three algorithms with totally different architectures Parameter settings (1) Manually tuned (2) Fixed param (3) Adaptive param 256 offline SMBO trials For seq. 00 Training/validation set Seq. 00-05 : for training Seq. 06-10 : for validation
  • 13. Sampled parameters and corresponding errors of GICP Point location: sampled parameter set Point color: odometry estimation error Different sequences require different parameters Max corresponding distance Keyframe interval - Seq. 00 requires a large max correspondence distance to prevent estimation corruption
  • 14. Sampled parameters and corresponding errors of GICP Point location: sampled parameter set Point color: odometry estimation error Different sequences require different parameters - Seq. 00 requires a large max correspondence distance to prevent estimation corruption - The best keyframe interval largely varies depending on the environment Max corresponding distance Keyframe interval
  • 15. Sampled parameters and corresponding errors of GICP Point location: sampled parameter set Point color: odometry estimation error Different sequences require different parameters - Seq. 00 requires a large max correspondence distance to prevent estimation corruption - The best keyframe interval largely varies depending on the environment Max corresponding distance Keyframe interval There is no parameter set that works well for all the seqs A conservative param for seq. 00 Deteriorated accuracy Param set for another seq Estimation corruption Params must be adaptively tuned depending on the environment
  • 16. Evaluation on KITTI odometry estimation dataset Fixed parameter set : Improved accuracy on the training set Deteriorated accuracy on the test set Adaptive parameter set : Improved accuracy on both the training and test sets
  • 17. Conclusions • An adaptive parameter tuning framework for black-box LiDAR odometry is proposed • The proposed framework uses a data-driven surrogate function modeling for error prediction • Offline parameter sampling and online parameter selection are efficiently done with SMBO (Sequential Model-based Optimization) • The proposed framework successfully improved the accuracy of different algorithms in a practical situation