SlideShare a Scribd company logo
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
1.- ELASTIC ANALYSIS OF GRIDS
1.1.- COMPATIBILITY METHOD
1.2- SLOPE DEFLECTION METHOD
2.- PLASTIC ANALYSIS OF STRUCTURES
2.1- PLASTIC ANALYSIS OF BEAMS
2.2- PLASTIC ANALYSIS OF FRAMES
2.2.1- KINEMATIC METHOD
2.2.2- INCREMENTAL ANALYSIS. HINGE BY HINGE METHOD
3.- INTRODUCTION TO SECOND ORDER ANALYSIS OF STRUCTURES
2.3- PLASTIC ANALYSIS OF SLABS.
FEBRUARY
MARCH
APRIL
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS of beams
Specially useful to calculate one way slabs small continuous beams
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
ELASTIC BEHAVIOUR: The original position is recovered
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC BEHAVIOUR: The original position is NOT recovered
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
Force per unit area
Displacement per unit area
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
ELASTIC ANALYSIS PLASTIC ANALYSIS
≠ RESULTS*
Part of the structure
material is working beyond
the plastic limit
The material should be
ductile enough to have a
plastic behaviour
All the structure material is
working below the plastic
limit
The material can be fragile
or ductile to apply elastic
analysis
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
ELASTIC ANALYSIS PLASTIC ANALYSIS
≠ RESULTS*
Part of the structure
material is working beyond
the plastic limit
The structure should be
ductile enough to have a
plastic behaviour
All the structure material is
working below the plastic
limit
The structure can be
fragile or ductile to apply
elastic analysis
SAFER?
SAFER
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS
ELASTIC ANALYSIS PLASTIC ANALYSIS
≠ RESULTS*
Part of the structure
material is working beyond
the plastic limit
The material should be
ductile enough to have a
plastic behaviour
All the structure material is
working below the plastic
limit
The material can be fragile
or ductile to apply elastic
analysis
CHEAPER?
SAFER CHEAPER
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
ELASTIC ANALYSIS PLASTIC ANALYSIS
≠ RESULTS*
Part of the structure
material is working beyond
the plastic limit
The material should be
ductile enough to have a
plastic behaviour
All the structure material is
working below the plastic
limit
The material can be fragile
or ductile to apply elastic
analysis
SAFER CHEAPER
Superposition Principle
cannot be applied
Superposition Principle can
be applied
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
A = 200 mm2
E = 210 kN/mm2
fy = 260 MPa (N/mm2)
Maximun load supported by each cable Nmax = fy x A = 52000 N = 52 kN
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
ELASTIC ANALYSIS? PLASTIC ANALYSIS?
A = 200 mm2
E = 210 kN/mm2
fy = 260 MPa (N/mm2)
Nmax = 52 kN
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS
ELASTIC ANALYSIS
Compatibility Method: v1 = v2 = v3
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
ELASTIC ANALYSIS
v1 = ∆ L 1 = N 1 x L 1 / EA = v2 = ∆ L 2 = N 2 x L 2 / EA
Symmetry N1 = N3
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS
ELASTIC ANALYSIS
N2 = 2 N1
Symmetry N1 = N3
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
ELASTIC ANALYSIS
As Nmax = 52 kN , N2 = 52 kN and N1 = 26 kN
Symmetry N1 = N3
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
ELASTIC ANALYSIS P = 104 kN
As Nmax = 52 kN , N2 = 52 kN and N1 = 26 kN
Symmetry N1 = N3
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS?
A = 200 mm2
E = 210 kN/mm2
fy = 260 MPa (N/mm2)
Nmax = 52 kN
N1 = N2 = N3
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS?
A = 200 mm2
E = 210 kN/mm2
fy = 260 MPa (N/mm2)
Nmax = 52 kN
N1 = N2 = N3 = 52 kN
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS P = 156 kN
A = 200 mm2
E = 210 kN/mm2
fy = 260 MPa (N/mm2)
Nmax = 52 kN
N1 = N2 = N3 = 52 kN
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
ELASTIC ANALYSIS PLASTIC ANALYSIS
A = 200 mm2
E = 210 kN/mm2
fy = 260 MPa (N/mm2)
P = 104 kN Pu = 156 kN
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
SAFETY FACTOR? 156 / 104 = 1,5
A = 200 mm2
E = 210 kN/mm2
fy = 260 MPa (N/mm2)
Nmax = 52 kN
P = 104 kN Pu = 156 kN
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
IF L = 3 m
DL = 26 x 3 /EA DL = 52 x 3 /EA
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS in a cross section
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS in a cross section
Neutral axis
Fibers in compression
Fibers in tension
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS in a cross section
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS in a cross section
Elastic section modulus
We =
𝑏 𝑥 ℎ2
6
Plastic section modulus
Wp =
𝑏 𝑥 ℎ2
4
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
SHAPE FACTOR
PLASTIC ANALYSIS in a cross section
Elastic section modulus / Plastic section modulus
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS in SIMPLE BEAMS
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS in SIMPLE BEAMS
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS in SIMPLE BEAMS
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS in SIMPLE BEAMS
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS in SIMPLE BEAMS
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS in CONTINOUS BEAMS
30 kN/ m
4 m 5 m 6 m
20 kN/ m
10 kN/ m
vano AB vano BC vano CD
A
B C
D
HIPÓTESIS1 considerando la carga dada, calcular el momento plástico mínimo necesario para construir toda la viga
3
HIPÓTESIS2 considerando que la viga se construye con un IPE240 (Mp = 105,1 cm ) determina la carga de rotura.
HIPÓTESIS3 considerando la carga dada y el perfil IPE240 determina el factor de seguridad de la viga.
3
(mínimo momento de diseño)
1.- DESIGNING PROCESS: Minimum plastic moment capacity
required to build the beam (if we use a smaller profile, the beam
breaks)
2.- CHECKING PROCESS: Maximum load the beam can carry (if we
apply a higher load the beam breaks)
3.- SAFETY FACTOR
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
30 kN/ m
4 m 5 m 6 m
20 kN/ m
10 kN/ m
vano AB vano BC vano CD
A
B C
D
HIPÓTESIS1 considerando la carga dada, calcular el momento plástico mínimo necesario para construir toda la viga
3
HIPÓTESIS2 considerando que la viga se construye con un IPE240 (Mp = 105,1 cm ) determina la carga de rotura.
HIPÓTESIS3 considerando la carga dada y el perfil IPE240 determina el factor de seguridad de la viga.
3
(mínimo momento de diseño)
CAN WE TELL WHICH SPAN IS GOING TO FAIL FIRST?
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
30 kN/ m
4 m 5 m 6 m
20 kN/ m
10 kN/ m
vano AB vano BC vano CD
A
B C
D
HIPÓTESIS1 considerando la carga dada, calcular el momento plástico mínimo necesario para construir toda la viga
3
HIPÓTESIS2 considerando que la viga se construye con un IPE240 (Mp = 105,1 cm ) determina la carga de rotura.
HIPÓTESIS3 considerando la carga dada y el perfil IPE240 determina el factor de seguridad de la viga.
3
(mínimo momento de diseño)
SPAN AB
SPAN BC
SPAN CD
Mp(AB) = q L2 / 11,67= 41,13 kNm
Mp(BC) = q L2 / 16= 20 x 25/16 = 31,25 kNm
Mp(CD) = q L2 / 11,67= 10 x 36/11,67 = 30,84 kNm
CAN WE TELL WHICH SPAN IS GOING TO FAIL FIRST?
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
2.- CHECKING PROCESS: Maximum load the beam can carry (if we
apply a higher load the beam breaks) (we know Wp, this is, the profile
capacity)
3.- SAFETY FACTOR (we know both the load and the profile
and the load value)
1.- DESIGNING PROCESS: Minimum plastic moment capacity
required to build the beam (if we use a smaller profile, the beam
breaks) (we know the load values)
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
1.- DESIGNING PROCESS: q = 20 kN/m P = 10 kN
Mp(AB) = q L2 / 16 + P L /8 = 45 + 7,5 = 52,5 kNm
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
1.- DESIGNING PROCESS: q = 20 kN/m P = 10 kN
Mp(BC) = q L2 / 16 = 20 kNm
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
1.- DESIGNING PROCESS: q = 20 kN/m P = 10 kN
¿Mp(CD)? Mp + (Mp+60)/2 = q L2 / 8 + P L /4 = 90 + 15 = 105
Mp(CD) = (210 – 60) / 3 = 50 kNm
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
1.- DESIGNING PROCESS: q = 20 kN/m P = 10 kN
Mp(D) = q v2 / 2 + P v = 40 + 20 = 60 kNm
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
1.- DESIGNING PROCESS: q = 20 kN/m P = 10 kN
Mp(AB) = q L2 / 16 + P L /8 = 45 + 7,5 = 52,5 kNm
Mp(BC) = q L2 / 16 = 20 kNm
Mp(D) = q v2 / 2 + P v = 40 + 20 = 60 kNm
¿Mp(CD)? Mp + (Mp+60)/2 = q L2 / 8 + P L /4 = 90 + 15 = 105
Mp(CD) = (210 – 60) / 3 = 50 kNm
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
3.- SAFETY FACTOR if HEB300? Sx = 934 cm3 fy = 0,275 kN/mm2
DESIGNED Mp(D) = 60 kNm
Wp(HEB300) = 2 Sx = 1868 cm3
Mp (HEB300)= Wp x fy = 1868 x 0,275 = 513,7 kNm
Safety factor (or factor load) = 8,56
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION

More Related Content

PPTX
Class 6_ae2_plastic analysis_kinematic method_ss
PPTX
Ae2_19_plastic analysis_kinematic method
PPTX
AE2_plastic analysis of beams
PPTX
Ae2_20_4_plastic analysis_kinematic method
PPTX
Ae2_20_3_plastic analysis_beams
PPTX
Ae2_19_plastic analysis of slabs_yield lines
PPTX
Plastic analysis
PPTX
Ae2_20_plastic analysis of slabs_yield lines
Class 6_ae2_plastic analysis_kinematic method_ss
Ae2_19_plastic analysis_kinematic method
AE2_plastic analysis of beams
Ae2_20_4_plastic analysis_kinematic method
Ae2_20_3_plastic analysis_beams
Ae2_19_plastic analysis of slabs_yield lines
Plastic analysis
Ae2_20_plastic analysis of slabs_yield lines

What's hot (19)

PPTX
Class 1_ae2_18_introduction
PPTX
Ae2_22_4_plastic analysis_kinematic method
PDF
Analysis of beam by plastic theory-part-I,
PPTX
Ae2_22_progressive collapse analysis_test 2_2021_solved
PPTX
Ae2_22_progressive collapse analysis_test 2_1920_solved
PPTX
Plastic analysis
PDF
Unit vi-Plastic Analysis of beam Static & Kinematic methods
PDF
Redistribution of moments-Part-1
PDF
Part (1) basics of plastic analysis
PDF
Sd i-module3- rajesh sir
PDF
Module4 plastic theory- rajesh sir
PDF
Ge i-module4-rajesh sir
PDF
Module2 rajesh sir
PDF
Mechanics of structures module2
PDF
Module1 flexibility-1- rajesh sir
PDF
HexMat_Workshop_TJun_Poster_v2
PDF
ANALYTICAL BENDING ANALYSIS OF A CIRCULAR SANDWICH PLATE UNDER DISTRIBUTED LOAD
PDF
Module3 direct stiffness- rajesh sir
PDF
Module3 rajesh sir
Class 1_ae2_18_introduction
Ae2_22_4_plastic analysis_kinematic method
Analysis of beam by plastic theory-part-I,
Ae2_22_progressive collapse analysis_test 2_2021_solved
Ae2_22_progressive collapse analysis_test 2_1920_solved
Plastic analysis
Unit vi-Plastic Analysis of beam Static & Kinematic methods
Redistribution of moments-Part-1
Part (1) basics of plastic analysis
Sd i-module3- rajesh sir
Module4 plastic theory- rajesh sir
Ge i-module4-rajesh sir
Module2 rajesh sir
Mechanics of structures module2
Module1 flexibility-1- rajesh sir
HexMat_Workshop_TJun_Poster_v2
ANALYTICAL BENDING ANALYSIS OF A CIRCULAR SANDWICH PLATE UNDER DISTRIBUTED LOAD
Module3 direct stiffness- rajesh sir
Module3 rajesh sir
Ad

Similar to Ae2_19_plastic analysis_beams (20)

PPTX
Ae2_19_plastic analysis_beams
PPTX
Ae2_19_plastic analysis_beams
PPTX
Ae2_21_3_plastic analysis_beams
PPTX
Ae2_22_5_progressive collapse analysis
PPTX
Ae2_21_5_progressive collapse analysis
PPTX
Ae2_20_progressive collapse analysis
PPTX
Ae2_19_progressive collapse analysis
PPTX
Class 7_ae2_progressive collapse analysis
PPTX
Ae2_21_4_plastic analysis_kinematic method
PPTX
Ae2_20_plastic analysis of slabs_yield lines_on line_2
PPTX
Ae2_20_plastic analysis of slabs_yield lines_on line_3
PPTX
__ae2_22_PLASTIC ANALYSIS OF SLABS_YIELD LINES.pptx
PPTX
PPTX
__ae2_22_PROGRESSIVE COLLAPSE ANALYSIS_TEST 2_2122_solved.pptx
PDF
Design Proposal for a Single and Double Span Bridge using Cost Analysis
PDF
Building Structure : Structural analysis of a bungalow
DOCX
Sc 0009-rwpc-pip-civ-cal-0511 0-a
PPTX
Ae2_19_second order analysis
PDF
Ldb Convergenze Parallele_13
Ae2_19_plastic analysis_beams
Ae2_19_plastic analysis_beams
Ae2_21_3_plastic analysis_beams
Ae2_22_5_progressive collapse analysis
Ae2_21_5_progressive collapse analysis
Ae2_20_progressive collapse analysis
Ae2_19_progressive collapse analysis
Class 7_ae2_progressive collapse analysis
Ae2_21_4_plastic analysis_kinematic method
Ae2_20_plastic analysis of slabs_yield lines_on line_2
Ae2_20_plastic analysis of slabs_yield lines_on line_3
__ae2_22_PLASTIC ANALYSIS OF SLABS_YIELD LINES.pptx
__ae2_22_PROGRESSIVE COLLAPSE ANALYSIS_TEST 2_2122_solved.pptx
Design Proposal for a Single and Double Span Bridge using Cost Analysis
Building Structure : Structural analysis of a bungalow
Sc 0009-rwpc-pip-civ-cal-0511 0-a
Ae2_19_second order analysis
Ldb Convergenze Parallele_13
Ad

More from Pérez Gutiérrez María Concepción (20)

PPTX
FM1_geo_1_22_12_13.pptx
PPTX
FM1_geo_1_22_12_12.pptx
PPTX
FM1_geo_1_22_11_29.pptx
PPTX
FM1_geo_1_22_11_29.pptx
PPTX
FM1_geo_1_22_11_28.pptx
PPTX
FM1_geo_1_22_11_22.pptx
PPTX
FM1_geo_1_22_11_21.pptx
PPTX
FM1_geo_1_22_11_21.pptx
PPTX
FM1_geo_1_24_11_15.pptx
PPTX
FM1_geo_1_24_11_14.pptx
PPTX
AE1_22_23_CLASS_MATRIX.pptx
PPTX
FM1_geo_1_24_11_8.pptx
PPTX
FM1_geo_1_24_11_7.pptx
PPTX
AE1_21_22_TEST 3_SLOPE DEFLECTION_2.pptx
PPTX
AE1_11_22_frame competition.pptx
PPTX
FM1_geo_1_24_10_25.pptx
PPTX
FM1_geo_1_24_10_24.pptx
PPTX
AE1_22_23_CLASS 9_22_10_20_STATICALLY INDETERMINATE_class 4.pptx
PPTX
FM1_geo_1_22_10_18.pptx
PPTX
FM1_geo_1_22_10_17.pptx
FM1_geo_1_22_12_13.pptx
FM1_geo_1_22_12_12.pptx
FM1_geo_1_22_11_29.pptx
FM1_geo_1_22_11_29.pptx
FM1_geo_1_22_11_28.pptx
FM1_geo_1_22_11_22.pptx
FM1_geo_1_22_11_21.pptx
FM1_geo_1_22_11_21.pptx
FM1_geo_1_24_11_15.pptx
FM1_geo_1_24_11_14.pptx
AE1_22_23_CLASS_MATRIX.pptx
FM1_geo_1_24_11_8.pptx
FM1_geo_1_24_11_7.pptx
AE1_21_22_TEST 3_SLOPE DEFLECTION_2.pptx
AE1_11_22_frame competition.pptx
FM1_geo_1_24_10_25.pptx
FM1_geo_1_24_10_24.pptx
AE1_22_23_CLASS 9_22_10_20_STATICALLY INDETERMINATE_class 4.pptx
FM1_geo_1_22_10_18.pptx
FM1_geo_1_22_10_17.pptx

Recently uploaded (20)

PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PPT
A5_DistSysCh1.ppt_INTRODUCTION TO DISTRIBUTED SYSTEMS
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PDF
Abrasive, erosive and cavitation wear.pdf
PPTX
communication and presentation skills 01
PDF
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
PPT
Total quality management ppt for engineering students
PDF
737-MAX_SRG.pdf student reference guides
PDF
Analyzing Impact of Pakistan Economic Corridor on Import and Export in Pakist...
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PDF
III.4.1.2_The_Space_Environment.p pdffdf
PPTX
Artificial Intelligence
PPTX
Fundamentals of Mechanical Engineering.pptx
PDF
Categorization of Factors Affecting Classification Algorithms Selection
PDF
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
PPTX
UNIT 4 Total Quality Management .pptx
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
Information Storage and Retrieval Techniques Unit III
PDF
Integrating Fractal Dimension and Time Series Analysis for Optimized Hyperspe...
PPT
Occupational Health and Safety Management System
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
A5_DistSysCh1.ppt_INTRODUCTION TO DISTRIBUTED SYSTEMS
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
Abrasive, erosive and cavitation wear.pdf
communication and presentation skills 01
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
Total quality management ppt for engineering students
737-MAX_SRG.pdf student reference guides
Analyzing Impact of Pakistan Economic Corridor on Import and Export in Pakist...
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
III.4.1.2_The_Space_Environment.p pdffdf
Artificial Intelligence
Fundamentals of Mechanical Engineering.pptx
Categorization of Factors Affecting Classification Algorithms Selection
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
UNIT 4 Total Quality Management .pptx
R24 SURVEYING LAB MANUAL for civil enggi
Information Storage and Retrieval Techniques Unit III
Integrating Fractal Dimension and Time Series Analysis for Optimized Hyperspe...
Occupational Health and Safety Management System

Ae2_19_plastic analysis_beams

  • 1. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION PLASTIC ANALYSIS
  • 2. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION 1.- ELASTIC ANALYSIS OF GRIDS 1.1.- COMPATIBILITY METHOD 1.2- SLOPE DEFLECTION METHOD 2.- PLASTIC ANALYSIS OF STRUCTURES 2.1- PLASTIC ANALYSIS OF BEAMS 2.2- PLASTIC ANALYSIS OF FRAMES 2.2.1- KINEMATIC METHOD 2.2.2- INCREMENTAL ANALYSIS. HINGE BY HINGE METHOD 3.- INTRODUCTION TO SECOND ORDER ANALYSIS OF STRUCTURES 2.3- PLASTIC ANALYSIS OF SLABS. FEBRUARY MARCH APRIL
  • 3. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION PLASTIC ANALYSIS of beams Specially useful to calculate one way slabs small continuous beams
  • 4. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION
  • 5. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION ELASTIC BEHAVIOUR: The original position is recovered
  • 6. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION PLASTIC BEHAVIOUR: The original position is NOT recovered
  • 7. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION Force per unit area Displacement per unit area
  • 8. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION
  • 9. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION
  • 10. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION ELASTIC ANALYSIS PLASTIC ANALYSIS ≠ RESULTS* Part of the structure material is working beyond the plastic limit The material should be ductile enough to have a plastic behaviour All the structure material is working below the plastic limit The material can be fragile or ductile to apply elastic analysis
  • 11. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION ELASTIC ANALYSIS PLASTIC ANALYSIS ≠ RESULTS* Part of the structure material is working beyond the plastic limit The structure should be ductile enough to have a plastic behaviour All the structure material is working below the plastic limit The structure can be fragile or ductile to apply elastic analysis SAFER? SAFER
  • 12. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION STRUCTURAL ANALYSIS II PLASTIC ANALYSIS ELASTIC ANALYSIS PLASTIC ANALYSIS ≠ RESULTS* Part of the structure material is working beyond the plastic limit The material should be ductile enough to have a plastic behaviour All the structure material is working below the plastic limit The material can be fragile or ductile to apply elastic analysis CHEAPER? SAFER CHEAPER
  • 13. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION ELASTIC ANALYSIS PLASTIC ANALYSIS ≠ RESULTS* Part of the structure material is working beyond the plastic limit The material should be ductile enough to have a plastic behaviour All the structure material is working below the plastic limit The material can be fragile or ductile to apply elastic analysis SAFER CHEAPER Superposition Principle cannot be applied Superposition Principle can be applied
  • 14. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION A = 200 mm2 E = 210 kN/mm2 fy = 260 MPa (N/mm2) Maximun load supported by each cable Nmax = fy x A = 52000 N = 52 kN
  • 15. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION ELASTIC ANALYSIS? PLASTIC ANALYSIS? A = 200 mm2 E = 210 kN/mm2 fy = 260 MPa (N/mm2) Nmax = 52 kN
  • 16. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION STRUCTURAL ANALYSIS II PLASTIC ANALYSIS ELASTIC ANALYSIS Compatibility Method: v1 = v2 = v3
  • 17. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION ELASTIC ANALYSIS v1 = ∆ L 1 = N 1 x L 1 / EA = v2 = ∆ L 2 = N 2 x L 2 / EA Symmetry N1 = N3
  • 18. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION STRUCTURAL ANALYSIS II PLASTIC ANALYSIS ELASTIC ANALYSIS N2 = 2 N1 Symmetry N1 = N3
  • 19. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION ELASTIC ANALYSIS As Nmax = 52 kN , N2 = 52 kN and N1 = 26 kN Symmetry N1 = N3
  • 20. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION ELASTIC ANALYSIS P = 104 kN As Nmax = 52 kN , N2 = 52 kN and N1 = 26 kN Symmetry N1 = N3
  • 21. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION PLASTIC ANALYSIS? A = 200 mm2 E = 210 kN/mm2 fy = 260 MPa (N/mm2) Nmax = 52 kN N1 = N2 = N3
  • 22. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION PLASTIC ANALYSIS? A = 200 mm2 E = 210 kN/mm2 fy = 260 MPa (N/mm2) Nmax = 52 kN N1 = N2 = N3 = 52 kN
  • 23. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION PLASTIC ANALYSIS P = 156 kN A = 200 mm2 E = 210 kN/mm2 fy = 260 MPa (N/mm2) Nmax = 52 kN N1 = N2 = N3 = 52 kN
  • 24. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION ELASTIC ANALYSIS PLASTIC ANALYSIS A = 200 mm2 E = 210 kN/mm2 fy = 260 MPa (N/mm2) P = 104 kN Pu = 156 kN
  • 25. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION SAFETY FACTOR? 156 / 104 = 1,5 A = 200 mm2 E = 210 kN/mm2 fy = 260 MPa (N/mm2) Nmax = 52 kN P = 104 kN Pu = 156 kN
  • 26. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION IF L = 3 m DL = 26 x 3 /EA DL = 52 x 3 /EA
  • 27. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION PLASTIC ANALYSIS in a cross section
  • 28. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION PLASTIC ANALYSIS in a cross section Neutral axis Fibers in compression Fibers in tension
  • 29. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION PLASTIC ANALYSIS in a cross section
  • 30. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION
  • 31. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION PLASTIC ANALYSIS in a cross section Elastic section modulus We = 𝑏 𝑥 ℎ2 6 Plastic section modulus Wp = 𝑏 𝑥 ℎ2 4
  • 32. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION SHAPE FACTOR PLASTIC ANALYSIS in a cross section Elastic section modulus / Plastic section modulus
  • 33. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION PLASTIC ANALYSIS in SIMPLE BEAMS
  • 34. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION PLASTIC ANALYSIS in SIMPLE BEAMS
  • 35. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION PLASTIC ANALYSIS in SIMPLE BEAMS
  • 36. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION PLASTIC ANALYSIS in SIMPLE BEAMS
  • 37. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION PLASTIC ANALYSIS in SIMPLE BEAMS
  • 38. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION PLASTIC ANALYSIS in CONTINOUS BEAMS 30 kN/ m 4 m 5 m 6 m 20 kN/ m 10 kN/ m vano AB vano BC vano CD A B C D HIPÓTESIS1 considerando la carga dada, calcular el momento plástico mínimo necesario para construir toda la viga 3 HIPÓTESIS2 considerando que la viga se construye con un IPE240 (Mp = 105,1 cm ) determina la carga de rotura. HIPÓTESIS3 considerando la carga dada y el perfil IPE240 determina el factor de seguridad de la viga. 3 (mínimo momento de diseño) 1.- DESIGNING PROCESS: Minimum plastic moment capacity required to build the beam (if we use a smaller profile, the beam breaks) 2.- CHECKING PROCESS: Maximum load the beam can carry (if we apply a higher load the beam breaks) 3.- SAFETY FACTOR
  • 39. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION 30 kN/ m 4 m 5 m 6 m 20 kN/ m 10 kN/ m vano AB vano BC vano CD A B C D HIPÓTESIS1 considerando la carga dada, calcular el momento plástico mínimo necesario para construir toda la viga 3 HIPÓTESIS2 considerando que la viga se construye con un IPE240 (Mp = 105,1 cm ) determina la carga de rotura. HIPÓTESIS3 considerando la carga dada y el perfil IPE240 determina el factor de seguridad de la viga. 3 (mínimo momento de diseño) CAN WE TELL WHICH SPAN IS GOING TO FAIL FIRST?
  • 40. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION 30 kN/ m 4 m 5 m 6 m 20 kN/ m 10 kN/ m vano AB vano BC vano CD A B C D HIPÓTESIS1 considerando la carga dada, calcular el momento plástico mínimo necesario para construir toda la viga 3 HIPÓTESIS2 considerando que la viga se construye con un IPE240 (Mp = 105,1 cm ) determina la carga de rotura. HIPÓTESIS3 considerando la carga dada y el perfil IPE240 determina el factor de seguridad de la viga. 3 (mínimo momento de diseño) SPAN AB SPAN BC SPAN CD Mp(AB) = q L2 / 11,67= 41,13 kNm Mp(BC) = q L2 / 16= 20 x 25/16 = 31,25 kNm Mp(CD) = q L2 / 11,67= 10 x 36/11,67 = 30,84 kNm CAN WE TELL WHICH SPAN IS GOING TO FAIL FIRST?
  • 41. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION 2.- CHECKING PROCESS: Maximum load the beam can carry (if we apply a higher load the beam breaks) (we know Wp, this is, the profile capacity) 3.- SAFETY FACTOR (we know both the load and the profile and the load value) 1.- DESIGNING PROCESS: Minimum plastic moment capacity required to build the beam (if we use a smaller profile, the beam breaks) (we know the load values)
  • 42. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION 1.- DESIGNING PROCESS: q = 20 kN/m P = 10 kN Mp(AB) = q L2 / 16 + P L /8 = 45 + 7,5 = 52,5 kNm
  • 43. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION 1.- DESIGNING PROCESS: q = 20 kN/m P = 10 kN Mp(BC) = q L2 / 16 = 20 kNm
  • 44. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION 1.- DESIGNING PROCESS: q = 20 kN/m P = 10 kN ¿Mp(CD)? Mp + (Mp+60)/2 = q L2 / 8 + P L /4 = 90 + 15 = 105 Mp(CD) = (210 – 60) / 3 = 50 kNm
  • 45. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION 1.- DESIGNING PROCESS: q = 20 kN/m P = 10 kN Mp(D) = q v2 / 2 + P v = 40 + 20 = 60 kNm
  • 46. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION 1.- DESIGNING PROCESS: q = 20 kN/m P = 10 kN Mp(AB) = q L2 / 16 + P L /8 = 45 + 7,5 = 52,5 kNm Mp(BC) = q L2 / 16 = 20 kNm Mp(D) = q v2 / 2 + P v = 40 + 20 = 60 kNm ¿Mp(CD)? Mp + (Mp+60)/2 = q L2 / 8 + P L /4 = 90 + 15 = 105 Mp(CD) = (210 – 60) / 3 = 50 kNm
  • 47. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION 3.- SAFETY FACTOR if HEB300? Sx = 934 cm3 fy = 0,275 kN/mm2 DESIGNED Mp(D) = 60 kNm Wp(HEB300) = 2 Sx = 1868 cm3 Mp (HEB300)= Wp x fy = 1868 x 0,275 = 513,7 kNm Safety factor (or factor load) = 8,56
  • 48. STRUCTURAL ANALYSIS II PLASTIC ANALYSIS. INTRODUCTION