SlideShare a Scribd company logo
Structural Analysis - II
Approximate Methods
Dr. Rajesh K. N.
Assistant professor in Civil EngineeringAssistant professor in Civil Engineering
Govt. College of Engineering, Kannur
Dept. of CE, GCE Kannur Dr.RajeshKN
Module IIIModule III
Approximate Methods of Analysis of Multi-storey Frames
• Analysis for vertical loads - Substitute frames-Loading
conditions for maximum positive and negative bending
moments in beams and maximum bending moment in columns
• Analysis for lateral loads - Portal method–Cantilever method–y
Factor method.
Dept. of CE, GCE Kannur Dr.RajeshKN
2
Why approximate analysis?
• Rapid check on computer aided analysis
y pp x y
• Preliminary dimensioning before exact analysis
Advantage? • Fasterg
Disadvantage? • Results are approximateg pp
• Approximate methods are particularly useful for
multi-storey frames taller than 3 storeys.
Dept. of CE, GCE Kannur Dr.RajeshKN
Approximate analysis for Vertical LoadsApproximate analysis for Vertical Loads
SUBSTITUTE FRAME METHOD
• Analyse only a part of the frame – substitute frame
SUBSTITUTE FRAME METHOD
Analyse only a part of the frame substitute frame
• Carry out a two-cycle moment distribution
Dept. of CE, GCE Kannur Dr.RajeshKN
Substitute frame
Actual frame
Dept. of CE, GCE Kannur Dr.RajeshKN
• Analysis done for:y
• Beam span moments
• Beam support moments
• Column moments
• Liveload positioning for the worst condition
• For the same frame, liveload positions for maximum span
t t t d l tmoments, support moments and column moments may
be different
• For maximum moments at different points, liveload
positions may de different
Dept. of CE, GCE Kannur Dr.RajeshKN
positions may de different
LL positions for maximum positive span moment at Bp p p
B
Influence
D d l d Li l d
line for MB
Dead loads Live loads
Dept. of CE, GCE Kannur Dr.RajeshKN
LL positions for maximum negative support moment at Apos t o s o ax u egat e suppo t o e t at
A
Influence
Live loads
line for MA
Dead loads
Dept. of CE, GCE Kannur Dr.RajeshKN
Dead loads
LL positions for maximum column moment M1 at Cpos t o s o ax u co u o e t M1 at C
C
M1
Live loadsLive loads
Dead loads
Dept. of CE, GCE Kannur Dr.RajeshKN
LL positions for maximum column moment M2 at Dpos t o s o ax u co u o e t M2 at
D
M2
D
Live loadsLive loads
Dead loads
Dept. of CE, GCE Kannur Dr.RajeshKN
Problem 1: Total dead load is 12 kN/m. Total live load is 20ob e : N/
kN/m. Analyse the frame for midspan positive moment on BC.
4m
6 m 6 m 6 m
B C DA
4m4m
Dept. of CE, GCE Kannur Dr.RajeshKN
11
12+20 kN/m
B D
12 kN/m 12 kN/m
B C D
A 6 m 6 m 6 m
Fi d d t
2 2
12 6
36AB
wl
FEM kNm
− − ×
= = = − 36BAFEM kNm=
Fixed end moments
12 12
AB
2
32 6
96FEM kN
− × 96FEM kNm=96
12
BCFEM kNm= = −
36CD DCFEM FEM kNm− = =
96CBFEM kNm=
Dept. of CE, GCE Kannur Dr.RajeshKN
36CD DCFEM FEM kNm
Distribution factors
1 4 6
0.25
4 6 4 4 4 4
AB DC
K EI
DF DF
K K K EI EI EI
= = = =
1 2 3 4 6 4 4 4 4
AB DC
K K K EI EI EI+ + + +
4 6K EI1
1 2 3 4
4 6
0.2
4 4 4 6 4 4 4 6
BA
K EI
DF
K K K K EI EI EI EI
= = =
+ + + + + +
0.2BC CD CB BADF DF DF DF= = = =
Dept. of CE, GCE Kannur Dr.RajeshKN
A B C D
0.2 0.2
* * * * * * FEM
0.2 0.20.25 DFs0.25
* * * * * *
* * * * CO
Dist
* *
* * Final Moments
Dist
Dept. of CE, GCE Kannur Dr.RajeshKN
A B C D
0.2 0.2
-36 36 -96 96 -36 36 FEM
0.2 0.20.25 DFs0.25
9 12 12 -12 -12 -9
6 4.5 -6 6 -4.5 -6 CO
Dist
2.25 0.3 0.3 -0.3 -0.3 -2.25
-18.75 52.8 -89.7 89.7 52.8 18.75 Final Moments
Dist
Dept. of CE, GCE Kannur Dr.RajeshKN
B
89.7kNm 89.7kNm
32kN mA B
89.7kNm 32kN m
2
3 32 6×
Midspan positive moment on BC,
3 32 6
89.7 32 3 54.3
2 2
EM kNm
×
= − − × + × =
Dept. of CE, GCE Kannur Dr.RajeshKN
Problem 2: Analyse the frame for beam negative moment at B.
M t f i ti f b i 1 5 ti th t f l T t l d dMoment of inertia of beams is 1.5 times that of columns. Total dead
load is 14 kN/m and total live load is 9 kN/m.
6 m 4m4 m
3.5m.5m
B
A
m3
DC
3.5m3.5m
Dept. of CE, GCE Kannur Dr.RajeshKN
17
3
14+9 kN/m 14+9 kN/m
I
B D6 m
14 kN/mI
B C D
A
6 m 4 m 4 m
I
1.5I 1.5I 1.5I
Fi d d t
2 2
23 6
69AB
wl
FEM kNm
− − ×
= = = − 69BAFEM kNm=
Fixed end moments
12 12
AB
2
23 4
30.67BC CBFEM FEM kNm
×
− = = = 30.67
12
BC CBFEM FEM kNm
2
14 4
36CD DCFEM FEM kNm
×
− = = =
Dept. of CE, GCE Kannur Dr.RajeshKN
36
12
CD DCFEM FEM kNm
Distribution factors
( )
( )
1 4 61.5
0.304
4 6 4 3 5 4 3 5
AB
K E I
DF
K K K E EI EI
= = =
( )1 2 3 4 6 4 3.5 4 3.51.5
AB
K K K E EI EII+ + + +
1 5 6K I1
1 2 3 4
1.5 6
0.209
1.5 6 3.5 3.5 1.5 4
BA
K I
DF
K K K K I I I I
= = =
+ + + + + +
1
1 2 3 4
1.5 4
0.313
1.5 6 3.5 3.5 1.5 4
BC
K I
DF
K K K K I I I I
= = =
+ + + + + +1 2 3 4
0.284, 0.284, 0.396CB CD DCDF DF DF= = =
Dept. of CE, GCE Kannur Dr.RajeshKN
A B C D
0.209 0.313 0.284 0.2840.304 DFs0.3960.209 0.313
* * * * *
* * * *
FEM
Dist
0. 8 0. 8 0.396
* *
* *
CO
Dist
* * Final Moments
Dept. of CE, GCE Kannur Dr.RajeshKN
A B C D
0.209 0.313
-69 69 -30.67 30.67 -18.67 FEM
0.284 0.2840.304 DFs0.396
20.98 -8.01 -12 -3.41
10.49 -1.71 CO
Dist
-1.84 -2.75
69.64 -47.13 Final Moments
Dist
B 69 64kNm47 13kNm B 69.64kNm47.13kNm
Max. beam negative moment at B 69.64 kNm=
Dept. of CE, GCE Kannur Dr.RajeshKN
Approximate analysis for Horizontal LoadsApproximate analysis for Horizontal Loads
1 P t l th d1. Portal method
2. Cantilever method
3. Factor method
Dept. of CE, GCE Kannur Dr.RajeshKN
22
PORTAL METHODPORTAL METHOD
Assumptions
1. The points of contraflexure in all the members lie at their
midpoints.
2. Horizontal shear taken by each interior column is doubley
that taken by each exterior column.
Horizontal forces are assumed to act only at the joints.
Dept. of CE, GCE Kannur Dr.RajeshKN
CA B C DA
P1
P 2P 2P PP
P
2P
2P
2P
2P
P
P
FE G
HP2
Q 2Q 2Q Q
Q 2Q 2Q Q
J K LI
Dept. of CE, GCE Kannur Dr.RajeshKN
24
P
1 2 2P P P P P= + + +
1
6
P
P⇒ =
Dept. of CE, GCE Kannur Dr.RajeshKN
2 2P P Q Q Q Q+ = + + + 1 2P P
Q
+
⇒ =1 2 2 2P P Q Q Q Q+ = + + + 1 2
6
Q⇒ =
Dept. of CE, GCE Kannur Dr.RajeshKN
Problem 3: Analyse the frame using portal method.ob e 3: y g p
B C DA
m
120 kN
7 m 3.5 m 5 m
FE G
H
3.5m
180 kN
m
H
3.5m
J K LI J K LI
Dept. of CE, GCE Kannur Dr.RajeshKN
27
Horizontal shears:
1, 2 2For the top storey P P P P P= + + +
120
20
6
P kN⇒ = =
1 2
,
6
P P
For the bottom storey Q
+
=
120 180
50
6
kN
+
= =,
6
y Q
6
Dept. of CE, GCE Kannur Dr.RajeshKN
120kN 3 5 m
A
Moments:
35kNm
m
3.5 mMoments:
35kN
20kN
1.75m
35kNm 10kN
20kN
35kNm 35kNm
B
35kNm 35kNm
40kN10kN
70kNm
10kN
Dept. of CE, GCE Kannur Dr.RajeshKN
29
Beam moments:
B C DA
Beam moments:
35
35
35
35
35
3535 35 35
FE G
H
122.5
122.5
122.5 122.5
122.5 122.5
J K LI
Dept. of CE, GCE Kannur Dr.RajeshKN
30
Column moments:
B C DA 7035 kNm
70
35 kNm
Column moments:
FE G
H
35 87.5 87.5175 70 3570 175
J K LI
87.5 87.5175 175
Dept. of CE, GCE Kannur Dr.RajeshKN
31
Beam and Column moments:
35
B D
35 35 35
7035 70
35
35 35
35 87 5
87.5175
70 3570
175
122.5 122.5
122 5
122.5
122 535 87.5 122.5 122.5 122.5
87 5 87 5175 17587.5 87.5175 175
Dept. of CE, GCE Kannur Dr.RajeshKN
32
Home work
B CA40 kN B CA
5m
40 kN
5 m 7.5 m
FED
3.5
80 kN
m5m
H IG
Dept. of CE, GCE Kannur Dr.RajeshKN
33
CANTILEVER METHODCANTILEVER METHOD
• Frame considered as a vertical cantilever
Assumptions
1. The points of contraflexure in all the members lie at
their midpoints.
2. The direct stresses (axial stresses) in the columns are
directly proportional to their distance from thedirectly proportional to their distance from the
centroidal vertical axis of the frame.
Dept. of CE, GCE Kannur Dr.RajeshKN
P1
y1
y2 y3
y4
P2
A1 A2
A3 A4
Area of cross
ti
Centroidal vertical axis
of the frame
section
1 1 2 2 3 3 4 4Ad A d Ad A d
y
A A A A
+ + +
=
+ + +
To locate centroidal vertical
axis of the frame,
Dept. of CE, GCE Kannur Dr.RajeshKN
35
1 2 3 4A A A A+ + +
V1 V2 V3 V4
x
My
I
σ =
MM
I
is constant at a given height (of the ‘vertical cantilever’).
1 2 3 4
1 2 3 4y y y y
σ σ σ σ
= = = 31 2 431 2 4
1 2 3 4
V AV A V A V A
y y y y
⇒ = = = ( )1
Dept. of CE, GCE Kannur Dr.RajeshKN
1 2 3 4y y y y 1 2 3 4y y y y
1P
h m1
m2
H1 H2 H3 H4
2 B
V1 V2 V3 V4
1 1 1 2 2 3 3 4 4
2
B
h
M P Vm V m V m V m⇒ = + − −∑ ( )2
( ) ( ) 1 2 3 4, , , , .1 2From and V V V V can be found( ) ( ) 1 2 3 4, , , , .1 2From and V V V V can be found
Dept. of CE, GCE Kannur Dr.RajeshKN
1P
H1 H2 H3 H4
1 1 2 3 4P H H H H= + + +
Dept. of CE, GCE Kannur Dr.RajeshKN
Problem 4: Analyse the frame using cantilever method, if allob e : y g ,
the columns have the same area of cross section.
B C DA
m
120 kN
7 m 3.5 m 5 m
FE G
H
3.5m
180 kN
m
H
3.5m
J K LI J K LI
Dept. of CE, GCE Kannur Dr.RajeshKN
39
To locate centroidal vertical axis of the frame,
1 1 1 10 7 10.5 15.5A A A A
y
A A A A
× + × + × + ×
=
+ + +
To locate centroidal vertical axis of the frame,
33
8.25
4
m= =
1 1 1 1A A A A+ + + 4
120
8.25
1.25 2.25
7.25
180
Also, 31 2 431 2 4
V AV A V A V A
= = = 1 2 3 4V V V V
⇒ = = =
Dept. of CE, GCE Kannur Dr.RajeshKN
40
Also,
8.25 1.25 2.25 7.25
= = =
8.25 1.25 2.25 7.25
⇒
1 25 2 25 7 25V V V1 1 1
2 3 4
1.25 2.25 7.25
, ,
8.25 8.25 8.25
V V V
V V V= = =
1P
2
h m1
m2
O
H1 H2 H3 H4
2 O
V1 V2 V3 V4
1 1 1 2 2 3 3 4 4
2
O
h
M P Vm V m V m V m⇒ = + − −∑,For the top storey
1 2 3 4
3.5
120 15.5 8.5 5 0
2
V V V V⇒ × = × + × − × − ×
Dept. of CE, GCE Kannur Dr.RajeshKN
41
3 5 ⎛ ⎞ ⎛ ⎞1 1
1
3.5 1.25 2.25
120 15.5 8.5 5
2 8.25 8.25
V V
V ⎛ ⎞ ⎛ ⎞⇒ × = × + × − ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
1 13.615V kN⇒ =
2
1.25 13.615
2.063 ,
8.25
2 25 13 615
V kN
×
= =
3
2.25 13.615
3.713 ,
8.25
7 25 13 615
V kN
×
= =
×
4
7.25 13.615
11.965
8.25
V kN
×
= =
: 13.615 2.063 3.713 11.965 0Check + − − =
Dept. of CE, GCE Kannur Dr.RajeshKN
H1 H2 H3 H4
V1 V2 V3
V4
O
V1 V2 V3 4
3 53 5⎛ ⎞
,For the bottom storey
1 2 3 4
3.53.5
120 180 15.5 8.5 5 03.5
22
OM V V V V⎛ ⎞⇒ × + × = × + × − × − ×+⎜ ⎟
⎝ ⎠
∑
Dept. of CE, GCE Kannur Dr.RajeshKN
3 5 1 25 2 253 5 V V⎛ ⎞ ⎛ ⎞⎛ ⎞ 1 1
1
3.5 1.25 2.253.5
120 180 15.5 8.5 53.5
2 8.25 8.252
V V
V ⎛ ⎞ ⎛ ⎞⎛ ⎞⇒ × + × = × + × − ×+⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
1 61.267V kN⇒ =
1 25 61 267×
2
1.25 61.267
9.283 ,
8.25
2.25 61.267
16 709
V kN
V kN
×
= =
×
3 16.709 ,
8.25
7.25 61.267
53 841
V kN
V kN
= =
×
= =4 53.841
8.25
V kN= =
: 61 267 9 283 16 709 53 841 0Check + − − =
Dept. of CE, GCE Kannur Dr.RajeshKN
: 61.267 9.283 16.709 53.841 0Check + − − =
120kNMoments:
47.652kNm
A120kN 3.5 m
Moments: A
1.75m
47.652kNm 13.615kN
27.3kN
k13.615kN
Dept. of CE, GCE Kannur Dr.RajeshKN
45
Beam and Column moments:
29.9
B D
47.6 27.4 29.9
7547.6 57.3
B D
47.6
27.4 29.9
47 6 119 2
74.8187.8
57.3 29.975
143.2
166.8 96
96
104.7
104 747.6 119.2
74.8187.8 143.2
166.8 96 104.7
119 2 74 8187 8 143 2119.2 74.8187.8 143.2
Dept. of CE, GCE Kannur Dr.RajeshKN
46
BA25 kN
Home work
BA25 kN
6 m
5m
DC50 kN
3.53.5m
k
FE55 kN
4.5m
HG
Dept. of CE, GCE Kannur Dr.RajeshKN
47
FACTOR METHODFACTOR METHOD
• More accurate than Portal and Cantilever methodsMore accurate than Portal and Cantilever methods
• Specially useful when moments of inertia of various
b d ffmembers are different.
Basis:
• At any joint the total moment is shared by all the members
in proportion to their stiffnesses
• Half the moment gets carried over to the far endHalf the moment gets carried over to the far end
Dept. of CE, GCE Kannur Dr.RajeshKN
Gi d d l f tGirder and column factors:
• Relative stiffness of a member
I
k =
Girder factor at a joint
Relative stiffness of a member k
L
=
Girder factor at a joint
,k of all meeting at the joint
g
columns
=
∑
,
g
k of all members meeting at the joint
=
∑
Column factor at a joint
,
1
,
k of all meeting at the joint
c g
k of all members meeting at the joint
beams
= = −
∑
∑
Dept. of CE, GCE Kannur Dr.RajeshKN
, f g j∑
Moment factor for a member
,mC c k for a column= ,
,
m
m
f
G g k for a beam=
m
m
where c c half of column facor of far end
and g g half of girder facor of far end
= +
= +m
storeC sum of column moment factors for a y→∑
G sum of beam moment factors for a joint→∑
Dept. of CE, GCE Kannur Dr.RajeshKN
Problem 5: Analyse the frame using factor method.
H IG40 kN
ob e 5: y g
H IG
5m
40 kN
5 m 7.5 m
FED
3.5
80 kN
m5m
B CA
Dept. of CE, GCE Kannur Dr.RajeshKN
Total column moment above DEF 40 3.5 140kNm= × =
Total column moment above ABC 40 8 5 80 5 740kNm= × + × =Total column moment above ABC 40 8.5 80 5 740kNm× + ×
Dept. of CE, GCE Kannur Dr.RajeshKN
1 2 3 4 5 6 7 8 9 10 11 12
JOINT MEMBER k=I/L Ʃk FACTOR c/2 5+6 MOMENT Total Col DFB BeamJOINT MEMBER k I/L Ʃk FACTOR c/2,
g/2
from
far
end
5+6 MOMENT
FACTOR
Total
Col.
Mom, MT
Col.
Mom,
MC =
MT×
C/ƩC
DFB
=G/ƩG
Beam
Mom
= MC ×
DFBCol Beam Col Beam c
=Ʃk(be
g
=Ʃk(c
cm gm C=
cm ×
G =
gm × C/ƩC(
ams)/Ʃ
k
(
olumn
s)/Ʃk
k k
D
DA 0.2
0.686
0.29 0.5 0.79 0.158 740 99.4
DE 0.2 0.71 0.3 1.01 0.202 1 122.6
DG 0 286 0 29 0 3 0 59 0 169 140 23 2DG 0.286 0.29 0.3 0.59 0.169 140 23.2
E
ED 0.2
0.819
0.59 0.36 0.95 0.19 0.59 83.25
EH 0.286 0.41 0.27 0.68 0.194 140 26.6
EF 0.133 0.59 0.4 0.99 0.132 0.41 57.85
EB 0.2 0.41 0.5 0.91 0.182 740 114.5
FE 0 133 0 79 0 3 1 09 0 145 1 133 03
F
FE 0.133
0.772
0.79 0.3 1.09 0.145 1 133.03
FI 0.286 0.21 0.16 0.37 0.106 140 14.6
FC 0.2 0.21 0.5 0.71 0.142 740 89.3
G
GD 0.286
0.486
0.59 0.15 0.74 0.212 140 29.1
GH 0.2 0.41 0.23 0.64 0.128 1 29.1
H
HG 0.2
0.772
0.46 0.21 0.67 0.134 0.559 16.5
HE 0.286 0.54 0.21 0.75 0.215 140 29.5
HI 0.133 0.46 0.34 0.8 0.106 0.441 13.0
I
IH 0.133
0.419
0.68 0.23 0.91 0.121 1 16.58
IF 0 286 0 32 0 11 0 43 0 123 140 16 58IF 0.286 0.32 0.11 0.43 0.123 140 16.58
A AD 0.2 X 0.2 1 0 0.15 1.15 0.23 740 144.7
B BE 0.2 X 0.2 1 0 0.21 1.21 0.242 740 152.2
C CF 0.2 X 0.2 1 0 0.11 1.11 0.222 740 139.6
0 169 0 194 0 106 0 212 0 215 0 123 1 019F h C∑
Dept. of CE, GCE Kannur Dr.RajeshKN
, 0.169 0.194 0.106 0.212 0.215 0.123 1.019For the top storey C = + + + + + =∑
, 0.158 0.182 0.142 0.23 0.242 0.222 1.176For the bottom storey C = + + + + + =∑
Home work
B CA120 kN
6 m 6 m
4m
60 kN
FED60 kN
6m
H IG
Dept. of CE, GCE Kannur Dr.RajeshKN
54
SummarySummary
Approximate Methods of Analysis of Multi-storey Frames
• Analysis for vertical loads - Substitute frames-Loading
conditions for maximum positive and negative bending
moments in beams and maximum bending moment in columns
• Analysis for lateral loads - Portal method–Cantilever method–y
Factor method.
Dept. of CE, GCE Kannur Dr.RajeshKN

More Related Content

PPT
Estimation
PPTX
Foundations
PDF
Module4 plastic theory- rajesh sir
PPTX
Introduction to estimation
PDF
Design of masonry structures 2004
PDF
Cross drainage work
PPT
Industrial waste water pollution tmba 2013-04
PPTX
Retaining wall
Estimation
Foundations
Module4 plastic theory- rajesh sir
Introduction to estimation
Design of masonry structures 2004
Cross drainage work
Industrial waste water pollution tmba 2013-04
Retaining wall

What's hot (20)

PPTX
Watertank
PDF
Unit 3 flexibility-anujajape
PPTX
Design of t beam bridge using wsm(2)
PDF
Structural analysis 1
PPTX
Chapter 4 repair, rehabilitation & retrofiiting
PPTX
Pile foundations
PPTX
Doubly R C Beam
PPT
Roof truss
PPTX
Pre stressed concrete
PPTX
Design and Detailing of RC structures
PPTX
PPTX
Design of R.C.C Beam
PPTX
Bridge inspection,maintenance and repair
PPTX
Shear, bond bearing,camber & deflection in prestressed concrete
PDF
Structural analysis 2
PPSX
Design of steel structures Introduction
PPTX
Plastic analysis
PPTX
Type of caissons
PDF
Design of rcc structures note
PPTX
Stiffness method of structural analysis
Watertank
Unit 3 flexibility-anujajape
Design of t beam bridge using wsm(2)
Structural analysis 1
Chapter 4 repair, rehabilitation & retrofiiting
Pile foundations
Doubly R C Beam
Roof truss
Pre stressed concrete
Design and Detailing of RC structures
Design of R.C.C Beam
Bridge inspection,maintenance and repair
Shear, bond bearing,camber & deflection in prestressed concrete
Structural analysis 2
Design of steel structures Introduction
Plastic analysis
Type of caissons
Design of rcc structures note
Stiffness method of structural analysis
Ad

Viewers also liked (6)

PPTX
flexibility method
PDF
Module1 1 introduction-tomatrixms - rajesh sir
PDF
Module2 stiffness- rajesh sir
PDF
Module1 flexibility-1- rajesh sir
PDF
Ch 1 structural analysis stiffness method
PDF
Flexibility ppt 1
flexibility method
Module1 1 introduction-tomatrixms - rajesh sir
Module2 stiffness- rajesh sir
Module1 flexibility-1- rajesh sir
Ch 1 structural analysis stiffness method
Flexibility ppt 1
Ad

Similar to Module3 rajesh sir (20)

PPTX
intro to plastic analysis. pptxplastic analysis
PDF
Module2 rajesh sir
PDF
Module4 rajesh sir
PDF
Mechanics of structures - module3
PDF
Module4 s dynamics- rajesh sir
PDF
Module4 s dynamics- rajesh sir
PDF
Module2 stiffness- rajesh sir
PDF
Module1 1 introduction-tomatrixms - rajesh sir
PDF
Module1 rajesh sir
PDF
Module1 c - rajesh sir
PDF
Module1 flexibility-2-problems- rajesh sir
PDF
Module1 flexibility-2-problems- rajesh sir
PDF
Module3 direct stiffness- rajesh sir
PDF
Module3 direct stiffness- rajesh sir
PDF
Module1 flexibility-1- rajesh sir
PDF
Lecture 2( Moment distribution method with sway)
PDF
Chapter 05 - Distributed Forces-Centroids and Centers of Gravity.pdf
PPTX
ANALYSIS OF CONTINUOUS BEAM USING STIFFNESS METHOD
PDF
Mechanics of structures - module1
PDF
Mechanics of structures module4
intro to plastic analysis. pptxplastic analysis
Module2 rajesh sir
Module4 rajesh sir
Mechanics of structures - module3
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sir
Module2 stiffness- rajesh sir
Module1 1 introduction-tomatrixms - rajesh sir
Module1 rajesh sir
Module1 c - rajesh sir
Module1 flexibility-2-problems- rajesh sir
Module1 flexibility-2-problems- rajesh sir
Module3 direct stiffness- rajesh sir
Module3 direct stiffness- rajesh sir
Module1 flexibility-1- rajesh sir
Lecture 2( Moment distribution method with sway)
Chapter 05 - Distributed Forces-Centroids and Centers of Gravity.pdf
ANALYSIS OF CONTINUOUS BEAM USING STIFFNESS METHOD
Mechanics of structures - module1
Mechanics of structures module4

More from SHAMJITH KM (20)

PDF
Salah of the Prophet (ﷺ).pdf
PPTX
Construction Materials and Engineering - Module IV - Lecture Notes
PPTX
Construction Materials and Engineering - Module III - Lecture Notes
PPTX
Construction Materials and Engineering - Module II - Lecture Notes
PPTX
Construction Materials and Engineering - Module I - Lecture Notes
DOCX
Computing fundamentals lab record - Polytechnics
DOCX
Concrete lab manual - Polytechnics
DOCX
Concrete Technology Study Notes
PDF
നബി(സ)യുടെ നമസ്കാരം - രൂപവും പ്രാര്ത്ഥനകളും
DOCX
Design of simple beam using staad pro - doc file
PDF
Design of simple beam using staad pro
PPTX
Python programs - PPT file (Polytechnics)
PDF
Python programs - first semester computer lab manual (polytechnics)
PDF
Python programming Workshop SITTTR - Kalamassery
PDF
Analysis of simple beam using STAAD Pro (Exp No 1)
PDF
Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)
PDF
Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)
PDF
CAD Lab model viva questions
PPTX
Brain Computer Interface (BCI) - seminar PPT
PDF
Surveying - Module iii-levelling only note
Salah of the Prophet (ﷺ).pdf
Construction Materials and Engineering - Module IV - Lecture Notes
Construction Materials and Engineering - Module III - Lecture Notes
Construction Materials and Engineering - Module II - Lecture Notes
Construction Materials and Engineering - Module I - Lecture Notes
Computing fundamentals lab record - Polytechnics
Concrete lab manual - Polytechnics
Concrete Technology Study Notes
നബി(സ)യുടെ നമസ്കാരം - രൂപവും പ്രാര്ത്ഥനകളും
Design of simple beam using staad pro - doc file
Design of simple beam using staad pro
Python programs - PPT file (Polytechnics)
Python programs - first semester computer lab manual (polytechnics)
Python programming Workshop SITTTR - Kalamassery
Analysis of simple beam using STAAD Pro (Exp No 1)
Theory of structures I - STUDENT NOTE BOOK (Polytechnics Revision 2015)
Theory of structures II - STUDENT NOTE BOOK (Polytechnics Revision 2015)
CAD Lab model viva questions
Brain Computer Interface (BCI) - seminar PPT
Surveying - Module iii-levelling only note

Recently uploaded (20)

PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PDF
Digital Logic Computer Design lecture notes
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPT
Mechanical Engineering MATERIALS Selection
DOCX
573137875-Attendance-Management-System-original
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PPTX
CH1 Production IntroductoryConcepts.pptx
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
Well-logging-methods_new................
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
Sustainable Sites - Green Building Construction
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Digital Logic Computer Design lecture notes
Model Code of Practice - Construction Work - 21102022 .pdf
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Mechanical Engineering MATERIALS Selection
573137875-Attendance-Management-System-original
bas. eng. economics group 4 presentation 1.pptx
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Embodied AI: Ushering in the Next Era of Intelligent Systems
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
CH1 Production IntroductoryConcepts.pptx
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Automation-in-Manufacturing-Chapter-Introduction.pdf
Well-logging-methods_new................
UNIT 4 Total Quality Management .pptx
Sustainable Sites - Green Building Construction
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks

Module3 rajesh sir

  • 1. Structural Analysis - II Approximate Methods Dr. Rajesh K. N. Assistant professor in Civil EngineeringAssistant professor in Civil Engineering Govt. College of Engineering, Kannur Dept. of CE, GCE Kannur Dr.RajeshKN
  • 2. Module IIIModule III Approximate Methods of Analysis of Multi-storey Frames • Analysis for vertical loads - Substitute frames-Loading conditions for maximum positive and negative bending moments in beams and maximum bending moment in columns • Analysis for lateral loads - Portal method–Cantilever method–y Factor method. Dept. of CE, GCE Kannur Dr.RajeshKN 2
  • 3. Why approximate analysis? • Rapid check on computer aided analysis y pp x y • Preliminary dimensioning before exact analysis Advantage? • Fasterg Disadvantage? • Results are approximateg pp • Approximate methods are particularly useful for multi-storey frames taller than 3 storeys. Dept. of CE, GCE Kannur Dr.RajeshKN
  • 4. Approximate analysis for Vertical LoadsApproximate analysis for Vertical Loads SUBSTITUTE FRAME METHOD • Analyse only a part of the frame – substitute frame SUBSTITUTE FRAME METHOD Analyse only a part of the frame substitute frame • Carry out a two-cycle moment distribution Dept. of CE, GCE Kannur Dr.RajeshKN
  • 5. Substitute frame Actual frame Dept. of CE, GCE Kannur Dr.RajeshKN
  • 6. • Analysis done for:y • Beam span moments • Beam support moments • Column moments • Liveload positioning for the worst condition • For the same frame, liveload positions for maximum span t t t d l tmoments, support moments and column moments may be different • For maximum moments at different points, liveload positions may de different Dept. of CE, GCE Kannur Dr.RajeshKN positions may de different
  • 7. LL positions for maximum positive span moment at Bp p p B Influence D d l d Li l d line for MB Dead loads Live loads Dept. of CE, GCE Kannur Dr.RajeshKN
  • 8. LL positions for maximum negative support moment at Apos t o s o ax u egat e suppo t o e t at A Influence Live loads line for MA Dead loads Dept. of CE, GCE Kannur Dr.RajeshKN Dead loads
  • 9. LL positions for maximum column moment M1 at Cpos t o s o ax u co u o e t M1 at C C M1 Live loadsLive loads Dead loads Dept. of CE, GCE Kannur Dr.RajeshKN
  • 10. LL positions for maximum column moment M2 at Dpos t o s o ax u co u o e t M2 at D M2 D Live loadsLive loads Dead loads Dept. of CE, GCE Kannur Dr.RajeshKN
  • 11. Problem 1: Total dead load is 12 kN/m. Total live load is 20ob e : N/ kN/m. Analyse the frame for midspan positive moment on BC. 4m 6 m 6 m 6 m B C DA 4m4m Dept. of CE, GCE Kannur Dr.RajeshKN 11
  • 12. 12+20 kN/m B D 12 kN/m 12 kN/m B C D A 6 m 6 m 6 m Fi d d t 2 2 12 6 36AB wl FEM kNm − − × = = = − 36BAFEM kNm= Fixed end moments 12 12 AB 2 32 6 96FEM kN − × 96FEM kNm=96 12 BCFEM kNm= = − 36CD DCFEM FEM kNm− = = 96CBFEM kNm= Dept. of CE, GCE Kannur Dr.RajeshKN 36CD DCFEM FEM kNm
  • 13. Distribution factors 1 4 6 0.25 4 6 4 4 4 4 AB DC K EI DF DF K K K EI EI EI = = = = 1 2 3 4 6 4 4 4 4 AB DC K K K EI EI EI+ + + + 4 6K EI1 1 2 3 4 4 6 0.2 4 4 4 6 4 4 4 6 BA K EI DF K K K K EI EI EI EI = = = + + + + + + 0.2BC CD CB BADF DF DF DF= = = = Dept. of CE, GCE Kannur Dr.RajeshKN
  • 14. A B C D 0.2 0.2 * * * * * * FEM 0.2 0.20.25 DFs0.25 * * * * * * * * * * CO Dist * * * * Final Moments Dist Dept. of CE, GCE Kannur Dr.RajeshKN
  • 15. A B C D 0.2 0.2 -36 36 -96 96 -36 36 FEM 0.2 0.20.25 DFs0.25 9 12 12 -12 -12 -9 6 4.5 -6 6 -4.5 -6 CO Dist 2.25 0.3 0.3 -0.3 -0.3 -2.25 -18.75 52.8 -89.7 89.7 52.8 18.75 Final Moments Dist Dept. of CE, GCE Kannur Dr.RajeshKN
  • 16. B 89.7kNm 89.7kNm 32kN mA B 89.7kNm 32kN m 2 3 32 6× Midspan positive moment on BC, 3 32 6 89.7 32 3 54.3 2 2 EM kNm × = − − × + × = Dept. of CE, GCE Kannur Dr.RajeshKN
  • 17. Problem 2: Analyse the frame for beam negative moment at B. M t f i ti f b i 1 5 ti th t f l T t l d dMoment of inertia of beams is 1.5 times that of columns. Total dead load is 14 kN/m and total live load is 9 kN/m. 6 m 4m4 m 3.5m.5m B A m3 DC 3.5m3.5m Dept. of CE, GCE Kannur Dr.RajeshKN 17 3
  • 18. 14+9 kN/m 14+9 kN/m I B D6 m 14 kN/mI B C D A 6 m 4 m 4 m I 1.5I 1.5I 1.5I Fi d d t 2 2 23 6 69AB wl FEM kNm − − × = = = − 69BAFEM kNm= Fixed end moments 12 12 AB 2 23 4 30.67BC CBFEM FEM kNm × − = = = 30.67 12 BC CBFEM FEM kNm 2 14 4 36CD DCFEM FEM kNm × − = = = Dept. of CE, GCE Kannur Dr.RajeshKN 36 12 CD DCFEM FEM kNm
  • 19. Distribution factors ( ) ( ) 1 4 61.5 0.304 4 6 4 3 5 4 3 5 AB K E I DF K K K E EI EI = = = ( )1 2 3 4 6 4 3.5 4 3.51.5 AB K K K E EI EII+ + + + 1 5 6K I1 1 2 3 4 1.5 6 0.209 1.5 6 3.5 3.5 1.5 4 BA K I DF K K K K I I I I = = = + + + + + + 1 1 2 3 4 1.5 4 0.313 1.5 6 3.5 3.5 1.5 4 BC K I DF K K K K I I I I = = = + + + + + +1 2 3 4 0.284, 0.284, 0.396CB CD DCDF DF DF= = = Dept. of CE, GCE Kannur Dr.RajeshKN
  • 20. A B C D 0.209 0.313 0.284 0.2840.304 DFs0.3960.209 0.313 * * * * * * * * * FEM Dist 0. 8 0. 8 0.396 * * * * CO Dist * * Final Moments Dept. of CE, GCE Kannur Dr.RajeshKN
  • 21. A B C D 0.209 0.313 -69 69 -30.67 30.67 -18.67 FEM 0.284 0.2840.304 DFs0.396 20.98 -8.01 -12 -3.41 10.49 -1.71 CO Dist -1.84 -2.75 69.64 -47.13 Final Moments Dist B 69 64kNm47 13kNm B 69.64kNm47.13kNm Max. beam negative moment at B 69.64 kNm= Dept. of CE, GCE Kannur Dr.RajeshKN
  • 22. Approximate analysis for Horizontal LoadsApproximate analysis for Horizontal Loads 1 P t l th d1. Portal method 2. Cantilever method 3. Factor method Dept. of CE, GCE Kannur Dr.RajeshKN 22
  • 23. PORTAL METHODPORTAL METHOD Assumptions 1. The points of contraflexure in all the members lie at their midpoints. 2. Horizontal shear taken by each interior column is doubley that taken by each exterior column. Horizontal forces are assumed to act only at the joints. Dept. of CE, GCE Kannur Dr.RajeshKN
  • 24. CA B C DA P1 P 2P 2P PP P 2P 2P 2P 2P P P FE G HP2 Q 2Q 2Q Q Q 2Q 2Q Q J K LI Dept. of CE, GCE Kannur Dr.RajeshKN 24
  • 25. P 1 2 2P P P P P= + + + 1 6 P P⇒ = Dept. of CE, GCE Kannur Dr.RajeshKN
  • 26. 2 2P P Q Q Q Q+ = + + + 1 2P P Q + ⇒ =1 2 2 2P P Q Q Q Q+ = + + + 1 2 6 Q⇒ = Dept. of CE, GCE Kannur Dr.RajeshKN
  • 27. Problem 3: Analyse the frame using portal method.ob e 3: y g p B C DA m 120 kN 7 m 3.5 m 5 m FE G H 3.5m 180 kN m H 3.5m J K LI J K LI Dept. of CE, GCE Kannur Dr.RajeshKN 27
  • 28. Horizontal shears: 1, 2 2For the top storey P P P P P= + + + 120 20 6 P kN⇒ = = 1 2 , 6 P P For the bottom storey Q + = 120 180 50 6 kN + = =, 6 y Q 6 Dept. of CE, GCE Kannur Dr.RajeshKN
  • 29. 120kN 3 5 m A Moments: 35kNm m 3.5 mMoments: 35kN 20kN 1.75m 35kNm 10kN 20kN 35kNm 35kNm B 35kNm 35kNm 40kN10kN 70kNm 10kN Dept. of CE, GCE Kannur Dr.RajeshKN 29
  • 30. Beam moments: B C DA Beam moments: 35 35 35 35 35 3535 35 35 FE G H 122.5 122.5 122.5 122.5 122.5 122.5 J K LI Dept. of CE, GCE Kannur Dr.RajeshKN 30
  • 31. Column moments: B C DA 7035 kNm 70 35 kNm Column moments: FE G H 35 87.5 87.5175 70 3570 175 J K LI 87.5 87.5175 175 Dept. of CE, GCE Kannur Dr.RajeshKN 31
  • 32. Beam and Column moments: 35 B D 35 35 35 7035 70 35 35 35 35 87 5 87.5175 70 3570 175 122.5 122.5 122 5 122.5 122 535 87.5 122.5 122.5 122.5 87 5 87 5175 17587.5 87.5175 175 Dept. of CE, GCE Kannur Dr.RajeshKN 32
  • 33. Home work B CA40 kN B CA 5m 40 kN 5 m 7.5 m FED 3.5 80 kN m5m H IG Dept. of CE, GCE Kannur Dr.RajeshKN 33
  • 34. CANTILEVER METHODCANTILEVER METHOD • Frame considered as a vertical cantilever Assumptions 1. The points of contraflexure in all the members lie at their midpoints. 2. The direct stresses (axial stresses) in the columns are directly proportional to their distance from thedirectly proportional to their distance from the centroidal vertical axis of the frame. Dept. of CE, GCE Kannur Dr.RajeshKN
  • 35. P1 y1 y2 y3 y4 P2 A1 A2 A3 A4 Area of cross ti Centroidal vertical axis of the frame section 1 1 2 2 3 3 4 4Ad A d Ad A d y A A A A + + + = + + + To locate centroidal vertical axis of the frame, Dept. of CE, GCE Kannur Dr.RajeshKN 35 1 2 3 4A A A A+ + +
  • 36. V1 V2 V3 V4 x My I σ = MM I is constant at a given height (of the ‘vertical cantilever’). 1 2 3 4 1 2 3 4y y y y σ σ σ σ = = = 31 2 431 2 4 1 2 3 4 V AV A V A V A y y y y ⇒ = = = ( )1 Dept. of CE, GCE Kannur Dr.RajeshKN 1 2 3 4y y y y 1 2 3 4y y y y
  • 37. 1P h m1 m2 H1 H2 H3 H4 2 B V1 V2 V3 V4 1 1 1 2 2 3 3 4 4 2 B h M P Vm V m V m V m⇒ = + − −∑ ( )2 ( ) ( ) 1 2 3 4, , , , .1 2From and V V V V can be found( ) ( ) 1 2 3 4, , , , .1 2From and V V V V can be found Dept. of CE, GCE Kannur Dr.RajeshKN
  • 38. 1P H1 H2 H3 H4 1 1 2 3 4P H H H H= + + + Dept. of CE, GCE Kannur Dr.RajeshKN
  • 39. Problem 4: Analyse the frame using cantilever method, if allob e : y g , the columns have the same area of cross section. B C DA m 120 kN 7 m 3.5 m 5 m FE G H 3.5m 180 kN m H 3.5m J K LI J K LI Dept. of CE, GCE Kannur Dr.RajeshKN 39
  • 40. To locate centroidal vertical axis of the frame, 1 1 1 10 7 10.5 15.5A A A A y A A A A × + × + × + × = + + + To locate centroidal vertical axis of the frame, 33 8.25 4 m= = 1 1 1 1A A A A+ + + 4 120 8.25 1.25 2.25 7.25 180 Also, 31 2 431 2 4 V AV A V A V A = = = 1 2 3 4V V V V ⇒ = = = Dept. of CE, GCE Kannur Dr.RajeshKN 40 Also, 8.25 1.25 2.25 7.25 = = = 8.25 1.25 2.25 7.25 ⇒
  • 41. 1 25 2 25 7 25V V V1 1 1 2 3 4 1.25 2.25 7.25 , , 8.25 8.25 8.25 V V V V V V= = = 1P 2 h m1 m2 O H1 H2 H3 H4 2 O V1 V2 V3 V4 1 1 1 2 2 3 3 4 4 2 O h M P Vm V m V m V m⇒ = + − −∑,For the top storey 1 2 3 4 3.5 120 15.5 8.5 5 0 2 V V V V⇒ × = × + × − × − × Dept. of CE, GCE Kannur Dr.RajeshKN 41
  • 42. 3 5 ⎛ ⎞ ⎛ ⎞1 1 1 3.5 1.25 2.25 120 15.5 8.5 5 2 8.25 8.25 V V V ⎛ ⎞ ⎛ ⎞⇒ × = × + × − ×⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ 1 13.615V kN⇒ = 2 1.25 13.615 2.063 , 8.25 2 25 13 615 V kN × = = 3 2.25 13.615 3.713 , 8.25 7 25 13 615 V kN × = = × 4 7.25 13.615 11.965 8.25 V kN × = = : 13.615 2.063 3.713 11.965 0Check + − − = Dept. of CE, GCE Kannur Dr.RajeshKN
  • 43. H1 H2 H3 H4 V1 V2 V3 V4 O V1 V2 V3 4 3 53 5⎛ ⎞ ,For the bottom storey 1 2 3 4 3.53.5 120 180 15.5 8.5 5 03.5 22 OM V V V V⎛ ⎞⇒ × + × = × + × − × − ×+⎜ ⎟ ⎝ ⎠ ∑ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 44. 3 5 1 25 2 253 5 V V⎛ ⎞ ⎛ ⎞⎛ ⎞ 1 1 1 3.5 1.25 2.253.5 120 180 15.5 8.5 53.5 2 8.25 8.252 V V V ⎛ ⎞ ⎛ ⎞⎛ ⎞⇒ × + × = × + × − ×+⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 1 61.267V kN⇒ = 1 25 61 267× 2 1.25 61.267 9.283 , 8.25 2.25 61.267 16 709 V kN V kN × = = × 3 16.709 , 8.25 7.25 61.267 53 841 V kN V kN = = × = =4 53.841 8.25 V kN= = : 61 267 9 283 16 709 53 841 0Check + − − = Dept. of CE, GCE Kannur Dr.RajeshKN : 61.267 9.283 16.709 53.841 0Check + − − =
  • 45. 120kNMoments: 47.652kNm A120kN 3.5 m Moments: A 1.75m 47.652kNm 13.615kN 27.3kN k13.615kN Dept. of CE, GCE Kannur Dr.RajeshKN 45
  • 46. Beam and Column moments: 29.9 B D 47.6 27.4 29.9 7547.6 57.3 B D 47.6 27.4 29.9 47 6 119 2 74.8187.8 57.3 29.975 143.2 166.8 96 96 104.7 104 747.6 119.2 74.8187.8 143.2 166.8 96 104.7 119 2 74 8187 8 143 2119.2 74.8187.8 143.2 Dept. of CE, GCE Kannur Dr.RajeshKN 46
  • 47. BA25 kN Home work BA25 kN 6 m 5m DC50 kN 3.53.5m k FE55 kN 4.5m HG Dept. of CE, GCE Kannur Dr.RajeshKN 47
  • 48. FACTOR METHODFACTOR METHOD • More accurate than Portal and Cantilever methodsMore accurate than Portal and Cantilever methods • Specially useful when moments of inertia of various b d ffmembers are different. Basis: • At any joint the total moment is shared by all the members in proportion to their stiffnesses • Half the moment gets carried over to the far endHalf the moment gets carried over to the far end Dept. of CE, GCE Kannur Dr.RajeshKN
  • 49. Gi d d l f tGirder and column factors: • Relative stiffness of a member I k = Girder factor at a joint Relative stiffness of a member k L = Girder factor at a joint ,k of all meeting at the joint g columns = ∑ , g k of all members meeting at the joint = ∑ Column factor at a joint , 1 , k of all meeting at the joint c g k of all members meeting at the joint beams = = − ∑ ∑ Dept. of CE, GCE Kannur Dr.RajeshKN , f g j∑
  • 50. Moment factor for a member ,mC c k for a column= , , m m f G g k for a beam= m m where c c half of column facor of far end and g g half of girder facor of far end = + = +m storeC sum of column moment factors for a y→∑ G sum of beam moment factors for a joint→∑ Dept. of CE, GCE Kannur Dr.RajeshKN
  • 51. Problem 5: Analyse the frame using factor method. H IG40 kN ob e 5: y g H IG 5m 40 kN 5 m 7.5 m FED 3.5 80 kN m5m B CA Dept. of CE, GCE Kannur Dr.RajeshKN
  • 52. Total column moment above DEF 40 3.5 140kNm= × = Total column moment above ABC 40 8 5 80 5 740kNm= × + × =Total column moment above ABC 40 8.5 80 5 740kNm× + × Dept. of CE, GCE Kannur Dr.RajeshKN
  • 53. 1 2 3 4 5 6 7 8 9 10 11 12 JOINT MEMBER k=I/L Ʃk FACTOR c/2 5+6 MOMENT Total Col DFB BeamJOINT MEMBER k I/L Ʃk FACTOR c/2, g/2 from far end 5+6 MOMENT FACTOR Total Col. Mom, MT Col. Mom, MC = MT× C/ƩC DFB =G/ƩG Beam Mom = MC × DFBCol Beam Col Beam c =Ʃk(be g =Ʃk(c cm gm C= cm × G = gm × C/ƩC( ams)/Ʃ k ( olumn s)/Ʃk k k D DA 0.2 0.686 0.29 0.5 0.79 0.158 740 99.4 DE 0.2 0.71 0.3 1.01 0.202 1 122.6 DG 0 286 0 29 0 3 0 59 0 169 140 23 2DG 0.286 0.29 0.3 0.59 0.169 140 23.2 E ED 0.2 0.819 0.59 0.36 0.95 0.19 0.59 83.25 EH 0.286 0.41 0.27 0.68 0.194 140 26.6 EF 0.133 0.59 0.4 0.99 0.132 0.41 57.85 EB 0.2 0.41 0.5 0.91 0.182 740 114.5 FE 0 133 0 79 0 3 1 09 0 145 1 133 03 F FE 0.133 0.772 0.79 0.3 1.09 0.145 1 133.03 FI 0.286 0.21 0.16 0.37 0.106 140 14.6 FC 0.2 0.21 0.5 0.71 0.142 740 89.3 G GD 0.286 0.486 0.59 0.15 0.74 0.212 140 29.1 GH 0.2 0.41 0.23 0.64 0.128 1 29.1 H HG 0.2 0.772 0.46 0.21 0.67 0.134 0.559 16.5 HE 0.286 0.54 0.21 0.75 0.215 140 29.5 HI 0.133 0.46 0.34 0.8 0.106 0.441 13.0 I IH 0.133 0.419 0.68 0.23 0.91 0.121 1 16.58 IF 0 286 0 32 0 11 0 43 0 123 140 16 58IF 0.286 0.32 0.11 0.43 0.123 140 16.58 A AD 0.2 X 0.2 1 0 0.15 1.15 0.23 740 144.7 B BE 0.2 X 0.2 1 0 0.21 1.21 0.242 740 152.2 C CF 0.2 X 0.2 1 0 0.11 1.11 0.222 740 139.6 0 169 0 194 0 106 0 212 0 215 0 123 1 019F h C∑ Dept. of CE, GCE Kannur Dr.RajeshKN , 0.169 0.194 0.106 0.212 0.215 0.123 1.019For the top storey C = + + + + + =∑ , 0.158 0.182 0.142 0.23 0.242 0.222 1.176For the bottom storey C = + + + + + =∑
  • 54. Home work B CA120 kN 6 m 6 m 4m 60 kN FED60 kN 6m H IG Dept. of CE, GCE Kannur Dr.RajeshKN 54
  • 55. SummarySummary Approximate Methods of Analysis of Multi-storey Frames • Analysis for vertical loads - Substitute frames-Loading conditions for maximum positive and negative bending moments in beams and maximum bending moment in columns • Analysis for lateral loads - Portal method–Cantilever method–y Factor method. Dept. of CE, GCE Kannur Dr.RajeshKN