Спайковые и бионические нейронные
сети: проблемы и перспекитвы
Dmitry Nowicki
1
Биологический нейрон
2
Нейрон МакКаллока-Питтса
(не похож !?)
3
Historical perspective for “brain ingredients”
Key players
1665 – First use of simple microscope to view living cells (Robert Hooke) 1839 –
“Cell theory” (Theodor Schwann) – but is it true for the brain?
1870 – Camilo Golgi develops his silver-based method, for randomly
staining nerve cells
1887 – S. Ramon Y. Cajal uses Golgi technique – proposes the “neuron
doctrine”
1891 – Hienrich Waldeyer – coined the word “Neuron”
1897 - Charles Sherrington coined the word “synapse”
Sigmund Freud drawing crayfish neurons, 1882
Сеть прямого распространения
5
Сеть Хопфилда: простейшая
ассоциативная память
6
Работает как
динамическая
система с
аттракторами
Occipital Lobe
Parietal Lob
Frontal Lobe
Temporal Lobe
Our “meat machine” what does it consists of?
Zooming into cortical networks
Courtesy of the Blue Brain Team, EPFL
tical (2-photons) imaging of cortical circuit (anatomy & activity)
Courtesy of Adi Mizrahi, Hebrew University
Adi_Green.jpgAdi_Green.jpg
Optical (2-photons) imaging of Hippocampal circuit
Courtesy of Adi Mizrahi, Hebrew University
AI&BigData Lab 2016. Дмитрий Новицкий: cпайковые и бионические нейронные сети: проблемы и перспекитвы
Layer 5 neocortical pyramidal cells
The Nobel Prize in Physiology or Medicine 1906
in recognition of their work on the structure of the nervous system
Camillo Golgi
(1843-1926)
Santiago Ramón y Cajal
(1852-1934)
AI&BigData Lab 2016. Дмитрий Новицкий: cпайковые и бионические нейронные сети: проблемы и перспекитвы
S. Ramon Y Cajal
Possible direction of current flow and pattern of axo-dendritic connection
The “Neuron Doctrine” and the“Theory of dynamic polarization”
axondendrites
Dendrites are receptive (input) devices
Axon are the sending (output) devices
Courtesy of Kevan Martin, Univ.
Zurich)
The neocortical (pyramidal) cell
Dendritic tree
Axonal tree + varicosities
The neuron as an input-output electrical device
(conceptual, details will follow)
Excitatory
Inhbitory
Soma
Axon
Dendrites
excitatory
inhibitory
Excitatory post-synaptic
potential (EPSPs)
spikes
Inhibitory post synaptic
potential (IPSPs)
INPUT
OUTPUT
Spiking activity of a neuron
Axons “fire” spikes (carrying the brain code)
Axonal tree sending output - Spikes
Typical morphology of a neuron
soma
dendrites
axon
nodes of
Ranvier
Inter-node
myelin
no myelin
Axon terminals
(pre-synaptic site)
axon initial segment
(AIS)
“HOT” region
generating “spikes”
Poliak & Peles
Nature Reviews Neuroscience 4, 968-980 (December 2003)
The myelin of axons
Poliak & Peles
Nature Reviews Neuroscience 4, 968-980 (December 2003)
Myelinating glial cells, oligodendrocytes in the central nervous system (CNS) or
Schwann cells in the peripheral nervous system (PNS), form the myelin sheath
by enwrapping their membrane several times around the axon.
0.3 - 4mm
Helen C. Lai and Lily Y. Jan
Nature Reviews Neuroscience 7, 548-562 (July 2006)
The node of Ranvier in axons
Hot (excitable) region
A typical axon in the central nervous system (CNS
summary
1. A single, highly branched, thin (mm) process emerging from the
soma. Branched locally but may extend far (many centimeters
and even meters) away from the soma
2. At the “hot” axon initial segment (AIS) the spike (“action
potential”) is initiated and then propagates along the axon
3. Covered with myelin (isolating) lipid sheath, with intermittent
small gaps – the nodes of Ranvier (where “hot” – excitable ion
channels reside)
4. Decorated with frequent swellings (axonal boutons) – where the
neurotransmitter “hides” (the pre-synaptic site)
The axon is the output electrical device of neurons,
It generates and carries electrical signals called spikes
Dendrites
Purkinje cell (cerebellum)
(Courtesy of M. Hausser)
Starburst amacrine cell (retina)
(Courtesy of W. Denk)
CA1 Pyramidal cell (hippocampus)
(Courtesy of D. Johnston)
An example: The layer 5 cortical pyramidal cell
(the “psychic” cell by Cajal)
Dendritic spines
Dendrites with spines
Spiny neurons
Typical numbers
Total dendritic area – 20,000 mm2
Number of dendritic spines/cell – 8,000
Spine area – ~1 mm2
Number of converging inputs (synapses/cell) – 10,000
Intracellular injection of Lucifer
Yellow in fixed cortical tissue
Layer II
Layer V
Human pyramidal
neuron from the
neocortex
Spines
spines
20 mm
1 mm
Courtesy of Javier DeFelipe, University Madrid
Neuron types
• Classification by anatomical features (“the face” of dendrites and axons)
• Classification – functional (e.g., Excitatory (principal) vs. Inhibitory (inter)
neurons)
• Classification using electrical/spiking activity pattern
• Classification using chemical characteristics
• Classification using gene expression
Microcircuit of the Neocortex
Z. J. Huang, G. Di Cristo & F. Ango
Nature Reviews Neuroscience 8, 673-686 (September 2007)
Principal neurons
(excitatory) - axon projects
to other brain regions
Interneurons (inhibitory) –
local axonal projection
Morphometric-based classification of (inhibitory) interneurons
DeFelipe et al., Nature Review neuroscience, 2013
Electrically-based neuron classification
(based of spiking patterns)
Courtesy of the Blue Brain
data-base
The Chemical Synapse
A (chemical/electrical) device that connects
axon of neuron A to dendrites of neuron B
Dendrites of
neuron B
Axon of
neuron A
(note varicosities)
A chemical synapse
formed between axons and dendrites
Axonal terminal
(pre-synaptic)
Dendritic spine
(post-synaptic)
Synapse
(with gap)
The chemical synapse
Axon cell A
(small vesicles)
Spine: cell “B”
SPIKE at axon (digital - “all or none)
Excitatory synaptic potential
(analog/graded)
excitatory
synapse
axon
Spiny dendrite
The Chemical Synapse
When two cells fire together
the synapse between them strengthens
Cell A
Dendrite of Cell BAxon of Cell A
Receptors binding
neurotransmitter
Vesicles containing
neurotransmitter molecules
Chemical synapse
a
E. Lisman, Sridhar Raghavachari & Richard W. Tsien
Nature Reviews Neuroscience 8, 597-609 (August 2007)
Vesicle quantal release
E. Lisman, Sridhar Raghavachari & Richard W. Tsien
Nature Reviews Neuroscience 8, 597-609 (August 2007)
Vesicle quantal release
E. Lisman, Sridhar Raghavachari & Richard W. Tsien
Nature Reviews Neuroscience 8, 597-609 (August 2007)
Vesicle quantal release
E. Lisman, Sridhar Raghavachari & Richard W. Tsien
Nature Reviews Neuroscience 8, 597-609 (August 2007)
What neurons “see” when embedded in the
(cortical) circuit
L4 Spiny Stellate Cell
covered with (excitatory and inhibotory synapses)
The neuron as an input-output electrical device
(SUMMARY after you’ve been learning)
Excitatory
Inhbitory
Soma
Axon
Dendrites
excitatory
inhibitory
Excitatory post-synaptic
potential (EPSPs)
spikes
Inhibitory post synaptic
potential (IPSPs)
INPUT
OUTPUT
Integrate and Fire
43
Spike-Time Dependent Plasticity (STPD)
• Spike-Timing Dependent Plasticity (schematic): The STDP
function shows the change of synaptic connections as a
function of the relative timing of pre- and postsynaptic spikes
after 60 spike pairings.
44
STPD (Continued)
• Basic STDP Model
• The weight change Δwj of a synapse from a presynaptic neuron j depends
on the relative timing between presynaptic spike arrivals and postsynaptic
spikes. Let us name the presynaptic spike arrival times at synapse j by tfj
where f=1,2,3,... counts the presynaptic spikes. Similarly, tn with n=1,2,3,...
labels the firing times of the postsynaptic neuron. The total weight change
Δwj induced by a stimulation protocol with pairs of pre- and postsynaptic
spikes is then (Gerstner and al. 1996, Kempter et al. 1999)
• Δwj=∑f=1N∑n=1NW(tni−tfj)(1)
• where W(dt)=F(dt) denotes one of the STDP functions (also called learning
window)
• (Song et al. 2000). The parameters A+ and A− may depend on
the current value of the synaptic weight wj . The time
constants are on the order of τ+=10ms and τ−=10ms
The STDP can control this robot
Схема сети
Мемристоры, хеббовское обучени
Synaptic
transmission
reinforcement
AI&BigData Lab 2016. Дмитрий Новицкий: cпайковые и бионические нейронные сети: проблемы и перспекитвы
Thank you for attention!
50

More Related Content

PPTX
Dimitri Nowicki - “Beyond McCulloch and Pitts: spiking network, deep learning...
PDF
Design of Cortical Neuron Circuits With VLSI Design Approach
PPT
Jeopardy
PPT
Brain And Nervous System
PDF
AI&BigData Lab 2016. Сарапин Виктор: Размер имеет значение: анализ по требова...
PDF
Java/Scala Lab 2016. Григорий Кравцов: Реализация и тестирование DAO слоя с н...
PPTX
AI&BigData Lab 2016. Константин Герасименко: MOLAP: Новые границы возможного.
PDF
AI&BigData Lab 2016. Григорий Кравцов: Модель вычислений на классификациях
Dimitri Nowicki - “Beyond McCulloch and Pitts: spiking network, deep learning...
Design of Cortical Neuron Circuits With VLSI Design Approach
Jeopardy
Brain And Nervous System
AI&BigData Lab 2016. Сарапин Виктор: Размер имеет значение: анализ по требова...
Java/Scala Lab 2016. Григорий Кравцов: Реализация и тестирование DAO слоя с н...
AI&BigData Lab 2016. Константин Герасименко: MOLAP: Новые границы возможного.
AI&BigData Lab 2016. Григорий Кравцов: Модель вычислений на классификациях

Viewers also liked (9)

PPTX
Java/Scala Lab 2016. Владимир Гарбуз: Написание безопасного кода на Java.
PDF
AI&BigData Lab 2016. Руденко Петр: Особенности обучения, настройки и использо...
PDF
AI&BigData Lab 2016. Анатолий Востряков: Перевод с "плохого" английского на "...
PPTX
Java/Scala Lab 2016. Сергей Моренец: Способы повышения эффективности в Java 8.
PDF
AI&BigData Lab 2016. Игорь Костюк: Как приручить музыкальную рекомендательную...
PPTX
AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...
PDF
Java/Scala Lab 2016. Руслан Шевченко: Несколько трюков scala-разработки, приг...
PDF
AI&BigData Lab 2016. Сергей Шельпук: Методология Data Science проектов
PDF
AI&BigData Lab 2016. Александр Баев: Transfer learning - зачем, как и где.
Java/Scala Lab 2016. Владимир Гарбуз: Написание безопасного кода на Java.
AI&BigData Lab 2016. Руденко Петр: Особенности обучения, настройки и использо...
AI&BigData Lab 2016. Анатолий Востряков: Перевод с "плохого" английского на "...
Java/Scala Lab 2016. Сергей Моренец: Способы повышения эффективности в Java 8.
AI&BigData Lab 2016. Игорь Костюк: Как приручить музыкальную рекомендательную...
AI&BigData Lab 2016. Артем Чернодуб: Обучение глубоких, очень глубоких и реку...
Java/Scala Lab 2016. Руслан Шевченко: Несколько трюков scala-разработки, приг...
AI&BigData Lab 2016. Сергей Шельпук: Методология Data Science проектов
AI&BigData Lab 2016. Александр Баев: Transfer learning - зачем, как и где.
Ad

Similar to AI&BigData Lab 2016. Дмитрий Новицкий: cпайковые и бионические нейронные сети: проблемы и перспекитвы (20)

PPTX
The Brain as a Whole: Executive Neurons and Sustaining Homeostatic Glia
PPT
What is (computational) neuroscience?
PDF
Soft computing BY:- Dr. Rakesh Kumar Maurya
PPTX
HUMAN NERVOUS SYSTEM PART 1
PPTX
2.4.lecture 4- synapses
PPT
Nervous system ( anatomy and physiology)
PPTX
What makes me nervous artifact jeopardy
PPT
EGR 183 Bow Tie Presentation
PPTX
What makes me nervous artifact jeopardy
PDF
Neuroscience and neurons in biology introduction
PPTX
Introduction to neurons
PPTX
Nervous System__________________________
PPT
Excitable tissues nerve
PPT
Neuro.ppt
PPTX
Histology of the CNS.pptx including neurons
PPTX
1. Introduction to the CNS
PPT
Nervous tissue
PPTX
nervous system
PDF
Sammelmappe1
The Brain as a Whole: Executive Neurons and Sustaining Homeostatic Glia
What is (computational) neuroscience?
Soft computing BY:- Dr. Rakesh Kumar Maurya
HUMAN NERVOUS SYSTEM PART 1
2.4.lecture 4- synapses
Nervous system ( anatomy and physiology)
What makes me nervous artifact jeopardy
EGR 183 Bow Tie Presentation
What makes me nervous artifact jeopardy
Neuroscience and neurons in biology introduction
Introduction to neurons
Nervous System__________________________
Excitable tissues nerve
Neuro.ppt
Histology of the CNS.pptx including neurons
1. Introduction to the CNS
Nervous tissue
nervous system
Sammelmappe1
Ad

More from GeeksLab Odessa (20)

PDF
DataScience Lab2017_Коррекция геометрических искажений оптических спутниковых...
PDF
DataScience Lab 2017_Kappa Architecture: How to implement a real-time streami...
PDF
DataScience Lab 2017_Блиц-доклад_Турский Виктор
PDF
DataScience Lab 2017_Обзор методов детекции лиц на изображение
PDF
DataScienceLab2017_Сходство пациентов: вычистка дубликатов и предсказание про...
PDF
DataScienceLab2017_Блиц-доклад
PDF
DataScienceLab2017_Блиц-доклад
PDF
DataScienceLab2017_Блиц-доклад
PDF
DataScienceLab2017_Cервинг моделей, построенных на больших данных с помощью A...
PDF
DataScienceLab2017_BioVec: Word2Vec в задачах анализа геномных данных и биоин...
PDF
DataScienceLab2017_Data Sciences и Big Data в Телекоме_Александр Саенко
PDF
DataScienceLab2017_Высокопроизводительные вычислительные возможности для сист...
PDF
DataScience Lab 2017_Мониторинг модных трендов с помощью глубокого обучения и...
PDF
DataScience Lab 2017_Кто здесь? Автоматическая разметка спикеров на телефонны...
PDF
DataScience Lab 2017_From bag of texts to bag of clusters_Терпиль Евгений / П...
PDF
DataScience Lab 2017_Графические вероятностные модели для принятия решений в ...
PDF
DataScienceLab2017_Оптимизация гиперпараметров машинного обучения при помощи ...
PDF
DataScienceLab2017_Как знать всё о покупателях (или почти всё)?_Дарина Перемот
PDF
JS Lab 2017_Mapbox GL: как работают современные интерактивные карты_Владимир ...
PPTX
JS Lab2017_Под микроскопом: блеск и нищета микросервисов на node.js
DataScience Lab2017_Коррекция геометрических искажений оптических спутниковых...
DataScience Lab 2017_Kappa Architecture: How to implement a real-time streami...
DataScience Lab 2017_Блиц-доклад_Турский Виктор
DataScience Lab 2017_Обзор методов детекции лиц на изображение
DataScienceLab2017_Сходство пациентов: вычистка дубликатов и предсказание про...
DataScienceLab2017_Блиц-доклад
DataScienceLab2017_Блиц-доклад
DataScienceLab2017_Блиц-доклад
DataScienceLab2017_Cервинг моделей, построенных на больших данных с помощью A...
DataScienceLab2017_BioVec: Word2Vec в задачах анализа геномных данных и биоин...
DataScienceLab2017_Data Sciences и Big Data в Телекоме_Александр Саенко
DataScienceLab2017_Высокопроизводительные вычислительные возможности для сист...
DataScience Lab 2017_Мониторинг модных трендов с помощью глубокого обучения и...
DataScience Lab 2017_Кто здесь? Автоматическая разметка спикеров на телефонны...
DataScience Lab 2017_From bag of texts to bag of clusters_Терпиль Евгений / П...
DataScience Lab 2017_Графические вероятностные модели для принятия решений в ...
DataScienceLab2017_Оптимизация гиперпараметров машинного обучения при помощи ...
DataScienceLab2017_Как знать всё о покупателях (или почти всё)?_Дарина Перемот
JS Lab 2017_Mapbox GL: как работают современные интерактивные карты_Владимир ...
JS Lab2017_Под микроскопом: блеск и нищета микросервисов на node.js

Recently uploaded (20)

PPT
What is a Computer? Input Devices /output devices
PDF
How IoT Sensor Integration in 2025 is Transforming Industries Worldwide
PDF
Flame analysis and combustion estimation using large language and vision assi...
PPTX
The various Industrial Revolutions .pptx
PPTX
GROUP4NURSINGINFORMATICSREPORT-2 PRESENTATION
PDF
Comparative analysis of machine learning models for fake news detection in so...
PPTX
Build Your First AI Agent with UiPath.pptx
PDF
CloudStack 4.21: First Look Webinar slides
PPT
Module 1.ppt Iot fundamentals and Architecture
PDF
A contest of sentiment analysis: k-nearest neighbor versus neural network
PDF
The influence of sentiment analysis in enhancing early warning system model f...
PDF
A proposed approach for plagiarism detection in Myanmar Unicode text
PDF
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
PPT
Geologic Time for studying geology for geologist
PDF
UiPath Agentic Automation session 1: RPA to Agents
PPTX
Configure Apache Mutual Authentication
PDF
Architecture types and enterprise applications.pdf
PPTX
2018-HIPAA-Renewal-Training for executives
PDF
Getting started with AI Agents and Multi-Agent Systems
PPTX
Modernising the Digital Integration Hub
What is a Computer? Input Devices /output devices
How IoT Sensor Integration in 2025 is Transforming Industries Worldwide
Flame analysis and combustion estimation using large language and vision assi...
The various Industrial Revolutions .pptx
GROUP4NURSINGINFORMATICSREPORT-2 PRESENTATION
Comparative analysis of machine learning models for fake news detection in so...
Build Your First AI Agent with UiPath.pptx
CloudStack 4.21: First Look Webinar slides
Module 1.ppt Iot fundamentals and Architecture
A contest of sentiment analysis: k-nearest neighbor versus neural network
The influence of sentiment analysis in enhancing early warning system model f...
A proposed approach for plagiarism detection in Myanmar Unicode text
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
Geologic Time for studying geology for geologist
UiPath Agentic Automation session 1: RPA to Agents
Configure Apache Mutual Authentication
Architecture types and enterprise applications.pdf
2018-HIPAA-Renewal-Training for executives
Getting started with AI Agents and Multi-Agent Systems
Modernising the Digital Integration Hub

AI&BigData Lab 2016. Дмитрий Новицкий: cпайковые и бионические нейронные сети: проблемы и перспекитвы

  • 1. Спайковые и бионические нейронные сети: проблемы и перспекитвы Dmitry Nowicki 1
  • 4. Historical perspective for “brain ingredients” Key players 1665 – First use of simple microscope to view living cells (Robert Hooke) 1839 – “Cell theory” (Theodor Schwann) – but is it true for the brain? 1870 – Camilo Golgi develops his silver-based method, for randomly staining nerve cells 1887 – S. Ramon Y. Cajal uses Golgi technique – proposes the “neuron doctrine” 1891 – Hienrich Waldeyer – coined the word “Neuron” 1897 - Charles Sherrington coined the word “synapse” Sigmund Freud drawing crayfish neurons, 1882
  • 6. Сеть Хопфилда: простейшая ассоциативная память 6 Работает как динамическая система с аттракторами
  • 7. Occipital Lobe Parietal Lob Frontal Lobe Temporal Lobe Our “meat machine” what does it consists of?
  • 8. Zooming into cortical networks Courtesy of the Blue Brain Team, EPFL
  • 9. tical (2-photons) imaging of cortical circuit (anatomy & activity) Courtesy of Adi Mizrahi, Hebrew University
  • 10. Adi_Green.jpgAdi_Green.jpg Optical (2-photons) imaging of Hippocampal circuit Courtesy of Adi Mizrahi, Hebrew University
  • 12. Layer 5 neocortical pyramidal cells
  • 13. The Nobel Prize in Physiology or Medicine 1906 in recognition of their work on the structure of the nervous system Camillo Golgi (1843-1926) Santiago Ramón y Cajal (1852-1934)
  • 15. S. Ramon Y Cajal Possible direction of current flow and pattern of axo-dendritic connection The “Neuron Doctrine” and the“Theory of dynamic polarization” axondendrites Dendrites are receptive (input) devices Axon are the sending (output) devices
  • 16. Courtesy of Kevan Martin, Univ. Zurich) The neocortical (pyramidal) cell Dendritic tree Axonal tree + varicosities
  • 17. The neuron as an input-output electrical device (conceptual, details will follow) Excitatory Inhbitory Soma Axon Dendrites excitatory inhibitory Excitatory post-synaptic potential (EPSPs) spikes Inhibitory post synaptic potential (IPSPs) INPUT OUTPUT
  • 19. Axons “fire” spikes (carrying the brain code) Axonal tree sending output - Spikes
  • 20. Typical morphology of a neuron soma dendrites axon nodes of Ranvier Inter-node myelin no myelin Axon terminals (pre-synaptic site) axon initial segment (AIS) “HOT” region generating “spikes” Poliak & Peles Nature Reviews Neuroscience 4, 968-980 (December 2003)
  • 21. The myelin of axons Poliak & Peles Nature Reviews Neuroscience 4, 968-980 (December 2003) Myelinating glial cells, oligodendrocytes in the central nervous system (CNS) or Schwann cells in the peripheral nervous system (PNS), form the myelin sheath by enwrapping their membrane several times around the axon. 0.3 - 4mm
  • 22. Helen C. Lai and Lily Y. Jan Nature Reviews Neuroscience 7, 548-562 (July 2006) The node of Ranvier in axons Hot (excitable) region
  • 23. A typical axon in the central nervous system (CNS summary 1. A single, highly branched, thin (mm) process emerging from the soma. Branched locally but may extend far (many centimeters and even meters) away from the soma 2. At the “hot” axon initial segment (AIS) the spike (“action potential”) is initiated and then propagates along the axon 3. Covered with myelin (isolating) lipid sheath, with intermittent small gaps – the nodes of Ranvier (where “hot” – excitable ion channels reside) 4. Decorated with frequent swellings (axonal boutons) – where the neurotransmitter “hides” (the pre-synaptic site) The axon is the output electrical device of neurons, It generates and carries electrical signals called spikes
  • 24. Dendrites Purkinje cell (cerebellum) (Courtesy of M. Hausser) Starburst amacrine cell (retina) (Courtesy of W. Denk) CA1 Pyramidal cell (hippocampus) (Courtesy of D. Johnston)
  • 25. An example: The layer 5 cortical pyramidal cell (the “psychic” cell by Cajal) Dendritic spines Dendrites with spines Spiny neurons Typical numbers Total dendritic area – 20,000 mm2 Number of dendritic spines/cell – 8,000 Spine area – ~1 mm2 Number of converging inputs (synapses/cell) – 10,000
  • 26. Intracellular injection of Lucifer Yellow in fixed cortical tissue Layer II Layer V Human pyramidal neuron from the neocortex Spines spines 20 mm 1 mm Courtesy of Javier DeFelipe, University Madrid
  • 27. Neuron types • Classification by anatomical features (“the face” of dendrites and axons) • Classification – functional (e.g., Excitatory (principal) vs. Inhibitory (inter) neurons) • Classification using electrical/spiking activity pattern • Classification using chemical characteristics • Classification using gene expression
  • 28. Microcircuit of the Neocortex Z. J. Huang, G. Di Cristo & F. Ango Nature Reviews Neuroscience 8, 673-686 (September 2007) Principal neurons (excitatory) - axon projects to other brain regions Interneurons (inhibitory) – local axonal projection
  • 29. Morphometric-based classification of (inhibitory) interneurons DeFelipe et al., Nature Review neuroscience, 2013
  • 30. Electrically-based neuron classification (based of spiking patterns) Courtesy of the Blue Brain data-base
  • 31. The Chemical Synapse A (chemical/electrical) device that connects axon of neuron A to dendrites of neuron B Dendrites of neuron B Axon of neuron A (note varicosities)
  • 32. A chemical synapse formed between axons and dendrites Axonal terminal (pre-synaptic) Dendritic spine (post-synaptic) Synapse (with gap)
  • 33. The chemical synapse Axon cell A (small vesicles) Spine: cell “B” SPIKE at axon (digital - “all or none) Excitatory synaptic potential (analog/graded) excitatory synapse axon Spiny dendrite
  • 34. The Chemical Synapse When two cells fire together the synapse between them strengthens Cell A Dendrite of Cell BAxon of Cell A Receptors binding neurotransmitter Vesicles containing neurotransmitter molecules
  • 35. Chemical synapse a E. Lisman, Sridhar Raghavachari & Richard W. Tsien Nature Reviews Neuroscience 8, 597-609 (August 2007)
  • 36. Vesicle quantal release E. Lisman, Sridhar Raghavachari & Richard W. Tsien Nature Reviews Neuroscience 8, 597-609 (August 2007)
  • 37. Vesicle quantal release E. Lisman, Sridhar Raghavachari & Richard W. Tsien Nature Reviews Neuroscience 8, 597-609 (August 2007)
  • 38. Vesicle quantal release E. Lisman, Sridhar Raghavachari & Richard W. Tsien Nature Reviews Neuroscience 8, 597-609 (August 2007)
  • 39. What neurons “see” when embedded in the (cortical) circuit
  • 40. L4 Spiny Stellate Cell covered with (excitatory and inhibotory synapses)
  • 41. The neuron as an input-output electrical device (SUMMARY after you’ve been learning) Excitatory Inhbitory Soma Axon Dendrites excitatory inhibitory Excitatory post-synaptic potential (EPSPs) spikes Inhibitory post synaptic potential (IPSPs) INPUT OUTPUT
  • 43. 43 Spike-Time Dependent Plasticity (STPD) • Spike-Timing Dependent Plasticity (schematic): The STDP function shows the change of synaptic connections as a function of the relative timing of pre- and postsynaptic spikes after 60 spike pairings.
  • 44. 44 STPD (Continued) • Basic STDP Model • The weight change Δwj of a synapse from a presynaptic neuron j depends on the relative timing between presynaptic spike arrivals and postsynaptic spikes. Let us name the presynaptic spike arrival times at synapse j by tfj where f=1,2,3,... counts the presynaptic spikes. Similarly, tn with n=1,2,3,... labels the firing times of the postsynaptic neuron. The total weight change Δwj induced by a stimulation protocol with pairs of pre- and postsynaptic spikes is then (Gerstner and al. 1996, Kempter et al. 1999) • Δwj=∑f=1N∑n=1NW(tni−tfj)(1) • where W(dt)=F(dt) denotes one of the STDP functions (also called learning window) • (Song et al. 2000). The parameters A+ and A− may depend on the current value of the synaptic weight wj . The time constants are on the order of τ+=10ms and τ−=10ms
  • 45. The STDP can control this robot
  • 50. Thank you for attention! 50