SlideShare a Scribd company logo
REASONING WITH PROBABILISTIC
GRAPHICAL MODELS IN A PROJECT
BASED BUSINESS
BY OLGA TATARYNTSEVA, DATA SCIENTIST
• Neural networks
• Deep learning
• Natural language processing
• Image processing
• Big data
• Bioinformatics
Today we are NOT about
• Neural networks
• Deep learning
• Natural language processing
• Image processing
• Big data
• Bioinformatics
• Project based business
• Company organization
• Project management and
project success
• Applying the DS methods to
business problems
• Small example
• Results we gained
Today we are NOT about We are about
Chief Technical officer
... Delivery Director
... PM
... Architects
Business
Analysts
Developers QA
Data
scientists
...
...
...
Simplified structure of delivery organization
Chief Technical officer
... Delivery Director
... PM
... Architects
Business
Analysts
Developers QA
Data
scientists
...
...
...
Simplified structure of delivery organization
PROJECT
Scope
Resources
Quality
Time
Project management triangle
ProjectTeam
Direct contacts with the
customer
Requirements
management
Solution design
Product development
Project budget planning
Working on improvements
and up-sale opportunities
Management of internal
activities
DeliveryDirector
Summarized projects’
budget and cash flow
results
Calculated CSAT
Calculated ESAT
General view of project
activities
Information from reports
built by project team
CTO
Budget flow for vertical
Tendencies of overall CSAT
Tendencies of overall ESAT
Information from reports
built by DDs
Information transfer
Chief Technical officer
Delivery director
PM PM …
Delivery Director
PM PM …
...
PM ...
1000+ employees
Simplified structure of delivery organization
Don’t panic
We have PGM
CTO at ELEKS has a BI Dashboard
• Declarative representation of our understanding of the world
• Identifies the variables and their interaction with each other
• Sources:
• experts’ knowledge
• historical data
• Representation, inference, and learning
• Handles uncertainty
Probabilistic graphical models
«As far as the laws of mathematics refer to reality, they are not certain,
as far as they are certain, they do not refer to reality»
Albert Einstein, 1921
Uncertainty
• Causal inference
• Information extraction
• Message decoding
• Speech recognition
• Computer vision
• Gene finding
• Diagnosis of diseases
• Traffic analysis
• Fault diagnosis
PGM applications
Daphne Koller
Observations:
None
Project health:
success = 68.91%
Project
health
Time: In time Time: Exceed
Budget:
Match
Budget:
Exceed
Budget:
Match
Budget:
Exceed
Success 95 50 40 10
Fail 5 50 60 90
Success = 𝑃 𝑆 𝑖𝑛_𝑡𝑖𝑚𝑒, 𝑚𝑎𝑡𝑐ℎ + 𝑃 𝑆 𝑖𝑛_𝑡𝑖𝑚𝑒, 𝑒𝑥𝑐𝑒𝑒𝑑 + 𝑃 𝑆 𝑒𝑥𝑐𝑒𝑒𝑑, 𝑚𝑎𝑡𝑐ℎ + 𝑆 𝑒𝑥𝑐𝑒𝑒𝑑, 𝑒𝑥𝑐𝑒𝑒𝑑 =
= 0.95*0.6659*0.8071 + 0.5*0.6659*0.1929 + 0.4*0.3341*0.8071 + 0.1*0.3341*0.1929 = 68.91%
F𝐚𝐢𝐥 = 𝑃 𝐹 𝑖𝑛_𝑡𝑖𝑚𝑒, 𝑚𝑎𝑡𝑐ℎ + 𝑃 𝐹 𝑖𝑛_𝑡𝑖𝑚𝑒, 𝑒𝑥𝑐𝑒𝑒𝑑 + 𝑃 𝐹 𝑒𝑥𝑐𝑒𝑒𝑑, 𝑚𝑎𝑡𝑐ℎ + 𝐹 𝑒𝑥𝑐𝑒𝑒𝑑, 𝑒𝑥𝑐𝑒𝑒𝑑 = 31.09%
Node name:
Project health
States
success
fail
Depends on
Time, Project Budget
Conditional probability distribution
Bayesian Model with pgmpy
c_maturity_cpd =
TabularCPD(variable='Customer maturity', variable_card=2,
values=[[0.4, 0.6]], evidence=[], evidence_card=[])
...
pr_health_cpd =
TabularCPD(variable='Project health', variable_card=2,
values=[[0.95, 0.5, 0.4, 0.1], [0.05, 0.5, 0.6, 0.9]],
evidence=['Project budget', 'Time schedule'], evidence_card=[2, 2])
Bayesian Model with pgmpy
pr_health_cpd =
TabularCPD(variable='Project health', variable_card=2,
values=[[0.95, 0.5, 0.4, 0.1], [0.05, 0.5, 0.6, 0.9]],
evidence=['Project budget', 'Time schedule'], evidence_card=[2, 2])
print pr_model.get_cpds('Project health')
+------------------+-----------+------------+------------+-------------+
| Project budget | match | match | exceed | exceed |
+------------------+-----------+------------+------------+-------------+
| Time schedule | in_time | exceed | in_time | exceed |
+------------------+-----------+------------+------------+-------------+
| success | 0.95 | 0.5 | 0.4 | 0.1 |
+------------------+-----------+------------+------------+-------------+
| fail | 0.05 | 0.5 | 0.6 | 0.9 |
+------------------+-----------+------------+------------+-------------+
Bayesian Model with pgmpy
pr_model =
BayesianModel([('Customer maturity', 'Requirements elicitation'),
..., ('Time schedule', 'Project health'),
('Project budget', 'Project health')])
pr_model.add_cpds(c_maturity_cpd, pr_complexity_cpd,
time_cpd, req_elicitation_cpd, req_management_cpd,
res_availability_cpd, c_budget_cpd, pr_budget_cpd,
pr_importance_cpd, pr_health_cpd)
Bayesian Model with pgmpy
res = BeliefPropagation(pr_model).query(variables=["Project health"])
print res["Project health"]
+------------------+-----------------------+
| Project health | phi(Project health) |
|------------------+-----------------------|
| success | 0.6891 |
| fail | 0.3109 |
+------------------+-----------------------+
Observations:
Customer maturity: mature
Customer budget: large
Project health:
success = 73.82% (↑4.91%)
Bayesian Model with pgmpy
res = BeliefPropagation(pr_model).query(
variables=["Project health"],
evidence={'Customer budget':1, 'Customer maturity':0})
print res["Project health"]
+------------------+-----------------------+
| Project health | phi(Project health) |
|------------------+-----------------------|
| success | 0.7382 |
| fail | 0.2618 |
+------------------+-----------------------+
Observations:
Customer maturity: mature
Customer budget: large
Resource availability: available
Project complexity: small
Project importance: very important
Project health:
success = 85.73% (↑11.91%)
Observations:
Customer maturity: mature
Customer budget: large
Resource availability: available
Project complexity: complex
Project importance: very important
Project health:
success = 79.45% (↓ 6.28%)
Maturity
level
Lead
time
Team
composition
Staffing time
Story point
time variance
Risk
management
Granularity of
stories
Stakeholders
substitution
Acceptance
criteria rating
RotationsLegal risks
DataScience Lab 2017_Графические вероятностные модели для принятия решений в проектном управлении_Ольга Татаринцева
Events:
None
Project health:
success = 87.36%
Cooperation model: fixed bid
Project stage: stable
Cycle time: decreasing
Number of the opened and reopened
bugs: decreasing
Finance: fit the company’s KPI values
Environment: tools are set and in-use
Soft- and hardware: no blocking requests
Human resources: no open vacancies
Customer satisfaction index: high
Number of tasks in the in-progress state:
increasing
Predicted release date: out of the schedule
Hypothetic Project observations
Observations:
Listed on previous slide
Project health:
success = 12.71% (↓ 74.65%)
Latest date:
2017-02-14
Project health:
success = 53.18%
Major degradation happened on:
2017-02-10
Reason:
Outage in Quality
Reason:
Descending of Project Effectiveness
Reason:
Cumulating of tasks in Progress
Real project
• New communication tool for all levels of the company which is
already in use on every day basis
• For C-level provides understanding:
• Of the department
• Of each project in particular
• For Project Manager it is an instrument:
• For project organization and control
• For the Client:
• Fair presentation of the project work
Benefits
• Improve metrics for measuring project performance
• Build even more intuitive dashboard
• Introduce the model to our customers
• Improve the reflection of the domain by fitting the model to data
Future work
Inspired by Technology.
Driven by Value.
eleks.com

More Related Content

PDF
Critical chain project management - Gary Palmer
PPTX
Drupal Camp Wroclaw 2015 Measure everything nps
PPTX
Critical chain - Eliyahu goldratt
PDF
Estimator Metrics STC 2009
PPTX
Estimation - web software development estimation DrupalCon and DrupalCamp pre...
PPTX
Behind The Scenes Data Science Coolblue 2018-03-22
PPTX
Saving time with CCPM
PDF
An introduction to Critical Chain Project Management (CCPM)
Critical chain project management - Gary Palmer
Drupal Camp Wroclaw 2015 Measure everything nps
Critical chain - Eliyahu goldratt
Estimator Metrics STC 2009
Estimation - web software development estimation DrupalCon and DrupalCamp pre...
Behind The Scenes Data Science Coolblue 2018-03-22
Saving time with CCPM
An introduction to Critical Chain Project Management (CCPM)

What's hot (15)

PPT
Six sigma green belt project template
PDF
The real reason that projects fail and how to fix it - An introduction to Cri...
PPTX
Critical Chain Project Management
PPTX
Portfolios, programmes and projects. Delivering one version of the truth: a c...
PPS
Critical Chain Project Management
PPT
Critical Chain Basics
PPTX
Open Mastery: Let's Conquer the Challenges of the Industry!
PPTX
Critical Chain Project Management & Theory of Constraints
PDF
Disciplined Agile:  Past, present, and future. The path to true business agil...
PPTX
Immutable principles of project management
PDF
Value Stream Mapping: Beyond the Mechanics - Part 3 (Executing the Transforma...
PDF
PROJECT STORYBOARD: Project Storyboard: Reducing Underwriting Resubmits by Ov...
PDF
Reducing_Learning_Curve_in_LB_GB_Sujith
PDF
The Real Reason That Projects Fail and How to Fix it - An Introduction to Cri...
PPTX
Project management using six sigma
Six sigma green belt project template
The real reason that projects fail and how to fix it - An introduction to Cri...
Critical Chain Project Management
Portfolios, programmes and projects. Delivering one version of the truth: a c...
Critical Chain Project Management
Critical Chain Basics
Open Mastery: Let's Conquer the Challenges of the Industry!
Critical Chain Project Management & Theory of Constraints
Disciplined Agile:  Past, present, and future. The path to true business agil...
Immutable principles of project management
Value Stream Mapping: Beyond the Mechanics - Part 3 (Executing the Transforma...
PROJECT STORYBOARD: Project Storyboard: Reducing Underwriting Resubmits by Ov...
Reducing_Learning_Curve_in_LB_GB_Sujith
The Real Reason That Projects Fail and How to Fix it - An Introduction to Cri...
Project management using six sigma
Ad

Similar to DataScience Lab 2017_Графические вероятностные модели для принятия решений в проектном управлении_Ольга Татаринцева (20)

PPTX
Project Analytics
PDF
Mariusz Gil "Machine Learning"
PDF
Bayesian network based software reliability prediction
PDF
LKCE16 - Estimation made easy by Pawel Brodzinski and Tomek Rusilko
PDF
E-Commerce data modelling
PDF
Experimenting with Data!
PDF
Betsol | Machine Learning for IT Project Estimates
PDF
Adam Suchley - Predictive Delivery Assurance - APM Assurance SIG Conference 2018
PDF
Lecture4 - Machine Learning
PDF
Failure Rate Prediction with Deep Learning
PDF
Bridging the gap from data science to service
PPTX
Predicting Grant Success: University of Melbourne
PPTX
Soil Fertilizer Prediction.pptx is displayed.
PPTX
Bayesian reasoning
PPT
Complementing Approaches in ERP Effort Estimation Practice: an Industrial Study
PDF
Introduction to Big Data Science
PPTX
What is Naïve Bayes Classification and How is it Used for Enterprise Analysis?
PDF
DETERMINING THE RISKY SOFTWARE PROJECTS USING ARTIFICIAL NEURAL NETWORKS
PDF
Lecture3 - Machine Learning
PDF
Introduction to Model-Based Machine Learning for Transportation
Project Analytics
Mariusz Gil "Machine Learning"
Bayesian network based software reliability prediction
LKCE16 - Estimation made easy by Pawel Brodzinski and Tomek Rusilko
E-Commerce data modelling
Experimenting with Data!
Betsol | Machine Learning for IT Project Estimates
Adam Suchley - Predictive Delivery Assurance - APM Assurance SIG Conference 2018
Lecture4 - Machine Learning
Failure Rate Prediction with Deep Learning
Bridging the gap from data science to service
Predicting Grant Success: University of Melbourne
Soil Fertilizer Prediction.pptx is displayed.
Bayesian reasoning
Complementing Approaches in ERP Effort Estimation Practice: an Industrial Study
Introduction to Big Data Science
What is Naïve Bayes Classification and How is it Used for Enterprise Analysis?
DETERMINING THE RISKY SOFTWARE PROJECTS USING ARTIFICIAL NEURAL NETWORKS
Lecture3 - Machine Learning
Introduction to Model-Based Machine Learning for Transportation
Ad

More from GeeksLab Odessa (20)

PDF
DataScience Lab2017_Коррекция геометрических искажений оптических спутниковых...
PDF
DataScience Lab 2017_Kappa Architecture: How to implement a real-time streami...
PDF
DataScience Lab 2017_Блиц-доклад_Турский Виктор
PDF
DataScience Lab 2017_Обзор методов детекции лиц на изображение
PDF
DataScienceLab2017_Сходство пациентов: вычистка дубликатов и предсказание про...
PDF
DataScienceLab2017_Блиц-доклад
PDF
DataScienceLab2017_Блиц-доклад
PDF
DataScienceLab2017_Блиц-доклад
PDF
DataScienceLab2017_Cервинг моделей, построенных на больших данных с помощью A...
PDF
DataScienceLab2017_BioVec: Word2Vec в задачах анализа геномных данных и биоин...
PDF
DataScienceLab2017_Data Sciences и Big Data в Телекоме_Александр Саенко
PDF
DataScienceLab2017_Высокопроизводительные вычислительные возможности для сист...
PDF
DataScience Lab 2017_Мониторинг модных трендов с помощью глубокого обучения и...
PDF
DataScience Lab 2017_Кто здесь? Автоматическая разметка спикеров на телефонны...
PDF
DataScience Lab 2017_From bag of texts to bag of clusters_Терпиль Евгений / П...
PDF
DataScienceLab2017_Оптимизация гиперпараметров машинного обучения при помощи ...
PDF
DataScienceLab2017_Как знать всё о покупателях (или почти всё)?_Дарина Перемот
PDF
JS Lab 2017_Mapbox GL: как работают современные интерактивные карты_Владимир ...
PPTX
JS Lab2017_Под микроскопом: блеск и нищета микросервисов на node.js
PDF
JS Lab2017_Redux: время двигаться дальше?_Екатерина Лизогубова
DataScience Lab2017_Коррекция геометрических искажений оптических спутниковых...
DataScience Lab 2017_Kappa Architecture: How to implement a real-time streami...
DataScience Lab 2017_Блиц-доклад_Турский Виктор
DataScience Lab 2017_Обзор методов детекции лиц на изображение
DataScienceLab2017_Сходство пациентов: вычистка дубликатов и предсказание про...
DataScienceLab2017_Блиц-доклад
DataScienceLab2017_Блиц-доклад
DataScienceLab2017_Блиц-доклад
DataScienceLab2017_Cервинг моделей, построенных на больших данных с помощью A...
DataScienceLab2017_BioVec: Word2Vec в задачах анализа геномных данных и биоин...
DataScienceLab2017_Data Sciences и Big Data в Телекоме_Александр Саенко
DataScienceLab2017_Высокопроизводительные вычислительные возможности для сист...
DataScience Lab 2017_Мониторинг модных трендов с помощью глубокого обучения и...
DataScience Lab 2017_Кто здесь? Автоматическая разметка спикеров на телефонны...
DataScience Lab 2017_From bag of texts to bag of clusters_Терпиль Евгений / П...
DataScienceLab2017_Оптимизация гиперпараметров машинного обучения при помощи ...
DataScienceLab2017_Как знать всё о покупателях (или почти всё)?_Дарина Перемот
JS Lab 2017_Mapbox GL: как работают современные интерактивные карты_Владимир ...
JS Lab2017_Под микроскопом: блеск и нищета микросервисов на node.js
JS Lab2017_Redux: время двигаться дальше?_Екатерина Лизогубова

Recently uploaded (20)

PPTX
A Presentation on Artificial Intelligence
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Machine learning based COVID-19 study performance prediction
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PPTX
Big Data Technologies - Introduction.pptx
PPTX
MYSQL Presentation for SQL database connectivity
PDF
Electronic commerce courselecture one. Pdf
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
A Presentation on Artificial Intelligence
Unlocking AI with Model Context Protocol (MCP)
Machine learning based COVID-19 study performance prediction
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
20250228 LYD VKU AI Blended-Learning.pptx
The AUB Centre for AI in Media Proposal.docx
Diabetes mellitus diagnosis method based random forest with bat algorithm
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
The Rise and Fall of 3GPP – Time for a Sabbatical?
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Digital-Transformation-Roadmap-for-Companies.pptx
Big Data Technologies - Introduction.pptx
MYSQL Presentation for SQL database connectivity
Electronic commerce courselecture one. Pdf
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy

DataScience Lab 2017_Графические вероятностные модели для принятия решений в проектном управлении_Ольга Татаринцева

  • 1. REASONING WITH PROBABILISTIC GRAPHICAL MODELS IN A PROJECT BASED BUSINESS BY OLGA TATARYNTSEVA, DATA SCIENTIST
  • 2. • Neural networks • Deep learning • Natural language processing • Image processing • Big data • Bioinformatics Today we are NOT about
  • 3. • Neural networks • Deep learning • Natural language processing • Image processing • Big data • Bioinformatics • Project based business • Company organization • Project management and project success • Applying the DS methods to business problems • Small example • Results we gained Today we are NOT about We are about
  • 4. Chief Technical officer ... Delivery Director ... PM ... Architects Business Analysts Developers QA Data scientists ... ... ... Simplified structure of delivery organization
  • 5. Chief Technical officer ... Delivery Director ... PM ... Architects Business Analysts Developers QA Data scientists ... ... ... Simplified structure of delivery organization PROJECT
  • 7. ProjectTeam Direct contacts with the customer Requirements management Solution design Product development Project budget planning Working on improvements and up-sale opportunities Management of internal activities DeliveryDirector Summarized projects’ budget and cash flow results Calculated CSAT Calculated ESAT General view of project activities Information from reports built by project team CTO Budget flow for vertical Tendencies of overall CSAT Tendencies of overall ESAT Information from reports built by DDs Information transfer
  • 8. Chief Technical officer Delivery director PM PM … Delivery Director PM PM … ... PM ... 1000+ employees Simplified structure of delivery organization
  • 10. CTO at ELEKS has a BI Dashboard
  • 11. • Declarative representation of our understanding of the world • Identifies the variables and their interaction with each other • Sources: • experts’ knowledge • historical data • Representation, inference, and learning • Handles uncertainty Probabilistic graphical models
  • 12. «As far as the laws of mathematics refer to reality, they are not certain, as far as they are certain, they do not refer to reality» Albert Einstein, 1921 Uncertainty
  • 13. • Causal inference • Information extraction • Message decoding • Speech recognition • Computer vision • Gene finding • Diagnosis of diseases • Traffic analysis • Fault diagnosis PGM applications Daphne Koller
  • 15. Project health Time: In time Time: Exceed Budget: Match Budget: Exceed Budget: Match Budget: Exceed Success 95 50 40 10 Fail 5 50 60 90 Success = 𝑃 𝑆 𝑖𝑛_𝑡𝑖𝑚𝑒, 𝑚𝑎𝑡𝑐ℎ + 𝑃 𝑆 𝑖𝑛_𝑡𝑖𝑚𝑒, 𝑒𝑥𝑐𝑒𝑒𝑑 + 𝑃 𝑆 𝑒𝑥𝑐𝑒𝑒𝑑, 𝑚𝑎𝑡𝑐ℎ + 𝑆 𝑒𝑥𝑐𝑒𝑒𝑑, 𝑒𝑥𝑐𝑒𝑒𝑑 = = 0.95*0.6659*0.8071 + 0.5*0.6659*0.1929 + 0.4*0.3341*0.8071 + 0.1*0.3341*0.1929 = 68.91% F𝐚𝐢𝐥 = 𝑃 𝐹 𝑖𝑛_𝑡𝑖𝑚𝑒, 𝑚𝑎𝑡𝑐ℎ + 𝑃 𝐹 𝑖𝑛_𝑡𝑖𝑚𝑒, 𝑒𝑥𝑐𝑒𝑒𝑑 + 𝑃 𝐹 𝑒𝑥𝑐𝑒𝑒𝑑, 𝑚𝑎𝑡𝑐ℎ + 𝐹 𝑒𝑥𝑐𝑒𝑒𝑑, 𝑒𝑥𝑐𝑒𝑒𝑑 = 31.09% Node name: Project health States success fail Depends on Time, Project Budget Conditional probability distribution
  • 16. Bayesian Model with pgmpy c_maturity_cpd = TabularCPD(variable='Customer maturity', variable_card=2, values=[[0.4, 0.6]], evidence=[], evidence_card=[]) ... pr_health_cpd = TabularCPD(variable='Project health', variable_card=2, values=[[0.95, 0.5, 0.4, 0.1], [0.05, 0.5, 0.6, 0.9]], evidence=['Project budget', 'Time schedule'], evidence_card=[2, 2])
  • 17. Bayesian Model with pgmpy pr_health_cpd = TabularCPD(variable='Project health', variable_card=2, values=[[0.95, 0.5, 0.4, 0.1], [0.05, 0.5, 0.6, 0.9]], evidence=['Project budget', 'Time schedule'], evidence_card=[2, 2]) print pr_model.get_cpds('Project health') +------------------+-----------+------------+------------+-------------+ | Project budget | match | match | exceed | exceed | +------------------+-----------+------------+------------+-------------+ | Time schedule | in_time | exceed | in_time | exceed | +------------------+-----------+------------+------------+-------------+ | success | 0.95 | 0.5 | 0.4 | 0.1 | +------------------+-----------+------------+------------+-------------+ | fail | 0.05 | 0.5 | 0.6 | 0.9 | +------------------+-----------+------------+------------+-------------+
  • 18. Bayesian Model with pgmpy pr_model = BayesianModel([('Customer maturity', 'Requirements elicitation'), ..., ('Time schedule', 'Project health'), ('Project budget', 'Project health')]) pr_model.add_cpds(c_maturity_cpd, pr_complexity_cpd, time_cpd, req_elicitation_cpd, req_management_cpd, res_availability_cpd, c_budget_cpd, pr_budget_cpd, pr_importance_cpd, pr_health_cpd)
  • 19. Bayesian Model with pgmpy res = BeliefPropagation(pr_model).query(variables=["Project health"]) print res["Project health"] +------------------+-----------------------+ | Project health | phi(Project health) | |------------------+-----------------------| | success | 0.6891 | | fail | 0.3109 | +------------------+-----------------------+
  • 20. Observations: Customer maturity: mature Customer budget: large Project health: success = 73.82% (↑4.91%)
  • 21. Bayesian Model with pgmpy res = BeliefPropagation(pr_model).query( variables=["Project health"], evidence={'Customer budget':1, 'Customer maturity':0}) print res["Project health"] +------------------+-----------------------+ | Project health | phi(Project health) | |------------------+-----------------------| | success | 0.7382 | | fail | 0.2618 | +------------------+-----------------------+
  • 22. Observations: Customer maturity: mature Customer budget: large Resource availability: available Project complexity: small Project importance: very important Project health: success = 85.73% (↑11.91%)
  • 23. Observations: Customer maturity: mature Customer budget: large Resource availability: available Project complexity: complex Project importance: very important Project health: success = 79.45% (↓ 6.28%)
  • 24. Maturity level Lead time Team composition Staffing time Story point time variance Risk management Granularity of stories Stakeholders substitution Acceptance criteria rating RotationsLegal risks
  • 27. Cooperation model: fixed bid Project stage: stable Cycle time: decreasing Number of the opened and reopened bugs: decreasing Finance: fit the company’s KPI values Environment: tools are set and in-use Soft- and hardware: no blocking requests Human resources: no open vacancies Customer satisfaction index: high Number of tasks in the in-progress state: increasing Predicted release date: out of the schedule Hypothetic Project observations
  • 28. Observations: Listed on previous slide Project health: success = 12.71% (↓ 74.65%)
  • 29. Latest date: 2017-02-14 Project health: success = 53.18% Major degradation happened on: 2017-02-10 Reason: Outage in Quality Reason: Descending of Project Effectiveness Reason: Cumulating of tasks in Progress Real project
  • 30. • New communication tool for all levels of the company which is already in use on every day basis • For C-level provides understanding: • Of the department • Of each project in particular • For Project Manager it is an instrument: • For project organization and control • For the Client: • Fair presentation of the project work Benefits
  • 31. • Improve metrics for measuring project performance • Build even more intuitive dashboard • Introduce the model to our customers • Improve the reflection of the domain by fitting the model to data Future work
  • 32. Inspired by Technology. Driven by Value. eleks.com