SlideShare a Scribd company logo
ALGORITHMIC DYNAMICS
OF CELLULAR AUTOMATA
In celebration of Prof. Harold McIntosh
Hector Zenil
www.hectorzenil.net
An example of an ECA: Rule 255
Elementary Cellular Automata
Wolfram’s original ECA classification
• Class 1. Symbolic systems which rapidly converge to a
uniform state. Examples are rules 0, 32 and 160.
• Class 2. Symbolic systems which rapidly converge to a
repetitive or stable state. Examples are rules 4, 108 and
218.
• Class 3. Symbolic systems which appear to remain in a
random state. Examples are rules 22, 30, 126 and 189.
• Class 4. Symbolic systems which form areas of repetitive
or stable states, but which also form structures that interact
with each other in complicated ways. Examples are rules
54 and 110.
What classification?
1001 (Left) versus starting from 1011 (Right)
ECA rule 22
Compression-Based Investigation of the
Dynamical Properties of Cellular Automata
and Other Systems, vol. 19, No. 1, pp. 1-28, 2010
Gray Code
First 50 initial configurations based on a
Gray-code enumeration for binary CAs.
H. Zenil et al., Asymptotic Behaviour and Ratios of Complexity in Cellular Automata
Rule Spaces, International Journal of Bifurcation and Chaos vol. 23, no. 9, 2013.
Strong symmetry breaking in the initial
condition produces a phase transition
leading to the production of high statistical
randomness
Bi-stable behaviour of ECA Rule 22
H. Zenil et al., Asymptotic Behaviour and Ratios of Complexity in Cellular Automata
Rule Spaces, International Journal of Bifurcation and Chaos vol. 23, no. 9, 2013.
Compressing space-time evolutions of
ECAs Evolution of rules 95, 82,
50, and 30 together with
the compressed
(dashed line) and
uncompressed (solid line)
lengths.
Compression-Based Investigation of the
Dynamical Properties of Cellular Automata
and Other Systems, vol. 19, No. 1, pp. 1-28, 2010
AIT-based separation found
Discrepancies: ECA Rule 73 and 94 are class 2 in
Wolfram’s original classification
H. Zenil et al., Asymptotic Behaviour and Ratios of Complexity in Cellular Automata
Rule Spaces, International Journal of Bifurcation and Chaos vol. 23, no. 9, 2013.
The asymptotic bevahiour of CAs towards
greater complexity
Consistent across all measures: block entropy, lossless
compression (Compress) and algorithmic probability (CTM/BDM)
H. Zenil et al., Asymptotic Behaviour and Ratios of Complexity in Cellular Automata
Rule Spaces, International Journal of Bifurcation and Chaos vol. 23, no. 9, 2013.
CA block emulation (compilers)
Rule 54 emulates 51
J Riedel, H. Zenil, Cross-boundary Behavioural
Reprogrammability Reveals Evidence of Pervasive
Turing Universality, 2016.
Cross-boundary breaking of classes
J Riedel, H. Zenil, Cross-boundary Behavioural
Reprogrammability Reveals Evidence of Pervasive
Turing Universality, 2016.
Cross-boundary breaking of classes
Rule 54 emulates 51
J Riedel, H. Zenil, Cross-boundary Behavioural Reprogrammability Reveals Evidence of
Pervasive Turing Universality, 2016.
Cross-boundary class breaking
J Riedel, H. Zenil,
Cross-boundary Behavioural
Reprogrammability Reveals
Evidence of Pervasive
Turing Universality, 2016.
Main figure
Reprogrammability landscape of abstract computer programs
As a function of program length and compiler size
J Riedel, H. Zenil, Cross-boundary Behavioural
Reprogrammability Reveals Evidence of Pervasive
Turing Universality, 2016.
Prime rules and new universality result in
ECA
Boolean composition of prime ECA rules 15, 118 and 170 simulates ECA rule 110
The 2D CA Game of Life (GoL)
Density diagram showing the
persistence of structures:
GoL’s glider (a ‘moving’ particle)
A piece of information moving through the grid from one side to another
Pattern algorithmic dynamics
GoL’s glider algorithmic dynamics
The amount of information is preserved,
neither lost or increased
Characterization of evolving patterns
H. Zenil, Algorithmic-information Properties of
Dynamic Persistent Patterns and Colliding
Particles in the Game of Life
Characterization of local dynamic patterns
What about the characterization of events
Types of symmetric particle collisions
Free particle 2-particle front collision
2-particle side collision 3-particle collision 4-particle side collision
Dynamics of a 4-particle collision
New particles
Fixed point
H. Zenil, Algorithmic-information Properties of Dynamic Persistent Patterns and
Colliding Particles in the Game of Life
Algorithmic dynamics of a stable ‘near
miss’
H. Zenil, Algorithmic-information Properties of
Dynamic Persistent Patterns and Colliding
Particles in the Game of Life
Sensitivity of dynamics to initial conditions
Periodic fixed point
H. Zenil, Algorithmic-information Properties of
Dynamic Persistent Patterns and Colliding
Particles in the Game of Life
Particle annihilation
H. Zenil, Algorithmic-information Properties of
Dynamic Persistent Patterns and Colliding
Particles in the Game of Life
Open-ended collision
All cases can be reduced to 4 density
plots (+ annihilation)
3 cases with (periodic) fixed points and 1 open-ended case
Algorithmicdynamics
ofglidercollisions
Algorithmic Dynamics characterization
H. Zenil, Algorithmic-information Properties of Dynamic Persistent Patterns and Colliding
Particles in the Game of Life
Interventional Calculus
H. Zenil, N.A. Kiani, F. Marabita, Y. Deng, S. Elias, A. Schmidt, G. Ball, J. Tegnér,
An Algorithmic Information Calculus for Causal Discovery and Reprogramming Systems, 2017.
Reconstructing space-phase dynamics
We are generalizing this to continuous dynamic systems such as strange attractors
H. Zenil, N.A. Kiani, F. Marabita, Y. Deng, S. Elias, A. Schmidt, G. Ball, J. Tegnér,
An Algorithmic Information Calculus for Causal Discovery and Reprogramming Systems, 2017.
Reducing Dimension (compression/coarse-graining/
normalizing) by minimal information loss
Rule22
Rule158
Reducing Dimension (lossy compression/coarse-
graining/normalizing) by minimal information loss
Detecting generating mechanisms by
decoupling signals and programs
We have generalized these ideas to graphs and networks
Rule255and110
Applications in network theory and
molecular biology
•  A 3-million USD lab to produce models of human cells and
steer cells at will using these tools that we have developed:
H. Zenil, N.A. Kiani and J. Tegnér
Methods of Information Theory
and Algorithmic Complexity for
Network Biology
Seminars in Cell and
Developmental Biology, vol. 51,
pp. 32-43, 2016.
Journal of Complex Systems
•  Founded by Stephen Wolfram in 1987
•  First journal in the field of Complex Systems
•  Has published most of the most landmark papers in the field
•  Over 675 papers from 950 authors
•  Free open access and free publication
��������
��������
��������
�������
����������
�����������
�������
���������� ������
���������
�������
��������
��������
�����
����������
���������
���������
�������
��������
������
��������
����������
�������������������
������
���������
�����
�������������
��������������
���������������
�������
���������
�����������
������
������������
������
���������
����
���������
������������
�������
�����������
������������
��������
��������������
��������
�������
��������
����
����������
�����
����������
���������
�����
�������
�������
�����������
�����������
�������� ��������
��������
��������
����������
����������
��������
������
��������
��������
������
���
������
���������
��������
���������
����������
�����
��������
�������
������
��������
�����
������
�������
������
������
�������
��������
�����
����
���
������
�����
������
������
����
����
����
����
�����
����
Word cloud of titles
http://www.complex-systems.com/
Thanks
Collaborators:
Narsis A. Kiani
Jesper Tegnér
Juergen Riedel
Others from CompMed and AlgoNature

More Related Content

PDF
Information Theory and Programmable Medicine
PDF
Complexity and Computation in Nature: How can we test for Artificial Life?
PDF
Algorithmic Information Theory and Computational Biology
PDF
Cognition, Information and Subjective Computation
PDF
BINARY TREE SORT IS MORE ROBUST THAN QUICK SORT IN AVERAGE CASE
PDF
Haoying1999
PPTX
JAISTサマースクール2016「脳を知るための理論」講義03 Network Dynamics
PDF
PhD Defense
Information Theory and Programmable Medicine
Complexity and Computation in Nature: How can we test for Artificial Life?
Algorithmic Information Theory and Computational Biology
Cognition, Information and Subjective Computation
BINARY TREE SORT IS MORE ROBUST THAN QUICK SORT IN AVERAGE CASE
Haoying1999
JAISTサマースクール2016「脳を知るための理論」講義03 Network Dynamics
PhD Defense

What's hot (19)

PDF
Multi objective predictive control a solution using metaheuristics
PDF
JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience
PDF
Mechanica
PPTX
Handling missing data with expectation maximization algorithm
PPTX
Neural networks
PDF
FUZZY SET THEORETIC APPROACH TO IMAGE THRESHOLDING
PDF
Neural Networks: Rosenblatt's Perceptron
PDF
Bistablecamnets
PDF
X-TREPAN : A Multi Class Regression and Adapted Extraction of Comprehensible ...
PDF
3. 10079 20812-1-pb
PPT
EC Presentation _ ID_ 201-15-14294
PDF
IRJET- Performance Analysis of Optimization Techniques by using Clustering
PDF
Multilayer Backpropagation Neural Networks for Implementation of Logic Gates
PDF
Quantum brain a recurrent quantum neural network model to describe eye trac...
PDF
Detection of epileptic indicators on clinical subbands of eeg
PDF
Integration of Finite Element Method with Runge – Kuta Solution Algorithm
PDF
Economic Load Dispatch (ELD), Economic Emission Dispatch (EED), Combined Econ...
PDF
Penalty Function Method For Solving Fuzzy Nonlinear Programming Problem
Multi objective predictive control a solution using metaheuristics
JAISTサマースクール2016「脳を知るための理論」講義04 Neural Networks and Neuroscience
Mechanica
Handling missing data with expectation maximization algorithm
Neural networks
FUZZY SET THEORETIC APPROACH TO IMAGE THRESHOLDING
Neural Networks: Rosenblatt's Perceptron
Bistablecamnets
X-TREPAN : A Multi Class Regression and Adapted Extraction of Comprehensible ...
3. 10079 20812-1-pb
EC Presentation _ ID_ 201-15-14294
IRJET- Performance Analysis of Optimization Techniques by using Clustering
Multilayer Backpropagation Neural Networks for Implementation of Logic Gates
Quantum brain a recurrent quantum neural network model to describe eye trac...
Detection of epileptic indicators on clinical subbands of eeg
Integration of Finite Element Method with Runge – Kuta Solution Algorithm
Economic Load Dispatch (ELD), Economic Emission Dispatch (EED), Combined Econ...
Penalty Function Method For Solving Fuzzy Nonlinear Programming Problem
Ad

Similar to Algorithmic Dynamics of Cellular Automata (20)

PDF
Block Emulation and Computation in One-dimensional Cellular Automata: Breakin...
PDF
ANALYSIS OF ELEMENTARY CELLULAR AUTOMATA BOUNDARY CONDITIONS
PDF
Two dimensional-cellular-automata
PDF
Hamming Distance and Data Compression of 1-D CA
PDF
Hamming Distance and Data Compression of 1-D CA
PPTX
Cellular automata : A simple Introduction
PDF
Cellular Automata, PDEs and Pattern Formation
PDF
Introduction for graph automata
PDF
FEEDBACK SHIFT REGISTERS AS CELLULAR AUTOMATA BOUNDARY CONDITIONS
PDF
FEEDBACK SHIFT REGISTERS AS CELLULAR AUTOMATA BOUNDARY CONDITIONS
PDF
Model based cellularautomataonspreadofrumours
PPTX
Ip 5 discrete mathematics
PDF
Cellular Automata
DOC
Wolfram 2
PDF
Cellular Automata Models of Social Processes
PPT
Presentation adv theo cs fadhil
PDF
Cellular Automata
PPTX
Discrete Math IP4 - Automata Theory
PDF
Programmable Cellular Automata Based Efficient Parallel AES Encryption Algorithm
ODP
Undecidability in partially observable deterministic games
Block Emulation and Computation in One-dimensional Cellular Automata: Breakin...
ANALYSIS OF ELEMENTARY CELLULAR AUTOMATA BOUNDARY CONDITIONS
Two dimensional-cellular-automata
Hamming Distance and Data Compression of 1-D CA
Hamming Distance and Data Compression of 1-D CA
Cellular automata : A simple Introduction
Cellular Automata, PDEs and Pattern Formation
Introduction for graph automata
FEEDBACK SHIFT REGISTERS AS CELLULAR AUTOMATA BOUNDARY CONDITIONS
FEEDBACK SHIFT REGISTERS AS CELLULAR AUTOMATA BOUNDARY CONDITIONS
Model based cellularautomataonspreadofrumours
Ip 5 discrete mathematics
Cellular Automata
Wolfram 2
Cellular Automata Models of Social Processes
Presentation adv theo cs fadhil
Cellular Automata
Discrete Math IP4 - Automata Theory
Programmable Cellular Automata Based Efficient Parallel AES Encryption Algorithm
Undecidability in partially observable deterministic games
Ad

More from Hector Zenil (20)

PPTX
Unit 2: All
PPTX
Unit 5: All
PPTX
Unit 6: All
PPTX
4.11: The Infinite Programming Monkey
PPTX
4.12: The Algorithmic Coding Theorem
PPTX
4.13: Bennett's Logical Depth: A Measure of Sophistication
PPTX
4.10: Algorithmic Probability & the Universal Distribution
PPTX
4.9: The Chaitin-Leibniz Medal
PPTX
4.8: Epistemological Aspects of Infinite Wisdom
PPTX
4.7: Chaitin's Omega Number
PPTX
4.6: Convergence of Definitions
PPTX
4.5: The Invariance Theorem
PPTX
4.4: Algorithmic Complexity and Compressibility
PPTX
4.3: Pseudo Randomness
PPTX
4.1 Sources of Randomness
PPTX
Unit 3: Classical information
PPTX
Unit 3: Shannon entropy and meaning
PPTX
Unit 3: Joint, Conditional, Mutual Information, & a Case Study
PPTX
Unit 3: Entropy rate, languages and multidimensional data
PPTX
Unit 3: Redundancy, noise, and biological information
Unit 2: All
Unit 5: All
Unit 6: All
4.11: The Infinite Programming Monkey
4.12: The Algorithmic Coding Theorem
4.13: Bennett's Logical Depth: A Measure of Sophistication
4.10: Algorithmic Probability & the Universal Distribution
4.9: The Chaitin-Leibniz Medal
4.8: Epistemological Aspects of Infinite Wisdom
4.7: Chaitin's Omega Number
4.6: Convergence of Definitions
4.5: The Invariance Theorem
4.4: Algorithmic Complexity and Compressibility
4.3: Pseudo Randomness
4.1 Sources of Randomness
Unit 3: Classical information
Unit 3: Shannon entropy and meaning
Unit 3: Joint, Conditional, Mutual Information, & a Case Study
Unit 3: Entropy rate, languages and multidimensional data
Unit 3: Redundancy, noise, and biological information

Recently uploaded (20)

PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PDF
RMMM.pdf make it easy to upload and study
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PDF
01-Introduction-to-Information-Management.pdf
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
Computing-Curriculum for Schools in Ghana
PPTX
GDM (1) (1).pptx small presentation for students
PPTX
Lesson notes of climatology university.
PPTX
Cell Types and Its function , kingdom of life
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
VCE English Exam - Section C Student Revision Booklet
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
master seminar digital applications in india
PPTX
Pharma ospi slides which help in ospi learning
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
RMMM.pdf make it easy to upload and study
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
01-Introduction-to-Information-Management.pdf
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
O5-L3 Freight Transport Ops (International) V1.pdf
Computing-Curriculum for Schools in Ghana
GDM (1) (1).pptx small presentation for students
Lesson notes of climatology university.
Cell Types and Its function , kingdom of life
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Abdominal Access Techniques with Prof. Dr. R K Mishra
Microbial disease of the cardiovascular and lymphatic systems
VCE English Exam - Section C Student Revision Booklet
Final Presentation General Medicine 03-08-2024.pptx
master seminar digital applications in india
Pharma ospi slides which help in ospi learning

Algorithmic Dynamics of Cellular Automata

  • 1. ALGORITHMIC DYNAMICS OF CELLULAR AUTOMATA In celebration of Prof. Harold McIntosh Hector Zenil www.hectorzenil.net
  • 2. An example of an ECA: Rule 255
  • 4. Wolfram’s original ECA classification • Class 1. Symbolic systems which rapidly converge to a uniform state. Examples are rules 0, 32 and 160. • Class 2. Symbolic systems which rapidly converge to a repetitive or stable state. Examples are rules 4, 108 and 218. • Class 3. Symbolic systems which appear to remain in a random state. Examples are rules 22, 30, 126 and 189. • Class 4. Symbolic systems which form areas of repetitive or stable states, but which also form structures that interact with each other in complicated ways. Examples are rules 54 and 110.
  • 5. What classification? 1001 (Left) versus starting from 1011 (Right) ECA rule 22 Compression-Based Investigation of the Dynamical Properties of Cellular Automata and Other Systems, vol. 19, No. 1, pp. 1-28, 2010
  • 6. Gray Code First 50 initial configurations based on a Gray-code enumeration for binary CAs. H. Zenil et al., Asymptotic Behaviour and Ratios of Complexity in Cellular Automata Rule Spaces, International Journal of Bifurcation and Chaos vol. 23, no. 9, 2013.
  • 7. Strong symmetry breaking in the initial condition produces a phase transition leading to the production of high statistical randomness Bi-stable behaviour of ECA Rule 22 H. Zenil et al., Asymptotic Behaviour and Ratios of Complexity in Cellular Automata Rule Spaces, International Journal of Bifurcation and Chaos vol. 23, no. 9, 2013.
  • 8. Compressing space-time evolutions of ECAs Evolution of rules 95, 82, 50, and 30 together with the compressed (dashed line) and uncompressed (solid line) lengths. Compression-Based Investigation of the Dynamical Properties of Cellular Automata and Other Systems, vol. 19, No. 1, pp. 1-28, 2010
  • 9. AIT-based separation found Discrepancies: ECA Rule 73 and 94 are class 2 in Wolfram’s original classification H. Zenil et al., Asymptotic Behaviour and Ratios of Complexity in Cellular Automata Rule Spaces, International Journal of Bifurcation and Chaos vol. 23, no. 9, 2013.
  • 10. The asymptotic bevahiour of CAs towards greater complexity Consistent across all measures: block entropy, lossless compression (Compress) and algorithmic probability (CTM/BDM) H. Zenil et al., Asymptotic Behaviour and Ratios of Complexity in Cellular Automata Rule Spaces, International Journal of Bifurcation and Chaos vol. 23, no. 9, 2013.
  • 11. CA block emulation (compilers) Rule 54 emulates 51 J Riedel, H. Zenil, Cross-boundary Behavioural Reprogrammability Reveals Evidence of Pervasive Turing Universality, 2016.
  • 12. Cross-boundary breaking of classes J Riedel, H. Zenil, Cross-boundary Behavioural Reprogrammability Reveals Evidence of Pervasive Turing Universality, 2016.
  • 13. Cross-boundary breaking of classes Rule 54 emulates 51 J Riedel, H. Zenil, Cross-boundary Behavioural Reprogrammability Reveals Evidence of Pervasive Turing Universality, 2016.
  • 14. Cross-boundary class breaking J Riedel, H. Zenil, Cross-boundary Behavioural Reprogrammability Reveals Evidence of Pervasive Turing Universality, 2016.
  • 15. Main figure Reprogrammability landscape of abstract computer programs As a function of program length and compiler size J Riedel, H. Zenil, Cross-boundary Behavioural Reprogrammability Reveals Evidence of Pervasive Turing Universality, 2016.
  • 16. Prime rules and new universality result in ECA Boolean composition of prime ECA rules 15, 118 and 170 simulates ECA rule 110
  • 17. The 2D CA Game of Life (GoL) Density diagram showing the persistence of structures:
  • 18. GoL’s glider (a ‘moving’ particle) A piece of information moving through the grid from one side to another
  • 19. Pattern algorithmic dynamics GoL’s glider algorithmic dynamics The amount of information is preserved, neither lost or increased
  • 20. Characterization of evolving patterns H. Zenil, Algorithmic-information Properties of Dynamic Persistent Patterns and Colliding Particles in the Game of Life
  • 21. Characterization of local dynamic patterns What about the characterization of events
  • 22. Types of symmetric particle collisions Free particle 2-particle front collision 2-particle side collision 3-particle collision 4-particle side collision
  • 23. Dynamics of a 4-particle collision New particles Fixed point H. Zenil, Algorithmic-information Properties of Dynamic Persistent Patterns and Colliding Particles in the Game of Life
  • 24. Algorithmic dynamics of a stable ‘near miss’ H. Zenil, Algorithmic-information Properties of Dynamic Persistent Patterns and Colliding Particles in the Game of Life
  • 25. Sensitivity of dynamics to initial conditions Periodic fixed point H. Zenil, Algorithmic-information Properties of Dynamic Persistent Patterns and Colliding Particles in the Game of Life
  • 26. Particle annihilation H. Zenil, Algorithmic-information Properties of Dynamic Persistent Patterns and Colliding Particles in the Game of Life
  • 28. All cases can be reduced to 4 density plots (+ annihilation) 3 cases with (periodic) fixed points and 1 open-ended case Algorithmicdynamics ofglidercollisions
  • 29. Algorithmic Dynamics characterization H. Zenil, Algorithmic-information Properties of Dynamic Persistent Patterns and Colliding Particles in the Game of Life
  • 30. Interventional Calculus H. Zenil, N.A. Kiani, F. Marabita, Y. Deng, S. Elias, A. Schmidt, G. Ball, J. Tegnér, An Algorithmic Information Calculus for Causal Discovery and Reprogramming Systems, 2017.
  • 31. Reconstructing space-phase dynamics We are generalizing this to continuous dynamic systems such as strange attractors H. Zenil, N.A. Kiani, F. Marabita, Y. Deng, S. Elias, A. Schmidt, G. Ball, J. Tegnér, An Algorithmic Information Calculus for Causal Discovery and Reprogramming Systems, 2017.
  • 33. Rule158 Reducing Dimension (lossy compression/coarse- graining/normalizing) by minimal information loss
  • 34. Detecting generating mechanisms by decoupling signals and programs We have generalized these ideas to graphs and networks Rule255and110
  • 35. Applications in network theory and molecular biology •  A 3-million USD lab to produce models of human cells and steer cells at will using these tools that we have developed: H. Zenil, N.A. Kiani and J. Tegnér Methods of Information Theory and Algorithmic Complexity for Network Biology Seminars in Cell and Developmental Biology, vol. 51, pp. 32-43, 2016.
  • 36. Journal of Complex Systems •  Founded by Stephen Wolfram in 1987 •  First journal in the field of Complex Systems •  Has published most of the most landmark papers in the field •  Over 675 papers from 950 authors •  Free open access and free publication �������� �������� �������� ������� ���������� ����������� ������� ���������� ������ ��������� ������� �������� �������� ����� ���������� ��������� ��������� ������� �������� ������ �������� ���������� ������������������� ������ ��������� ����� ������������� �������������� ��������������� ������� ��������� ����������� ������ ������������ ������ ��������� ���� ��������� ������������ ������� ����������� ������������ �������� �������������� �������� ������� �������� ���� ���������� ����� ���������� ��������� ����� ������� ������� ����������� ����������� �������� �������� �������� �������� ���������� ���������� �������� ������ �������� �������� ������ ��� ������ ��������� �������� ��������� ���������� ����� �������� ������� ������ �������� ����� ������ ������� ������ ������ ������� �������� ����� ���� ��� ������ ����� ������ ������ ���� ���� ���� ���� ����� ���� Word cloud of titles http://www.complex-systems.com/
  • 37. Thanks Collaborators: Narsis A. Kiani Jesper Tegnér Juergen Riedel Others from CompMed and AlgoNature