SlideShare a Scribd company logo
AAnn AAddaappttiivvee DDiissttrriibbuutteedd SSiimmuullaattoorr ffoorr 
CClloouudd aanndd MMaappRReedduuccee 
AAllggoorriitthhmmss aanndd AArrcchhiitteeccttuurreess 
IEEE/ACM 7th International Conference on Utility and Cloud Computing – 
UCC 2014. Dec 8th – 11th, 2014. 
Pradeeban Kathiravelu 
Luis Veiga 
INESC-ID Lisboa 
Instituto Superior Técnico, 
Universidade de Lisboa 
PPoowweerrppooiinntt TTeemmppllaatteess 1
Agenda 
•Introduction 
•Background 
•Solution Architecture 
•Implementation 
•Evaluation 
•Conclusion 
Powerpoint Templates 2
Introduction 
•Computing systems becoming 
increasingly larger. 
•Simulations empower researches. 
•Cloud simulators are mostly 
sequential and executed from a 
single computer. 
–CloudSim (Calheiros et al. 2009; Buyya et al. 2009; Calheiros et al. 2011) 
–SimGrid (Casanova 2001; Legrand et al. 2003; Casanova et al. 2008) 
–GreenCloud (Kliazovich et al. 2012) 
Powerpoint Templates 3
Motivation 
•Large and complex simulations. 
•Distributed Execution Frameworks. 
– Illusion of a single large system. 
•Clusters in the research labs. 
Powerpoint Templates 4 
•What if..?
Goals 
•An adaptive distributed cloud and 
MapReduce simulator. 
•Extending CloudSim Cloud Simulator 
– Leveraging in-memory data grids. 
• Hazelcast (Johns 2013) 
• Infinispan (Marchioni 2012) 
• ... 
Powerpoint Templates 5
Contributions 
•An adaptive distributed architecture 
– for cloud and MapReduce simulations. 
•A generic adaptive scaling algorithm. 
•A scalable middleware platform 
– elastic 
– multi-tenanted 
•Evaluation of MapReduce 
implementations. 
–Hazelcast vs Infinispan. 
Powerpoint Templates 6
Major Features of the Work 
•Simulations → Actual Technology. 
•Loosely coupled. 
•Fault-Tolerant. 
•Internal cycle-sharing. 
•Deployable over real clouds. 
Powerpoint Templates 7
Cloud2Sim 
Powerpoint Templates 8
Design and Deployment 
Storage, Execution, and Data Locality 
• Simulator–Initiator based Approach 
• Simulator–SimulatorSub based Approach 
•Multiple Simulator Instances Approach 
Powerpoint Templates 9
Cloud2Sim 
Execution 
Flow 
Powerpoint Templates 10
1. Objects 
Initialization 
& Scheduling 
Powerpoint Templates 11
2. Final Execution 
Powerpoint Templates 12
Cloud2Sim 
Execution 
Flow 
Powerpoint Templates 13
Powerpoint Templates 14 
Cloud2Sim 
Software 
Architecture
Algorithms: 
Dynamic Scaling and Elasticity 
Powerpoint Templates 15
Algorithms: 
Dynamic Scaling and Elasticity 
•Auto Scaling 
•Adaptive Scaling 
Powerpoint Templates 16
Auto Scaling 
Powerpoint Templates 17
Adaptive Scaling 
Powerpoint Templates 18
IntelligentAdaptiveScaler 
Powerpoint Templates 19
Subscribing for Scaling 
Powerpoint Templates 20
High Load 
Powerpoint Templates 21
Updating the flag 
Powerpoint Templates 22
Open Access 
Powerpoint Templates 23
Scaling Out 
Powerpoint Templates 24
Spawning an Initiator Instance 
Powerpoint Templates 25
Waiting Period.. 
Powerpoint Templates 26
Waiting Period.. 
Powerpoint Templates 27
Monitor for Scale Ins Too.. 
Powerpoint Templates 28
After some time.. 
Powerpoint Templates 29
Scale Out Again.. 
Powerpoint Templates 30
One more Initiator.. 
Powerpoint Templates 31
After more scalings.. 
Powerpoint Templates 32
Scale In.. 
Powerpoint Templates 33
Shut down an Initiator Instance 
Powerpoint Templates 34
Finally.. 
Powerpoint Templates 35
Parallel Simulations 
Powerpoint Templates 36
Multi-tenanted Deployments 
Powerpoint Templates 37
MapReduce 
Executions 
Powerpoint Templates 38
Implementation 
•CloudSim trunk forked 
•Hazelcast version 3.2 and Infinispan 
version 6.0.2. 
•Dependencies abstracted away. 
Powerpoint Templates 39
Evaluation 
•Setup: Cluster with 6 identical nodes 
–Intel® Core™ i7-2600K CPU @ 
3.40GHz and 12 GB memory. 
•Varying number of parameters 
–Cloudlets: 100 → 400. 
–VMs: 100 → 200. 
–Nodes: 1 → 6. 
Powerpoint Templates 40
Simulation 1: CloudSim and Cloud2Sim 
•Round robin application scheduling 
with 200 VMs and 400 cloudlets. 
Execution Time 
Powerpoint Templates 41
Varying number of Cloudlets 
Powerpoint Templates 42
With Adaptive Scaling 
Powerpoint Templates 43
Simulation 2: Matchmaking-based 
Application Scheduling 
Execution Time 
Powerpoint Templates 44
Speed up 
Powerpoint Templates 45
Simulation 3: MapReduce 
Implementations 
Powerpoint Templates 46
Scalability 
Powerpoint Templates 47 
Hazelcast 
Implementation 
Map() invocations = 3 
Infinispan 
Implementation 
Reduce() invocations = 159,069
Conclusion 
•Summary 
– Distribution strategies and algorithms for 
cloud and MapReduce simulations. 
– Implementation of an Elastic Middleware 
platform. 
– Scale and perform with multiple nodes and 
larger simulations. 
Powerpoint Templates 48
Conclusion 
•Conclusions 
–Distributed architecture facilitates larger 
simulations. 
– Faster execution of time-consuming 
applications. 
Powerpoint Templates 49
Conclusion 
Powerpoint Templates 50 
• Conclusions 
– Distributed architecture facilitates larger 
simulations. 
– Faster execution of time-consuming 
applications. 
• Future Work 
– State-aware Adaptive Scaling 
– Infinispan based Cloud Simulations. 
– Lighter objects. 
– Generic Elastic Middleware Platform-as-a- 
Service.
Conclusion 
Powerpoint Templates 51 
• Conclusions 
– Distributed architecture facilitates larger 
simulations. 
– Faster execution of time-consuming 
applications. 
• Future Work 
– State-aware Adaptive Scaling 
– Infinispan based Cloud Simulations. 
– Lighter objects. 
– Generic Elastic Middleware Platform-as-a- 
Service. 
TThhaannkk yyoouu!! QQuueessttiioonnss??
References 
 Buyya, R., R. Ranjan, & R. N. Calheiros (2009). Modeling and simulation of scalable cloud computing 
environments and the cloudsim toolkit: Challenges and opportunities. In High Performance Computing 
& Simulation, 2009. HPCS’09. International Conference on, pp. 1–11. IEEE. 
 Calheiros, R. N., R. Ranjan, C. A. De Rose, & R. Buyya (2009). Cloudsim: A novel framework for 
modeling and simulation of cloud computing infrastructures and services. arXiv preprint 
arXiv:0903.2525 
 Calheiros, R. N., R. Ranjan, A. Beloglazov, C. A. De Rose, & R. Buyya (2011). Cloudsim: a toolkit for 
modeling and simulation of cloud computing environments and evaluation of resource provisioning 
algorithms. Software: Practice and Experience 41 (1), 23–50. 
 Casanova, H. (2001). Simgrid: A toolkit for the simulation of application scheduling. In Cluster 
Computing and the Grid, 2001. Proceedings. First IEEE/ACM International Symposium on, pp. 430–437. 
IEEE. 
 Casanova, H., A. Legrand, & M. Quinson (2008). Simgrid: A generic framework for large-scale 
distributed experiments. In Computer Modeling and Simulation, 2008. UKSIM 2008. Tenth International 
Conference on, pp. 126–131. IEEE. 
 Johns, M. (2013). Getting Started with Hazelcast. Packt Publishing Ltd. 
 Kliazovich, D., P. Bouvry, & S. U. Khan (2012). Greencloud: a packet-level simulator of energy-aware 
cloud computing data centers. The Journal of Supercomputing 62 (3), 1263–1283. 
 Legrand, A., L. Marchal, & H. Casanova (2003). Scheduling distributed applications: the simgrid 
simulation framework. In Cluster Computing and the Grid, 2003. Proceedings. CCGrid 2003. 3rd 
IEEE/ACM International Symposium on, pp. 138–145. IEEE. 
 Marchioni, F. (2012). Infinispan Data Grid Platform. Packt Publishing Ltd. 
Powerpoint Templates 52

More Related Content

PDF
An Elastic Middleware Platform for Concurrent and Distributed Cloud and MapRe...
PDF
Concurrent and Distributed CloudSim Simulations
PPTX
Cloud computing and Cloudsim
PPTX
introduction to cloudsim
PPTX
CloudSim : Introduction and Basic Programming Syntax
PPTX
Cloud sim pptx
PPTX
Clustring computing
PDF
High Performance Computing in the Cloud?
An Elastic Middleware Platform for Concurrent and Distributed Cloud and MapRe...
Concurrent and Distributed CloudSim Simulations
Cloud computing and Cloudsim
introduction to cloudsim
CloudSim : Introduction and Basic Programming Syntax
Cloud sim pptx
Clustring computing
High Performance Computing in the Cloud?

What's hot (18)

PPTX
A comparative study between cloud computing and fog
PDF
Nephele pegasus
PPTX
Cluster computing
PPTX
Cluster computing
PPTX
Cluster computing
PPTX
Cluster computing
PPTX
Bionimbus - An Overview (2010-v6)
PDF
IAAS Implementation to provide OS through Web interface
PDF
An Update on CSCS
PPT
Large Scale On-Demand Image Processing For Disaster Relief
PPTX
Cluster and Grid Computing
PPTX
High performance computing
PPTX
Cloud nima afraz
PPT
Cluster Computing Seminar.
PPT
Cluster Computing
PDF
High Performance & High Throughput Computing - EUDAT Summer School (Giuseppe ...
PPTX
Slide 1
PPT
Lessons Learned from a Year's Worth of Benchmarking Large Data Clouds (Robert...
A comparative study between cloud computing and fog
Nephele pegasus
Cluster computing
Cluster computing
Cluster computing
Cluster computing
Bionimbus - An Overview (2010-v6)
IAAS Implementation to provide OS through Web interface
An Update on CSCS
Large Scale On-Demand Image Processing For Disaster Relief
Cluster and Grid Computing
High performance computing
Cloud nima afraz
Cluster Computing Seminar.
Cluster Computing
High Performance & High Throughput Computing - EUDAT Summer School (Giuseppe ...
Slide 1
Lessons Learned from a Year's Worth of Benchmarking Large Data Clouds (Robert...
Ad

Similar to An adaptive distributed simulator for cloud andmap reduce algorithms and architectures (20)

PDF
Cloud-Computing-Course-Description-and-Syllabus-Spring2020.pdf
PDF
ClouNS - A Cloud-native Application Reference Model for Enterprise Architects
PPT
Survey on cloud simulator
PPT
Scheduling in CCE
PDF
Nadim(093048) stz sir
PDF
KubeCon & CloudNative Con 2024 Artificial Intelligent
PDF
The RECAP Project: Large Scale Simulation Framework
PDF
Data set cloudrank-d-hpca_tutorial
PDF
Cloud Computing of the college .pdf
PDF
CloudLightning - Multiclouds: Challenges and Current Solutions
PDF
QuSandbox+NVIDIA Rapids
PDF
CloudLightning and the OPM-based Use Case
PPT
PDF
[Srijan Wednesday Webinars] How to Build a Cloud Native Platform for Enterpri...
PDF
Multi cloud PaaS
PDF
Microservices.pdf
DOCX
Knowledge labs cc1
PDF
RECAP Project Overview
PDF
Building ML Pipelines with DCOS
PDF
What the cloud has to do with a burning house?
Cloud-Computing-Course-Description-and-Syllabus-Spring2020.pdf
ClouNS - A Cloud-native Application Reference Model for Enterprise Architects
Survey on cloud simulator
Scheduling in CCE
Nadim(093048) stz sir
KubeCon & CloudNative Con 2024 Artificial Intelligent
The RECAP Project: Large Scale Simulation Framework
Data set cloudrank-d-hpca_tutorial
Cloud Computing of the college .pdf
CloudLightning - Multiclouds: Challenges and Current Solutions
QuSandbox+NVIDIA Rapids
CloudLightning and the OPM-based Use Case
[Srijan Wednesday Webinars] How to Build a Cloud Native Platform for Enterpri...
Multi cloud PaaS
Microservices.pdf
Knowledge labs cc1
RECAP Project Overview
Building ML Pipelines with DCOS
What the cloud has to do with a burning house?
Ad

More from Pradeeban Kathiravelu, Ph.D. (20)

PDF
Google Summer of Code_2023.pdf
PDF
Google Summer of Code (GSoC) 2022
PDF
Google Summer of Code (GSoC) 2022
PPTX
Niffler: A DICOM Framework for Machine Learning and Processing Pipelines.
PDF
Google summer of code (GSoC) 2021
PPTX
A DICOM Framework for Machine Learning Pipelines against Real-Time Radiology ...
PDF
Google Summer of Code (GSoC) 2020 for mentors
PDF
Google Summer of Code (GSoC) 2020
PDF
Data Services with Bindaas: RESTful Interfaces for Diverse Data Sources
PDF
The UCLouvain Public Defense of my EMJD-DC Double Doctorate Ph.D. degree
PDF
My Ph.D. Defense - Software-Defined Systems for Network-Aware Service Compos...
PDF
My Ph.D. Defense - Software-Defined Systems for Network-Aware Service Composi...
PDF
UCL Ph.D. Confirmation 2018
PDF
Software-Defined Systems for Network-Aware Service Composition and Workflow P...
PDF
Moving bits with a fleet of shared virtual routers
PDF
Software-Defined Data Services: Interoperable and Network-Aware Big Data Exec...
PDF
On-Demand Service-Based Big Data Integration: Optimized for Research Collabor...
PDF
Scalability and Resilience of Multi-Tenant Distributed Clouds in the Big Serv...
PDF
Software-Defined Inter-Cloud Composition of Big Services
PDF
Scalability and Resilience of Multi-Tenant Distributed Clouds in the Big Serv...
Google Summer of Code_2023.pdf
Google Summer of Code (GSoC) 2022
Google Summer of Code (GSoC) 2022
Niffler: A DICOM Framework for Machine Learning and Processing Pipelines.
Google summer of code (GSoC) 2021
A DICOM Framework for Machine Learning Pipelines against Real-Time Radiology ...
Google Summer of Code (GSoC) 2020 for mentors
Google Summer of Code (GSoC) 2020
Data Services with Bindaas: RESTful Interfaces for Diverse Data Sources
The UCLouvain Public Defense of my EMJD-DC Double Doctorate Ph.D. degree
My Ph.D. Defense - Software-Defined Systems for Network-Aware Service Compos...
My Ph.D. Defense - Software-Defined Systems for Network-Aware Service Composi...
UCL Ph.D. Confirmation 2018
Software-Defined Systems for Network-Aware Service Composition and Workflow P...
Moving bits with a fleet of shared virtual routers
Software-Defined Data Services: Interoperable and Network-Aware Big Data Exec...
On-Demand Service-Based Big Data Integration: Optimized for Research Collabor...
Scalability and Resilience of Multi-Tenant Distributed Clouds in the Big Serv...
Software-Defined Inter-Cloud Composition of Big Services
Scalability and Resilience of Multi-Tenant Distributed Clouds in the Big Serv...

Recently uploaded (20)

PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
OOP with Java - Java Introduction (Basics)
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
Lecture Notes Electrical Wiring System Components
PPTX
UNIT 4 Total Quality Management .pptx
PPT
Mechanical Engineering MATERIALS Selection
PPTX
Construction Project Organization Group 2.pptx
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
additive manufacturing of ss316l using mig welding
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
composite construction of structures.pdf
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
Current and future trends in Computer Vision.pptx
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PDF
Well-logging-methods_new................
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
Embodied AI: Ushering in the Next Era of Intelligent Systems
OOP with Java - Java Introduction (Basics)
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Lecture Notes Electrical Wiring System Components
UNIT 4 Total Quality Management .pptx
Mechanical Engineering MATERIALS Selection
Construction Project Organization Group 2.pptx
CYBER-CRIMES AND SECURITY A guide to understanding
additive manufacturing of ss316l using mig welding
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
composite construction of structures.pdf
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Current and future trends in Computer Vision.pptx
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Well-logging-methods_new................
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks

An adaptive distributed simulator for cloud andmap reduce algorithms and architectures

  • 1. AAnn AAddaappttiivvee DDiissttrriibbuutteedd SSiimmuullaattoorr ffoorr CClloouudd aanndd MMaappRReedduuccee AAllggoorriitthhmmss aanndd AArrcchhiitteeccttuurreess IEEE/ACM 7th International Conference on Utility and Cloud Computing – UCC 2014. Dec 8th – 11th, 2014. Pradeeban Kathiravelu Luis Veiga INESC-ID Lisboa Instituto Superior Técnico, Universidade de Lisboa PPoowweerrppooiinntt TTeemmppllaatteess 1
  • 2. Agenda •Introduction •Background •Solution Architecture •Implementation •Evaluation •Conclusion Powerpoint Templates 2
  • 3. Introduction •Computing systems becoming increasingly larger. •Simulations empower researches. •Cloud simulators are mostly sequential and executed from a single computer. –CloudSim (Calheiros et al. 2009; Buyya et al. 2009; Calheiros et al. 2011) –SimGrid (Casanova 2001; Legrand et al. 2003; Casanova et al. 2008) –GreenCloud (Kliazovich et al. 2012) Powerpoint Templates 3
  • 4. Motivation •Large and complex simulations. •Distributed Execution Frameworks. – Illusion of a single large system. •Clusters in the research labs. Powerpoint Templates 4 •What if..?
  • 5. Goals •An adaptive distributed cloud and MapReduce simulator. •Extending CloudSim Cloud Simulator – Leveraging in-memory data grids. • Hazelcast (Johns 2013) • Infinispan (Marchioni 2012) • ... Powerpoint Templates 5
  • 6. Contributions •An adaptive distributed architecture – for cloud and MapReduce simulations. •A generic adaptive scaling algorithm. •A scalable middleware platform – elastic – multi-tenanted •Evaluation of MapReduce implementations. –Hazelcast vs Infinispan. Powerpoint Templates 6
  • 7. Major Features of the Work •Simulations → Actual Technology. •Loosely coupled. •Fault-Tolerant. •Internal cycle-sharing. •Deployable over real clouds. Powerpoint Templates 7
  • 9. Design and Deployment Storage, Execution, and Data Locality • Simulator–Initiator based Approach • Simulator–SimulatorSub based Approach •Multiple Simulator Instances Approach Powerpoint Templates 9
  • 10. Cloud2Sim Execution Flow Powerpoint Templates 10
  • 11. 1. Objects Initialization & Scheduling Powerpoint Templates 11
  • 12. 2. Final Execution Powerpoint Templates 12
  • 13. Cloud2Sim Execution Flow Powerpoint Templates 13
  • 14. Powerpoint Templates 14 Cloud2Sim Software Architecture
  • 15. Algorithms: Dynamic Scaling and Elasticity Powerpoint Templates 15
  • 16. Algorithms: Dynamic Scaling and Elasticity •Auto Scaling •Adaptive Scaling Powerpoint Templates 16
  • 17. Auto Scaling Powerpoint Templates 17
  • 20. Subscribing for Scaling Powerpoint Templates 20
  • 21. High Load Powerpoint Templates 21
  • 22. Updating the flag Powerpoint Templates 22
  • 23. Open Access Powerpoint Templates 23
  • 24. Scaling Out Powerpoint Templates 24
  • 25. Spawning an Initiator Instance Powerpoint Templates 25
  • 28. Monitor for Scale Ins Too.. Powerpoint Templates 28
  • 29. After some time.. Powerpoint Templates 29
  • 30. Scale Out Again.. Powerpoint Templates 30
  • 31. One more Initiator.. Powerpoint Templates 31
  • 32. After more scalings.. Powerpoint Templates 32
  • 33. Scale In.. Powerpoint Templates 33
  • 34. Shut down an Initiator Instance Powerpoint Templates 34
  • 39. Implementation •CloudSim trunk forked •Hazelcast version 3.2 and Infinispan version 6.0.2. •Dependencies abstracted away. Powerpoint Templates 39
  • 40. Evaluation •Setup: Cluster with 6 identical nodes –Intel® Core™ i7-2600K CPU @ 3.40GHz and 12 GB memory. •Varying number of parameters –Cloudlets: 100 → 400. –VMs: 100 → 200. –Nodes: 1 → 6. Powerpoint Templates 40
  • 41. Simulation 1: CloudSim and Cloud2Sim •Round robin application scheduling with 200 VMs and 400 cloudlets. Execution Time Powerpoint Templates 41
  • 42. Varying number of Cloudlets Powerpoint Templates 42
  • 43. With Adaptive Scaling Powerpoint Templates 43
  • 44. Simulation 2: Matchmaking-based Application Scheduling Execution Time Powerpoint Templates 44
  • 45. Speed up Powerpoint Templates 45
  • 46. Simulation 3: MapReduce Implementations Powerpoint Templates 46
  • 47. Scalability Powerpoint Templates 47 Hazelcast Implementation Map() invocations = 3 Infinispan Implementation Reduce() invocations = 159,069
  • 48. Conclusion •Summary – Distribution strategies and algorithms for cloud and MapReduce simulations. – Implementation of an Elastic Middleware platform. – Scale and perform with multiple nodes and larger simulations. Powerpoint Templates 48
  • 49. Conclusion •Conclusions –Distributed architecture facilitates larger simulations. – Faster execution of time-consuming applications. Powerpoint Templates 49
  • 50. Conclusion Powerpoint Templates 50 • Conclusions – Distributed architecture facilitates larger simulations. – Faster execution of time-consuming applications. • Future Work – State-aware Adaptive Scaling – Infinispan based Cloud Simulations. – Lighter objects. – Generic Elastic Middleware Platform-as-a- Service.
  • 51. Conclusion Powerpoint Templates 51 • Conclusions – Distributed architecture facilitates larger simulations. – Faster execution of time-consuming applications. • Future Work – State-aware Adaptive Scaling – Infinispan based Cloud Simulations. – Lighter objects. – Generic Elastic Middleware Platform-as-a- Service. TThhaannkk yyoouu!! QQuueessttiioonnss??
  • 52. References  Buyya, R., R. Ranjan, & R. N. Calheiros (2009). Modeling and simulation of scalable cloud computing environments and the cloudsim toolkit: Challenges and opportunities. In High Performance Computing & Simulation, 2009. HPCS’09. International Conference on, pp. 1–11. IEEE.  Calheiros, R. N., R. Ranjan, C. A. De Rose, & R. Buyya (2009). Cloudsim: A novel framework for modeling and simulation of cloud computing infrastructures and services. arXiv preprint arXiv:0903.2525  Calheiros, R. N., R. Ranjan, A. Beloglazov, C. A. De Rose, & R. Buyya (2011). Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice and Experience 41 (1), 23–50.  Casanova, H. (2001). Simgrid: A toolkit for the simulation of application scheduling. In Cluster Computing and the Grid, 2001. Proceedings. First IEEE/ACM International Symposium on, pp. 430–437. IEEE.  Casanova, H., A. Legrand, & M. Quinson (2008). Simgrid: A generic framework for large-scale distributed experiments. In Computer Modeling and Simulation, 2008. UKSIM 2008. Tenth International Conference on, pp. 126–131. IEEE.  Johns, M. (2013). Getting Started with Hazelcast. Packt Publishing Ltd.  Kliazovich, D., P. Bouvry, & S. U. Khan (2012). Greencloud: a packet-level simulator of energy-aware cloud computing data centers. The Journal of Supercomputing 62 (3), 1263–1283.  Legrand, A., L. Marchal, & H. Casanova (2003). Scheduling distributed applications: the simgrid simulation framework. In Cluster Computing and the Grid, 2003. Proceedings. CCGrid 2003. 3rd IEEE/ACM International Symposium on, pp. 138–145. IEEE.  Marchioni, F. (2012). Infinispan Data Grid Platform. Packt Publishing Ltd. Powerpoint Templates 52